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In order to extend the study of the uniqueness property of multidimensional systems
of stochastic differential equations, we look at the following three-dimensional
system of equations, of which the two-dimensional case has been well studied:
dX, =Y, dt, dY, = Z,dt, dZ, = |X,|* dB,. We prove that if (Xo, Yo, Zoy) #
(0,0, 0) and % < a < 1, then the system of equations has a unique solution in the
strong sense.

1. Introduction and main results

The uniqueness of ordinary differential equations (ODEs) has been extensively stud-
ied; see for example [Hartman 1964]. In particular, if F (1) is Lipschitz continuous,
then

u'(t) = Fu()), u(0)=uo,

has a unique solution for all # > 0. In the case above, F, u(t), and u take values
in R%, d > 1. The stochastic differential equation (SDE) realm, on the contrary,
has different criteria for uniqueness of solutions; see for example [Protter 1990].
One of the most well-known results regarding strong uniqueness of SDEs is due
to [Watanabe and Yamada 1971]. The result states that if f(x) is locally Holder
continuous with index o € [% 1] and with linear growth, then

dX = f(X)dW, Xo = xo,

has a unique strong solution for all times ¢ > 0. Yamada and Watanabe’s theory
essentially focuses on one-dimensional SDEs.
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One motivation for studying higher-dimensional SDEs comes from the wave
equation
8,214 = Au,
u(0, x) = uop(x),
au(0, x) =ui(x).
In this equation, we have
a}u = aﬁu = Au.
If we let

V= 3,14,
then we can rewrite the wave equation as the following system of equations:

81” =V,

3,1) = Au.

The original wave equation includes no noise. However, many physical systems
are affected by noise. Hence, a modification of the wave equation which includes
white noise is also studied:

Btzu =Au+ f(u)W,

u(0, x) = up(x), (h
o:u(0, x) =u(x).

Note x € R and W = W(t, x) is white noise.

One well-known point is that Lipschitz continuity is sufficient for the uniqueness
of SDEs. Thus, many mathematicians have studied whether Holder continuity
can still ensure the uniqueness property of SDEs. Gomez, Lee, Mueller, Neuman,
and Salins [Gomez et al. 2017] studied the uniqueness property of the following
two-dimensional model of SDEs:

dX =Ydt,
dY = |X|*dB, ()
(Xo, Yo) = (x0, y0)-

The results focused on f(x) = |x|* since it is a prototype of an equation with
Holder continuous coefficients. Moreover, (2) is a version of (1) when we drop the
dependence on x, which allows us to study the modified wave equation with more
simplicity. Notice that if we take the differential dY of the first derivative of X,
which is Y in the system of equations, it resembles the second derivative in time in
the stochastic wave equation.
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It was proven in [Gomez et al. 2017] that if « > % and (xg, yo) #Z (0, 0), then
(2) has a unique solution in the strong sense up to the time t at which (X, ¥;) first
hits the origin (0, 0).

Since much is still unknown about higher-dimensional SDEs, we wish to continue

the study of the uniqueness property of (2) in the three-dimensional case, which is

dX =Ydt,
dY = Z dt,

3)
dZ = |X|*dB,

(Xo, Yo, Zp) = (x0, Yo, 20)-

Theorem 1. If % <o < 1 and (Xo, Yo, Zo) # 0, then (3) has a unique strong
solution, up to the time t at which the solution (X,,Y;, Z,) first hits the value
(0,0, 0) or blows up.

Moreover, we say the solution (X, Y;, Z;) blows up in finite time, with positive
probability, if there is a random time T < oo such that

P(liTm (X:, Yr, Z) e = oo) > 0.
1t

2. Proof of Theorem 1

Let (X!, Y], Z!), i = 1,2, be two solutions to (3) with (xo, Yo, z0) # (0, 0, 0); in
other words, (Xi, Y,i, Zf), i =1, 2, have the same initial condition (Xg, Yy, Zo) #
(0, 0, 0). Note that since (X ﬁ, Y,i , Zf), i = 1, 2, have the same initial conditions,
from now on, we use X, Yo, Zo instead of Xé’”, Yé’", Z(i)’".

Let 7 be the first time ¢ that either (X}, ¥/!, Z!) or (X2, Y?, Z?) hits the origin
(0, 0, 0) or blows up. We let t be infinity if there is no such time.

First, if Xy # 0, then (3) will have Lipschitz continuity up to the time that X, =0,
and thus enables uniqueness to hold. Suppose after a certain amount of time X, hits
zero, where Lipschitz continuity no longer holds; then due to the strong Markov
property, we begin the process again with Xo = 0. So our goal is to prove pathwise
uniqueness between excursions of X up to the time t starting from X = 0.

For any fixed n, let 7, be the first time that either

(X, Y ZD e ANXE Y2 ZD) e <277
or

I(X), Y ZD e V(X2 Y2, ZD) | > 2.

Here, the infinity norm (also known as the L,,-norm, /,-norm, max norm, or
uniform norm) of a vector U is denoted by |v]; and is defined as the maximum of
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the absolute values of its components,

|0, = max{|v;|:i=1,2,...,n},

and
a Ab =min(a, b),

aV b =max(a,Db).

If there is no such time, we let 7, be infinity. Note that lim,,100(7,) = T.
Now, for each fixed n, we will show uniqueness up to time t, in the system of
equations
dX'" =y dt,

dy/" =z dr,
dzZy" =1X" " 1o, 1(t) dB;,
(Xo, Yo, Zo) = (x0, Yo, z0)-

“)

In other words, after the time t,,, we have d Zﬁ’” = 0, which makes Zﬁ’" become
constant. Specifically, given m,n € N, we need

(X7, Y0 Z0) = (X0 Y 20
forall t <1, ATy

Now, before continuing the proof of uniqueness, by the method of contradiction,
we show that the times that X; hits zero do not accumulate before the time t,,
almost surely.

For each n, let A,, be the event on which the times that Xf’" =0,i=1lori=2,
accumulate before 7, and assume P(A,) > 0. Then, on A,, suppose o, is an
accumulation point of the times ¢ at which X ;" = 0; i.e, there exists a sequence
of times p;, < p2,, < --- that converges to o,, and X ;;Ifn = 0. Hence, on A,
limg— 00 Ok, = Op. ‘

We have X, " is almost surely continuous, and that X ben =00n Ay, so

i, 3 = =0
on A,.

Note that d X" = Y/ dt, and Y¥}"" is almost surely continuous. So if Yom£0
on A,, then there exists a random interval [0, (@) — € (w), 0, (w)] of positive length
for which X ;” # 0 on [0, (w) — €(w), 0,(w)]. This contradicts the hypothesis of
Pk.n converging to oy,.

If Y}" = 0, there are two cases,

0,>1, and o, <T,.

If 0,, > 1, then it means that the times at which X i’" hit zero do not accumulate
before 1,,.
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If 0, < 7, then with X%" =0 and Y," = 0, we have | Z}"| > 27". Now suppose
Zyin > 27" as the case Z’ M <27 s approached 51mllar1y due to symmetry.

If Z’ > 27" since Z, is almost surely continuous, there exists a time interval
[0, (w)—€'(w), 0, (w)] on which Z i p-n /2. Thus for all z € [0, (w) —€' (w), 7, ()]
we almost surely have

—n

. . On . 2
iin __ vyin i,n
Y; —Yo,,_/ Zds < —=——
t

5 (0, —1).

Hence, integrating over X, for t € [0, — €/, 0], we have

) ) oy ) Op . On 27}1
X;’":X;’n”—/ Y;‘”ds:—/ Ys””ds>/ T(an—s)ds
t t !
2711 S2 Op Zin
= T(O'ns - E)

=T en=0?>0
as t < o,. Hence, this contradicts the hypothesis of px , converging to o, on A,.
So in conclusion, P (A, ) = 0, which means the times at which X, hits zero do not
accumulate before the time t,,.

One more point we need to address before continuing with the proof of uniqueness
is the existence of solutions. This problem is resolved in Theorems 21.7 and 21.8 and
Lemma 21.17 of [Kallenberg 2002], which prove that for all times ¢ > 0, solutions
of multidimensional SDEs exist with probability 1 provided the coefficients are
continuous and bounded.

Specifically, in our problem, since « € (0, 1), the coefficients of system (3) are
continuous and bounded by (2")* v 2" = 2" up to the 7, for each n, which satisfies
the condition stated in the existence theory in [Kallenberg 2002]. Hence, existence
of solution holds for all + < 7, for all n. Therefore, up to the time t = sup 7,
existence of solutions is ensured.

From now on, X" means X" and X>". We define ¥;" and Z"" similarly. Back
to the proof of uniqueness, we have, for all ¢ € [0, t,,],

1ZP" VYt < 2n,
So
Y| =

t
Yo+ / Z;’n ds
0

t
<IYol+ [ 1Z;"|ds <2" +2"t.
0
Therefore,

) t t . 1 2
|X§’”|§|Xo+f Y;~"ds|§/ IY;’"Idsff (2"+2”s)ds=2"(t+%)-
0 0 0

Now let

2—2n
ton = 5 )
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Then

2

log _ 272 272 72 72,

L LA + < + =4,
fon 2 2 8

So
2
2" (to,n + %) <2r.p7M=p"
Since the quadratic function 2" (¢ 4 t%/2) is increasing when 7 > 0, we have
. 2
X" < 2 (t T %) <o
for all ¢ € [0, 79 ,].
Since |X,1’"| and |Xt2’"| belong in [0, 27"] for ¢ € [0, £y, ], based on the definition

of 1, above, either

|Yo| > 27" (6)
or

|Zo| > 27" (N

for each fixed n. This is due to the fact that the solutions have the same initial
condition (Xo, Yo, Zo) and for each time ¢ € [0, #, o], either
Y =27 o |Z7"| =27
First, we deal with Yy > 0. Due to symmetry, we can deal with the case Yy <0
with similar methods and thus omit the proof. '
Now, with Yy > 0, we look at other subcases based on Z;".
CaseI: Yy >0, |Zg| <27 If |Zy| < 27", then (6) take_s place. We are looking
at the case ¥p > 0, and thus ¥y > 27" Also, note that dz;" =0 for all t > 7, and
|Zy"| < 2" forall t € [0, 7,]. Hence, | Z;"| < 2" for all ¢, which means Z;" > —2"

for all ¢. Next, we have

. t t
Ytl’n =Y —|—/ Z ds > 27" —/ 2Mds =27" = 2"¢.
0 0

If )
2— n
O<t<ty,= >
where 7, is defined as in (5), then
2—}1
2' < 7
Thus
2 _ony s 20
2

for all ¢ € [0, #p,,]. In other words, Yti’" > 27"/2 for t € [0, 1) ,]. So, for all

t €10, 9], we have o

>

in
Y, " >



UNIQUENESS OF A 3-DIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATION 439

Hence

in i,n t2_n 27"
X" = Xq +/ 5 ds > > t. (8)
0

Furthermore, based on (8) and |X§’"| <27"forall ¢t €0, £ ,], it leads to tp , <2,
otherwise X;” > 27", which means that ¢ > 1 ,, a contradiction.
Note that

. l .
X;’n =Xy +/ Y;’n ds,
0
) s
Ysl’n:Y()—{-/ Z;{’ndk,
0

. k .
Z]l(’n =7 +/ |X;,n|0{ 1[0’1-”](1‘) dBr.
0
Thus

. t ps k .
X:’n = Xo+ Yot + /f <Z() —I-/ |X;,n|a l[o,f"](t) dBr) dkds
0J0 0
t ps t ps rk ]
:X0+Y0t+// Zodkds—l-/// |X£,n|oz 10.r,1(t) dB, dk ds
0J0 0J0 JO

2 t ps rk )
= Xo+ Yot + Zo'5 + f / / XM 1yq., (1) dB, d ds.
0J0 JO

Hence

2
(X} — x2m? = (/// (IX Mo — 1 X2 19 4, 1(r) dB, dkds).

Apply the Cauchy-Schwarz inequality twice, we get

2
(X}’"—Xf’”)zst/ ([/ (1X =1 X2 19 4, 1(r) dB, dk) ds

K 2
§t/ sf (/ (|x,1’"|°‘—|X§~"|“)1[O,In](r)d3,> dk ds.
0 0 0
Thus

2
E[(X]" = X*™M?] <tE/ /(/ (XL — | x2ne )1[0,,1](r)d3> dk ds.

By It&’s isometry,

E[(X}’"—X?’”)2]§tE/ // (X2 =1 X2 11,0, (7)) dr dk ds

ng/ z// (xEme —1 X2 dr dk ds
0 0J0
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<t E/// (x> —1x2m*)? dr dk ds
<t E///qxl” |X2™*)? dr dk ds

:t4E/ (X} "% — | X2 dr.
0

Now we apply the mean value theorem for the function f(x) =x% 0 <« < 1, and
a<b:
b —a* =ac* ' (b—a) <aa® ' (b—a)

for ¢ € (a, b). Then for r € [0, 1y ,], where #( is determined in (5), we apply (8):

-1
27 \*
|11 = X7 §a<7r> |1 = 1X72"1]. ©)
Now let

D, = E[(IX""| = |X]"?].

Since #9 , <2, we have for all # € [0, 19, ]

t
D, < E[(X}"" = X" < Cy / r** 2D, dr.
0

for some C,, depending on n. Since o > 3, we have 22

4 b
At this stage we apply Gronwall’s lemma:

is integrable on [0, t ,].

Lemma. Let I denote an interval of the real line of the form [a, c0) or [a, b] or
la, b) witha < b. Let B and u be real-valued continuous functions defined on I. If
u is differentiable on the interior 1° of I (the interval I without the endpoint a and
possibly b) and satisfies the differential inequality

u'(t) < Bu(r), tel’,

then u is bounded by the solution of the corresponding differential equation v' (1) =

B@®)v(1): t
u(t) <u(a) exp(/ B(s) ds)
forallt € I ’

Hence, with Dy = 0, we have D, = 0 for all ¢ € [0, 7y ,]. Therefore, (3) has
unique strong solution in [0, # ,].

Since o > %, we have 2o —2 > —1. Hence, r2*~2 is integrable on [0, # ,] Note
that in this case since X, > 27", n < 1. Applying Gronwall’s lemma, with Dy = 0,
we have D; =0 for all ¢ € [0, #9 ,]. Therefore, (3) has a unique solution in strong
sense up to time fg ;.
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Note that for all 7 € [0, o ,], we have Yf’" >27"/2 > 0. Hence Xﬁ’" is strictly
increasing, which, leads to X, strictly positive. Therefore, by the strong Markov
property, we have uniqueness until the time X next hits zero.

Case II: Yo >0, Zy <—27" Since Z starts negative, Yti’" decreases for an amount
of Atime. Since Y is positive, let say Yy = B > 0. Note that for all #, we have
|Z;"| < 2", which means Z;" > —2". First, we have

, t t
Y,””:,B—|-/ stszﬂ—/ 2"ds =B —2"t.
0 0

Let
B
tO,n = W (10)
If
O<t<gy,= %,
then
n, _B.
2"t < ok
thus P
—_— n f—
B—2"t > 5

forallz € [0,19,']. In other words, Y’ > B/2 for all ¢ € [0, ton]
So, for all € [0, 9, A tO .1, where g, and to are determined in (5) and (10)
respectively, we have

yin Zg
Hence
t
in - in ﬁ > é
X" =X, +/0 2ds_ 2t

Applying the same method (9) above, we use the mean value theorem for the
new lower bound of X"

/3 a—1
|11 = 1 X2 1] 501(5 ) 1" = 1X2")
Hence

t
D, < E[(X]" = X*™)?]<C, / 272D, dr.
0

Again, applying Gronwall’s lemma, with Dy = 0, we have D; =0 for all t
[0, 200 A to .1 Therefore, (3) has a unique strong solution i m [0, 2.0 A to o). Asin
the previous cases, we have Y > B/2>0forallfe[tg, A to ], which makes X’ L
strictly increasing. So X, A ’0 , 18 strictly positive. Thus, by the strong Markov
property, we have uniqueness until the next time X hits zero.
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Case III: Yy >0, Zy > 27" Now we let T, be the first time that either Z,l’” or th’”
hits the value 27" /2. Since both Z;" and Z>" are continuous, we have T}, > 0
with probability 1. So we now prove uniqueness up to the time ¢y , A T,,, where fg ,,
is defined in (5).

Then for all ¢ in [0, tp , A T,], we have

. 2—]’[
zZ" > 5
therefore
in fon 27"
Y, >Yo+/ ds > 5 t (1D
0
since Y(’)"" > 0.
Based on (11), for ¢ € [0, 19, A T;,]
I h—n —n
X”’zXo—i-/ 2 s> 2 (12)
0o 2 4

Now we define
iin __ Yin in _ yin iin __ Zin
X =X, Yy =Y, Z 7 =Z

fori =1,2and fort <t, A T, Aty ,, Where ty , is defined as in (5) above.
Thus the following system of equations holds up to the stopping time 7, AT, Afg n:

dX;" =Y," dt
dY" =ZM" di (13)
di;n = |§;n|a 10,2, AT, A1) (1) dBy,

with (X¢", Y3, Zg™) = (Xo. Yo, Zo) for i = 1,2. Furthermore, using (13), X;",
Y/", and Z;" can be defined for all times. '
Using 1td’s isometry as above with X;", ¥,"", and Z,",

t s prk
Sin > > 2
E[RM—%2™?) < 1E / s / f (AR 12" Lo azno () dr dk ds

0 0J0
t s rk - -

<iE / ‘ / f AR | RN 000 n7 iy () dr e d
o JoJo '
t ps rk - -

<K / / / AR | R2M2 Lo o azpy1(F) dr dk ds
0J0 JO
t t t ~ -

<2E [ [ [ ORI Y s
0J0J0

t
= AR RE N Yo
0
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Using (12) and the mean value theorem, for r € [0, t, A T, A fo ,], we have

_ a—1
IR 1R <o (B0) R 2

Hence
—n\2—1) t
E[(i""—ifv”ﬁsr“az(ﬂ) E /0 PO X — | X2 dr,
so if we let
D, = E[(1X," = 1X"])1.
then

t
D, < E[(X!'" =X <cC, / r=4D, dr.
0

Again, applying Gronwall’s lemma, with Dy = 0, we have D; = 0. Note that at the
time 7 , A T,, since we have Zf’" >0 forall fr €0, t, AT,], and also Yy > 0, it
leads to Y/ > 0 for all 7 € [0, to.n A Ty]. Thus X5 is strictly increasing, which
means Xy, A7, must be strictly greater than zero. Therefore, by the strong Markov
property, we obtain uniqueness of the process until X next hits zero.

Case IV: Yy = 0. If Yy = 0, then based on the definition of t,,, we have | Zy| > 27"
We will first deal with the case Zy > 27", and the case Zy < 27" is approached
the same way due to symmetry. As in Case III, let 7, be the first time that either
Z™ or Z>™ hits the value 27" /2. Due to the continuity of Z;*" and Z>", we have
T,, > 0 with probability 1. So with for all ¢ € [0, #p A T,,], where fg is determined
in (5), we have

—n —n

t
i 2 2
Y””2Y0+/ ds = t.
' 0 2 2

Then
—n —-n

t
j 2
Xl’nZXO'i_\/‘ SdSZ 2
! 0o 2 4

[

We now apply the same method as in Case III by looking at X-", ¥/"", and Z!"
which are defined as

in _ Sin iin _ vin in _ Zin
Xt _Xt ’ YZ‘ -t > Zl _Zt

fori =1,2and fort <t, A T, Aton, as tp , defined as in (5) above.
Thus the following system of equations holds up to the stopping time 7, AT, Afg '

dX'" =Y drt
d?tinz“’ ndl

U
N
s
Il
SR

Jl|

* 110, 7, AT, Ato,,1 (1) dBy,
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with (X5, Yo", Z§") = (Xo, Yo, Zo) for i = 1,2. Furthermore, using (13), X;”,
Y", Z;" can be defined for all time.
Again, using the same strategy in Case III and the mean value theorem, we have

~ ~ —n a—1 N N
[1X" 1 = X2 < "‘(ZTrZ) 1K1 — X2

Hence, if we let
D= E[(X," = IX/"D,
then .
D, <E[(X}" - X" <C, f ri=4D, dr.
0
Gronwall’s lemma with Dy = 0 yields D; = 0, completing the proof of Theorem 1.

In this case, we also have Y,i’" >27"/2t > O for all ¢ € [0, o, A T,,]. Hence
X f’” is strictly increasing, which yields X;, A7, strictly positive. So, by the strong
Markov property, we have uniqueness up to the time X next hits zero.

Now with uniqueness proved, we actually can even strengthen the proof by
showing that rnl = rnz for all n, where rnl and rnz respectively stand for the stopping
times at the critical values for X/ and Xf. Without loss of generality, suppose
t2 > t!: So at the time 7., X? has not yet reached the critical values, which are
27" or 2", as stated above. But since we have uniqueness up to 7, A ‘L’nz, this implies
X! has also not reached the critical value at the time .|, which is a contradiction to
the definition of z!. Hence, 7! and 72 must be equal.
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