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We introduce three new fractional Gompertz difference equations using the
Riemann–Liouville discrete fractional calculus. These three models are based a
nonfractional Gompertz difference equation, and they differ depending on whether
a fractional operator replaces the difference operator, the integral operator defining
the logarithm, or both simultaneously. An explicit solution to one of them is
achieved with restricted parameters and recurrence relation solutions are derived
for all three. Finally, we fit these models to data to compare them with a previously
published discrete fractional Gompertz model and the continuous model.

1. Introduction

The Gompertz function dates back to the study of human mortality conducted
by Benjamin Gompertz [1825]. Since then, it has been used in numerous ways,
particularly as a population growth model; e.g., see [Alves et al. 2019; Easton 1999;
Jane et al. 2020; Laird 1964; Pezzini et al. 2019; Winsor 1932]. The Gompertz
differential equation is

y′ =−r y ln
(

y
K

)
,

which has closed-form general solution as the iterated exponential y(t)= K eCe−r t
.

In contrast to the continuous Gompertz model, we are concerned with a discrete
theory. The fundamental operator of the “forward” difference calculus is the
1 operator that obeys1 f (t)= f (t+1)− f (t). An enormous amount of research in
discrete analogues to the theory of differential equations has been conducted for these
operators, and there are many well-known popular introductions to it such as [Bohner
and Peterson 2001; Elaydi 2005; Kelley and Peterson 2010]. There are numerous
difference equations that have been called a “Gompertz difference equation” in the
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literature, such as in [Akın et al. 2020; Nobile et al. 1982; Satoh 2000]. We now
consider the 1-Gompertz model from [Bohner 2005, (12)], defined by

1y = (	r)(a+ L̃ y)y, y(t0)= y0, (1)

where r and a are constants and

L̃ y(t, t0)=
t−1∑
k=t0

y(k+ 1)− y(k)
y(k)

(2)

is the1-logarithm, originally defined in [Bohner 2005, (3)]. The model (1) originally
used time-dependent r and a, but we will not consider that generality here.

We will generalize (1) to a model using fractional sum and difference operators.
Fractional differential calculus dates back to the early days of the theory of calculus
[Ross 1975]. The fundamental idea of fractional calculus is the extension of
derivatives and integrals to noninteger order. The fractional discrete calculus
dates back to [Kuttner 1957], with an explosion of interest in more recent times
[Abdeljawad 2011; Atici and Eloe 2009; Dzieliński et al. 2010; Ferreira 2013;
Miller and Ross 1989; Wu et al. 2015]; see in particular the recent monograph
[Goodrich and Peterson 2015]. An analogue of the Gompertz differential equation
using fractional differential operators has also been developed and studied [Solís-
Pérez et al. 2019; Frunzo et al. 2019]. Fractional Gompertz difference equations
are not a new idea; for example, see [Wang et al. 2014; Bolton et al. 2015; Atıcı
and Şengül 2010], which use various fractional difference operators. We will take
one model from the literature for comparison to the models we will propose: Atıcı
et al. defined a fractional 1-difference equation in [Atıcı et al. 2017, (3)] by

(c− b log y(t))y(t)=
{
1ν yσ (t − ν), ν ∈ (0, 1.5) \ {1},
1y(t), ν = 1,

(3)

where 1ν denotes the discrete Riemann–Liouville 1-fractional difference operator.
We emphasize that (3) uses the classical logarithm and not a logarithm resembling (2).
This is the fundamental change we have made by choosing (1) as the basis for
our models. The equation (3) has the following form, convenient for numerical
computation [Atıcı et al. 2017, p. 323]:

y(t + 1)

=

{
(c− b log(y(t)))y(t)−

∑t−1
s=0

0(t−ν−s)
0(t−s+1)0(−ν) y(s+ 1), ν ∈ (0, 1.5) \ {1},

(c+ 1− b log(y(t)))y(t), ν = 1.
(4)

The recurrence (4) was used to fit the model (3) to data collected on mice tumors.
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2. Preliminaries and definitions

For a, b ∈ R with a− b a positive integer, we define as in [Goodrich and Peterson
2015, p. 1], henceforth abbreviated [GP15], the sets

Na := {a, a+ 1, a+ 2, a+ 3, . . . }, Nb
a := {a, a+ 1, a+ 2, a+ 3, . . . , b}.

Throughout, we use the usual convention for empty products that
∏b

j=a f ( j)= 1
and for empty sums

∑b
j=a f ( j)= 0 whenever b< a. The backwards jump operator

ρ :Na→Na−1 is given by [GP15, p. 150], where ρ(t)= t−1 for t > 0 and ρ(0)= 0.
The backwards difference operator is [GP15, p. 150] ∇ y(t) = y(t)− y(ρ(t)). If
f : Na+1 → R, a ∈ Na , and b ∈ Na+1, then the discrete ∇-integral of f is the
summation defined by ∫ b

a
f (t)∇t =

b∑
t=a+1

f (t)

[GP15, Definition 3.31].
The gamma function 0 : (0,∞)→ [1,∞) is defined by

0(t)=
∫
∞

0
x t−1e−x dx

[Artin 1964, (2.1)]. Integration by parts shows that the functional equation

0(t + 1)= t0(t)

holds [Artin 1964, (2.2)], which extends the domain of 0 to R\{0,−1,−2, . . . }.
For r ∈ Z+ and t ∈ N0, the rising factorial function is

t r̄
=
0(t + r)
0(t)

[GP15, Definition 3.3]. The gamma function is primarily used here to define the
∇-Taylor monomials, Hµ, which are defined for µ 6= −1,−2,−3, . . . and t ∈Na

by [GP15, Definition 3.56],

Hµ(t, a)=
(t − a)µ̄

0(µ+ 1)
=

0(t − a+µ)
0(µ+ 1)0(t − a)

,

so if µ= 0, then we observe H0(t, a)= 1. In particular, we observe the following
useful identity that we will occasionally use:

Hµ(t, t − 1)=
0(t − (t − 1)+µ)

0(µ+ 1)0(t − (t − 1))
=

0(µ+ 1)
0(µ+ 1)0(1)

= 1.

Given p : Na→ R such that 1− p(t) 6= 0 for all t , we define the � operator by

(�p)(t)=
−p(t)

1− p(t)
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[GP15, (3.10)]. In particular, if p(t)= r is a constant function, then

(�r)(t)=
−r

1− r

is also a constant function. For p :Na+1→R obeying 1−p(t) 6=0, the∇-exponential
function E p is given by [GP15, (3.7)]

E p(t, s)=
{∏t

τ=s+1 1/(1− p(τ )), t ∈ Ns,∏s
τ=t+1[1− p(τ )], t ∈ Ns−1

a .
(5)

The following result confirms that the ∇-exponential solves a first-order difference
equation.

Theorem 1 [GP15, Theorem 3.6]. Assume p : Na+1→ R such that 1− p(t) 6= 0,
and let t ∈ Na+1. The ∇-exponential y(t)= E p(t, s) is the unique solution of the
initial value problem

∇ y(t)= p(t)y(t), y(s)= 1.

If f : Na+1→ R, ν > 0, and t ∈ Na , then the ν-th order ∇-fractional sum of f
at t is defined by [GP15, Definition 3.58]

∇
−ν
a f (t)=

∫ t

a
Hν−1(t, ρ(s)) f (s)∇s,

where we let ∇−0
a f (t) = f (t). Let f : Na → R, ν > 0, t ∈ Na+1, and N ∈ N1,

where N − 1< ν ≤ N. The ν-th order ∇-fractional difference of f at t is similarly
defined by [GP15, (3.32)]

∇
ν
a f (t)=

∫ t

a
H−ν−1(t, ρ(s)) f (s)∇s. (6)

From the definition, it is easy to see that ∇νa f (a+ 1)= f (a+ 1). The following
result shows how fractional differences and summations compose.

Theorem 2 [GP15, Theorem 3.109]. If f : Na→ R and ν, µ > 0, then

∇
ν
a∇
−µ
a f (t)=∇ν−µa f (t).

The fractional difference operator subtracts from the order of the ∇-Taylor
monomials as ∇νt0 Hµ(t, t0)= Hµ−ν(t, t0) [GP15, Theorem 3.93(ii)], and so for any
constant C

∇
ν
a C = C∇νa H0(t, a)= C H−ν(t, a).
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In order to solve fractional initial value problems in closed form, the ∇-convolution
is needed. Let f, g : Na+1→ R, and define the ∇-convolution by [GP15, Defini-
tion 3.77]

( f ∗ g)(t)=
∫ t

a
f (t − ρ(τ)+ a)g(τ )∇τ .

The ∇-Mittag-Leffler function, E p,α,β , where |p|< 1, α > 0, β ∈ R, and t ∈ Na ,
is defined by [GP15, Definition 3.98]

E p,α,β(t, a)=
∞∑

k=0

pk Hαk+β(t, a).

The following result is a discrete fractional analogue of the variation of constants
formula for first-order initial value problems.

Theorem 3 [GP15, Theorem 3.104]. If f : Na→ R, |c|< 1, and 0< ν < 1, then
the unique solution of the fractional initial value problem{

∇
ν
ρ(a)x(t)+ cx(t)= f (t), t ∈ Na+1,

x(a)= A, A ∈ R,

is given by

x(t)= [E−c,ν,ν−1( · , ρ(a))∗ f ( · )](t)+[A(c+1)− f (a)]E−c,ν,ν−1(t, ρ(a)). (7)

The recurrence (4) came from applying a 1-analogue [Atıcı and Şengül 2010,
p. 322] of the following lemma to (3).

Lemma 4. If f : Ns+1→ R, then for t ∈ Ns+1

∇
ν
s f (t)= f (t)+

t−1∑
k=s+1

0(t − k− ν) f (k)
0(−ν)0(t − k+ 1)

.

Proof. Calculating directly from the definition,

∇
ν
s f (t)=

∫ t

s
H−ν−1(t, ρ(τ )) f (τ )∇τ =

t∑
k=s+1

H−ν−1(t, ρ(k)) f (k)

= H−ν−1(t, ρ(t)) f (t)+
t−1∑

k=s+1

H−ν−1(t, ρ(k)) f (k)

= f (t)+
t−1∑

k=s+1

0(t − k− ν) f (k)
0(−ν)0(t − k+ 1)

,

completing the proof. �
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We now define the various ∇-logarithms we will use. The natural ∇-analogue of
(2) is

Ly(t, t0)=
∫ t

t0

y∇(τ )
y(τ )

∇τ , t ∈ Nt0+1.

We define the first fractional ∇ν-logarithm Ly,ν by

Ly,ν(t, t0)=
(
∇
−ν
t0

y∇

y

)
(t), t ∈ Nt0+1. (8)

we define the second fractional ∇ν-logarithm `y,ν by

`y,ν(t, t0)=
∫ t

t0

∇
ν
t0 y(τ )

y(τ )
∇τ, t ∈ Nt0+1, (9)

and the third ∇ν-logarithm 3y,ν by

3y,ν(t, t0)=
(
∇
−ν
t0

∇
ν
t0 y

y

)
(t), t ∈ Nt0+1. (10)

3. Three Gompertz fractional ∇-difference equations

The natural ∇-analogue of (1) is

∇ y = (�r)(a+Ly)y, y(t0)= y0, (11)

whose unique solution is easily found using the same method used in [Cuchta and
Streipert 2020]. There are many ways in which a ∇-fractional analogue of (11)
could be defined, depending on which operators in the equation are made fractional.
We will consider three such analogues in this article. In light of (3), we will allow
the order of our fractional derivative to lie in the interval (0, 1.5), where ν = 1
corresponds to the nonfractional ∇ difference. First, we preserve the nonfractional
difference on y from (11), but we use the fractional ∇-logarithm (8) to obtain

∇ y = (�r)y(a+Ly,ν), y(t0)= y0. (12)

If instead the difference on y in (11) is a fractional difference, but the ∇-logarithm
(9) is used, then we obtain

∇
ν
t0 y(t)= (�r)y(a+ `y,ν), y(t0+ 1)= y0. (13)

Finally, if we make the difference on y in (11) a fractional difference and use the
fractional ∇-logarithm (10), then we obtain

∇
ν
t0 y(t)= (�r)y(a+3y,ν), y(t0+ 1)= y0. (14)

Note that all these logarithms reduce to L y as ν→ 1. We now find a closed-form
solution of (12) in terms of the ∇-Mittag-Leffler function.
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Theorem 5. If 0< ν < 1, r < 1
2 , and, for t ∈ Nt0 ,

t∑
k=t0+1

E�r,ν,ν−1(t − k+ 1+ t0, t0)H−ν(k, t0) 6= −1−
1− r

ar
, (15)

then the initial value problem (12) has the unique solution y(t) = y0 E p(t, t0) for
t ∈ Nt0 , where

p(t)= (�r)a+ (�r)
(
E�r,ν,ν−1( · , t0) ∗ aH−ν( · , t0)

)
(t).

Proof. If z(t)= a+Ly,ν(t, t0), then

(∇νt0 z)(t)= aH−ν(t, t0)+
∇ y(t)
y(t)

. (16)

Now compute

a+Ly,ν(t0+ 1, t0)= a+
(
∇
−ν
t0
∇ y
y

)
(t0+ 1)

= a+
∫ t0+1

t0
Hν−1(t0+ 1, ρ(s))

∇ y(s)
y(s)

∇s

= a+ Hν−1(t0+ 1, t0)
∇ y(t0+ 1)
y(t0+ 1)

= a+ 1−
y0

y(t0+ 1)
.

We expand the difference equation (12) at t = t0+ 1 to get

y(t0+ 1)− y0 =−
r

1− r
y(t0+ 1)

(
a+ 1−

y0

y(t0+ 1)

)
,

and hence
y(t0+ 1)=

y0

1+ ra
.

Immediately, we obtain z(t0 + 1) = a + Ly,ν(t0 + 1, t0) = a(1− r). Using the
definition of z, (16), and dividing the difference equation (12) by y, the following
initial value problem for z is derived:

∇
ν
t0 z+ (−�r)z = aH−ν(t, t0), z(t0+ 1)= a(1− r). (17)

Theorem 3 implies that (17) has the unique solution

z(t)= a+
(
E�r,ν,ν−1( · , t0) ∗ aH−ν( · , t0)

)
(t).

Therefore, we have the initial value problem ∇ y = (�r)zy, y(t0)= y0. We need
to ensure that the function h : Nt0 → R given by h(t)= (�r)z(t) obeys h(t) 6= 1.
Expanding out the definition of h reveals

1 6=
(
−r

1− r

)(
a+ ak

t∑
k=t0

E�r,ν,ν−1(t − k+ 1+ t0, t0)H−ν(k, t0)
)
,
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and by algebraic rearrangement, this becomes the condition (15). Thus, we may
appeal to Theorem 1 to complete the proof. �

Theorem 5 provides an impractical solution for numerical computation for a va-
riety of reasons. In particular, the ∇-Mittag-Leffler function requires the evaluation
of an infinite series, the order is restricted to 0< ν < 1, and condition (15) is not
trivial to verify. So, we now derive a recurrence relation for numerical computation
of the solution of (12).

Theorem 6. The initial value problem (12) is algebraically equivalent to the recur-
rence

y(t)= y0

t∏
k=t0+1

1
1− (�r)(a+ z(k))

, t ∈ Nt0,

where

z(t)=−ra− (1− r)
t−1∑

k=t0+1

0(t − k− ν)z(k)
0(−ν)0(t − k+ 1)

, t ∈ Nt0+1. (18)

Proof. If z(t)= Ly,ν(t, t0), then

∇
ν
t0 z(t)=

y∇(t)
y(t)

= (�r)(a+ z(t)).

Apply Lemma 4 to the left-hand side to get

z(t)+
t−1∑

k=t0+1

0(t − k− ν)z(k)
0(−ν)0(t − k+ 1)

= (�r)(a+ z(t)). (19)

We obtain (18) by rearranging (19) and solving for z(t). Substituting z(t) back into
(12), we observe

∇ y(t)= (�r)(a+ z(t))y(t), y(t0)= y0.

By Theorem 1, we have y(t)= y0 E(�r)(a+z(t))(t, t0), and applying (5) completes
the proof. �

Theorem 7. The initial value problem (13) is algebraically equivalent to the fol-
lowing recurrence for t > t0+ 1:

y(t)=
−
∑t−1

k=t0+1 H−ν−1(t,k−1)y(k)

1−r+r
(
a+1+

∑t−1
k=t0+1

1
y(k)

∑k
j=t0+1 H−ν−1(k, j−1)y( j)

) , t ∈Nt0+2.

Proof. Expand the fractional derivative and the logarithm in (13) to obtain∫ t

t0
H−ν−1(t, ρ(s))y(s)∇s = (�r)y(t)

(
a+

∫ t

t0

∇
ν
t0 y(τ )

y(τ )
∇τ

)
.
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Separating the final term of the ∇-integrals and rearranging algebraically yields

y(t)=
((�r)− 1)

∫ t−1
t0

H−ν−1(t, ρ(s))y(s)∇s

1− (�r)
(
a+ 1+

∫ t−1
t0

∇
ν
t0

y(τ )
y(τ ) ∇τ

)
=

((�r)− 1)
∫ t−1

t0
H−ν−1(t, ρ(s))y(s)∇s

1− (�r)
(
a+ 1+

∫ t−1
t0

1
y(τ )

∫ τ
t0

H−ν−1(τ, ρ(s))y(s)∇s ∇τ
) ,

and writing the ∇-integrals as summations, replacing (�r) with −r/(1− r), and
routine algebraic simplification completes the proof. �

Theorem 8. The initial value problem (14) is algebraically equivalent to the recur-
rence

y(t)=
−
∑t−1

k=t0+1 H−ν−1(t,k−1)y(k)

1−r+r
(
a+1+

∑t−1
k=t0+1

Hν−1(t,k−1)
y(k)

∑k
j=t0+1H−ν−1(k, j−1)y( j)

) , t∈Nt0+2.

(20)

Proof. Expand (14) using definitions to get∫ t

t0
H−ν−1(t, ρ(τ ))y(τ )∇τ = (�r)y(t)

(
a+

∫ t

t0
Hν−1(t, ρ(τ ))

∇
ν
t0 y(τ )

y(τ )
∇τ

)
.

Separate the final terms from the ∇-integrals and rearrange algebraically to obtain

y(t)=
((�r)− 1)

∫ t−1
t0

H−ν−1(t, ρ(τ ))y(τ )∇τ

1− (�r)a− (�r)− (�r)
∫ t−1

t0
Hν−1(t, ρ(τ ))

∇
ν
t0

y(τ )
y(τ ) ∇τ

=
((�r)− 1)

∫ t−1
t0

H−ν−1(t, ρ(τ ))y(τ )∇τ

1− (�r)
(
a+ 1+

∫ t−1
t0

Hν−1(t,ρ(τ ))
y(τ )

∫ τ
t0

H−ν−1(τ, ρ(s))y(s)∇s ∇τ
) ,

and writing the ∇-integrals as summations and applying the definition of (�r)
completes the proof. �

4. Curve fitting and comparison of models

We will now present curve fittings of our three models (12), (13), and (14), the
model (3), and the continuous model to data that had previously fit with (continuous)
Gompertz curves. In order to test the fit of our models, we have programmed1 each
model into the Python programming language and used the curve_fit function
from scipy.optimize. According to its documentation, the curve_fit function
ultimately implements the Levenberg–Marquardt algorithm for solving nonlinear
least squares problems. To implement the solutions of our models, we used the

1https://github.com/tomcuchta/cuchtafinchamdiscretefractionalgompertz

https://github.com/tomcuchta/cuchtafinchamdiscretefractionalgompertz
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ν a r y0 RSS SE

(12) 5.58·10−1
−2.38·10−1 2.33·100 1.78·102 8.49·106 2.43·102

(13) 1.13·100
−1.52·100 4.89·10−1 2.07·102 8.61·106 2.44·102

(14) 8.77·10−1
−1.73·100 4.87·10−1 2.08·102 8.60·106 2.44·102

ν c b y0 RSS SE

(3) 5.88·10−1 4.46·100 6.79·10−1 7.45·101 8.61·106 2.44·102

L∞ G t0 RSS SE

ctn 5.85·102 3.81·10−1 1.79·100 8.56·106 2.43·102

Table 1. Results of curve fittings to data from [Hilling et al. 2016b]
and their goodness of fit. The continuous curve was given there by
the three-parameter formula L∞e−e−G(t−t0).

recurrences in Theorems 6, 7, and 8 directly. The initial condition argument t0 was
always chosen so that the data point with smallest independent variable agreed with
the minimum of the domain of the solution. The effect this has is to horizontally
shift the solutions so that they all “begin” at the same value of the independent
variable in a given data set. Because those recurrence relations are self-referential
at every iteration, they are computationally inefficient without optimizing the code
in some way. So, we used the technique of memoization, meaning that we stored
all newly generated values for a solution in a dictionary data structure to reference
when computing the next value of the solution.

We present the parameters found, and as done in [Atıcı et al. 2017], we computed
the residual sum of squared errors (RSS) and the standard error (SE). The RSS is
defined by

RSS=
n∑

i=1

(yi − Y (ti ))2,

where n denotes the number of data points, (ti , yi ) denotes the data points them-
selves, and Y (ti ) denotes the prediction of the fitted model at ti , and SE is given by

SE=

√
RSS
n− k

,

where n denotes the total number of data points and k is the number of parameters
of the model.

The article [Hilling et al. 2016b] concerns the relationship between the age (in
years) and length (in millimeters) of 155 ictalurus punctatus (“channel catfish”)
caught in Cheat Lake in West Virginia. The lengths of the fish were measured, and a
technique to determine their age was performed. Their data set is publicly accessible
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Figure 1. Left: Optimal models for the data from [Hilling et al.
2016b]. Right: Optimal models for the data from [Yang et al. 2019b].
Male (solid curve) and female (dashed curve) tail-length data. The
curve for (12) is difficult to see because it is below the other curves.

male tail-length data
ν a r y0 RSS SE

(12) 8.92 ·10−1
−8.34 ·10−1 9.55 ·10−2 2.94 ·100 2.72 ·104 5.33 ·100

(13) 1.13 ·100
−1.53 ·100 5.79 ·10−2 2.85 ·100 2.72 ·104 5.33 ·100

(14) 8.25 ·10−1
−1.87 ·100 1.39 ·10−1 3.56 ·100 2.72 ·104 5.33 ·100

ν c b y0 RSS SE

(3) 2.30 ·10−2 1.15 ·100 1.02 ·10−1 3.07 ·100 2.72 ·104 5.33 ·100

A B K RSS SE

ctn 1.17 ·101 1.27 ·100 4.52 ·10−2 2.72 ·104 5.33 ·100

female tail-length data
ν a r y0 RSS SE

(12) 8.60 ·10−1
−6.76 ·10−1 1.03 ·10−1 2.89 ·100 1.54 ·104 4.35 ·100

(13) 1.12 ·100
−1.51 ·100 4.62 ·10−2 2.84 ·100 1.54 ·104 4.35 ·100

(14) 7.56 ·10−1
−1.72 ·100 1.82 ·10−1 3.56 ·100 1.54 ·104 4.36 ·100

ν c b y0 RSS SE

(3) 3.58 ·10−2 1.14 ·100 1.23 ·10−1 3.35 ·100 1.54 ·104 4.35 ·100

A B K RSS SE

ctn 1.05 ·101 1.18 ·100 3.95 ·10−2 1.53 ·104 4.35 ·100

Table 2. Results of curve fittings to data from [Yang et al. 2019b]
and their goodness of fit. The continuous curve was given there by
the three-parameter formula Ae−Be−K t

.
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[Hilling et al. 2016a] and contains columns for the age and length (both positive
integers), which we used without modification. Their analysis of the various growth
curves concluded that the von Bertalanffy growth (proportional to 1− e−k(t−t0),
commonly used in length-based methods for fish population estimates [Pauly and
Morgan 1987]) was the model of best fit among those considered. The results of
our work are summarized in Table 1 and visualized in Figure 1, left. We see that
the five models have essentially identical RSS, indicating that they all fit equally
well. The models (12), (14), and (3) have optimal ν parameter between 0.55 and
0.87, while the optimal ν for (13) is larger than 1. The fit of (12) is not monotone,
while the other four models are visually quite similar.

In [Yang et al. 2019b], the logistic, Gompertz, and von Bertalanffy growth curves
were fit to data collected about plestiodon elegans (a type of skink) pertaining to
some of their physical traits — specifically, the tail length of thirteen male and
eleven female individuals were measured once a week for 85 weeks. Their data
set is publicly accessible [Yang et al. 2019a] and contains columns for the animal
identification number, week number (both positive integers), and tail length in cen-
timeters (accurate to two decimal places), which we used without modification. The
study concluded that the continuous Gompertz model was the best fit for both sexes
for tail length data. We have fit the models to male and female tail-length data, and
our results are summarized in Table 2, and visualized in Figure 1, right. We observe
that the RSS and SE are nearly identical for all curve fittings, indicating that the
models fit similarly well. The models (12) and (14) have ν-value between 0.74 and
0.89, (13) always has a ν value larger than 1, and the model (3) always has small ν.

5. Conclusion

We have investigated three new natural fractional analogues of the Gompertz ∇-
difference equation. We have found a closed form solution of one of them in terms
of the ∇-Mittag-Leffler function, but with necessarily restricted parameters. We
derived recurrence relations for all three. We have fit the models to data sets and
compared the fit to the existing fractional Gompertz model by Atıcı et al. It appears
that both of the data sets were fit nearly equally well by all four models according
to RSS and SE, and so using biological considerations or more advanced statistical
techniques would be necessary to decide which model is best. We observed that
the four discrete fractional models under consideration did not perform better than
their continuous counterparts in terms of RSS or SE.

There are numerous directions of future research involving these models. Finding
simple sufficient conditions for the regressivity of the solution of the first new
fractional model is of great interest, not only for the fractional model but also for
the original nonfractional model. Many qualitative properties remain unexplored,
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including analysis of stability and oscillation of their solutions. One interesting
fractional generalization that we did not consider is taking the orders of the fractional
difference and fractional sum in the third new fractional logarithm to be different.
Such a model would gain an extra parameter, and so it may fit better in terms of
RSS and SE. When comparing models with different numbers of parameters, a
more robust statistical analysis should be conducted, e.g., the Akaike information
criterion method.

Our choice of fractional derivative had some consequences that complicated some
aspects of the work. Most importantly, in the proof of Theorem 5, the fractional
derivative of z(t)= a+Ly,ν(t, t0) was computed yielding

(∇νt0 z)(t)= aH−ν(t, t0)+
∇ y(t)
y(t)

.

Since we used the Riemann–Liouville fractional difference, the derivative of the
constant a was not zero, and we consequently had to use a convolution via Theorem 3
to express the closed-form solution of the first new model. This raises the general
question of defining fractional Gompertz equations using the Caputo fractional
differences (and others), where the fractional derivative of a constant is zero. Such
models may be easier to analyze analytically, but may have other unforeseen
downsides.
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[Akın et al. 2020] E. Akın, N. Nesliye Pelen, I. Uğur Tiryaki, and F. Yalcin, “Parameter identification
for Gompertz and logistic dynamic equations”, PLoS ONE 15:4 (2020), art. id. e0230582.

[Alves et al. 2019] W. J. Alves, E. B. Malheiros, N. K. Sakomura, E. P. da Silva, G. da Silva Viana,
C. A. G. M. de Paula Reis, and R. M. Suzuki, “In vivo description of body growth and chemical
components of egg-laying pullets”, Livestock Sci. 220 (2019), 221–229.

[Artin 1964] E. Artin, The gamma function, Holt, Rinehart and Winston, New York, 1964. MR Zbl
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