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An equidistant polytope is a special equidistant set in the space Rn all of whose
boundary points have equal distances from two finite systems of points. Since
one of the finite systems of the given points is required to be in the interior of the
convex hull of the other one, we can speak about inner and outer focal points of the
equidistant polytope. It is of type (q, p), where q is the number of the outer focal
points and p is the number of the inner focal points. The equidistancy is the gen-
eralization of convexity because a convex polytope can be given as an equidistant
polytope of type (q, 1), where q ≥ n+ 1. We present some general results about
the basic properties of the equidistant polytopes: convex components, graph rep-
resentations, connectedness, correspondence to the Voronoi decomposition of the
space etc. In particular, we are interested in equidistant polytopes of dimension 2
(equidistant polygons). Equidistant polygons of type (3, 2) will be characterized
in terms of a constructive (ruler-and-compass) process to recognize them. In
general they are pentagons with exactly two concave angles such that the vertices
at which the concave angles appear are joined by an inner diagonal related to the
adjacent sides of the polygon in a special way via the three reflections theorem for
concurrent lines. The last section is devoted to some special arrangements of the
focal points to get the concave quadrangles as equidistant polygons of type (3, 2).

1. Introduction

Let K ⊂ Rn be a subset in the Euclidean coordinate space. The distance between a
point X ∈ Rn and K is measured by the usual infimum formula

d(X, K ) := inf{d(X, Y ) | Y ∈ K }.

The equidistant set of K and L ⊂ Rn is defined as

{K = L} := {X ∈ Rn
| d(X, K )= d(X, L)}.
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Since the classical conics can also be given in this way [Ponce and Santibáñez
2014], the equidistant sets are their generalizations: K and L are called the focal
sets. Moreover, any convex polytope can be given as an equidistant set with finitely
many focal points in K and L , respectively [Vincze 2017]; see also [Vincze and
Oláh 2019]. Therefore the equidistancy is the generalization of convexity. In a
similar way we can speak about an equidistant function [Vincze et al. 2018a] by
requiring its epigraph to be an equidistant body:

{K ≤ L} := {X ∈ Rn
| d(X, K )≤ d(X, L)}.

In the case of singletons we are going to use the applicable shortcut notation

{X ≤ L} := {{X} ≤ L}, {X ≤ Y } := {{X} ≤ {Y }}, etc. (X, Y ∈ Rn).

The investigation of equidistant sets with finitely many focal points is motivated
by a continuity theorem [Ponce and Santibáñez 2014]: if K and L are disjoint
compact subsets in the space and Kn→ K and Ln→ L are convergent sequences
of nonempty compact subsets with respect to the Hausdorff metric, then {Kn = Ln}

is a convergent sequence tending to {K = L} with respect to the Hausdorff metric
in any bounded region of the space. For the Hausdorff distance between compact
sets in Rn, see, e.g., [Lay 1982].

The points of an equidistant set are difficult to determine in general because there
are no simple formulas to compute the distance between a point and a set. The
continuity theorem allows us to simplify the general problem by using the approxi-
mation {Kn = Ln}≈ {K = L}, where Kn ⊂ K and Ln ⊂ L are finite subsets. In case
of finite focal sets in two dimensions, the equidistant points can be characterized in
terms of computable constants and parametrization [Vincze et al. 2018b] (the paper
contains a MAPLE implementation as well as an alternative of the error estimation
process for quasiequidistant points suggested by [Ponce and Santibáñez 2014] for
the computer simulation). For some general investigations of equidistant sets in
metric spaces we can refer to the fundamental works [Loveland 1976; Wilker 1975].

2. Convex components, graph representations and connectedness

Lemma 1. Let K and L be nonempty compact subsets in the Euclidean coordinate
space Rn. The equidistant body

{K ≤ L} := {X ∈ Rn
| d(X, K )≤ d(X, L)}

can be expressed as the union

{K ≤ L} =
⋃
X∈K

{X ≤ L}.

In particular,
{K1 ∪ K2 ≤ L} = {K1 ≤ L} ∪ {K2 ≤ L}.
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Proof. If Z ∈ {K ≤ L} then d(Z , K )≤ d(Z , L) and, by the compactness (especially,
the closedness) there exists a point X ∈ K, at which the minimal distance is attained:

d(Z , X)= d(Z , K )≤ d(Z , L) =⇒ Z ∈ {X ≤ L}.

Conversely, for any X ∈ K, we have d(Z , K )≤ d(Z , X); i.e., if Z ∈ {X ≤ L}, then

d(Z , K )≤ d(Z , X)≤ d(Z , L)

and Z ∈ {K ≤ L}, as was to be proved. �

The previous result motivates us to formulate some simple observations about
the equidistant bodies of the form {X ≤ L}.

Lemma 2. For any X ∈ Rn the set {X ≤ L} is convex. If X is not an accumulation
point of L then {X ≤ L} is of dimension n.

Proof. The convexity follows from the half-space intersection formula

{X ≤ L} =
⋂
Y∈L

{X ≤ Y }, (1)

where {X ≤ Y } is the closed half-space bounded by the perpendicular bisector of
the segment XY containing X. On the other hand, if X is not an accumulation
point of L , then it is an outer point or an isolated point. In the case of an outer
point, d(X, L) > 0 and a continuity argument shows that X is an interior point of
{X ≤ L}. Otherwise (in the case of an isolated point of L)

d(X, Z)= d(Z , L)

for any element Z in a sufficiently small open neighborhood of X. Therefore X is
an interior point of {X ≤ L}. �

Remark 3. Note that the converse does not hold in general: if X = (0, 0), L =
{(0, 1/n) | n ∈ N} then

{X ≤ L} = {(x, y) | x ≤ 0}

is of dimension 2 but X is an accumulation point of L . It can be easily seen that:

• If X is an inner point of L then {X ≤ L} = {X}.

• If X is an outer point or an isolated point of L then X is an inner point of
{X ≤ L}.

• If X is an accumulation point of L then−X+{X ≤ L} is a subset in the regular
normal cone [Rockafellar and Wets 1998] of the topological closure of L at
the point X containing proximal normals of the form Z − X (Z ∈ {X ≤ L}).
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By Lemma 1 any equidistant body can be expressed as the union of convex
subsets determined by its focal points. Following the steps in the proof we also
have that

{K < L} := {X ∈ Rn
| d(X, K ) < d(X, L)}

can be expressed as the union

{K < L} =
⋃
X∈K

{X < L}

and, consequently,

{K ≤ L} =
⋃
X∈K

{X ≤ L} =
⋃
X∈K

{L < X}

=

⋂
X∈K

{L < X} =
⋂
X∈K

⋃
Y∈L

{Y < X} =
⋃
X∈K

⋂
Y∈L

{X ≤ Y }.

On the other hand

{K ≤ L} = {L < K } =
⋃
Y∈L

{Y < K } =
⋃
Y∈L

{K ≤ Y } =
⋂
Y∈L

{K ≤ Y }

=⇒ {K ≤ L} =
⋂
Y∈L

{K ≤ Y } =
⋂
Y∈L

⋃
X∈K

{X ≤ Y }.

In particular,
{K ≤ L1 ∪ L2} = {K ≤ L1} ∩ {K ≤ L2}. (2)

Lemma 4. Let K and L be nonempty compact subsets in the Euclidean coordinate
space Rn. The equidistant body

{K ≤ L} := {X ∈ Rn
| d(X, K )≤ d(X, L)}

is bounded if and only if K is in the interior of the convex hull of L.

Proof. Suppose that the equidistant body is bounded and X1 ∈ K such that X1 is
not in the interior of the convex hull of L . Consider the closest point Y1 of conv L
to X1. It is uniquely determined. Taking the supporting hyperplane H1 to conv L at
Y1 such that

• it is perpendicular to the segment X1Y1 in case of X1 6= Y1 (see Figure 1),

• it is an arbitrary supporting hyperplane in case of X1 = Y1,

the half-space containing the convex hull of L is called positive. Its complement is
called negative. Choosing a point Q of the ray emanating from X1 in the negative
open half-space along the orthogonal direction to H1, it can be easily seen that Y1,
X1 and Q are collinear, i.e.,

d(Q, K )≤ d(Q, X1)≤ d(Q, Y1)= inf
Y∈conv L

d(Q, Y )≤ inf
Y∈L

d(Q, Y )= d(Q, L)



ON EQUIDISTANT POLYTOPES IN THE EUCLIDEAN SPACE 581

Q

X1

Y1

Figure 1. The proof of Lemma 4.

because of L ⊂ conv L . Therefore Q ∈ {K ≤ L} but Q can tend to infinity. It is
a contradiction. To prove the converse statement suppose that K is contained in
the interior of the convex hull of L . By Lemma 1, for any Q ∈ {K ≤ L} we have
Q ∈ {X ≤ L} for some point X in K. This means that

d(Q, X)≤ d(Q, Y ) (Y ∈ L).

Taking the square of both sides we have

〈Q, Y − X〉 ≤ 1
2 |Y |

2
−

1
2 |X |

2
≤ c,

where the upper bound c > 0 can be chosen independently of Q due to the bound-
edness of K and L . Therefore Q/c is an element in the polar body (−X+conv L)∗.
The translated set −X + conv L contains the origin in its interior because X ∈ K
and K is in the interior of the convex hull of L . Taking a sufficiently small radius
rX > 0 we have

rX D ⊂−X + conv L =⇒ Q/c ∈ (−X + conv L)∗ ⊂ (rX D)∗ = D/rX

=⇒ Q ∈ cD/rX ,

where D is the closed unit ball around the origin in the space. Using a compactness
argument, it follows that

r := inf sup
X∈K
{rX | rX D ⊂−X + conv L} = inf sup

X∈K
{rX | X + rX D ⊂ conv L}> 0;

i.e., Q ∈ cD/r for any Q ∈ {K ≤ L}. �

2.1. The graph representation of equidistant bodies with finitely many focal
points. In what follows some basic properties (connectedness) of an equidistant
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body will be investigated by the pairwise comparison of the convex components in
the union

{K ≤ L} =
p⋃

i=1

{X i ≤ L},

where K = {X1, . . . , X p}, L = {Y1, . . . , Yq} are finite sets. It is motivated by the
difficulties of the description of the geometric relationships among the focal points.
The pairwise comparison of simple configurations seems to be a more effective way
according to the algorithmic methods as well (see, e.g., the finite version of Helly’s
theorem).

Definition 5. The vertices of the graph representation G of the equidistant body
{K ≤ L} are the elements of K and there is an edge between X i and X j (i 6= j) if
and only if

{X i ≤ L} ∩ {X j ≤ L} 6=∅.

The weight of the edge X i X j is

wi j = dim{X i ≤ L} ∩ {X j ≤ L}.

Since

{X i ≤ L}
(2)
=

q⋂
k=1

{X i ≤ Yk},

the existence of the edge between X i and X j can be checked algorithmically by the
finite version of Helly’s theorem.

Theorem 6. The equidistant body {K ≤ L} is connected if and only if its graph
representation is connected.

Proof. Suppose that G = A∪ B, where A and B are disjoint subsets of the vertices
such that there is no edge with endpoints in A or B, respectively. Taking the sets

M =
⋃

X i∈A

{X i ≤ L} and N =
⋃

X i∈B

{X i ≤ L}

we have that M and N are closed disjoint subsets of the equidistant body and
{K ≤ L} = M ∪ N because G = A∪ B. If the equidistant body is connected then
one of the sets, say M must be empty. Thus so is A; i.e., the graph representation
is connected. Conversely, if G is connected then we have a sequence of edges from
X i to X j for any pair of indices i 6= j : X i − Xk1 −· · ·− Xkm − X j . The continuous
path connecting P ∈ {X i ≤ L} with Q ∈ {X j ≤ L} can be constructed as follows:
the first step is to join P with X i (they are in the same convex component), the
second step is to join X i with a point

X ik1 ∈ {X i ≤ L} ∩ {Xk1 ≤ L} (3)
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Figure 2. Some disconnected cases.

Figure 3. Disconnected components of the complement of an
equidistant body.

and, finally, we can join X ik1 with Xk1 because they are in the same convex compo-
nent. The polygonal chain constructed by the successive application of these steps
joins P with Q. Therefore the body is arcwise-connected; i.e., it is connected. �

According to the argument in the proof of Theorem 6, the connectedness and
the arcwise-connectedness are equivalent for an equidistant body.

Corollary 7. The equidistant body {K ≤ L} is arcwise-connected if and only if its
graph representation is connected.

Proof. If the equidistant body is arcwise-connected then it is connected. Thus so
is its graph representation. Conversely, if G is connected then we can follow the
process in the proof of the previous theorem to construct a polygonal chain between
any pair of points P and Q in {K ≤ L}. �

Corollary 8. A disconnected equidistant body {K ≤ L} is the disjoint union of
equidistant bodies of type {Ki ≤ L}, where K = K1 ∪ K2 ∪ · · · is the disjoint
union of subsets in K corresponding to the connected components of the graph
representation.

Some disconnected cases are illustrated in Figure 2: the equidistant body is
disconnected (left); the equidistant body is connected but its interior is not (right).
Figure 3 shows the case of a disconnected complement.

Definition 9. The graph representation G of the equidistant body {K ≤ L} is
disconnected with respect to the weight w if G = A ∪ B, where A and B are
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nonempty disjoint subsets of the vertices such that there are no edges of weight
greater than or equal to w with endpoints in A and B, respectively. Otherwise G is
connected with respect to the weight w.

Theorem 10. The interior of the equidistant body {K ≤ L} is connected if and only
if its graph representation is connected with respect to the weight n− 1.

Proof. Suppose that the graph representation is connected with respect to the
weight n−1 and let us modify the proof of Theorem 6 by changing the intermediate
points X ik1, Xk1k2, . . . , Xkm j such that they belong to the interior of the intersection
of the corresponding convex components (an edge of maximal weight) or they are in
the relative interior of the adjacent faces of dimension n−1. The modification gives
a continuous path (polygonal chain) from X i to X j (i 6= j) in the interior of the
equidistant body. Since the arcwise-connectedness implies the connectedness, we
are done. Conversely, suppose that the interior of the equidistant body {K ≤ L} is
connected; i.e., it is arcwise-connected because the connectedness and the arcwise-
connectedness are equivalent in case of open sets. To prove the connectedness
of the graph representation with respect to the weight n − 1 we are going to
construct a sequence of edges of weight at least n−1 between X i and X j (i 6= j ). If
X j ∈ {X i ≤ L} then we are done because dim{X i ≤ L}∩{X j ≤ L}= n. Indeed, since
a finite set has no accumulation points, Lemma 2 implies that X j is in the interior
of {X j ≤ L}. In particular, each convex component is of dimension n. Finally, if a
convex set of dimension n intersects the interior of another one then the intersection
is of dimension n. Otherwise consider a continuous path X̂ i X j from X i to X j in
the interior of the equidistant body and choose a common point Z of X̂ i X j with the
boundary of {X i ≤ L}. Since Z is an interior point, we can suppose — without loss
of generality — that Z is lying on the face F i

n−1 of dimension n− 1 of the convex
component {X i ≤ L}. Let ε > 0 be small enough and BZ (ε)⊂ int{K ≤ L}, where
BZ (ε) is the open ball around Z with radius ε. Then BZ (ε)∩ F i

n−1 must be covered
by the finite collection {{Xk ≤ L} | k 6= i}. Condition dim BZ (ε)∩ F i

n−1 = n− 1
implies that there must be at least one intersection {X i ≤ L}∩{Xk1≤ L} of dimension
at least n − 1. Therefore wik1 (the weight of the edge X i Xk1) is at least n − 1.
Repeating the algorithm along the arc X̂k1 X j we are done in finitely many steps. �

2.2. Equidistant polytopes. In what follows we are going to define the notion
of equidistant polytopes. Some natural requirements are the connectedness (see
Corollary 8), the boundedness (see Lemma 4) and the finiteness of the focal sets.

Definition 11. Let K and L ⊂ Rn be nonempty disjoint, finite sets and suppose
that K is a subset in the interior of the convex hull of L . The equidistant body
{K ≤ L} is called an equidistant polytope if both its interior and its complement are
connected. The equidistant polytope is of type (q, p), where |L| = q and |K | = p.
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Corollary 12. The boundary {K = L} of an equidistant polytope is connected.

The equidistant polytopes of type (q, 1) are convex polytopes. It is a direct
consequence of the half-space intersection formula (1) and Lemma 4: an equidistant
polytope of type (q, 1) is a nonempty, compact intersection of finitely many closed
half-spaces. Since any convex polytope can be given as an equidistant polytope
of type (q, 1), the equidistancy is the generalization of the convexity; see [Vincze
2017; Vincze and Oláh 2019]. In a similar way we can speak about equidistant
functions [Vincze et al. 2018a] by requiring their epigraphs to be equidistant bodies.
Let {K ≤ L} be an equidistant polytope; since K must be in the interior of the
convex hull of L , the set of the outer focal points must contain at least n+ 1 points.

Lemma 13. If K and L ⊂ Rn are nonempty disjoint finite sets, |L| = n+ 1 and K
is a subset in the interior of the convex hull of L , then the equidistant body {K ≤ L}
is a star-shaped set.

Proof. The idea is to provide the existence of a closed ball strictly separating K
and L in the sense that the focal points of K are inside but the focal points of L are
outside. 1 Then the center X∗ of the ball satisfies the inequality

max{d(X∗, X1), . . . , d(X∗, X p)}< d(X∗, L)=min{d(X∗, Y1), . . . , d(X∗, Yq)},

where X1, . . . , X p are the points in K and Y1, . . . , Yq are the points in L . Therefore,
by a continuity argument, X∗ is an interior point of every convex component
{X i ≤ L}, where i = 1, . . . , p. By Lemma 1, this means that the equidistant body
{K ≤ L} is star-shaped with respect to any point in an open ball around X∗ with a
sufficiently small radius. If q= n+1 then L is a simplex and we can easily construct
a strictly separating ball by a slight decreasing of the radius of its circumscribed
sphere. �

Corollary 14. If K and L ⊂Rn are nonempty disjoint finite sets, |L| = n+1 and K
is a subset in the interior of the convex hull of L , then the equidistant body {K ≤ L}
is an equidistant polytope.

2.3. Voronoi decomposition and its correspondence to the equidistant bodies.
One of the most important applications of equidistant bodies of the form {X ≤ L}
is the Voronoi decomposition of the space. Let K := {X1, . . . , Xm} ⊂Rn be a finite
set containing different elements and consider the equidistant bodies

V (X i , K ) := {X i ≤ K \ {X i }} (i = 1, . . . ,m).

1The combinatorial criteria of the existence of such a separating ball can be formulated as a
Kirchberger-type theorem [Lay 1982]: if for any subset T ⊂ K ∪ L containing n+ 3 points there is a
ball strictly separating T ∩ K and T ∩ L then there is a ball strictly separating K and L .
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It is clear that they are n-dimensional convex subsets (Voronoi cells) such that

Rn
=

m⋃
i=1

V (X i , K )

and
int V (X i , K )∩ int V (X j , K )=∅ (i 6= j = 1, . . . , n).

The set V (X i , K ) contains the points in the space, where the distance d(X, K ) is
attained at X i ; i.e., X i is the closest point of K to any X ∈ V (X i , K ). The collection
of the cells V (X1, K ), . . . , V (Xm, K ) is called the Voronoi decomposition of the
space with respect to the set K.

Corollary 15. If K and L are nonempty finite, disjoint subsets containing different
elements then

{K ≤ L} =
⋃

X i∈K

V (X i , K ∪ L).

3. Equidistant polygons in the plane: the hypergraph representation and the
maximal number of the vertices

The following investigations are motivated by the discrete version of the problem
posed in [Ponce and Santibáñez 2014]: characterize all closed sets of the plane that
can be realized as the equidistant set of two connected disjoint closed sets.

3.1. The hypergraph representation of equidistant polygons. Let K and L ⊂ R2

be nonempty disjoint finite subsets in the plane such that K is contained in the
interior of the convex hull of L . In what follows we are going to estimate the
maximal number of the edges (vertices) of an equidistant polygon in terms of the
number of elements in the focal sets. Using a continuity argument it can be easily
seen that decreasing the number of vertices is impossible by a slight modification
of the position2 of the focal points (increasing the number of vertices is possible).
This means that the regularity conditions

(C1) there are no collinear triplets among the points of K ∪ L ,

(C2) there are no concircular quadruples among the points of K ∪ L

can be supposed without loss of generality. The regularity conditions do not
imply in general that we have an equidistant polygon as Figure 3 shows by a
slight modification of the focal sets. In the special case of two dimensions, the
connectedness of the interior of an equidistant polygon provides that there are

2Since the convex components are nonempty compact intersections of finitely many half-spaces,
they depend continuously on the position of the focal points in any bounded region of the space. So
does their finite union. Therefore vertices (breakages along the boundary) cannot be straightened by a
slight modification of the position of the focal points but straight line segments can be broken.
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no self-intersections of its boundary and the connectedness of its complement
provides that there are no holes in its interior. Using the boundedness criterion
(K ⊂ int conv L) and the finiteness of the focal sets, Corollary 12 implies that the
boundary of an equidistant polygon in the plane is a simple closed polygonal chain
(the edges belong to the perpendicular bisectors of the elements in the focal sets
K and L , respectively). Therefore an equidistant polygon in the plane is a Jordan
polygon (see the Jordan curve theorem).

Definition 16. The 3-uniform hypergraph representation of an equidistant polygon
satisfying (C1) and (C2) consists of the vertices K ∪ L and the edges are the triplets
of the focal points provided that the circle determined by them does not contain any
focal point in its interior. Edges of types {X i1, X i2, X i3} and {Y j1, Y j2, Y j3} are called
monochromatic. The colored edges are of types {X i1, Y j1, X i2} and {Y j1, X i1, Y j2}.
The weight of a colored edge is the angle δ j1

i1i2
= 6 X i1Y j1 X i2 or ωi1

j1 j2 =
6 Y j1 X i1Y j2 .

To prevent the inclusion of focal points in the interior of the circle determined
by a colored edge it is sufficient and necessary for the weight to satisfy

δ
j1
i1i2
=max{6 X i1 Z X i2 | Z ∈ K ∪ L and Z ∈ H+K (i1, j1, i2)}

≤ π −max{6 X i1 Z X i2 | Z ∈ K ∪ L and Z ∈ H−K (i1, j1, i2)},

where the open half-plane H+K (i1, j1, i2) is bounded by the line X i1 X i2 and it
contains the point Y j1 , H−K (i1, j1, i2) is the opposite open half-plane, or

ω
i1
j1 j2 =max{ 6 Y j1 ZY j2 | Z ∈ K ∪ L and Z ∈ H+L ( j1, i1, j2)}

≤ π −max{ 6 Y j1 ZY j2 | Z ∈ K ∪ L and Z ∈ H−L ( j1, i1, j2)},

where the open half-plane H+L ( j1, i1, j2) is bounded by the line Y j1Y j2 and it contains
the point X i1 ; H−L ( j1, i1, j2) is the opposite open half-plane.

Corollary 17. Consider the hypergraph representation of an equidistant polygon
satisfying (C1) and (C2). The centers of the circles determined by monochromatic
edges of types {X i1, X i2, X i3} and {Y j1, Y j2, Y j3} are interior and exterior points
of the equidistant polygon, respectively. The centers of the circles determined by
colored edges are the vertices of the equidistant polygon.

Proof. If {X i1, X i2, X i3} is a monochromatic edge then there are no focal points in
the interior of the circle determined by X i1 , X i2 and X i3 . The existence of such a
circle is due to (C1). Let ri1i2i3 and X i1i2i3 be the radius and the center of the circle,
respectively. We have

d(X i1i2i3, K )= ri1i2i3 <min{d(X i1i2i3, Y1), . . . , d(X i1i2i3, Yq)} = d(X i1i2i3, L),

where the strict inequality is due to (C2). Therefore X i1i2i3 is in the interior of
{K ≤ L}. The argument is similar in the case of a monochromatic edge {Y j1, Y j2, Y j3}.
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X1

X2

Y1
Y2

Y3

Figure 4. The bigraph of the pentagon: the proof of Lemma 18.

Taking a colored edge {X i1, Y j1, X i2}, let ri1 j1i2 and Vi1 j1i2 be the radius and the
center of the circle determined by the points of the triplet, respectively. The existence
of such a circle is due to (C1). We have

d(Vi1 j1i2, K )= ri1 j1i2 = d(Vi1 j1i2, Y j1)= d(Vi1 j1i2, L).

This means that Vi1 j1i2 is an equidistant point of K and L . The perpendicular
bisectors of the chords X i1Y j1 and X i2Y j1 intersect each other at Vi1 j1i2 . According
to (C2) there are no equidistant points in a sufficiently small open neighborhood of
Vi1 j1i2 except the points of the perpendicular bisectors. They determine a concave
angle because X i1 and X i2 are automatically in the interior of {K ≤ L}. The
argument is similar in case of a colored edge {Y j1, X i1, Y j2}. �

The colored edge {X i1, Y j1, X i2} represents a single inner change in the sense
that the vertex (the center of the circle determined by the elements of the triplet)
is due to the change of the inner focal points (the outer focal point is the same).
The circle is passing through exactly two of the inner and exactly one of the outer
focal points (concave angles). The colored edge {Y j1, X i1, Y j2} represents a single
outer change in the sense that the vertex (the center of the circle determined by
the elements of the triplet) is due to the change of the outer focal points (the inner
focal point is the same). The circle is passing through exactly two of the outer and
exactly one of the inner focal points (convex angles). Condition (C2) does not allow
“double changes” in the sense that the vertex is due to the simultaneous change
of the outer and the inner focal points. Such a kind of change will appear among
the cases of the special arrangements of the focal points: Figure 8 shows a double
change at V1, single outer changes at V2 and V4, a single inner change at V3.
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Lemma 18. An equidistant polygon of type (q, p) has at most p+ q vertices.

Proof. Using a continuity argument it follows that decreasing the number of vertices
is impossible by a slight modification of the position of the focal points (increasing
the number of vertices is possible; see footnote 2). Therefore we can suppose that
(C1) and (C2) are satisfied. Taking the hypergraph representation suppose that it
is minimal in the sense that only the focal points belonging to colored edges are
considered. This means that we have a finite chain of circles such that the centers
form the vertices of the equidistant polygon in a given direction. The adjacent
vertices correspond to adjacent circles having a common chord with endpoints
X im ∈ K and Y jm ∈ L . Let us choose a starting vertex/circle. The following
algorithm generates a bigraph (see Figure 4) with edges

(i) e1 := X i1Y j1 ,

(ii) if em := X im Y jm and (X im , Y jm , Z) determines the adjacent circle with respect
to the given direction then

em+1 =

{
X im Z if Z ∈ L ,
Y jm Z if Z ∈ K .

There is a one-to-one correspondence between the edges and the circles. Therefore
the number of the edges equals to the number of the circles (the number of the
vertices of the equidistant polygon). On the other hand, exactly one new element in
K ∪ L appears in each step. This means that the number of the circles (the number
of the vertices of the equidistant polygon) is less than or equal to p+ q as was to
be proved. �

Remark 19. We can improve the estimation in the case of p = 1 as follows: the
number of vertices satisfies

|(q, p)| =
{

q if p = 1,
p+ q otherwise

provided that the hypergraph representation is minimal. Indeed, each point in the
minimal representation K ∪ L appears in the matching process (i) and (ii) and each
pair in the matching corresponds to a consecutive circle. The edges e1, . . . , em , . . .
of the bigraph are orthogonal segments to the edges of the equidistant polygon.

4. Equidistant polygons of type (3, 2) in the plane: the generic case

Suppose that we have an equidistant polygon of type (3, 2) satisfying (C1) and (C2),
K = {X1, X2} and L = {Y1, Y2, Y3}. Using Lemma 18 the maximal number of the
vertices is 5 and it can be attained as we shall see. Let ωi

12, ωi
23 and ωi

31 be the
viewing angles under which the segments Y1Y2, Y2Y3 and Y3Y1 are visible from the
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V1

V2

V3V4

V5

X1

X2

Y1
Y2

Y3

Figure 5. An equidistant polygon of type (3, 2): the generic case.

inner focal point X i (i = 1, 2). It is clear that

ωi
31 = 360◦−ωi

12−ω
i
23 (i = 1, 2). (4)

We also introduce the viewing angle δ j
:= δ

j
12 under which the segment X1 X2 is

visible from Yj ( j = 1, 2, 3). According to condition (C2) we can suppose that

ω1
12 > ω

2
12, ω1

23 < ω
2
23, ω1

31 > ω
2
31 (5)

because ω1
23 >ω

2
23 implies that ω1

31 <ω
2
31 and the ordering (5) follows by changing

the roles of Y1 and Y2. This means that {Y1, X1, Y2}, {Y2, X2, Y3} and {Y3, X1, Y1}

are colored edges in the hypergraph representation. They correspond to the convex
angles of the equidistant polygon at V1, V3 and V5 (Figure 5). What about the
viewing angles δ1, δ2 and δ3? Since condition (C1) is satisfied, the line X1 X2

strictly separates two focal points from the third one, say Y3. Using condition (C2)
we can suppose that δ1 < δ2 and, consequently, the centers of the circles (colored
edges) {X1, Y2, X2} and {X1, Y3, X2} are vertices of the equidistant polygon at
which concave angles appear. Therefore we have a pentagon with exactly two
concave angles at V2 and V4 (Figure 5). The focal points X1 and X2 are obviously
symmetric about the line V2V4.

Lemma 20. Consider a simple pentagon P with exactly two concave angles and
let the vertices be labeled by A, B, C , D and E in the counterclockwise direction
such that the concave angles are at B and D. If the auxiliary lines fB and fD are
defined by

ρ fB = ρB A ◦ ρBC ◦ ρBD, ρ fD = ρDE ◦ ρDC ◦ ρDB,
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A

B

C

D
E

fBfD

gD gB

Figure 6. The proof of Lemma 20: pseudo inner focal points.

where ρB A, ρBC , . . . denote the reflections about the lines determined by the in-
dices, then fB and fD intersect each other on the side of the inner diagonal BD
containing A.

Proof. First of all note that fB and fD are well-defined due to the three reflections
theorem for concurrent lines. The theorem states that the composition of reflections
about three concurrent lines is a reflection about a line passing through the common
point. Figure 6 shows that the angle between the lines fB and BD on the side of
the inner diagonal BD containing A is just 6 B−π , where 6 B is the concave angle
of the polygon at B. In a similar way, 6 D−π is the angle enclosed by fD and DB
on the side of DB containing A. Since

6 A+ 6 B+ 6 C + 6 D+ 6 E = 3π,

it follows that

(6 B−π)+ (6 D−π)= π − (6 A+ 6 C + 6 E) < π

and the intersection point of fB and fD exists on the side of the inner diagonal BD
containing A. �

Corollary 21. Consider a simple pentagon P with exactly two concave angles and
let the vertices be labeled by A, B, C , D and E in the counterclockwise direction
such that the concave angles are at B and D. If the auxiliary lines gB and gD are
defined by

ρgB = ρBC ◦ ρB A ◦ ρBD, ρgD = ρDC ◦ ρDE ◦ ρDB,
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A
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X1

X2

Y1

Y2 Y3

Figure 7. The proof of Theorem 3.

where ρBC , ρB A, . . . denote the reflections about the lines determined by the in-
dices, then gB and gE intersect each other on the side of the inner diagonal BD
containing C.

Proof. Note that fB and gB (or fD and gD) are symmetric about the line BD
because (for example) for any G ∈ gB

ρBD(G)= ρBD ◦ ρgB (G)= ρBD ◦ ρBC ◦ ρB A ◦ ρBD(G)

= ρ−1
fB
◦ ρBD(G)= ρ fB ◦ ρBD(G);

i.e., ρBD(G) ∈ fB and vice versa. �

Definition 22. Let P be a simple pentagon with exactly two concave angles such
that the vertices are labeled by A, B, C , D and E in the counterclockwise direction
and the concave angles are at B and D. The intersection points fB∩ fD and gB∩gD

are called the pseudo inner focal points of P.

Theorem 23. A simple pentagon is an equidistant polygon of type (3, 2) if and only
if it has exactly two concave angles such that the vertices at which the concave
angles appear are joined by an inner diagonal of the polygon and the pseudo inner
focal points are in its interior.

Proof. Suppose that P is a simple pentagon satisfying the conditions of the statement.
Using the notation in Figure 6

X1 := fB ∩ fD, X2 = gB ∩ gD;

they are symmetric about the line BD (see the proof of Corollary 21). The outer
focal points are

Y1 = ρAE(X1), Y2 = ρAB(X1)= ρBC(X2), Y3 = ρCD(X2)= ρDE(X1);

see Figure 7. �
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V1

V2

V3

V4

Y1 Y2

Y3

X1 X2

Figure 8. The case of concircular points.

5. Equidistant polygons of type (3, 2) in the plane: special arrangements of
the focal points

5.1. The case of concircular points. In this case we have points in K ∪ L , say X1,
Y1, X2 and Y2 lying on the same circle. In particular, ω1

12 = ω
2
12. Since the interior

of the convex hull of L contains the points in K, all the focal points cannot be on the
same circle. Without loss of generality we can suppose (by renumbering the inner
focal points if necessary) that ω1

23 < ω
2
23, as Figure 8 shows. Therefore ω1

31 > ω
2
31

and there are convex angles at V2 and V4. Another convex angle is at the vertex V1

due to the simultaneous change of the outer and the inner focal points. Since X1,
Y1, X2 and Y2 are lying on the same circle, the viewing angles δ1 and δ2 are equal
to each other and the secant line X1 X2 strictly separates Y1 and Y2 from Y3. This
means that the center V3 of the circle passing through the points X1, X2 and Y3 is a
vertex of the equidistant polygon at which a concave angle appears.

Theorem 24. A simple concave quadrangle is an equidistant polygon of type (3, 2).

Proof. Let the vertices of a simple concave quadrangle in the plane be labeled by A,
B, C and D in the counterclockwise direction and suppose that the concave angle
is at the vertex C . Let us introduce the auxiliary line f passing through the vertex
C such that

ρ f = ρCD ◦ ρCB ◦ ρCA,

where ρCD , ρCB , . . . denote the reflections about the lines determined by the indices.
It is well-defined due to the three reflections theorem for concurrent lines. Since
f passes through the vertex of the concave angle, it must contain points such that
they are in the interior of the polygon together with their reflected pairs about the
inner diagonal line (see Figure 9). Taking such a point X1 we define

X2 := ρCA(X1).
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A

B

CD

X1 X2

Y1 Y2

Y3

f

Figure 9. A simple concave quadrangle as an equidistant polygon
of type (3, 2): Theorem 24.

According to the construction, ρCD(X1)= ρCB(X2)= Y3. Finally we complete the
set of the outer focal points by ρAD(X1)= Y1 and ρAB(X2)= Y2. �

In the proof of the previous theorem we can also consider the auxiliary line g
determined by

ρg = ρCB ◦ ρCD ◦ ρCA

instead of f . The lines g and f are symmetric about the inner diagonal line AC
because for any G ∈ g

ρCA(G)= ρCA ◦ ρg(G)= ρCA ◦ ρCB ◦ ρCD ◦ ρCA(G)

= ρ−1
f ◦ ρCA(G)= ρ f ◦ ρCA(G);

i.e., ρCA(G) ∈ f and vice versa. Since the inner focal points must be chosen
symmetrically about the inner diagonal line, the role of these lines is also symmetric
in the argumentation. Indeed, X1 X2 is a common chord of the circles around V1

and V3 (Figure 8).

Corollary 25. Any simple quadrangle is an equidistant polygon.

Proof. Recall that convex quadrangles are equidistant polygons of type (4, 1); see
[Vincze 2017]. Otherwise we can refer to Theorem 24. �

5.2. The case of collinear points. Suppose that one of the outer focal points, say Y1,
is collinear with X1 and X2. Since the inner focal points must be in the interior
of the convex hull of the outer focal points, Y2 and Y3 must be strictly separated
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by the line X1 X2 and, consequently, the centers of the circles {X1, X2, Y2} and
{X1, X2, Y3} are vertices of the equidistant polygon at which concave angles appear.
It is the same situation as in the generic case.

5.3. Summary. We have proved that an equidistant polygon of type (3, 2) in the
plane belongs to one of the following classes:

• Simple concave quadrangles (four concircular focal points, the focal sets form
one-parameter families as the point X1 is moving along the auxiliary line f ).

• Simple pentagons with exactly two concave angles such that the vertices at which
the concave angles appear are joined by an inner diagonal and the pseudo inner
focal points are in the interior of the pentagon. The pseudo inner focal points are
constructed by the intersections of the lines substituting the adjacent sides and
the inner diagonal at the vertices at which the concave angles appear via the three
reflections theorem for concurrent lines (the focal sets are uniquely determined).
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