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This paper introduces an independent-proposal Metropolis—Hastings sampler for
Bayesian probit regression. The Gibbs sampler of Albert and Chib has been the
default sampler since its introduction in 1993. We conduct a simulation study
comparing the two methods under various combinations of predictor variables and
sample sizes. The proposed sampler is shown to outperform that of Albert and
Chib in terms of efficiency measured through autocorrelation, effective sample
size, and computation time. We then demonstrate performance of the samplers
on real data applications with analogous results.

1. Introduction

Modeling binary response data is important in statistics and related fields of biostatis-
tics and econometrics. The classical approach is to fit a logistic or probit regression
model via maximum likelihood and to conduct inference based on asymptotic
theory. A thorough summary of this approach is given by [Amemiya 1981]. When
the sample size n is small, however, reliance on asymptotic theory is dubious; for
example, [Griffiths et al. 1987] shows that the maximum likelihood estimator (MLE)
exhibits nonnegligible bias in finite samples.
One solution is to take a Bayesian approach. The Bayesian paradigm is based
on Bayes’ rule, which in our modeling context may be generally expressed as
_7@®)p(y10)

pO|y)=——""—"—cxm@)p(yl0),
r(y)

where p(y | @) is the data likelihood; 7 (@) is the prior distribution assigned to 6,
representing one’s a priori beliefs about #; p(y) is the marginal likelihood; and
p(@|y) is the posterior distribution, describing one’s updated beliefs about 6.
Interest lies in conducting inference on @ based on the posterior distribution.

For many data likelihoods, there exists a prior distribution that leads to a posterior
distribution of the same family that may be expressed in closed form. There is no
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such conjugate prior for either the logistic or probit likelihoods, so computational
techniques must be utilized to summarize and/or sample from the posterior distribu-
tion. For instance, [Zellner and Rossi 1984] recommends numerical integration when
the number of predictors p is small and importance sampling with a multivariate ¢
instrumental distribution otherwise.

The advent of Gibbs sampling [Geman and Geman 1984; Gelfand and Smith
1990] introduced a whole class of new methods for doing posterior inference. In its
simplest form, Gibbs sampling generates random draws from a multivariate posterior
distribution by iteratively generating univariate draws from the full conditional
distributions p(6y | 0, y), where 0_; is the parameter vector 6 excluding the
k-th entry. Zeger and Karim [1991] were the first to apply Gibbs sampling to a
logistic regression model. However, in this approach not all of the full conditional
distributions are available in closed form.

In a now landmark paper, Albert and Chib [1993] introduced a novel Gibbs
sampler for sampling from the posterior distribution of a probit regression model
with a multivariate normal prior. Thanks to a clever data augmentation technique,
the full conditional distributions in the Albert and Chib Gibbs sampler are all named
distributions. Albert and Chib’s method can be used to obtain approximate posterior
samples from the logistic regression model, but it took more than a decade for
researchers to devise an exact (i.e., asymptotically convergent) data-augmentation-
based Gibbs sampler for the logistic regression model; several now exist [Holmes
and Held 2006; Frithwirth-Schnatter and Frithwirth 2007; Polson et al. 2013].
Holmes and Held [2006], in addition to their contribution to Bayesian logistic regres-
sion, also introduced an ostensible improvement to Albert and Chib’s probit Gibbs
sampler in the form of a joint update of the regression and auxiliary parameters.

In this paper, we draw attention to a Markov chain Monte Carlo (MCMC)
sampling algorithm related to the importance sampling approach of [Zellner and
Rossi 1984] and demonstrate that it performs favorably in a wide variety of settings
when compared to the Albert and Chib sampler. In particular, we recommend that
samples from the probit posterior be obtained using an independence Metropolis—
Hastings (MH) sampler with a multivariate ¢ proposal distribution centered at the
posterior mode and having variance equal to the inverse Hessian evaluated at the
mode. Variations of this sampler have been mentioned in the literature, but to our
knowledge no one has undertaken to systematically compare it to Albert and Chib’s.

Although our algorithm is closely related to the importance sampling scheme of
[Zellner and Rossi 1984], one minor difference is that we obtain actual samples
from the posterior, allowing for natural comparison to the Albert and Chib sampler,
whereas Zellner and Rossi approximated integrals with appropriately weighted
draws from the multivariate 7-distribution. Perhaps a more notable difference is
that we use the inverse Hessian evaluated at the mode instead of the (moderately
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scaled) inverse Hessian evaluated at the MLE. This difference is nontrivial when
the contribution from the prior is considerable.

While the idea of using an independence MH sampler with multivariate ¢ proposal
was not explicitly discussed in [Albert and Chib 1993], the authors do suggest that a
difficult full conditional may be approximated by a normal or ¢-distribution centered
at the mode and having variance determined by the curvature at the mode; however,
normality of the posterior itself is dismissed for small n. In this paper we show that
even in the small-n scenario the independence MH sampler is often more efficient.

Polson et al. [2013] discuss the independence MH sampler at length, but in the
context of logistic regression, as opposed to probit. They acknowledge that MH was
faster than the auxiliary-variable Gibbs sampler in five of eight data sets studied, but
warn against its use when the model has a complex prior structure, as is the case for,
e.g., mixed models, factor models, and models with spatiotemporal dependence. We
realize that similar arguments could be made in favor of the probit Gibbs sampler,
but this does not negate the importance of our contribution. We hope to show that the
deference which many practicing Bayesians give the Albert and Chib algorithm in
the context of “vanilla” probit regression might be better given to the independence
MH sampler. To take an extreme example, [Greene 2012, p. 713] goes so far as to
all but reject the Bayesian paradigm because he finds the Albert and Chib algorithm
too slow—as if no other sampler were available! Even for the more complicated
settings alluded to in [Polson et al. 2013], hybrid Metropolis—Hastings-within-Gibbs
samplers may yet provide the “best of both worlds”; see, for example, [Gamerman
1997; Geweke and Tanizaki 2001]. Our work offers insight into the kinds of gains
that may be attained by such hybrid approaches.

The paper will proceed as follows. In Section 2, we introduce the independence
MH sampler we endorse herein and review Albert and Chib’s auxiliary-variable
approach. We also provide a brief and candid analysis of the computational efficiency
of the adaptation by [Holmes and Held 2006]. Section 3 presents a simulation study
that compares the performance of the proposed sampler to Albert and Chib’s across
a wide variety of simulated data sets, while Section 4 describes performance of
the samplers across several probit regression examples taken from the literature.
We close with a discussion of the results. The R code and data sets used for the
simulation study and applications are included in the online supplement.

2. MCMC samplers for Bayesian probit regression

2.1. Albert and Chib Gibbs sampler. In the context of binary probit regression,
assume that we have n independent binary random variables, Y; = Bern(p;). Each
pi = ®(x/B), where x; is the 1 x (p+ 1) row vector of p covariates (with intercept)
for observation i, B8 is a (p+1) x 1 column vector of regression coefficients, and &
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is the standard normal cdf. We assume a priori that 8 ~ 7, with 7 usually chosen
to be N (bg, By). (Here, we adopt the common practice of allowing 7 to represent
both the pdf and cdf, as appropriate.) The likelihood is given as the product of
Bernoulli pmfs. By Bayes’ rule, the posterior distribution is

pB1y) B py B =mB)[]rtilB.x)

i=1

n
=7 [[ @B (1 —0x/8) .
i=1
There is no conjugate prior for 8. To facilitate Gibbs sampl}ing, Albert and Chib
introduced a latent variable Z = (Zy, Z», ..., Z,), where Z; o N(x!B,1). Letting
Y; =1if Z; > 0 and Y; = 0 otherwise ensures that each Y; is independent and
marginally Bern(p;), as desired. The joint posterior of Z and f is

n
p(Z,Bly)xa(B)p(Z|B)p(y|Z) =7 (B) 1_[ p(Zi| B, x)p(yi | Z;)
. i=1
=7 [ [#(Zi |x/B. D[L(yi=DL(Z; >0) + 1(y1 =0)1(Z; <0)].
i=1

where ¢ (Z; | x/B, 1) is the normal pdf with mean x B and variance 1, evaluated at Z;.
This joint posterior cannot be sampled from directly. However, the full conditional
distributions are of nice form. In particular, the full conditional distribution of
given Z is

n
PBIZ, y)ocm(B)[[o(Zi1x/B. 1),
i=1
which is a multivariate normal distribution when 7 is normal. The full conditional
distribution of Z given B is the product of the marginal full conditional distributions,
the i-th of which is p(Z; | B, y), where

TN (x/B,1,0,00)  ify; =1,
TN (x/B,1, —00,0) if y; =0.

Here TN (x;B, 1, a, b) is the normal distribution truncated to (a, b). Once the full
conditionals are derived, the Gibbs sampling algorithm is straightforward. First,
initialize B©, typically at either the maximum likelihood estimate or posterior mode.
Then draw Z from the full conditional distribution of Z | 89, y. Next, draw gV
from the full conditional distribution of B | Z", y. This process is iterated until
convergence [Geman and Geman 1984].

2.2. Holmes and Held Gibbs sampler. The Albert and Chib Gibbs sampler can
be inefficient because of strong posterior correlation between § and Z. Holmes and
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Held [2006] adapted the Albert and Chib sampler by performing a joint update of
the regression and auxiliary parameters. This is possible because of the factorization

PB.Z|y)=pZ|y)pBI|Z,Yy),

where p(B | Z, y) is the full conditional given above and p(Z | y) is the marginal
distribution of Z with B integrated out. Holmes and Held show that p(Z | y) is
a multivariate truncated normal, which, while difficult to sample from directly,
does allow for straightforward Gibbs sampling. In particular, p(Z; | Z_;, y) has
a univariate truncated normal distribution. The authors claim that the additional
computational burden of the joint sampling step is small compared with the effi-
ciency gained from having less-correlated draws. In particular, they note that the
innermost for-loop requires only minor adjustment to sample p(Z; | Z_;, y) instead
of p(Z; | B, Z_;, y) [Holmes and Held 2006, p. 160].

However, the authors do not mention the fact that under Albert and Chib’s
setup, sampling from the full conditional distributions p(Z; | B, Z_;, y) can be
vectorized, since the Z;’s are conditionally independent (rendering the conditioning
on Z_; unnecessary). Thus, there is no need for the extra for-loop that their joint
sampling requires. In a compiled language, this may make little difference; but
in an interpreted language like R — the language of choice for many if not most
practicing statisticians—the difference is tremendous. In the R simulation presented
by [Kapourani 2018], for example, the Albert and Chib Gibbs sampler acquires
10,000 samples in about 3 seconds on a standard laptop computer, whereas the
Holmes and Held Gibbs sampler acquires 10,000 samples in about 84 seconds. The
effective sample size for Holmes and Held is indeed greater (~ 1000 versus ~ 500),
but a 2-fold increase in effective sample size is hardly worth a 28-fold increase in
computation time.

There are, of course, compiled-language implementations of Bayesian probit
regression. One example of such an implementation of Albert and Chib’s Gibbs
sampler is the MCMCprobit function within the MCMCpack R package [Martin et al.
2011], which interfaces with R but outsources the actual sampling to C++. We sus-
pect that a similar implementation of the Holmes and Held Gibbs sampler would mit-
igate the computational discrepancies noted above but we are not aware of an R pack-
age with this functionality. Because we use R for implementing the proposed method,
we compare the proposed method only to the Albert and Chib sampler in terms of
efficiency. Both samplers are coded using appropriate vectorization in R only.

2.3. Independent-proposal MH. Holmes and Held [2006] have noted that the
Albert and Chib Gibbs sampler can be slow to converge when Z and 8 are highly
correlated. The proposed sampler is intended to overcome this inefficiency. It
samples from p(B | y) using the Metropolis—Hastings algorithm with independent
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ts(ju, X) proposals,! where g is the posterior mode and ¥ is the inverse Hessian
evaluated at x. The mode can be found with the Newton—Raphson algorithm, which
requires the gradient and Hessian of the log posterior. Importantly, these are both
available in closed form.

The sampler proceeds as follows. We initialize 8 © at w. Then, we draw a
proposal, B* from t5(u, £) (with pdf denoted by g), and set /1 = g* with
probability &, and YD = B with probability 1 — o, where

. { PB*1y)8B" 18 } . { PB*1y)8B") }
o =minq 1, inj 1, .
PB 1B 1B PBY 1 y)8(B")
Note that the second equality is justified by the fact that the proposals are independent
of the current state; hence the conditioning is superfluous. Since the proposed
jump, B* is independent of the current state, B, the average jump size is relatively
large. This makes for lower autocorrelation between draws and requires fewer
draws to attain a desired effective sample size. It is well known that when the
sample size n is large compared to the number of predictors p, the posterior is well
approximated by a normal distribution, so an independent-proposal MH algorithm
with multivariate ¢ proposals will do well. This paper investigates how well the
approximation works when z is medium or small. If, for certain combinations of
n and p, the t5(u, X) is a very poor approximation, performance of the proposed
sampler will suffer and Albert and Chib’s method may be preferred. The next two
sections provide evidence that the proposed sampler is often better, however.

3. Simulation study

3.1. Settings. We compare the Albert and Chib and independent-proposal MH
samplers on a variety of simulated data sets which were created by varying the
number of predictors (p) and sample size (n). For a given data set, the prior standard
deviation (o) was also varied. Comparisons were made for all 43 = 64 combinations
of pe{2,5,10,20}, ne{5p, 10p, 25p, 50p}, and o € {0.1, 1, 10, 100}. Predictors
were taken from a single 1000 x 20 matrix X with independent rows. Column
vectors were sampled and assigned as follows:

X; ~Unif(—1,1), Xe¢=X2, X1 ~Unif(0,2), X6~ Unif(0, 6),
X>=X3, X7 ~Unif(=5,1), X2~ Unif(—1,1), Xi7~Exp(3).

X3 ~Exp(5), Xg= X3, Xi3=X3,, X135 ~Exp(2),
X4=X3, Xo~Exp(}). Xip=X3,, X9 ~ Unif(—1,1),
Xs~Exp(1), X10= X3, X15~N(@3, 1), X20=X3o;

I'We chose the ¢-distribution with five degrees of freedom because it approximates the asymptotic
normal posterior distribution but has relatively heavy tails, enabling approximation in the small-n case
as well.
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Figure 1. The effective sample size per second of computation
time is almost always better for the proposed method than for
Albert and Chib Gibbs sampling. The few exceptions correspond to
situations with either unrealistically narrow priors or unrealistically
few observations per predictor.

and these were then standardized to have mean O and variance 1. For a given
(p, n) pair, the first p columns and the first n rows of X constituted the predictor
matrix, the true parameter vector was the first p elements of the 20-element vector
B=(+1,—-1,4+1,—1,..., —1), and n binary responses were generated as Bernoulli
realizations having expected values @ (X, x,8,,;). MCMC samples were then
obtained for each o € {0.1, 1, 10, 100} using the same data with the different priors.
Data were generated anew for each of 50 iterations, for a total of 50 x 4% = 3200
(n, p, o, iter) combinations.

For each (n, p, o, iter) combination, both samplers were initialized at the poste-
rior mode and run for 10,999 iterations, the first 999 of which were discarded as
burn-in. The worst-dimension autocorrelation,? the effective sample size (ESS), and

2The worst-dimension autocorrelation is the maximum autocorrelation observed for any univariate
B after burn-in.
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Figure 2. Median worst-dimension lag-1 autocorrelations by sampler.

computation time (in seconds) were recorded for each run. A computation-time-
adjusted effective sample size ratio was constructed by dividing the ESS per second
of computation time for the independent-proposal MH by the ESS per second of
computation time for the Albert and Chib Gibbs sampler. For each (p, n, o) triplet,
the median of these metrics across the 50 iterations was recorded.

3.2. Results. Figure 1 depicts the log of the median value, across 50 iterations, of
the computation-time-adjusted ESS ratio. Positive values indicate that the proposed
sampler is more efficient, whereas negative values indicate that Albert and Chib is
more efficient; values exceeding 2.30 indicate an order-of-magnitude improvement
(since €230 = 10.0).

The results reveal that the proposed method outperforms Albert and Chib in most
conditions. In particular, in 58 of 64 conditions, the proposed method was more
efficient, often by an order of magnitude. In four of the six conditions under which
Albert and Chib was better, the improvement was by less than 20%; and all of these
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involved small (o = 1) or very small (o =0.1) prior standard deviations. Such highly
informative priors are in our experience quite rare, as such strong prior knowledge
would essentially negate the need to collect data or make posterior inference.

The remaining two conditions, represented by the red cells in the bottom right
corners of the 0 = 10 and o = 100 subgrids, respectively, reflect situations where
sampling was very poor for both methods. In neither of these scenarios was Albert
and Chib particularly successful in an absolute sense. Its median worst-dimension
autocorrelations were 0.9976 and 0.9995 for ¢ = 10 and o = 100, respectively (see
Figure 2). In short, neither sampler is doing well here, though Albert and Chib is
nominally better.

For these two conditions, even if the posterior were well sampled (using a
dependent-proposal Metropolis—Hastings algorithm, for example), it is hard to
envision it being of much use. These cells correspond to small-n, large-p scenarios
where prior knowledge is poor; neither the likelihood nor the prior contains much
information, so parameters cannot be estimated reliably. This is why others have
cautioned against using probit regression when n/p < 10 [Long 1997].

In short, for a wide variety of settings, the proposed method is more efficient
than the Albert and Chib Gibbs sampler at producing independent samples from the
posterior. The few exceptions correspond to situations with exceptionally narrow
priors or exceptionally broad likelihoods, none of which are particularly likely to
be encountered in practice.

4. Applications

While the simulation study demonstrated success across a wide range of conditions,
the real test is to apply the sampler to actual data. The four applications we consider
in this section use previously studied data sets seen as canonical in the probit regres-
sion literature. For each application, we compare sampler performance on five out-
comes: posterior means of the coefficients, autocorrelation, effective sample size, av-
erage jump size (in Euclidean distance), and computation time (in seconds). We also
report the computation-time-adjusted ESS ratio, calculated as in the simulation study.

4.1. Prostate cancer. The data for our first application comes from a prostate
cancer study on 53 patients and was reported in [Miller et al. 1980]. Chib [1995] used
probit regression to predict whether cancer has spread to surrounding lymph nodes
using five predictor variables: the patient’s age, the level of serum acid phosphate,
positive or negative X-ray results, the size of the tumor, and the pathological grade
of the tumor. Results from Albert and Chib’s sampler and the proposed MH sampler
are presented in Table 1. The posterior means of the coefficients are almost identical,
while the proposed sampler has lower computation time and more than double the
effective sample size of the Albert and Chib sampler.
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Table 1. Application results. For each sampler, we report posterior

average jump size, and computation time (in seconds). We compare
the two samplers with a computation-time-adjusted ESS ratio;

means of B, autocorrelation (ACF), effective sample size (ESS),
values larger than 1 favor the proposed sampler.
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4.2. Finney data. In [Albert and Chib 1993], they use data from [Finney 1947]
to illustrate the accuracy of their method as the number of simulation iterations
increases. As shown in Table 1, the 8 estimates of the two samplers are identical to
the hundredths place. The proposed sampler has nearly double the effective sample
size, nearly a third of the autocorrelation, and less than half the computation time.

4.3. Grade prediction. The data set for our third application is from an econometric
analysis textbook [Greene 2012], an earlier version of which was cited in [Albert
and Chib 1993]. The data comes from a study by [Spector and Mazzeo 1980],
whose motivation was to measure the effect of a personalized system of instruction
on students’ grades. As part of their analysis, they modeled grade improvement
as predicted by three variables: the student’s grade point average, his/her score on
an economic literacy test, and whether or not he/she participated in a personalized
system of instruction. In Table 1, note the close similarity in the posterior means of
the coefficients, despite the small sample size of 32. The efficiency comparison in
this application tells a similar story to the previous two, with the proposed sampler
outperforming the Albert and Chib sampler in every category.

4.4. German health care. The data for our final application is from the same
econometric analysis textbook [Greene 2012] as the grade-prediction data. The
predictors of age, education, monthly income, marriage status, whether or not
children under 16 live in the home, and gender are used to model the binary
response of whether or not the subject has visited the doctor in the last three months.
The data set contains 27,326 observations on 7,293 German families. Greene uses
this model as an example of how slow and inefficient the Albert and Chib method
can be. In Table 1 we see that the proposed sampler is only slightly faster; however,
the ACF and ESS show that the draws from the proposed sampler are less correlated.
Although it took both samplers approximately 50 seconds to run 5,000 iterations,
in terms of effective samples, the proposed sampler collected roughly 30% more
and thus obtained a similar amount of independent information from the posterior
in much less time than Albert and Chib’s sampler.

5. Conclusion

Albert and Chib’s auxiliary-variable Gibbs sampler [1993] revolutionized Bayesian
probit regression and continues to be utilized with wide success in many applications
today. As suggested by [Polson et al. 2013], Albert and Chib’s sampler is likely the
better choice to accommodate more sophisticated modeling frameworks, such as
those that involve, for example, dependence among observations. However, many
probit regression models used in practice do not require such complexities, and
we propose that for this basic modeling context, the independence MH sampler
described in this paper should be the new go-to sampler.
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We have demonstrated through a simulation study that, in terms of computational
efficiency, our proposed sampler outperforms that of Albert and Chib in all but
two scenarios, both of which correspond to settings unlikely to be encountered
in practice: extremely strong prior knowledge or very diffuse likelihoods. In all
other cases, our sampler provides efficiency improvement over the Albert and Chib
sampler, and in many cases the scale of improvement is over an order of magnitude.

Beyond simulated settings, we have also demonstrated a striking efficiency advan-
tage provided by our proposed sampler when applied to four real data sets frequently
analyzed in probit regression literature. Upon comparing the proposed sampler to
Albert and Chib’s, we obtain nearly identical coefficient estimates, and our sampler
consistently produces higher effective sample sizes in less computation time.
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