Recent Issues
Volume 17, 5 issues
Volume 17
Issue 5, 723–899
Issue 4, 543–722
Issue 3, 363–541
Issue 2, 183–362
Issue 1, 1–182
Volume 16, 5 issues
Volume 16
Issue 5, 727–903
Issue 4, 547–726
Issue 3, 365–546
Issue 2, 183–364
Issue 1, 1–182
Volume 15, 5 issues
Volume 15
Issue 5, 727–906
Issue 4, 547–726
Issue 3, 367–546
Issue 2, 185–365
Issue 1, 1–184
Volume 14, 5 issues
Volume 14
Issue 5, 723–905
Issue 4, 541–721
Issue 3, 361–540
Issue 2, 181–360
Issue 1, 1–179
Volume 13, 5 issues
Volume 13
Issue 5, 721–900
Issue 4, 541–719
Issue 3, 361–539
Issue 2, 181–360
Issue 1, 1–180
Volume 12, 8 issues
Volume 12
Issue 8, 1261–1439
Issue 7, 1081–1260
Issue 6, 901–1080
Issue 5, 721–899
Issue 4, 541–720
Issue 3, 361–539
Issue 2, 181–360
Issue 1, 1–180
Volume 11, 5 issues
Volume 11
Issue 5, 721–900
Issue 4, 541–720
Issue 3, 361–540
Issue 2, 181–359
Issue 1, 1–179
Volume 10, 5 issues
Volume 10
Issue 5, 721–900
Issue 4, 541–720
Issue 3, 361–539
Issue 2, 181–360
Issue 1, 1–180
Volume 9, 5 issues
Volume 9
Issue 5, 721–899
Issue 4, 541–720
Issue 3, 361–540
Issue 2, 181–359
Issue 1, 1–180
Volume 8, 5 issues
Volume 8
Issue 5, 721–900
Issue 4, 541–719
Issue 3, 361–540
Issue 2, 181–359
Issue 1, 1–179
Volume 7, 6 issues
Volume 7
Issue 6, 713–822
Issue 5, 585–712
Issue 4, 431–583
Issue 3, 245–430
Issue 2, 125–244
Issue 1, 1–124
Volume 6, 4 issues
Volume 6
Issue 4, 383–510
Issue 3, 261–381
Issue 2, 127–260
Issue 1, 1–126
Volume 5, 4 issues
Volume 5
Issue 4, 379–504
Issue 3, 237–378
Issue 2, 115–236
Issue 1, 1–113
Volume 4, 4 issues
Volume 4
Issue 4, 307–416
Issue 3, 203–305
Issue 2, 103–202
Issue 1, 1–102
Volume 3, 4 issues
Volume 3
Issue 4, 349–474
Issue 3, 241–347
Issue 2, 129–240
Issue 1, 1–127
Volume 2, 5 issues
Volume 2
Issue 5, 495–628
Issue 4, 371–494
Issue 3, 249–370
Issue 2, 121–247
Issue 1, 1–120
Volume 1, 2 issues
Volume 1
Issue 2, 123–233
Issue 1, 1–121
Abstract
We determine the maximum number of points in
ℝ d which form
exactly
t
distinct triangles, where we restrict ourselves to the case of
t
= 1 . We denote this
quantity by
F d ( t ) .
It is known from the work of Epstein et al. (Integers 18 (2018), art. id. A16 ) that
F 2 ( 1 )
= 4 . Here we show somewhat
surprisingly that
F 3 ( 1 )
= 4
and
F d ( 1 )
=
d
+ 1 ,
whenever
d
≥ 3 ,
and characterize the optimal point configurations. This is an extension of a variant of
the distinct distance problem put forward by Erdős and Fishburn (Discrete Math.
160 :1-3 (1996), 115–125 ).
Keywords
one-triangle problem, Erdős problem, optimal
configurations, finite point configurations
Mathematical Subject Classification 2010
Primary: 52C10
Secondary: 52C35
Milestones
Received: 12 February 2019
Revised: 29 September 2019
Accepted: 11 November 2019
Published: 4 February 2020
Communicated by Kenneth S. Berenhaut