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An m-pseudo progression is an increasing list of numbers for which there are at
most m distinct differences between consecutive terms. This object generalizes
the notion of an arithmetic progression. We give two counts for the number
of k-term m-pseudo progressions in f1; 2; : : : ; ng. We also provide computer-
generated tables of values which agree with both counts and graphs that display
the growth rates of these functions. Finally, we present a generating function
which counts k-term progressions in f1; 2; : : : ; ng whose differences are all
distinct, and we discuss further directions in Ramsey theory.

1. Introduction and motivation

Arithmetic progressions have been well-studied. Their existence within partitions
of Z is a central theme of Ramsey theory. The existence of long arithmetic progres-
sions within the primes was famously solved by Green and Tao [2008]. Landman
and Robertson [2004] recently asked how the theory changes when instead of
searching for arithmetic progressions, one searches for a specific generalization of
an arithmetic progression, called an m-pseudo progression; in Section 6 we provide
more details on this connection. Motivated by this question, we sought to better
understand m-pseudo progressions by counting them. In this paper we provide two
explicit methods and formulas to count these objects, which we now define.

1A. Defining m-pseudo progressions. A k-term arithmetic progression is a list of
numbers, a1; a2; : : : ; ak , for which there exists some d 2 ZC where aiC1�ai D d

for all i . We now generalize this definition to include progressions with a greater
number of differences between consecutive terms.

Definition 1.1. A (k-term) m-pseudo progression is a list

a1; a2; : : : ; ak
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of increasing integers from ZC for which there exists a set fd1; d2; : : : ; dmg, where
aiC1� ai 2 fd1; d2; : : : ; dmg for all i . If the m is not specified, it is simply called
a progression.

For a given progression and any difference di , we denote by kdik the number of
times di appears as a difference in the progression.

Notice that if mD 1, we get the definition of an arithmetic progression. Further-
more, every m-pseudo progression is an `-pseudo progression for `�m, because
the definition of an `-pseudo progression requires at most ` differences.

Example 1.2. The list 2; 5; 8; 13; 16; 21; 24 is a 7-term 2-pseudo progression since
there are at most two common differences:

5� 2D 3; 16� 13D 3;

8� 5D 3; 21� 16D 5;

13� 8D 5; 24� 21D 3:

Therefore, by letting fd1; d2g D f3; 5g, it is indeed true that aiC1 � ai 2 fd1; d2g

for all i .

In this paper, we provide two methods of counting of how many k-term m-pseudo
progressions there are in f1; 2; : : : ; ng, and we discuss in detail some special cases.

We note that there are other generalizations of arithmetic progressions. Pseudo
progressions are in fact a generalization of what are called generalized arithmetic
progressions, sometimes also called d-dimensional arithmetic progressions or
quasiprogressions, see for example [Chang 2003; Freiman 1999], which are increas-
ing sequences a1;a2; : : : ;ak for which there is some d such that aiC1�ai2f1; : : : ;dg

for all i . These progressions demand that all the differences are “close” to each
other, while a pseudo progression simply restricts the number of such differences.

2. Counting 2-pseudo progressions

2A. Arithmetic progressions. We begin with a discussion of the solved problem
of counting arithmetic progressions, which we first formally provide. It is beneficial
to see this approach, as two of our main theorems generalize the ideas highlighted
in this proof.

Theorem 2.1. There are

F1 D n

�
n

k � 1

�
� .k � 1/

�� n
k�1

˘
C 1

2

�
k-term arithmetic progressions in f1; 2; : : : ; ng.

Proof. Fix a d 2ZC. Notice that if you know that a k-term arithmetic progression has
common difference d , and you know the first element, then you have determined the
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entire progression. The possible arithmetic progressions with a common difference
of d are

1; 1C d; 1C 2d; : : : ; 1C .k � 1/d;

2; 2C d; 2C 2d; : : : ; 2C .k � 1/d;
:::

n� .k � 1/d; n� .k � 1/d C d; n� .k � 1/d C 2d; : : : ; n:

That is, there are n� .k � 1/d such progressions in f1; 2; : : : ; ng.
Notice that the largest possible d is

�
n

k�1

˘
, and as for any integer m >

�
n

k�1

˘
,

the first possible arithmetic progression is

1; 1Cm; 1C 2m; : : : ; 1C .k � 1/m;

making its last element 1C .k � 1/m > n. Adding up the number of progressions
for all possible d and using the combinatorial identity

PL
dD1 d D

�
LC1

2

�
, it follows

that
b n

k�1
cX

dD1

.n� .k � 1/d/D n

�
n

k � 1

�
� .k � 1/

b n
k�1
cX

dD1

d

D n

�
n

k � 1

�
� .k � 1/

�� n
k�1

˘
C 1

2

�
: �

Remark 2.2. There are a few elements of this proof which will be important later.
First, the maximum common difference of a k-term arithmetic progression in
f1; 2; : : : ; ng is

�
n�1
k�1

˘
. Second, the number of k-term arithmetic progressions in

f1; 2; : : : ; ng with common difference d is n � d.k � 1/. Both of these will be
generalized in this paper.

2B. 2-pseudo progressions. In this section, we provide two methods for counting
the number of k-term 2-pseudo progressions in f1; 2; : : : ; ng. First, some notation.

Notation 2.3. Suppose
a1; a2; : : : ; ak

is a k-term 2-pseudo progression. We will use a and b to refer to possible differences
of this progression, that is, aiC1 � ai 2 fa; bg for all i . Recall, we will use kak
to refer to the number of differences of size a and kbk to refer to the number of
differences of size b.

For instance, in Example 1.2 we have aD 3 with kakD 4 and bD 5 with kbkD 2.
We will also wish to refer to different orderings of the differences a and b. For

example, in Example 1.2 the differences are in the order 3; 3; 5; 3; 5; 3. We call this
a difference pattern.
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Definition 2.4. Given an m-pseudo progression

a1; a2; : : : ; ak ;

the list

a2� a1; a3� a2; : : : ; ak � ak�1

is called the progression’s difference pattern.

Lemma 2.5. Fix a set of differences fd1; d2; : : : ; dmg and numbers kd1k, kd2k,
: : : , kdmk. The number of k-term m-pseudo progressions in f1; 2; : : : ; ng with a
fixed difference pattern is independent of the difference pattern chosen.

Proof. Fix a set of differences fd1; d2; : : : ; dmg and their multiplicities kd1k, kd2k,
: : : , kdmk, as given in the lemma. Next, fix two difference patterns D1 and
D2 using the di from this set. Let S be the collection of all k-term m-pseudo
progressions in f1; 2; : : : ; ng with difference pattern D1, and let T be the collection
of all k-term m-pseudo progressions with difference pattern D2. We will show a
bijection between the elements in S and T.

Given an arbitrary s2S , say s starts at p0. Note that there is only one progression
starting at s whose difference pattern matches D1. Let f be the function that
maps s to the progression t 2 T which starts at p0, which is likewise unique
since its difference pattern is again specified. Moreover, both s and t must end
at p0C d1kd1kC d2kd2kC � � � C dmkdmk, so if one is in f1; 2; : : : ; ng, then the
other is too. Because a starting point uniquely determines the progression, f is
invertible and hence a bijection. This shows there are the same number of elements
in S and T, completing the proof. �

Once you have fixed your set of differences and their multiplicities, it will not
be difficult to determine how many difference patterns match those criteria. Thus,
Lemma 2.5 will be beneficial in that it allows one to focus on a special class of
difference patterns, such as ones in which all instances of one of the differences
occur before any instance of the second difference. The following lemma pushes
this further by fixing the multiplicities but relaxing the differences themselves.

Lemma 2.6. Fix some s0; t0 2 f0; 1; 2; : : : g, where s0C t0 D k � 1, and consider
any two lists, L1 and L2, each consisting of s0 copies of the variable a and t0 copies
of the variable b, in some order. Let D1 be the collection of all k-term 2-pseudo
progressions in f1; 2; : : : ; ng whose difference pattern matches L1 (note that a and
b can differ between progressions within D1, provided the order of the differences
matches L1), and let D2 be the collection of all k-term 2-pseudo progressions in
f1; 2; : : : ; ng whose difference pattern matches L2 ( for appropriate substitutions of
a and b). Then, jD1j D jD2j.
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Proof. Consider a k-term 2-pseudo progression P1 from D1, and suppose this
progression starts at i . Then, there exist a and b for which the progression makes
s0 jumps of size a and t0 jumps of size b (in the order matching L1), and the last
term of the progression is, therefore, iCs0aC t0b. Since all the progressions in D2

also have s0 copies of one difference and t0 copies of a second, and the differences
are allowed to be anything, if you simply reorder the differences in P1 to match the
ordering of L2, you get a new 2-pseudo progression P2 which begins at i and ends
at i C s0aC t0b and which is now in D2.

That is, by permuting the order in which you make your jumps of size a and b, you
necessarily get a new progression from the same beginning point to the same ending
point. So if one of these progressions is in f1; 2; : : : ; ng, then the other is too. And
since this procedure is clearly invertible, we have a bijection between D1 and D2. �

2C. Recursive count. We now present our first count of 2-pseudo progressions. By
Lemma 2.6, the number of m-pseudo progressions is independent on the difference
pattern. Therefore, we define a simple difference pattern for which the progressions
will be simpler to count, and then later scale up this count to include all m-pseudo
progressions.

Definition 2.7. Call a 2-pseudo progression s-t-simple if its difference pattern is
of the form

a; a; : : : ; a„ ƒ‚ …
s terms

; b; b; : : : ; b„ ƒ‚ …
t terms

;

where s, t , a and b are positive integers, and let S.n; s; t/ be the number of s-t-
simple 2-pseudo progressions in f1; 2; : : : ; ng.

Note that if aD b, then the 2-pseudo progression is in fact an arithmetic pro-
gression and is s-t-simple whenever sC t D k � 1, where k is the length of the
progression.

To better visualize the general case, suppose we want to create a 4-3-simple
2-pseudo progression that starts at i D 5 2 f1; 2; : : : ; ng and where aD 2 and bD 6.
Since our 2-pseudo progression is of the form a; a; a; a; b; b; b, it looks like:

5 7 9 11 13 19 25 31

i i C sa i C saC tb

Here, i C saD 13 and i C saC tb D 31. It is also important to note that given
any k-term 2-pseudo progression, sC t D k � 1. This is because s and t count the
number of differences between terms, so the total number of those differences will
always be one less than the number of terms in the progression. For instance, in the
example above we have k D 8, s D 4 and t D 3, so we see that 4C 3D 8� 1. In
general, we see that s and t are dependent on k.
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Proposition 2.8. S.n; s; t/D

bn�1�t
s
cX

aD1

n�sa�tX
iD1

�
n� .i C sa/

t

�
:

Proof. Given an s-t -simple 2-pseudo progression, let us assume that the progression
starts at i 2 f1; 2; : : : ; ng. Since the first s common differences are of size a, the
.sC1/-th term of the pseudo progression will be i C sa. After i C sa, the terms in
the 2-pseudo progression have the characteristic that ajC1� aj D b and since the
pseudo progression proceeds with t common differences of size b, the 2-pseudo
progression will end at i C saC tb.

Since s and t are dependent on k, instead of fixing a k we choose to fix s and t ,
and consider the cases for which i , a, and b vary. Without loss of generality, by
using the inequality iCsaC tb � n we can see that b � .n� .iCsa//=t . We know
that b must be a positive integer, and so by using the floor function we have

1� b �

�
n� .i C sa/

t

�
:

Therefore, given any valid selection of a and i , the above gives the possible
values of b. That is,

S.n; s; t/D
X

a

X
i

�
n� .i C sa/

t

�
;

where the sums are over all the valid values of a and of i . Thus, our focus turns
to determining these valid values. We begin with the range of i . We know that
i C saC tb � n, and so we have that i � n� sa� tb. And since i is at its greatest
when b is at its smallest (when b D 1), we have

1� i � n� sa� t:

Finally, for a fixed i , consider the valid values of a. In order to find the greatest
possible value that a can be, note that a is at its greatest when both b is at its
smallest (when b D 1) and the sequence starts at the earliest index (when i D 1).
Thus, by again using the inequality iC saC tb � n we have that a� .n� i � tb/=s.
And in the case that b D 1 and i D 1, we have

1� a�

�
n� 1� t

s

�
:

From this, we obtain our final count,

S.n; s; t/D

bn�1�t
s
cX

aD1

n�sa�tX
iD1

�
n� .i C sa/

t

�
;

which completes the proof. �
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Note, though, that there are many other progressions with s common differences
of size a and t common differences of size b. For example,

a; a; : : : ; a„ ƒ‚ …
s�2 terms

; b; b; : : : ; b„ ƒ‚ …
t�2 terms

; a; b; b; a:

We now count these other forms.

Corollary 2.9. Let F be a list of s copies of a and t copies of b, in some order. Let
D be the collection of difference patterns which, for some substitution of a and
b, match F. Then, the number of 2-pseudo progressions in f1; 2; : : : ; ng with a
difference pattern in D is equal to S.n; s; t/.

Proof. This follows immediately from Lemma 2.6. �

Definition 2.10. Let Fm.n; k/ be the number of m-pseudo progressions. When the
context is clear, we will write simply Fm.

Note that F1.n; k/ is the number of k-term arithmetic progressions in f1;2; : : : ;ng,
which we counted in Section 2A.

Theorem 2.11. Fix n and k. Let a1; a2; : : : ; ak be a 2-pseudo progression where
aiC1 � ai 2 fa; bg for all i . Let s be defined as the number of elements such that
aiC1� ai D a and t be defined as the number of elements such that ajC1� aj D b.
Then,

F2 D F1C
1

2

�
k � 1
k�1

2

�h
S
�
n;

k�1

2
;
k�1

2

�
�F1

i
C

bk�2
2
cX

sD1

�sCt

s

�
ŒS.n; s; t/�F1�:

Proof. Recall that s is the number copies of a and t is the number of copies of b,
while a and b can be any integers. Since one of these integers will occur at least as
many times as the other, we may assume without loss of generality that s � t . First,
assume s < t .

By Proposition 2.8, S.n; s; t/ counts the number of progressions of the form

a; a; : : : ; a„ ƒ‚ …
s terms

; b; b; : : : ; b„ ƒ‚ …
t terms

:

By Corollary 2.9, we know that given any form with s copies of a and t copies of b,
there are S.n; s; t/ progressions of that form. Moreover, one can see that there are�
sCt

s

�
such forms — the sC t terms in the form are each either an a or a b, and

this is determined by choosing which s of these terms are an a. Now, S.n; s; t/

includes all the arithmetic progressions (in the case where aD b). Therefore,

S.n; s; t/�F1
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counts the number of progressions of any fixed form containing s copies of a and
t copies of b, which contains exactly two distinct common differences. There are�sCt

s

�
ŒS.n; s; t/�F1�

2-pseudo progressions, excluding the arithmetic progressions. Note that sCtDk�1,
and so in our current case where s < t (i.e., s � t �1), we know that 2sC1� k�1,
implying that s �

�
k�2

2

˘
. And so, in the case where s < t , the total number of

2-pseudo progressions which are not arithmetic progressions is
bk�2

2
cX

sD1

�sCt

s

�
ŒS.n; s; t/�F1�:

Thus, among all cases in which s < t , the total number of 2-pseudo progressions is

F1C

bk�2
2
cX

sD1

�sCt

s

�
ŒS.n; s; t/�F1�:

The last case to consider is when s D t ; note that this is only possible if k is odd.
And since sC t D k � 1, we have s D t D k�1

2
. Just like above, given any form

using k�1
2

copies of a and k�1
2

copies of b, there are S
�
n; k�1

2
; k�1

2

�
progressions

of this form. And so there are

S
�
n;

k�1

2
;
k�1

2

�
�F1

progressions that have exactly two distinct common differences. The only difference
is in the next step. Note that if we simply multiply by

�
sCt

s

�
, we will be over-counting

by a factor of 2. Indeed, since s D t , any progression comes about in two ways:
once when the copies of a are counted by s and the copies of b are counted by t ,
and once when the copies of a are counted by t and the copies of b are counted
by s. Thus, the count in the s D t case is

1

2

�
k � 1
k�1

2

�h
S
�
n;

k�1

2
;
k�1

2

�
�F1

i
:

Note that the binomial here evaluates to 0 in the event that k is even, and so
including this term in the even case is consistent. This gives us our final answer

F2DF1C
1

2

�
k�1
k�1

2

�h
S
�
n;

k�1

2
;
k�1

2

�
�F1

i
C

bk�2
2
cX

sD1

�sCt

s

�
ŒS.n;s; t/�F1�: �

Since there are F`.n; k/ sequences where you are allowed up to ` differences,
and F`�1.n; k/ sequences where you are allowed up to `� 1 differences, there are

F`.n; k/�F`�1.n; k/

sequences with exactly ` differences.
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If we let zF`.n; k/ denote the number of `-pseudo progressions with exactly
` distinct differences, and let zS.n; s; t/ likewise denote the number of s-t-simple
progressions with exactly two differences, then zS.n; s; t/D S.n; s; t/�F1.n; k/

and Theorem 2.11 has the reduced form

zF2.n; k/D
1

2

�
k � 1
k�1

2

�
zS
�
n;

k�1

2
;
k�1

2

�
C

bk�2
2
cX

sD1

�sCt

s

�
zS.n; s; t/:

Moreover, the above two equations imply

F2.n; k/�F1.n; k/D
1

2

�
k � 1
k�1

2

�
zS
�
n;

k�1

2
;
k�1

2

�
C

bk�2
2
cX

sD1

�sCt

s

�
zS.n; s; t/;

which is another form of Theorem 2.11.

2D. Iterative count. As in the previous sections, we use a and b to denote the two
differences in a 2-pseudo progression. In this section, we will insist that a < b,
which in particular prohibits a D b. We will often refer to a k-term 2-pseudo
progression in f1; 2; : : : ; ng as just a “progression” if the context is clear.

Remark 2.12. Recall, for a k-term 2-pseudo progression,

kakCkbk D k � 1:

That is, the total number of differences of sizes a and b is equal to the total number
of differences in the progression, k � 1. If we are considering k-term progressions,
then we only need to know either kak or kbk and the other will follow.

First, given a fixed number of two differences, we determine the maximum value
these differences can be.

Lemma 2.13. For a k-term 2-pseudo progression with a fixed number of differences,
say kak and kbk (without the sizes of the differences a and b being determined), the
largest possible value for a is

amax D

�
.n� 1/�kbk

k � 1

�
:

Proof. We begin by noting that similar to Remark 2.2, the maximum possible
difference between the first and last terms of a 2-pseudo progression is n�1. Since
we are assuming a < b, if we want to find the largest possible value for a, we can
assume aD b�1. Thus, we must distribute the difference of n�1 into k�1 groups
(kak groups of size a, and kbk groups of size aC 1). To do this, we subtract kbk
from n� 1 in order to account for the kbk groups of one larger value than a. The
maximum possible value for the difference a is the result in the lemma. �
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Similarly, with a fixed difference of size a and number of differences, say kak
and kbk, we can determine the maximum value of the difference b in a k-term
2-pseudo progression in f1; 2; : : : ; ng.

Lemma 2.14. Suppose a k-term 2-pseudo progression has difference a and some
number of differences, say kak and kbk. Then, the maximum possible value for b is

Nba D

(
0; kbk D 0;� .n�1/�akak

kbk

˘
; kbk ¤ 0:

Proof. Similar to our argument in Lemma 2.13, the largest possible value between
the first and final terms of a progression in f1; 2; : : : ; ng is n�1. Thus, to determine
the maximum possible b that can create a progression, we must divide n� 1 into
k�1 groups (kak groups of size a and kbk groups of size b). In order to account for
the kak differences of size a, we must subtract off the product akak and divide the
remaining .n� 1/� akak into kbk groups. Thus, we have our resulting maximum
above. The equality is also guaranteed, since a 2-pseudo progression with these
metrics which begins at 1 will end at 1C akakC Nbakbk � n. �

Proposition 2.15. Given a fixed a, b, kak and kbk, the number of k-term 2-pseudo
progressions in a set f1; 2; : : : ; ng with a fixed difference pattern is

n� akak� bkbk:

Proof. Fix the integers n, k, a, b, kak and kbk, and a difference pattern. Similar
to the argument in the proof of Theorem 2.1, we proceed by first considering a
progression with initial term 1. Since our differences are of size a and b and there
are kak a’s and kbk b’s, we have that the final term in the progression will be
1CakakCbkbk. In general, if a progression with these parameters has initial term
p0, then the final term will be p0C akakC bkbk. Such a progression is valid in
f1; 2; : : : ; ng if this final term p0C akakC bkbk � n. Such will be the case when

p0 � n� akak� bkbk:

Thus, the total number of valid 2-pseudo progressions with these parameters is
equal to the largest p0 such that the above inequality is true. And so the result of
the proposition follows. �

Proposition 2.16. The total number of k-term 2-pseudo progressions in f1;2; : : : ;ng

can be counted using the formula

F1C

k�1X
kakD1

amaxX
aD1

NbaX
bDaC1

h�k�1

kak

�
.n� akak� bkbk/

i
:
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Proof. A formula for F1 is given in Theorem 2.1, and it counts the number
of arithmetic progressions in f1; 2; : : : ; ng; we now turn to count the number of
2-pseudo progressions which contain two distinct differences.

As a consequence of Proposition 2.15, the total number of k-term 2-pseudo
progressions in f1; 2; : : : ; ng with a given difference pattern and fixed values of
a; b; kak; kbk 2 ZC is given by n�akak�bkbk. Furthermore, by Lemma 2.5, this
value does not depend on the difference pattern chosen. Thus, given fixed a, b,
and kak (which implies the value of kbk), we count the total number of progressions
with these parameters by scaling the count in Proposition 2.15 by the total number
of difference patterns that could occur with kak a’s and kbk b’s. In particular,
there are

�
k�1
kak

�
such ways, by choosing which of the total k � 1 skips to place the

kak skips of size a.
Now we must determine all possible values of a and b that are possible. We

assume 0 < a < b, so we have aD 1 being the smallest possible value for a. Thus,
b D aC 1 is the smallest possible value for b given a value for a. This gives us the
bounds for the inner two sums.

Finally, we iterate this process through all possible positive values of kak and kbk,
by summing up all valid progressions for each value of kak, with 1� kak � k � 1.
Since kakCkbk D k � 1, iterating through all possible values of kak will indeed
iterate all valid positive pairs of kak and kbk. �

3. Counting m-pseudo progressions

We now generalize Lemma 2.6, which will be used to generalize Corollary 2.9

Lemma 3.1. Fix some d0; d1; : : : ; dm 2 f0; 1; 2; : : : g, where
Pm

iD1 di D k�1, and
consider any two lists, L1 and L2, each consisting of kdik copies of the variable
di for each i , in some order. Let D1 be the collection of all k-term m-pseudo
progressions in f1; 2; : : : ; ng whose difference pattern matches L1 ( for appropriate
substitutions of d1; d2; : : : ; dm), and let D2 be the collection of all k-term m-pseudo
progressions in f1; 2; : : : ; ng whose difference pattern matches L2 ( for appropriate
substitutions of d1; d2; : : : ; dm). Then, jD1j D jD2j.

Proof. We will show a bijective correspondence between k-term m-pseudo progres-
sions with the same number of differences kdik for all i , regardless of the ordering
of the differences. Let S and T be the set of m-pseudo progressions with distinct
difference patterns containing differences d1; d2; : : : ; dm such that the number of
differences kdik is the same in each difference pattern for all i .

Given an arbitrary s 2S , if s starts at, say, p0, then it will end at p0Cd1kd1kC

d2kd2k C � � � C dmkdmk. Let f be the function that maps s to the m-pseudo
progression t 2T starting at p0. Note that this is well-defined, as pairing the starting
term of an m-pseudo progression with that progression’s difference pattern uniquely
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determines the progression. Any t 2 T is the image of the m-pseudo progression
in S starting at the initial term of t . Therefore, the number of progressions with
a fixed difference pattern is independent of the ordering of the differences in the
difference pattern. �

3A. Recursive count. In this section we generalize the ideas of Section 2C to
count k-term m-pseudo progressions in f1; 2; : : : ; ng.

Definition 3.2. A progression is .s1; s2; : : : ; sm/-simple if it is of the form

a1; a1; : : : ; a1„ ƒ‚ …
s1 terms

; a2; a2; : : : ; a2„ ƒ‚ …
s2 terms

; : : : ; am; am; : : : ; am„ ƒ‚ …
sm terms

;

where si ; aj 2ZC for all i; j . Let S.n; s1; : : : ; sm/ be the number of .s1; s2; : : : ; sm/-
simple progressions in f1; 2; : : : ; ng.

By the same reasoning as in Section 2C, there is a bijection between the set of
progressions of this form and the set of progressions of any permuted form, and
there are

�
k�1

s1���sm

�
such permuted forms. And

S.n; s1; : : : ; smC1/D

nX
iD1

�
i

smC1

�
S.n� i; s1; : : : ; sm/;

since an .s1; s2; : : : ; smC1/-simple progression in f1;2; : : : ;ng is an .s1; s2; : : : ; sm/-
simple progression in Œn � i �, for some i , followed immediately by smC1 more
terms. And within the remaining i numbers, starting with the first, there are

�
i

smC1

˘
possible common differences that will keep the entire .s1; s2; : : : ; smC1/-simple
progression in f1; 2; : : : ; ng.

So in this way we have recursively found the number of .s1; s2; : : : ; sm/-simple
progressions for an arbitrary m. And so

S.n; s1; : : : ; smC1/�Fm.n/

counts the number of .s1; s2; : : : ; sm/-simple progressions with exactly m C 1

distinct common differences. And if s1 < s2 < � � �< smC1, then by Lemma 3.1,� k�1

s1 � � � smC1

�
ŒS.n; s1; : : : ; smC1/�Fm.n/�

counts the number of all progressions which are of a form which is a permutation
of the .s1; s2; : : : ; sm/-simple form.

Otherwise, if we only assume s1� s2� � � � � smC1, then just like with 2-pseudo
progressions, we may overcount. Indeed, if in the multiset fs1;s2; : : : ;smC1g we
have, say, 7 appearing 3 times (say, s3 D s4 D s5 D 7), then this alone causes
the above expression to overcount by a factor of 3!D 6 (just like in the 2-pseudo
progressions, when sD t implied that we overcounted by a factor of 2!D 2). To see
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this, note that each such progression will have been counted once when the copies
of a3 were counted by s3, the copies of a4 were counted by s4, and the copies of
a5 were counted by s5; but will also have been counted once for each of the other
3! pairings between these ai’s and sj ’s. This reasoning gives the answer of

1

n1! n2! � � � n`!

� k�1

s1 : : : smC1

�
ŒS.n; s1; : : : ; smC1/�Fm.n/�;

where ni is the multiplicity of the i-th distinct number in s1; s2; : : : ; smC1, and
therefore ` is the size of fs1; s2; : : : ; smC1g as a set (i.e., removing multiplicities).
Note that our answer in the 2-pseudo progression case is a special case of this.
Adding up all the possibilities, and adding back in the progressions with at most
m distinct common differences, gives you the final count

FmC1.n; k/D

Fm.n/C
X

s1�����smC1

1

n1! n2! � � � n`!

� k�1

s1 : : : smC1

�
ŒS.n; s1; : : : ; smC1/�Fm.n/�:

This also gives a particularly nice formula for zFmC1.n; k/, which you recall is
the number of k-term progressions in f1; 2; : : : ; ng with exactly mC 1 common
differences. The above reduces to

zFmC1.n; k/D
X

s1�����smC1

1

n1! n2! � � � n`!

� k�1

s1 � � � smC1

�
zS.n; s1; : : : ; smC1/:

3B. Iterative count. In this section we generalize the ideas of Section 2D to count
k-term m-pseudo progressions in f1; 2; : : : ; ng.

Remark 3.3. As before, the differences in an m-pseudo progression will be denoted
by di for 1� i �m. In this section, we assume

0 < d1 < d2 < � � �< dm:

Proposition 3.4. For any i such that 0 < i � m, and fixed list of positive inte-
gers kd1k; kd2k; : : : ; kdmk such that

Pm
jD1 kdjk D k � 1, and fixed multiplicities

0 < d1 < d2 < � � � < di�1, the maximum value of the difference di of a k-term
m-pseudo progression with m distinct differences is

Ndi D

�
.n� 1/�

�Pi�1
jD1 djkdjkC

Pm
jDiC1..j � i/kdjk/

�
k � 1�

Pi�1
jD1 kdjk

�
:

Proof. Assume the setup of Proposition 3.4. We have a fixed list of numbers
kd1k; kd2k; : : : ; kdmk such that

Pm
jD1 kdjk D k � 1, a difference pattern, and a

fixed size of differences d1; d2; : : : ; di�1.
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Similar to the proof for Lemmas 2.14 and 2.13, the largest difference between the
initial and final term of a progression in f1; 2; : : : ; ng is n�1. In other words, for a
progression that starts at 1, the last term in the progression is, 1C

Pm
iD1 dikdik. If

we want to determine a difference that is as large as possible, we can assume that
1C

Pm
iD1 dikdik is as large as possible. Thus, we assume 1C

Pm
iD1 dikdik D n

(and we consider issues of whether this value is an integer later). Thus, to determine
the maximum value for di we must remove djkdjk from n� 1 for each known
difference d1; d2; : : : ; di�1.

Similar to the proof for Lemma 2.13, since we want to determine the largest
possible value for di , we will assume for each j > i that dj is as small as possible
while still maintaining the inequality from Remark 3.3. That is, we will assume for
each j > i that dj D di C .j � i/. For example, diC1 D di C 1.

However, since we are determining the value of di , we will account for each
dj of size di C .j � i/ by removing .j � i/kdjk from n� 1 and distributing the
remaining value equally between the remaining k � 1�

Pi�1
jD1 kdjk possible skips.

The floor of this expression gives the largest possible value for the difference of
size di . �

Proposition 3.5. Given fixed d1; d2; : : : ; dm, kd1k; kd2k; : : : kdmk such that
mX

iD1

kdik D k � 1;

and difference pattern, the number of k-term m-pseudo progressions in f1; 2; : : : ; ng

with a fixed difference pattern is

n�

mX
jD1

djkdjk:

Proof. This result follows the same reasoning as Proposition 2.15. �

Proposition 3.6. Given n, k and m, the total number of k-term pseudo progressions
in f1; 2; : : : ; ng with exactly m distinct differences is

k�1X
kd1kD1

� � �

k�.m�1/X
kdm�1kD1

Nd1X
d1D1

� � �

NdmX
dmDdm�1C1

� k�1

kd1k; : : : ; kdmk

��
n�

mX
jD1

djkdjk

�
:

This can be written more succinctly asX
D

� k�1

kd1k; kd2k; : : : ; kdmk

��
n�

mX
jD1

djkdjk

�
;

where DDf.d1; : : : ; dm; kd1k; : : : ; kdmk/ such that kdik¤ 0,
Pm

iD1 kdikDk�1,
1� di �

Ndi , and di < dj whenever i < j g.
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In order to compute the total number of k-term m-pseudo progressions (that is,
progressions with up to m distinct differences), sum the above over all m from 1

to m.

Proof. We can determine the total number of m-pseudo progressions in f1; 2; : : : ; ng

with a given set of fixed positive integers d1; d2; : : : ; dm; kd1k; kd2k; : : : ; kdmk

such that
Pm

iD1 kdik D k � 1 and a fixed difference pattern from Proposition 3.5.
By Lemma 2.5, we can scale this count by the number of possible difference
patterns to determine the number of m-pseudo progressions with fixed parameters
d1; d2; : : : ; dm; kd1k; kd2k; : : : ; kdmk. The number of such difference patterns is
the number of ways to choose where the kdik differences of size di occur for each i

from 1 to m. That is, the multinomial coefficient� k�1

kd1k; kd2k; : : : ; kdmk

�
:

To determine the allowable collections of numbers d1; d2; : : : ; dm and kd1k;

kd2k; : : : ; kdmk, we continue with similar reasoning as in Proposition 2.16. That
is, we iterate over all possible values of kdik from 1 to k �1� .m�1/ (in order to
ensure kdik ¤ 0 for all i) such that

Pm
iD1 kdik D k � 1. In order to maintain the

inequality from Remark 3.3 and the maximum in Proposition 3.4, we iterate over the
values of di from di�1C 1 to Ndi . All such valid lists of differences d1; d2; : : : ; dm

and amounts kd1k; kd2k; : : : ; kdmk can be represented by the set D. �

3C. Reinterpreting combinatorial identities. Observe that if a .k � 1/-pseudo
progression has j numbers in Œv� (which can occur in

�
v
j

�
ways), then the other

k� j numbers in the pseudo progression can be anywhere in fvC1; vC2; : : : ; ng,
which has size n�v. The number of ways to complete this is Fk�1�j .n�v; k�j /.
Thus,

Fk�1.n; k/D

kX
jD0

� v

j

�
Fk�1�j .n� v; k � j /:

Recalling that Fk�1.n; k/D
�

n
k

�
, this gives a new proof of the Chu–Vandermonde

identity �n

k

�
D

kX
jD0

� v

j

�� n�v

k�j

�
:

4. Generating functions

An m-pseudo progression places a limit of m on the number of distinct differences
within such a progression. In this section, we go to the opposite extreme and ask
what happens if we demand all of the differences be distinct. Indeed, below we find
the generating function which counts the number of k-term pseudo progressions in
f1; 2; : : : ; ng where all of the k � 1 differences are distinct.
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We will be discussing m-pseudo progressions without needing to refer to any
particular m (mD k � 1 would suffice, except that we do not wish to allow fewer
than k � 1 distinct differences). Therefore we will continue to refer to these as
pseudo progressions without mentioning any m.

It is well known that

x
k.k�1/

2

.1�x/.1�x2/ � � � .1�xk�1/

is the generating function for integer partitions with k � 1 distinct parts. That is,
the coefficient of xt in this generating function gives the number of partitions of t

into k � 1 distinct parts: t D p1Cp2C � � � Cpk�1, where each pi is a positive
integer and p1 < p2 < � � �< pk�1.

Definition 4.1. Fix a k and n. For t < n, let c.t/ be the number of partitions of t

into k � 1 distinct parts.

Lemma 4.2. There are
n�1X

tDk.k�1/
2

.k � 1/! .n� t/c.t/

k-term pseudo progressions in f1; 2; : : : ; ng with distinct common differences.

Proof. Given a partition of t into k�1 distinct parts, note that we can create a pseudo
progression in f1; 2; : : : ; ng which starts at 1, ends at t C 1, and whose common
differences are distinct. Namely, if the partition is t D p1Cp2C � � �Cpk�1, then
the pseudo progression is

1; 1Cp1; 1Cp1Cp2; : : : ; 1C t:

Also, observe that because p1 < p2 < � � �< pk�1, we in fact can find .k�1/! pseudo
progressions which start at 1 and end at t C 1 by simply considering all possible
permutations of fp1; : : : ; pk�1g, and adding in the pi in the order determined by
the permutation.

Moreover, all k-term pseudo progressions with distinct common differences that
start at 1 and end at t C 1 can be realized in this way. To see this, simply take such
a pseudo progression, 1D a1; a2; : : : ; ak D t C 1, and observe the k � 1 distinct
common differences,

a2� a1; a3� a2; : : : ; ak � ak�1:

The sum of these common differences telescopes, so their sum can be seen as
ak �a1D .tC1/�1D t . And being distinct, once they are reordered in increasing
order they do indeed form a partition of t with k � 1 distinct parts.
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So there is in fact a total of .k�1/! c.t/ k-term pseudo progressions in f1;2; : : : ;ng

which start at 1, end at t C 1, and have distinct common differences. To obtain
a count for all such progressions, we simply need to multiply by the number of
possible starting points. The progressions could begin at 1 and end at t C 1, begin
at 2 and end at t C 2, . . . , begin at n� t and end at t C .n� t/. In total, there are
n� t ways that we can “shift” these progressions which start at 1 into progression
that start at higher values. Thus, by multiplying by n� t we get the total number
of .n� t/.k � 1/! c.t/ k-term pseudo progressions in f1; 2; : : : ; ng with distinct
common differences.

Finally, we must sum over all possible values of t . The smallest t corresponds to
the smallest value which can be partitioned into k � 1 distinct parts, which is

1C 2C 3C � � �C .k � 1/D
k.k � 1/

2
:

The largest possible t is n� 1, since this corresponds to a progression which starts
at 1 and ends at t C 1D n. Thus, by summing over these possible vales of t , we
get our final count

n�1X
tDk.k�1/

2

.k � 1/! .n� t/c.t/: �

We now use this to find the generating function for the number of k-term pseudo
progressions in f1; 2; : : : ; ng with distinct common differences.

Theorem 4.3. The number of k-term pseudo progressions in f1; 2; : : : ; ng with
distinct common differences is the coefficient on xn in the generating function

.k � 1/! x1Ck.k�1/
2

.1�x/3.1�x2/.1�x3/ � � � .1�xk�1/
:

Proof. Recall that the generating function for the number of integer partitions with
distinct parts is

x
k.k�1/

2

.1�x/.1�x2/ � � � .1�xk�1/
:

That is, the coefficient of xt in this generating function gives c.t/. By scaling, the
coefficient of xn in

xn�tCk.k�1/
2

.1�x/.1�x2/ � � � .1�xk�1/

now gives c.t/. Thus, by Lemma 4.2, since there are
Pn�1

tDk.k�1/=2.k�1/!.n�t/c.t/

k-term pseudo progressions in f1; 2; : : : ; ng with distinct common differences, this
value is given by the coefficient of xn in
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n�1X
tDk.k�1/

2

.k � 1/! .n� t/xn�tCk.k�1/
2

.1�x/.1�x2/ � � � .1�xk�1/

D
.k � 1/! x

k.k�1/
2

.1�x/.1�x2/ � � � .1�xk�1/

n�1X
tDk.k�1/

2

.n� t/xn�t :

By substituting i for n� t , which reverses the order of summation, the above is
equivalent to

.k � 1/! x
k.k�1/

2

.1�x/.1�x2/ � � � .1�xk�1/

n�k.k�1/
2X

iD1

ixi :

Notice that the coefficient on xn here is the same as in

.k � 1/! x
k.k�1/

2

.1�x/.1�x2/ � � � .1�xk�1/

1X
iD1

ixi ;

and so this new expression also has the property that the coefficient on xn gives the
number of k-term pseudo progressions in f1; 2; : : : ; ng with distinct common dif-
ferences. Since

P1
iD1 ixi has generating function x=.x� 1/2, this is equivalent to

.k � 1/! x1Ck.k�1/
2

.1�x/3.1�x2/.1�x3/ � � � .1�xk�1/
;

as desired. �

5. Symmetries

We have observed (see Section 7) that for certain small values of k, the number of
k-term m-pseudo progressions in f1; 2; : : : ; ng is equal to the number of .n� k/-
term m-pseudo progressions in f1; 2; : : : ; ng. Indeed, the relationship seems to be
related to the complement. Consider a k-term m-pseudo progression and let K be
the subset of f1; 2; : : : ; ng consisting of the elements of the progression. Then, the
set Kc D f1; 2; : : : ; ng nK corresponds to an .n� k/-term progression.

Note that the Kc progression will include a difference of 1 whenever there are
two adjacent numbers in f1; 2; : : : ; ng which are not in K (for k < n

2
� 1, this is

guaranteed). The Kc progression will include a difference of 2 whenever the K

progression had a term i 2 f2; 3; : : : ; n� 1g for which i � 1 and i C 1 are not in K

(for most sets K of small size, such an i will exist). For the Kc progression to have a
difference of d >1, the K progression would have to include d�1 consecutive terms.

Since terms from the K progression have to be used to create differences in the
Kc progressions, jKj creates a bound on how many differences the Kc can have.
Indeed, by this reasoning, it is impossible for the Kc progression to have more than
m differences if
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jKj< 1C

mC1X
dD2

.d � 1/D 1C
�mC1

2

�
:

In Section 7, these symmetries appear in our tables of values, which also show other
interesting behaviors. For example, the number of 4-term 3-pseudo progressions in
f1;2; : : : ;14g is equal to the number of 10-term 3-pseudo progressions in f1;2; : : : ;14g.

6. Further directions

We were motivated to study this problem because of a problem in Ramsey theory,
and it is in this direction that we plan to move to next.

Consider the positive integers ZC D f1; 2; 3; 4; : : : g. An r -coloring of these
integers is produced by assigning each of these integers one of r colors. The question
is whether every r -coloring of ZC contains a k-term monochromatic arithmetic
progression. Such a progression is a collection of integers a, aC d , aC 2d , : : : ,
aC .k � 1/d which are all assigned the same color. Here, d is called the common
difference. The seminal van der Waerden theorem [1927] says that given any k

and r , there exists some N such that every r -coloring of f1; 2; 3; : : : ; N g contains
a k-term monochromatic arithmetic progression; the smallest such N is denoted
by w.k; r/. For example, w.3; 2/D 9. That is, every 2-coloring of f1; 2; 3; : : : ; 9g

contains a 3-term monochromatic arithmetic progression, and furthermore it is
not true that every such coloring of f1; 2; 3; : : : ; 8g does. For example, here is a
2-coloring that avoids such a progression:

1 2 3 4 5 6 7 8:

Much work has been done to try to bound w.k; r/. The best upper bound is

w.k; r/� 22r 22kC9

;

and is due to Tim Gowers.
Brown, Graham and Landman [Brown et al. 1999] investigated what happens

when you restrict the allowable set of arithmetic progressions. In particular, if
D�ZC is a set of allowable common differences, they asked whether there must still
exist an N for which every r -coloring of f1; 2; 3; : : : ; N g contains a monochromatic
arithmetic progression whose common difference is in D. That is, their research
focused on a subset of the collection of arithmetic progressions. It seems natural
then to ask what happens when you instead consider a superset of this collection.

Landman and Robertson recently asked about generalizations of van der Waer-
den’s theorem to m-pseudo progressions. Now that m-pseudo progressions are
better understood through their count, we aim to determine the smallest values
of N for which every r -coloring of f1; 2; : : : ; N g contains a monochromatic
m-pseudo progression.
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7. Tables of values and graphs

Number of k-term 2-pseudo progressions in f1; 2 ; : : : ; ng.

k# n! 5 6 7 8 9 10 11 12 13 14 15 16

1 5 6 7 8 9 10 11 12 13 14 15 16
2 10 15 21 28 36 45 55 66 78 91 105 120
3 10 20 35 56 84 120 165 220 286 364 455 560
4 5 15 29 52 84 126 180 249 331 431 549 686
5 1 6 21 44 78 120 186 264 363 478 627 792
6 0 1 7 28 64 120 182 274 386 533 715 918
7 0 0 1 8 36 90 180 282 426 582 795 1060
8 0 0 0 1 9 45 123 264 433 672 919 1236
9 0 0 0 0 1 10 55 164 379 658 1057 1472

10 0 0 0 0 0 1 11 66 214 533 987 1654
11 0 0 0 0 0 0 1 12 78 274 735 1458
12 0 0 0 0 0 0 0 1 13 91 345 995
13 0 0 0 0 0 0 0 0 1 14 105 428
14 0 0 0 0 0 0 0 0 0 1 15 120
15 0 0 0 0 0 0 0 0 0 0 1 16
16 0 0 0 0 0 0 0 0 0 0 0 1
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Number of k-term 3-pseudo progressions in f1; 2 ; : : : ; ng.

k# n! 5 6 7 8 9 10 11 12 13 14 15 16

1 5 6 7 8 9 10 11 12 13 14 15 16
2 10 15 21 28 36 45 55 66 78 91 105 120
3 10 20 35 56 84 120 165 220 286 364 455 560
4 5 15 35 70 126 210 330 495 715 1001 1365 1820
5 1 6 21 56 126 252 438 720 1119 1666 2379 3312
6 0 1 7 28 84 210 462 864 1476 2343 3505 5128
7 0 0 1 8 36 120 330 792 1596 2892 4755 7240
8 0 0 0 1 9 45 165 495 1287 2793 5385 9300
9 0 0 0 0 1 10 55 220 715 2002 4669 9592

10 0 0 0 0 0 1 11 66 286 1001 3003 7504
11 0 0 0 0 0 0 1 12 78 364 1365 4368
12 0 0 0 0 0 0 0 1 13 91 455 1820
13 0 0 0 0 0 0 0 0 1 14 105 560
14 0 0 0 0 0 0 0 0 0 1 15 120
15 0 0 0 0 0 0 0 0 0 0 1 16
16 0 0 0 0 0 0 0 0 0 0 0 1
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Number of k-term 4-pseudo progressions in f1; 2 ; : : : ; ng.

k# n! 5 6 7 8 9 10 11 12 13 14 15 16

1 5 6 7 8 9 10 11 12 13 14 15 16
2 10 15 21 28 36 45 55 66 78 91 105 120
3 10 20 35 56 84 120 165 220 286 364 455 560
4 5 15 35 70 126 210 330 495 715 1001 1365 1820
5 1 6 21 56 126 252 462 792 1287 1666 2379 4368
6 0 1 7 28 84 210 462 924 1716 3003 5005 7888
7 0 0 1 8 36 120 330 792 1716 3432 6435 11440
8 0 0 0 1 9 45 165 495 1287 3003 5385 12870
9 0 0 0 0 1 10 55 220 715 1666 5005 11440

10 0 0 0 0 0 1 11 66 286 1001 3003 8008
11 0 0 0 0 0 0 1 12 78 364 1365 4368
12 0 0 0 0 0 0 0 1 13 91 455 1820
13 0 0 0 0 0 0 0 0 1 14 105 560
14 0 0 0 0 0 0 0 0 0 1 15 120
15 0 0 0 0 0 0 0 0 0 0 1 16
16 0 0 0 0 0 0 0 0 0 0 0 1
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