Vol. 13, No. 2, 2020

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 5, 723–899
Issue 4, 543–722
Issue 3, 363–541
Issue 2, 183–362
Issue 1, 1–182

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-4184 (online)
ISSN 1944-4176 (print)
 
Author index
To appear
 
Other MSP journals
Generalized Cantor functions: random function iteration

Jordan Armstrong and Lisbeth Schaubroeck

Vol. 13 (2020), No. 2, 281–299
Abstract

We provide a generalization of the classical Cantor function. One characterization of the Cantor function is generated by a sequence of real numbers that starts with a seed value and at each step randomly applies one of two different linear functions. The Cantor function is defined as the probability that this sequence approaches infinity. We generalize the Cantor function to instead use a set of any number of linear functions with integer coefficients. We completely describe the resulting probability function and give a full explanation of which intervals of seed values lead to a constant probability function value.

Keywords
iteration, cantor function, sequence, devil's staircase
Mathematical Subject Classification 2010
Primary: 26A18
Milestones
Received: 13 May 2019
Revised: 11 December 2019
Accepted: 23 December 2019
Published: 30 March 2020

Communicated by Michael Dorff
Authors
Jordan Armstrong
Department of Mathematical Sciences
U.S. Air Force Academy
Air Force Academy, CO
United States
Lisbeth Schaubroeck
Department of Mathematical Sciences
U.S. Air Force Academy
Air Force Academy, CO
United States