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In order to extend the study of the uniqueness property of multidimensional systems
of stochastic differential equations, we look at the following three-dimensional
system of equations, of which the two-dimensional case has been well studied:
d X t = Yt dt , dYt = Z t dt , d Z t = |X t |

α dBt . We prove that if (X0, Y0, Z0) 6=

(0, 0, 0) and 3
4 < α < 1, then the system of equations has a unique solution in the

strong sense.

1. Introduction and main results

The uniqueness of ordinary differential equations (ODEs) has been extensively stud-
ied; see for example [Hartman 1964]. In particular, if F(u) is Lipschitz continuous,
then

u′(t)= F(u(t)), u(0)= u0,

has a unique solution for all t ≥ 0. In the case above, F, u(t), and u0 take values
in Rd, d ≥ 1. The stochastic differential equation (SDE) realm, on the contrary,
has different criteria for uniqueness of solutions; see for example [Protter 1990].
One of the most well-known results regarding strong uniqueness of SDEs is due
to [Watanabe and Yamada 1971]. The result states that if f (x) is locally Hölder
continuous with index α ∈

[ 1
2 , 1

]
and with linear growth, then

d X = f (X) dW, X0 = x0,

has a unique strong solution for all times t ≥ 0. Yamada and Watanabe’s theory
essentially focuses on one-dimensional SDEs.
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One motivation for studying higher-dimensional SDEs comes from the wave
equation

∂2
t u =1u,

u(0, x)= u0(x),

∂t u(0, x)= u1(x).

In this equation, we have
∂2

t u = ∂2
x u =1u.

If we let
v = ∂t u,

then we can rewrite the wave equation as the following system of equations:

∂t u = v,

∂tv =1u.

The original wave equation includes no noise. However, many physical systems
are affected by noise. Hence, a modification of the wave equation which includes
white noise is also studied:

∂2
t u =1u+ f (u)Ẇ ,

u(0, x)= u0(x),

∂t u(0, x)= u1(x).

(1)

Note x ∈ R and Ẇ = Ẇ (t, x) is white noise.
One well-known point is that Lipschitz continuity is sufficient for the uniqueness

of SDEs. Thus, many mathematicians have studied whether Hölder continuity
can still ensure the uniqueness property of SDEs. Gomez, Lee, Mueller, Neuman,
and Salins [Gomez et al. 2017] studied the uniqueness property of the following
two-dimensional model of SDEs:

d X = Y dt,

dY = |X |α dB,

(X0, Y0)= (x0, y0).

(2)

The results focused on f (x) = |x |α since it is a prototype of an equation with
Hölder continuous coefficients. Moreover, (2) is a version of (1) when we drop the
dependence on x , which allows us to study the modified wave equation with more
simplicity. Notice that if we take the differential dY of the first derivative of X ,
which is Y in the system of equations, it resembles the second derivative in time in
the stochastic wave equation.
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It was proven in [Gomez et al. 2017] that if α > 1
2 and (x0, y0) 6= (0, 0), then

(2) has a unique solution in the strong sense up to the time τ at which (X t , Yt) first
hits the origin (0, 0).

Since much is still unknown about higher-dimensional SDEs, we wish to continue
the study of the uniqueness property of (2) in the three-dimensional case, which is

d X = Y dt,

dY = Z dt,

d Z = |X |αdB,

(X0, Y0, Z0)= (x0, y0, z0).

(3)

Theorem 1. If 3
4 < α < 1 and (X0, Y0, Z0) 6= 0, then (3) has a unique strong

solution, up to the time τ at which the solution (X t , Yt , Z t) first hits the value
(0, 0, 0) or blows up.

Moreover, we say the solution (X t , Yt , Z t) blows up in finite time, with positive
probability, if there is a random time τ <∞ such that

P
(
lim
t↑τ
|(X t , Yt , Z t)|l∞ =∞

)
> 0.

2. Proof of Theorem 1

Let (X i
t , Y i

t , Z i
t ), i = 1, 2, be two solutions to (3) with (x0, y0, z0) 6= (0, 0, 0); in

other words, (X i
t , Y i

t , Z i
t ), i = 1, 2, have the same initial condition (X0, Y0, Z0) 6=

(0, 0, 0). Note that since (X i
t , Y i

t , Z i
t ), i = 1, 2, have the same initial conditions,

from now on, we use X0, Y0, Z0 instead of X i,n
0 , Y i,n

0 , Z i,n
0 .

Let τ be the first time t that either (X1
t , Y 1

t , Z1
t ) or (X2

t , Y 2
t , Z2

t ) hits the origin
(0, 0, 0) or blows up. We let τ be infinity if there is no such time.

First, if X0 6= 0, then (3) will have Lipschitz continuity up to the time that X t = 0,
and thus enables uniqueness to hold. Suppose after a certain amount of time X t hits
zero, where Lipschitz continuity no longer holds; then due to the strong Markov
property, we begin the process again with X0 = 0. So our goal is to prove pathwise
uniqueness between excursions of X up to the time τ starting from X0 = 0.

For any fixed n, let τn be the first time that either

|(X1
t , Y 1

t , Z1
t )|l∞ ∧ |(X

2
t , Y 2

t , Z2
t )|l∞ ≤ 2−n

or
|(X1

t , Y 1
t , Z1

t )|l∞ ∨ |(X
2
t , Y 2

t , Z2
t )|l∞ ≥ 2n.

Here, the infinity norm (also known as the L∞-norm, l∞-norm, max norm, or
uniform norm) of a vector Ev is denoted by |Ev|l∞ and is defined as the maximum of
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the absolute values of its components,

|Ev|l∞ =max{|vi | : i = 1, 2, . . . , n},
and

a ∧ b =min(a, b),

a ∨ b =max(a, b).

If there is no such time, we let τn be infinity. Note that limn↑∞(τn)= τ .
Now, for each fixed n, we will show uniqueness up to time τn in the system of

equations
d X i,n

t = Y i,n
t dt,

dY i,n
t = Z i,n

t dt,

d Z i,n
t = |X

i,n
t |

α 1[0,τn](t) dBt ,

(X0, Y0, Z0)= (x0, y0, z0).

(4)

In other words, after the time τn , we have d Z i,n
t = 0, which makes Z i,n

t become
constant. Specifically, given m, n ∈ N , we need

(Xn
t , Y n

t , Zn
t )= (X

m
t , Y m

t , Zm
t )

for all t ≤ τn ∧ τm .
Now, before continuing the proof of uniqueness, by the method of contradiction,

we show that the times that X t hits zero do not accumulate before the time τn ,
almost surely.

For each n, let An be the event on which the times that X i,n
t = 0, i = 1 or i = 2,

accumulate before τn , and assume P(An) > 0. Then, on An , suppose σn is an
accumulation point of the times t at which X i,n

t = 0; i.e, there exists a sequence
of times ρ1,n < ρ2,n < · · · that converges to σn , and X i,n

ρk,n
= 0. Hence, on An ,

limk→∞ ρk,n = σn .
We have X i,n

t is almost surely continuous, and that X i,n
ρk,n
= 0 on An , so

lim
ρk,n→σn

X i,n
ρk,n
= X i,n

σn
= 0

on An .
Note that d X i,n

t = Y i,n
t dt , and Y i,n

t is almost surely continuous. So if Y i,n
σn
6= 0

on An , then there exists a random interval [σn(ω)− ε(ω), σn(ω)] of positive length
for which X i,n

t 6= 0 on [σn(ω)− ε(ω), σn(ω)]. This contradicts the hypothesis of
ρk,n converging to σn .

If Y i,n
σn
= 0, there are two cases,

σn ≥ τn and σn < τn.

If σn ≥ τn , then it means that the times at which X i,n
t hit zero do not accumulate

before τn .
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If σn < τn , then with X i,n
σn
= 0 and Y i,n

σn
= 0, we have |Z i,n

σn
|> 2−n. Now suppose

Z
σ

i,n
n
> 2−n , as the case Z i,n

σ < 2−n is approached similarly due to symmetry.
If Z i,n

σn
> 2−n, since Z t is almost surely continuous, there exists a time interval

[σn(ω)−ε
′(ω),σn(ω)] on which Z i,n

t >2−n/2. Thus for all t∈[σn(ω)−ε
′(ω),σn(ω)]

we almost surely have

Y i,n
t = Y i,n

σn
−

∫ σn

t
Z i,n

s ds <−2−n

2
(σn − t).

Hence, integrating over X i,n
t for t ∈ [σn − ε

′, σn], we have

X i,n
t = X i,n

σn
−

∫ σn

t
Y i,n

s ds =−
∫ σn

t
Y i,n

s ds >
∫ σn

t

2−n

2
(σn − s) ds

=
2−n

2

(
σns− s2

2

)∣∣∣σn

t
=

2−n

4
(σn − t)2 > 0

as t < σn . Hence, this contradicts the hypothesis of ρk,n converging to σn on An .
So in conclusion, P(An)= 0, which means the times at which X t hits zero do not
accumulate before the time τn .

One more point we need to address before continuing with the proof of uniqueness
is the existence of solutions. This problem is resolved in Theorems 21.7 and 21.8 and
Lemma 21.17 of [Kallenberg 2002], which prove that for all times t ≥ 0, solutions
of multidimensional SDEs exist with probability 1 provided the coefficients are
continuous and bounded.

Specifically, in our problem, since α ∈ (0, 1), the coefficients of system (3) are
continuous and bounded by (2n)α ∨ 2n

= 2n up to the τn for each n, which satisfies
the condition stated in the existence theory in [Kallenberg 2002]. Hence, existence
of solution holds for all t ≤ τn for all n. Therefore, up to the time τ = sup τn ,
existence of solutions is ensured.

From now on, X i,n
t means X1,n

t and X2,n
t . We define Y i,n

t and Z i,n
t similarly. Back

to the proof of uniqueness, we have, for all t ∈ [0, τn],

|Z i,n
t | ∨ |Y

i,n
t | ≤ 2n.

So

|Y i,n
t | =

∣∣∣∣Y0+

∫ t

0
Z i,n

s ds
∣∣∣∣≤ |Y0| +

∫ t

0
|Z i,n

s | ds ≤ 2n
+ 2nt.

Therefore,

|X i,n
t | ≤ |X0+

∫ t

0
Y i,n

s ds| ≤
∫ t

0
|Y i,n

s | ds ≤
∫ t

0
(2n
+ 2ns) ds = 2n

(
t + t2

2

)
.

Now let

t0,n =
2−2n

2
. (5)
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Then

t0,n +
t2
0,n

2
=

2−2n

2
+

2−2n

8
≤

2−2n

2
+

2−2n

2
= 2−2n.

So

2n
(

t0,n +
t2
0,n

2

)
≤ 2n
· 2−2n

= 2−n.

Since the quadratic function 2n(t + t2/2) is increasing when t ≥ 0, we have

|X i,n
t | ≤ 2n

(
t + t2

2

)
≤ 2−n

for all t ∈ [0, t0,n].
Since |X1,n

t | and |X2,n
t | belong in [0, 2−n

] for t ∈ [0, t0,n], based on the definition
of τn above, either

|Y0| ≥ 2−n (6)
or

|Z0| ≥ 2−n (7)

for each fixed n. This is due to the fact that the solutions have the same initial
condition (X0, Y0, Z0) and for each time t ∈ [0, tn,0], either

|Y i,n
t | ≥ 2−n or |Z i,n

t | ≥ 2−n.

First, we deal with Y0 > 0. Due to symmetry, we can deal with the case Y0 < 0
with similar methods and thus omit the proof.

Now, with Y0 > 0, we look at other subcases based on Z i,n
0 .

Case I: Y0 > 0, |Z0| ≤ 2−n . If |Z0| ≤ 2−n, then (6) takes place. We are looking
at the case Y0 > 0, and thus Y0 > 2−n. Also, note that d Z i,n

t = 0 for all t > τn and
|Z i,n

t | ≤ 2n for all t ∈ [0, τn]. Hence, |Z i,n
t | ≤ 2n for all t , which means Z i,n

t ≥−2n

for all t . Next, we have

Y i,n
t = Y0+

∫ t

0
Zs ds ≥ 2−n

−

∫ t

0
2n ds = 2−n

− 2nt.

If

0< t < t0,n =
2−2n

2
,

where t0,n is defined as in (5), then

2nt < 2−n

2
.

Thus
2−n
− 2nt > 2−n

2

for all t ∈ [0, t0,n]. In other words, Y i,n
t > 2−n/2 for t ∈ [0, t0,n]. So, for all

t ∈ [0, t0,n], we have
Y i,n

t ≥
2−n

2
.
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Hence

X i,n
t ≥ X i,n

0 +

∫ t

0

2−n

2
ds ≥ 2−n

2
t. (8)

Furthermore, based on (8) and |X i,n
t | ≤ 2−n for all t ∈ [0, t0,n], it leads to t0,n ≤ 2,

otherwise X i,n
t > 2−n, which means that t > t0,n , a contradiction.

Note that

X i,n
t = X0+

∫ t

0
Y i,n

s ds,

Y i,n
s = Y0+

∫ s

0
Z i,n

k dk,

Z i,n
k = Z0+

∫ k

0
|X i,n

r |
α 1[0,τn](t) dBr .

Thus

X i,n
t = X0+ Y0t +

∫ t

0

∫ s

0

(
Z0+

∫ k

0
|X i,n

r |
α 1[0,τn](t) dBr

)
dk ds

= X0+ Y0t +
∫ t

0

∫ s

0
Z0 dk ds+

∫ t

0

∫ s

0

∫ k

0
|X i,n

r |
α 1[0,τn](t) dBr dk ds

= X0+ Y0t + Z0
t2

2
+

∫ t

0

∫ s

0

∫ k

0
|X i,n

r |
α 1[0,τn](t) dBr dk ds.

Hence

(X1,n
t − X2,n

t )2 =

(∫ t

0

∫ s

0

∫ k

0
(|X1,n

r |
α
− |X2,n

r |
α) 1[0,τn](r) dBr dk ds

)2

.

Apply the Cauchy-Schwarz inequality twice, we get

(X1,n
t − X2,n

t )2 ≤ t
∫ t

0

(∫ s

0

∫ k

0
(|X1,n

r |
α
− |X2,n

r |
α) 1[0,τn](r) dBr dk

)2

ds

≤ t
∫ t

0
s
∫ s

0

(∫ k

0
(|X1,n

r |
α
− |X2,n

r |
α) 1[0,τn](r) dBr

)2

dk ds.

Thus

E[(X1,n
t − X2,n

t )2] ≤ t E
∫ s

0
s
∫ s

0

(∫ k

0
(|X1,n

r |
α
− |X2,n

r |
α) 1[0,τn](r) dBr

)2

dk ds.

By Itô’s isometry,

E[(X1,n
t − X2,n

t )2] ≤ t E
∫ t

0
s
∫ s

0

∫ k

0
((|X1,n

r |
α
− |X2,n

r |
α) 1[0,τn](r))

2 dr dk ds

≤ t E
∫ t

0
t
∫ s

0

∫ k

0
(|X1,n

r |
α
− |X2,n

r |
α)2 dr dk ds
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≤ t2 E
∫ t

0

∫ s

0

∫ k

0
(|X1,n

r |
α
− |X2,n

r |
α)2 dr dk ds

≤ t2 E
∫ t

0

∫ t

0

∫ t

0
(|X1,n

r |
α
− |X2,n

r |
α)2 dr dk ds

= t4 E
∫ t

0
(|X1,n

r |
α
− |X2,n

r |
α)2 dr.

Now we apply the mean value theorem for the function f (x)= xα, 0< α < 1, and
a < b:

bα − aα = αcα−1(b− a)≤ αaα−1(b− a)

for c ∈ (a, b). Then for r ∈ [0, t0,n], where t0 is determined in (5), we apply (8):∣∣|X1,n
r |

α
− |X2,n

r |
α
∣∣≤ α(2−n

2
r
)α−1∣∣|X1,n

r | − |X
2,n
r |
∣∣. (9)

Now let
Dt = E[(|X1,n

t | − |X
2,n
t |)

2
].

Since t0,n ≤ 2, we have for all t ∈ [0, t0,n]

Dt ≤ E[(X1,n
t − X2,n

t )2] ≤ Cn

∫ t

0
r2α−2 Dr dr.

for some Cn depending on n. Since α > 3
4 , we have r2α−2 is integrable on [0, t0,n].

At this stage we apply Gronwall’s lemma:

Lemma. Let I denote an interval of the real line of the form [a,∞) or [a, b] or
[a, b) with a < b. Let β and u be real-valued continuous functions defined on I. If
u is differentiable on the interior I o of I (the interval I without the endpoint a and
possibly b) and satisfies the differential inequality

u
′

(t)≤ β(t)u(t), t ∈ I o,

then u is bounded by the solution of the corresponding differential equation v
′

(t)=
β(t)v(t):

u(t)≤ u(a) exp
(∫ t

a
β(s) ds

)
for all t ∈ I.

Hence, with D0 = 0, we have Dt = 0 for all t ∈ [0, t0,n]. Therefore, (3) has
unique strong solution in [0, t0,n].

Since α ≥ 3
4 , we have 2α− 2≥−1. Hence, r2α−2 is integrable on [0, t0,n] Note

that in this case since X t ≥ 2−n, η ≤ 1. Applying Gronwall’s lemma, with D0 = 0,
we have Dt = 0 for all t ∈ [0, t0,n]. Therefore, (3) has a unique solution in strong
sense up to time t0,n .
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Note that for all t ∈ [0, t0,n], we have Y i,n
t > 2−n/2> 0. Hence X i,n

t is strictly
increasing, which, leads to X t0,n strictly positive. Therefore, by the strong Markov
property, we have uniqueness until the time X next hits zero.

Case II: Y0> 0, Z0<−2−n. Since Z0 starts negative, Y i,n
t decreases for an amount

of time. Since Y0 is positive, let say Y0 = β > 0. Note that for all t , we have
|Z i,n

t |< 2n, which means Z i,n
t >−2n. First, we have

Y i,n
t = β +

∫ t

0
Zs ds ≥ β −

∫ t

0
2n ds = β − 2nt.

Let

t
′

0,n =
β

2n+1 . (10)

If
0< t < t

′

0,n =
β

2n+1 ,

then
2nt < β

2
;

thus
β − 2nt > β

2

for all t ∈ [0, t0,n ′]. In other words, Y i,n
t > β/2 for all t ∈ [0, t

′

0,n].
So, for all t ∈ [0, t0,n ∧ t

′

0,n], where t0,n and t
′

0,n are determined in (5) and (10)
respectively, we have

Y i,n
t ≥

β

2
Hence

X i,n
t ≥ X i,n

0 +

∫ t

0

β

2
ds ≥ β

2
t.

Applying the same method (9) above, we use the mean value theorem for the
new lower bound of X i,n

t :

∣∣|X1,n
r |

α
− |X2,n

r |
α
∣∣≤ α(β

2
r
)α−1∣∣|X1,n

r | − |X
2,n
r |
∣∣.

Hence

Dt ≤ E[(X1,n
t − X2,n

t )2] ≤ Cn

∫ t

0
r2α−2 Dr dr.

Again, applying Gronwall’s lemma, with D0 = 0, we have Dt = 0 for all t ∈
[0, t0,n ∧ t

′

0,n]. Therefore, (3) has a unique strong solution in [0, t0,n ∧ t
′

0,n]. As in
the previous cases, we have Y i,n

t >β/2> 0 for all t ∈ [t0,n∧ t
′

0,n], which makes X i,n
t

strictly increasing. So X t0,n ∧ t
′

0,n is strictly positive. Thus, by the strong Markov
property, we have uniqueness until the next time X hits zero.
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Case III: Y0 > 0, Z0 > 2−n. Now we let Tn be the first time that either Z1,n
t or Z2,n

t
hits the value 2−n/2. Since both Z1,n

t and Z2,n
t are continuous, we have Tn > 0

with probability 1. So we now prove uniqueness up to the time t0,n ∧ Tn , where t0,n
is defined in (5).

Then for all t in [0, t0,n ∧ Tn], we have

Z i,n
t ≥

2−n

2
;

therefore

Y i,n
t ≥ Y0+

∫ t

0

2−n

2
ds ≥ 2−n

2
t (11)

since Y i,n
0 ≥ 0.

Based on (11), for t ∈ [0, t0,n ∧ Tn]

X i,n
t ≥ X0+

∫ t

0

2−n

2
s ds ≥ 2−n

4
t2. (12)

Now we define

X i,n
t = X̃ i,n

t , Y i,n
t = Ỹ i,n

t , Z i,n
t = Z̃ i,n

t

for i = 1, 2 and for t ≤ τn ∧ Tn ∧ t0,n , where t0,n is defined as in (5) above.
Thus the following system of equations holds up to the stopping time τn∧Tn∧t0,n:

d X̃ i,n
t = Ỹ i,n

t dt

dỸ i,n
t = Z̃ i,n

t dt

d Z̃ i,n
t = |X̃

i,n
t |

α 1[0,τn∧Tn∧t0,n](t) dBt ,

(13)

with (X̃ i,n
0 , Ỹ i,n

0 , Z̃ i,n
0 ) = (X0, Y0, Z0) for i = 1, 2. Furthermore, using (13), X̃ i,n

t ,
Ỹ i,n

t , and Z̃ i,n
t can be defined for all times.

Using Itô’s isometry as above with X̃ i,n
t , Ỹ i,n

t , and Z̃ i,n
t ,

E[(X̃1,n
t − X̃2,n

t )2] ≤ t E
∫ t

0
s
∫ s

0

∫ k

0

(
(|X̃1,n

r |
α
−|X̃2,n

r |
α) 1[0,τn∧Tn∧t0,n](r)

)2 dr dk ds

≤ t E
∫ t

0
t
∫ s

0

∫ k

0
(|X̃1,n

r |
α
−|X̃2,n

r |
α)2 1[0,τn∧Tn∧t0,n](r) dr dk ds

≤ t2 E
∫ t

0

∫ s

0

∫ k

0
(|X̃1,n

r |
α
−|X̃2,n

r |
α)2 1[0,τn∧Tn∧t0,n](r) dr dk ds

≤ t2 E
∫ t

0

∫ t

0

∫ t

0
(|X̃1,n

r |
α
−|X̃2,n

r |
α)2 1[0,τn∧Tn∧t0,n] dr dk ds

= t4 E
∫ t

0
(|X̃1,n

r |
α
−|X̃2,n

r |
α)2 1[0,τn∧Tn∧t0,n] dr.
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Using (12) and the mean value theorem, for r ∈ [0, τn ∧ Tn ∧ t0,n], we have

∣∣|X̃1,n
r |

α
− |X̃2,n

r |
α
∣∣≤ α(2−n

4
r2
)α−1∣∣|X̃1,n

r | − |X̃
2,n
r |
∣∣.

Hence

E[(X̃1,n
t − X̃2,n

t )2] ≤ t4α2
(

2−n

4

)2(α−1)

E
∫ t

0
r4(α−1)(|X̃1,n

r | − |X̃
2,n
r |)

2 dr,

so if we let
Dt = E[(|X̃1,n

t | − |X̃
2,n
t |)

2
],

then

Dt ≤ E[(X̃1,n
t − X̃2,n

t )2] ≤ Cn

∫ t

0
r4α−4 Dr dr.

Again, applying Gronwall’s lemma, with D0 = 0, we have Dt = 0. Note that at the
time t0,n ∧ Tn , since we have Z i,n

t > 0 for all t ∈ [0, t0,n ∧ Tn], and also Y0 > 0, it
leads to Y i,n

t > 0 for all t ∈ [0, t0,n ∧ Tn]. Thus X i,n
t is strictly increasing, which

means X t0,n∧Tn must be strictly greater than zero. Therefore, by the strong Markov
property, we obtain uniqueness of the process until X next hits zero.

Case IV: Y0 = 0. If Y0 = 0, then based on the definition of τn , we have |Z0|> 2−n.
We will first deal with the case Z0 > 2−n, and the case Z0 < 2−n is approached
the same way due to symmetry. As in Case III, let Tn be the first time that either
Z1,n

t or Z2,n
t hits the value 2−n/2. Due to the continuity of Z1,n

t and Z2,n
t , we have

Tn > 0 with probability 1. So with for all t ∈ [0, t0 ∧ Tn], where t0 is determined
in (5), we have

Y i,n
t ≥ Y0+

∫ t

0

2−n

2
ds = 2−n

2
t.

Then

X i,n
t ≥ X0+

∫ t

0

2−n

2
s ds ≥ 2−n

4
t2.

We now apply the same method as in Case III by looking at X̃ i,n
t , Ỹ i,n

t , and Z̃ i,n
t ,

which are defined as

X i,n
t = X̃ i,n

t , Y i,n
t = Ỹ i,n

t , Z i,n
t = Z̃ i,n

t

for i = 1, 2 and for t ≤ τn ∧ Tn ∧ t0,n , as t0,n defined as in (5) above.
Thus the following system of equations holds up to the stopping time τn∧Tn∧t0,n:

d X̃ i,n
t = Ỹ i,n

t dt

dỸ i,n
t = Z̃ i,n

t dt

d Z̃ i,n
t = |X̃

i,n
t |

α 1[0,τn∧Tn∧t0,n](t) dBt ,
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with (X̃ i,n
0 , Ỹ i,n

0 , Z̃ i,n
0 ) = (X0, Y0, Z0) for i = 1, 2. Furthermore, using (13), X̃ i,n

t ,
Ỹ i,n

t , Z̃ i,n
t can be defined for all time.

Again, using the same strategy in Case III and the mean value theorem, we have∣∣|X̃1,n
r |

α
− X̃2,n

r |
α
∣∣≤ α(2−n

4
r2
)α−1∣∣|X̃1,n

r | − |X̃
2,n
r |
∣∣.

Hence, if we let
Dt = E[(|X̃1,n

t | − |X̃
2,n
t |)

2
],

then

Dt ≤ E[(X̃1,n
t − X̃2,n

t )2] ≤ Cn

∫ t

0
r4α−4 Dr dr.

Gronwall’s lemma with D0 = 0 yields Dt = 0, completing the proof of Theorem 1.
In this case, we also have Y i,n

t > 2−n/2t > 0 for all t ∈ [0, t0,n ∧ Tn]. Hence
X i,n

t is strictly increasing, which yields X t0,n∧Tn strictly positive. So, by the strong
Markov property, we have uniqueness up to the time X next hits zero.

Now with uniqueness proved, we actually can even strengthen the proof by
showing that τ 1

n = τ
2
n for all n, where τ 1

n and τ 2
n respectively stand for the stopping

times at the critical values for X1
t and X2

t . Without loss of generality, suppose
τ 2

n > τ
1
n : So at the time τ 1

n , X2
t has not yet reached the critical values, which are

2−n or 2n, as stated above. But since we have uniqueness up to τ 1
n ∧ τ

2
n , this implies

X1
t has also not reached the critical value at the time τ 1

n , which is a contradiction to
the definition of τ 1

n . Hence, τ 1
n and τ 2

n must be equal.
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