Vol. 13, No. 3, 2020

Download this article
Download this article For screen
For printing
Recent Issues

Volume 13
Issue 4, 541–719
Issue 3, 361–539
Issue 2, 181–360
Issue 1, 1–180

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN: 1944-4184 (e-only)
ISSN: 1944-4176 (print)
Author Index
Coming Soon
 
Other MSP Journals
Hyperbolic triangular prisms with one ideal vertex

Grant S. Lakeland and Corinne G. Roth

Vol. 13 (2020), No. 3, 361–379
Abstract

We classify all of the five-sided three-dimensional hyperbolic polyhedra with one ideal vertex, which have the shape of a triangular prism, and which give rise to a discrete reflection group. We show how to find each such polyhedron in the upper half-space model by considering lines and circles in the plane. Finally, we give matrix generators in PSL2() for the orientation-preserving subgroup of each corresponding reflection group.

Keywords
hyperbolic reflection group, prism, ideal polyhedron
Mathematical Subject Classification 2010
Primary: 57R18
Secondary: 20F55
Milestones
Received: 3 October 2018
Revised: 15 December 2019
Accepted: 23 March 2020
Published: 14 July 2020

Communicated by Kenneth S. Berenhaut
Authors
Grant S. Lakeland
Department of Mathematics and Computer Science
Eastern Illinois University
Charleston, IL
United States
Corinne G. Roth
Department of Mathematics and Computer Science
Eastern Illinois University
Charleston, IL
United States