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An m-pseudo progression is an increasing list of numbers for which there are at
most m distinct differences between consecutive terms. This object generalizes
the notion of an arithmetic progression. We give two counts for the number
of k-term m-pseudo progressions in {1,2,...,n}. We also provide computer-
generated tables of values which agree with both counts and graphs that display
the growth rates of these functions. Finally, we present a generating function
which counts k-term progressions in {1,2,...,n} whose differences are all
distinct, and we discuss further directions in Ramsey theory.

1. Introduction and motivation

Arithmetic progressions have been well-studied. Their existence within partitions
of Z is a central theme of Ramsey theory. The existence of long arithmetic progres-
sions within the primes was famously solved by Green and Tao [2008]. Landman
and Robertson [2004] recently asked how the theory changes when instead of
searching for arithmetic progressions, one searches for a specific generalization of
an arithmetic progression, called an m-pseudo progression; in Section 6 we provide
more details on this connection. Motivated by this question, we sought to better
understand m-pseudo progressions by counting them. In this paper we provide two
explicit methods and formulas to count these objects, which we now define.

1A. Defining m-pseudo progressions. A k-term arithmetic progression is a list of
numbers, a1, ds, . .., dy, for which there exists some d € 7T where aiv1—ai=d
for all i. We now generalize this definition to include progressions with a greater
number of differences between consecutive terms.

Definition 1.1. A (k-term) m-pseudo progression is a list
ay,ds, ..., dg
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of increasing integers from 71 for which there exists a set {d;, ds. ..., dn}, where
aj+1—aij €{dy,dy, ..., dpy} for all i. If the m is not specified, it is simply called
a progression.

For a given progression and any difference d;, we denote by ||d;| the number of
times d; appears as a difference in the progression.

Notice that if m = 1, we get the definition of an arithmetic progression. Further-
more, every m-pseudo progression is an £-pseudo progression for £ > m, because
the definition of an £-pseudo progression requires at most £ differences.

Example 1.2. The list 2, 5,8, 13, 16, 21, 24 is a 7-term 2-pseudo progression since
there are at most two common differences:

5-2=3, 16—13=3,
§—5=3, 21-16=5,
13-8=5, 24-21=3.

Therefore, by letting {dy, d»} = {3, 5}, it is indeed true that a; | —a; € {dy,d>}
for all 7.

In this paper, we provide two methods of counting of how many k-term m-pseudo
progressions there are in {1, 2, ..., n}, and we discuss in detail some special cases.

We note that there are other generalizations of arithmetic progressions. Pseudo
progressions are in fact a generalization of what are called generalized arithmetic
progressions, sometimes also called d-dimensional arithmetic progressions or
quasiprogressions, see for example [Chang 2003; Freiman 1999], which are increas-
ing sequences ap,d>, .. .,dy for which there is some d such thata; 1 —a; €{1,...,d}
for all i. These progressions demand that all the differences are “close” to each
other, while a pseudo progression simply restricts the number of such differences.

2. Counting 2-pseudo progressions

2A. Arithmetic progressions. We begin with a discussion of the solved problem
of counting arithmetic progressions, which we first formally provide. It is beneficial
to see this approach, as two of our main theorems generalize the ideas highlighted
in this proof.

Theorem 2.1. There are

P 2w

k-term arithmetic progressions in {1,2,...,n}.

Proof. Fix ad € Z™. Notice that if you know that a k-term arithmetic progression has
common difference d, and you know the first element, then you have determined the
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entire progression. The possible arithmetic progressions with a common difference
of d are

1, 1+d, 1+2d, ..., 1+ ((k—-1)d,
2, 24d, 242d, ..., 24 (k—-1)d,

n—(k-0)d, n—(k-1)d+d, n—(k—1)d+2d, ..., n.
That is, there are n — (k — 1)d such progressions in {1,2,...,n}.

Notice that the largest possible d is | 72 |, and as for any integer m > | 725 |,
the first possible arithmetic progression is

I, 14+m, 142m, ..., 14+(k—-1Dm,

making its last element 1 + (k — 1)m > n. Adding up the number of progressions

for all possible d and using the combinatorial identity Zﬁ=1 d= (L ;1), it follows

that
L&) L% ]

. (n—(k—l)d)zn\‘kilJ—(k—l) Y d
d=1

: R T

Remark 2.2. There are a few elements of this proof which will be important later.
First, the maximum common difference of a k-term arithmetic progression in
{1,2,...,n}is ,’:j J Second, the number of k-term arithmetic progressions in
{1,2,...,n} with common difference d is n — d(k — 1). Both of these will be

generalized in this paper.

2B. 2-pseudo progressions. In this section, we provide two methods for counting
the number of k-term 2-pseudo progressions in {1, 2, ..., n}. First, some notation.

Notation 2.3. Suppose
ai,ds, ..., dx

is a k-term 2-pseudo progression. We will use a and b to refer to possible differences
of this progression, that is, a;+1 —a; € {a, b} for all i. Recall, we will use ||a||
to refer to the number of differences of size a and ||b|| to refer to the number of
differences of size b.

For instance, in Example 1.2 we have ¢ = 3 with ||a|| =4 and b = 5 with ||b|| = 2.

We will also wish to refer to different orderings of the differences a and b. For
example, in Example 1.2 the differences are in the order 3, 3, 5, 3, 5, 3. We call this
a difference pattern.
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Definition 2.4. Given an m-pseudo progression

al’az""’ak3
the list

dp —dy,dsz—dz,...,dp —dg_q
is called the progression’s difference pattern.

Lemma 2.5. Fix a set of differences {d1.d>, ...,dn} and numbers ||d1|, ||d2 ||,
oo ldm|l. The number of k-term m-pseudo progressions in {1,2,...,n} with a
fixed difference pattern is independent of the difference pattern chosen.

Proof. Fix a set of differences {d, d3, ..., dn} and their multiplicities ||dq ||, ||d2 ]|,
.., ||[dm||, as given in the lemma. Next, fix two difference patterns D; and
D, using the d; from this set. Let S be the collection of all k-term m-pseudo
progressions in {1, 2, ..., n} with difference pattern D1, and let T be the collection
of all k-term m-pseudo progressions with difference pattern D,. We will show a
bijection between the elements in .S and 7.

Given an arbitrary s € S, say s starts at po. Note that there is only one progression
starting at s whose difference pattern matches D;. Let f be the function that
maps s to the progression ¢+ € 7" which starts at pg, which is likewise unique
since its difference pattern is again specified. Moreover, both s and ¢ must end
at po +di||di|| + dz2|lda|| + -+ - + dm||dm ||, so if one is in {1, 2, ..., n}, then the
other is too. Because a starting point uniquely determines the progression, f is
invertible and hence a bijection. This shows there are the same number of elements
in S and T, completing the proof. O

Once you have fixed your set of differences and their multiplicities, it will not
be difficult to determine how many difference patterns match those criteria. Thus,
Lemma 2.5 will be beneficial in that it allows one to focus on a special class of
difference patterns, such as ones in which all instances of one of the differences
occur before any instance of the second difference. The following lemma pushes
this further by fixing the multiplicities but relaxing the differences themselves.

Lemma 2.6. Fix some sg, 1ty €{0,1,2,...}, where so +ty = k — 1, and consider
any two lists, L1 and L,, each consisting of so copies of the variable a and ty copies
of the variable b, in some order. Let D1 be the collection of all k-term 2-pseudo
progressions in {1,2,...,n} whose difference pattern matches L, (note that a and
b can differ between progressions within Dy, provided the order of the differences
matches L1), and let D, be the collection of all k-term 2-pseudo progressions in
{1,2,...,n} whose difference pattern matches L, (for appropriate substitutions of
a and b). Then, |D{| = |D;|.



COUNTING PSEUDO PROGRESSIONS 763

Proof. Consider a k-term 2-pseudo progression Py from D;, and suppose this
progression starts at i. Then, there exist ¢ and b for which the progression makes
5o jumps of size a and #¢ jumps of size b (in the order matching L), and the last
term of the progression is, therefore, i 4+ soa + tob. Since all the progressions in D,
also have s copies of one difference and ¢y copies of a second, and the differences
are allowed to be anything, if you simply reorder the differences in P; to match the
ordering of L,, you get a new 2-pseudo progression P, which begins at i and ends
at i + soa + tob and which is now in D5.

That is, by permuting the order in which you make your jumps of size a and b, you
necessarily get a new progression from the same beginning point to the same ending
point. So if one of these progressions is in {1, 2, ..., n}, then the other is too. And
since this procedure is clearly invertible, we have a bijection between D; and D,. [

2C. Recursive count. We now present our first count of 2-pseudo progressions. By
Lemma 2.6, the number of m-pseudo progressions is independent on the difference
pattern. Therefore, we define a simple difference pattern for which the progressions
will be simpler to count, and then later scale up this count to include all m-pseudo
progressions.

Definition 2.7. Call a 2-pseudo progression s-¢-simple if its difference pattern is
of the form
a,a,...,a,b,b,....b,

§ terms t terms

where s, ¢, a and b are positive integers, and let S(n, s,¢) be the number of s-z-
simple 2-pseudo progressions in {1, 2,...,n}.

Note that if @ = b, then the 2-pseudo progression is in fact an arithmetic pro-
gression and is s-7-simple whenever s + ¢ = k — 1, where & is the length of the
progression.

To better visualize the general case, suppose we want to create a 4-3-simple
2-pseudo progression that starts at i =5¢€ {1,2,...,n} and where« =2 and b = 6.
Since our 2-pseudo progression is of the form a, a, a,a, b, b, b, it looks like:

i +sa i+sa+tb
|

| | | | | |
I I I I I I I

7 9 11 13 19 25 31

DN = ~.

Here, i +sa = 13 and i + sa + tb = 31. It is also important to note that given
any k-term 2-pseudo progression, s 4+ ¢ = k — 1. This is because s and ¢ count the
number of differences between terms, so the total number of those differences will
always be one less than the number of terms in the progression. For instance, in the
example above we have k =8, s =4 and ¢t = 3, so we see that 4 +3 =8—1. In
general, we see that s and ¢ are dependent on k.
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Ln = Jn —sa—t __( %_ )
Proposition 2.8. S(n,s.t) = Z Z \‘n r e J
i=1

Proof. Given an s-¢-simple 2-pseud0 progression, let us assume that the progression
starts at i € {1,2,...,n}. Since the first s common differences are of size a, the
(s+1)-th term of the pseudo progression will be i + sa. After i + sa, the terms in
the 2-pseudo progression have the characteristic that aj | —a; = b and since the
pseudo progression proceeds with # common differences of size b, the 2-pseudo
progression will end at i + sa + tb.

Since s and ¢ are dependent on k, instead of fixing a k we choose to fix s and ¢,
and consider the cases for which i, a, and b vary. Without loss of generality, by
using the inequality i + sa +tb < n we can see that b < (n— (i +sa))/t. We know
that » must be a positive integer, and so by using the floor function we have

15[,5LMJ‘

t

Therefore, given any valid selection of ¢ and i, the above gives the possible
values of b. That is,

S(nsl)—ZZ\‘ (z—i—sa)J’

where the sums are over all the valid values of ¢ and of i. Thus, our focus turns
to determining these valid values. We begin with the range of i. We know that
i +sa+tb <n,and so we have that i <n —sa —tb. And since i is at its greatest
when b is at its smallest (when b = 1), we have

1<i<n—sa-—t.

Finally, for a fixed i, consider the valid values of a. In order to find the greatest
possible value that a can be, note that a is at its greatest when both b is at its
smallest (when b = 1) and the sequence starts at the earliest index (wheni = 1).
Thus, by again using the inequality i + sa + b <n we have thata < (n—i —tb)/s.
And in the case that b = 1 and i = 1, we have

1<a< E;:_L::E .
- )

From this, we obtain our final count,

nflf

Jn —sa—t
S(us.1) = Z Z Ln—(z—l—sa)J’

i=1

which completes the proof. O
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Note, though, that there are many other progressions with s common differences
of size a and ¢t common differences of size b. For example,

a,a,...,a,b,b,....,b,a,b,b,a.

s—2 terms t—2 terms

We now count these other forms.

Corollary 2.9. Let F be a list of s copies of a and t copies of b, in some order. Let
D be the collection of difference patterns which, for some substitution of a and
b, match F. Then, the number of 2-pseudo progressions in {1,2,...,n} with a
difference pattern in D is equal to S(n, s, t).

Proof. This follows immediately from Lemma 2.6. O

Definition 2.10. Let F},(n, k) be the number of m-pseudo progressions. When the
context is clear, we will write simply Fj,.

Note that F; (n, k) is the number of k-term arithmetic progressionsin {1,2,...,n},
which we counted in Section 2A.

Theorem 2.11. Fixn and k. Let a1, as, ..., a be a 2-pseudo progression where
ajy1—ai €{a,b} foralli. Let s be defined as the number of elements such that
ajy1—a; = a and t be defined as the number of elements such that aj 1 —aj = b.
Then,

k=2

2
Fy=F + %(k%l) [5( "T‘l "T‘l) -]+ Zl (S—S'_Z)[S(n,s, - Fyl.
s=
Proof. Recall that s is the number copies of @ and 7 is the number of copies of b,
while a and b can be any integers. Since one of these integers will occur at least as
many times as the other, we may assume without loss of generality that s <. First,
assume § < ¢.
By Proposition 2.8, S(n, s,t) counts the number of progressions of the form

a,a,...,a,b,b,....b.

S terms t terms

By Corollary 2.9, we know that given any form with s copies of ¢ and ¢ copies of b,
there are S(n, s, t) progressions of that form. Moreover, one can see that there are
(S'SH) such forms —the s + ¢ terms in the form are each either an a or a b, and
this is determined by choosing which s of these terms are an a. Now, S(n, s, 1)
includes all the arithmetic progressions (in the case where a = b). Therefore,

S(n,s,t)— F;
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counts the number of progressions of any fixed form containing s copies of a and
t copies of b, which contains exactly two distinct common differences. There are

(" st s -

s

2-pseudo progressions, excluding the arithmetic progressions. Note that s+7 =k —1,
and so in our current case where s < ¢ (i.e., s <t —1), we know that 2s + 1 <k —1,
implying that s < L%J And so, in the case where s < ¢, the total number of
2-pseudo progressions which are not arithmetic progressions is

k=2
2

t
> (Tses - Rl
s=1
Thus, among all cases in which s < ¢, the total number of 2-pseudo progressions is
k=2

Ft Y (CTsesn - F

s=1
The last case to consider is when s = ¢; note that this is only possible if k is odd.

And since s +¢ = k — 1, we have s = ¢ = X5 Just like above, given any form

2
using k%l copies of @ and ]%1 copies of b, there are S (n, ]%1, %) progressions
of this form. And so there are

k—1 k—1

—\ —)—F

S (" 2 2 ) !

progressions that have exactly two distinct common differences. The only difference
is in the next step. Note that if we simply multiply by (s Jsrt) we will be over-counting
by a factor of 2. Indeed, since s = ¢, any progression comes about in two ways:
once when the copies of a are counted by s and the copies of b are counted by ¢,
and once when the copies of a are counted by ¢ and the copies of b are counted

by s. Thus, the count in the s = ¢ case is

(i s 055550 -]

Note that the binomial here evaluates to O in the event that k£ is even, and so

including this term in the even case is consistent. This gives us our final answer
k—2

Fz=F1+%(ifll)[s(n,%,%)—m]+ ZZ: (Sj_t>[S(n,s,t)—F1]. 0
s=1

Since there are Fy(n, k) sequences where you are allowed up to £ differences,
and Fy_q(n, k) sequences where you are allowed up to £ — 1 differences, there are

Fy(n, k) = Fe—y(n, k)

sequences with exactly £ differences.
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If we let Fy(n, k) denote the number of £-pseudo progressions with exactly
¢ distinct differences, and let S(n, s, 1) likewise denote the number of s-¢-simple
progressions with exactly two differences, then Sn,s, ty=S8(n,s,t)— Fi(n,k)
and Theorem 2.11 has the reduced form

1452]
=~ 1 (k=1\g( k=1 k-1 AV
Fz(n,k)—i(,%l)S(n,T,T)—i- X} ("T85,
sS=
Moreover, the above two equations imply
%
_ I (k=1\g( k=1 k-1 S+ @
Fﬂmk)—dek)—E(&;)SQL — )+ 29( )S@s.o,
S=

which is another form of Theorem 2.11.

2D. Iterative count. As in the previous sections, we use ¢ and b to denote the two
differences in a 2-pseudo progression. In this section, we will insist that a < b,
which in particular prohibits ¢ = . We will often refer to a k-term 2-pseudo
progression in {1,2,...,n} as just a “progression” if the context is clear.

Remark 2.12. Recall, for a k-term 2-pseudo progression,
lall + 6]l =k —1.

That is, the total number of differences of sizes @ and b is equal to the total number
of differences in the progression, k — 1. If we are considering k-term progressions,
then we only need to know either ||a| or ||| and the other will follow.

First, given a fixed number of two differences, we determine the maximum value
these differences can be.

Lemma 2.13. For a k-term 2-pseudo progression with a fixed number of differences,
say ||a|| and ||b|| (without the sizes of the differences a and b being determined), the
largest possible value for a is

-
max — k—l .

Proof. We begin by noting that similar to Remark 2.2, the maximum possible
difference between the first and last terms of a 2-pseudo progression is 7 — 1. Since
we are assuming a < b, if we want to find the largest possible value for a, we can
assume ¢ = b — 1. Thus, we must distribute the difference of 7 —1 into k — 1 groups
(Jla]| groups of size a, and ||b|| groups of size a 4 1). To do this, we subtract || ||
from n — 1 in order to account for the ||b| groups of one larger value than a. The
maximum possible value for the difference a is the result in the lemma. O
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Similarly, with a fixed difference of size ¢ and number of differences, say |a||
and ||b]|, we can determine the maximum value of the difference b in a k-term
2-pseudo progression in {1,2,...,n}.

Lemma 2.14. Suppose a k-term 2-pseudo progression has difference a and some
number of differences, say ||a| and ||b||. Then, the maximum possible value for b is

. 161l =o.
a — —1)—
[ “=pmret ] libl #o.

Proof. Similar to our argument in Lemma 2.13, the largest possible value between
the first and final terms of a progression in {1, 2, ...,n} is n—1. Thus, to determine
the maximum possible b that can create a progression, we must divide n — 1 into
k—1 groups (||a|| groups of size a and ||5|| groups of size b). In order to account for
the ||a|| differences of size a, we must subtract off the product ¢||¢|| and divide the
remaining (n — 1) — a||a|| into ||b|| groups. Thus, we have our resulting maximum
above. The equality is also guaranteed, since a 2-pseudo progression with these
metrics which begins at 1 will end at 1 + a||a|| + bg||b|| < n. O

Proposition 2.15. Given a fixed a, b, ||a|| and ||b||, the number of k-term 2-pseudo
progressions in a set {1,2, ..., n} with a fixed difference pattern is

n—allall =b|b]|.

Proof. Fix the integers n, k, a, b, ||a|| and ||b||, and a difference pattern. Similar
to the argument in the proof of Theorem 2.1, we proceed by first considering a
progression with initial term 1. Since our differences are of size a and b and there
are ||a|| @’s and ||b|| b’s, we have that the final term in the progression will be
1 +alla|| +b||b||. In general, if a progression with these parameters has initial term
Do, then the final term will be pg + a||a|| + b||b||. Such a progression is valid in
{1,2,...,n} if this final term pgy + a||a|| + b||b|| < n. Such will be the case when

po =n—alal =b]b].

Thus, the total number of valid 2-pseudo progressions with these parameters is
equal to the largest po such that the above inequality is true. And so the result of
the proposition follows. O

Proposition 2.16. The total number of k-term 2-pseudo progressions in{1,2,...,n}
can be counted using the formula

k—1 Amax

Fie Y ) Z [y ) —allal 1]

lall=1a=1b=a+1
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Proof. A formula for F; is given in Theorem 2.1, and it counts the number
of arithmetic progressions in {1, 2,...,n}; we now turn to count the number of
2-pseudo progressions which contain two distinct differences.

As a consequence of Proposition 2.15, the total number of k-term 2-pseudo
progressions in {1,2,...,n} with a given difference pattern and fixed values of
a,b, |a|, ||b|| € ZT is given by n —a||a| —b||b||. Furthermore, by Lemma 2.5, this
value does not depend on the difference pattern chosen. Thus, given fixed a, b,
and ||a|| (which implies the value of ||5||), we count the total number of progressions
with these parameters by scaling the count in Proposition 2.15 by the total number
of difference patterns that could occur with ||a|| @’s and ||b|| b’s. In particular,
there are (lﬁ;”l) such ways, by choosing which of the total k — 1 skips to place the
|la|| skips of size a.

Now we must determine all possible values of @ and b that are possible. We
assume 0 < a < b, so we have a = 1 being the smallest possible value for a. Thus,
b = a4+ 1 is the smallest possible value for b given a value for a. This gives us the
bounds for the inner two sums.

Finally, we iterate this process through all possible positive values of ||| and ||5]|,
by summing up all valid progressions for each value of ||a||, with 1 < |la| <k —1.
Since ||a| + ||b]| = k — 1, iterating through all possible values of ||a| will indeed
iterate all valid positive pairs of ||a|| and ||b]|. O

3. Counting m-pseudo progressions

We now generalize Lemma 2.6, which will be used to generalize Corollary 2.9

Lemma 3.1. Fix some dy,d1,...,dp, €{0,1,2,...}, where Z,m:l di=k—1,and
consider any two lists, L1 and L,, each consisting of ||d;|| copies of the variable
d; for each i, in some order. Let Dy be the collection of all k-term m-pseudo

progressions in {1,2,...,n} whose difference pattern matches L (for appropriate
substitutions of d1,d>, . . ., dm), and let D, be the collection of all k-term m-pseudo
progressions in {1,2, ..., n} whose difference pattern matches L, (for appropriate

substitutions of d1,d, ..., dy). Then, |D1| = | D,|.

Proof. We will show a bijective correspondence between k-term m-pseudo progres-
sions with the same number of differences ||d;|| for all i, regardless of the ordering
of the differences. Let S and T be the set of m-pseudo progressions with distinct
difference patterns containing differences d;, d», ..., dy, such that the number of
differences ||d;|| is the same in each difference pattern for all ;.

Given an arbitrary s € S, if s starts at, say, pg, then it will end at po + d1||d1 || +
da|lda|| + -+ + dmlldm||.- Let f be the function that maps s to the m-pseudo
progression ¢ € T starting at po. Note that this is well-defined, as pairing the starting
term of an m-pseudo progression with that progression’s difference pattern uniquely
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determines the progression. Any ¢ € T is the image of the m-pseudo progression
in S starting at the initial term of ¢. Therefore, the number of progressions with
a fixed difference pattern is independent of the ordering of the differences in the
difference pattern. O

3A. Recursive count. In this section we generalize the ideas of Section 2C to

count k-term m-pseudo progressions in {1, 2,...,n}.
Definition 3.2. A progression is (s1, §2, . . ., S;)-simple if it is of the form
al,al»---»alaaZ’aZ,---,az,---,am,am,---,am’
§1 terms Sp terms Sm terms
where s;, a; eZ% foralli, j. Let S(n, sy, ..., Sm)be the number of (51,53, ..., Sm)-
simple progressions in {1, 2,...,n}.

By the same reasoning as in Section 2C, there is a bijection between the set of
progressions of this form and the set of progressions of any permuted form, and

there are ( sf_fslm) such permuted forms. And
" i
S(n,sl,...,sm+1)=ZL JS(n—i,sl,...,sm),
i=1 Sm+1
since an (81, $2, .. . , Sy+1)-simple progressionin {1,2,...,n}isan (s1, $2,..., Sm)-

simple progression in [n —i], for some i, followed immediately by s,,+; more
terms. And within the remaining 7 numbers, starting with the first, there are L ! J

Sm+1
possible common differences that will keep the entire (s1, 52, . . ., Sy+1)-simple
progression in {1,2,...,n}.

So in this way we have recursively found the number of (sq, 2, ..., Sp)-simple

progressions for an arbitrary ». And so

S(nvsl»~~-»5m+1)_Fm(n)

counts the number of (s, s3,...,Sy)-simple progressions with exactly m + 1
distinct common differences. And if §; < s, <+ < $s41, then by Lemma 3.1,

(Sl .l.c._srln_'_l)[S(n’Sla s asm—i—l)_Fm(i’l)]

counts the number of all progressions which are of a form which is a permutation

of the (s1,52,...,S5n)-simple form.
Otherwise, if we only assume 51 <57 <-:- < S;,+1, then just like with 2-pseudo
progressions, we may overcount. Indeed, if in the multiset {s1,52,...,S,+1} We

have, say, 7 appearing 3 times (say, s3 = sS4 = §5 = 7), then this alone causes
the above expression to overcount by a factor of 3! = 6 (just like in the 2-pseudo
progressions, when s = ¢ implied that we overcounted by a factor of 2! = 2). To see
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this, note that each such progression will have been counted once when the copies
of a3 were counted by s3, the copies of a4 were counted by s4, and the copies of
as were counted by s5; but will also have been counted once for each of the other
3! pairings between these a;’s and s;’s. This reasoning gives the answer of

1 _
(S1k 1 )[S(n,sl,---,Sm+1)_Fm(”)]’

nylny! - -ny! < Sm+1
where n; is the multiplicity of the 7-th distinct number in 51, 53, ..., S;+1, and
therefore £ is the size of {s1,52,...,5n+1} as a set (i.e., removing multiplicities).

Note that our answer in the 2-pseudo progression case is a special case of this.
Adding up all the possibilities, and adding back in the progressions with at most
m distinct common differences, gives you the final count

Fny1(n k) =
1 —
Fa 3 (5T S swi) — Fa)

niylny! ---ny! e Sm+1
S1=SSm+1 1 2 ¢ m+

This also gives a particularly nice formula for F, m-+1(7, k), which you recall is

the number of k-term progressions in {1,2,...,n} with exactly m + 1 common
differences. The above reduces to
~ 1 k—1 =
RSP o S G
m+1(n, k) Z Tl ol NSt S (n,s1 Sm+1)

S1=SSm+1

3B. Iterative count. In this section we generalize the ideas of Section 2D to count
k-term m-pseudo progressions in {1, 2,...,n}.

Remark 3.3. As before, the differences in an m-pseudo progression will be denoted
by d; for 1 <i <m. In this section, we assume

0<d <dy<---<dp.

Proposition 3.4. For any i such that 0 < i < m, and fixed list of positive inte-
gers |di|l, |dall, - .., |dml|| such that Z;-n:l \dj|| = k — 1, and fixed multiplicities
0<d <dy <--- <dj_y, the maximum value of the difference d; of a k-term
m-pseudo progression with m distinct differences is

p L(n—l)—(z;i;l dilld; |l + X7 1 (G = Dld; D) J

i= —
k—1=32) djll

Proof. Assume the setup of Proposition 3.4. We have a fixed list of numbers
i1, ld2ll, - .., ||dm]|| such that Z}":l lld;|| = k — 1, a difference pattern, and a
fixed size of differences dy,d,, ..., d;_;.
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Similar to the proof for Lemmas 2.14 and 2.13, the largest difference between the
initial and final term of a progression in {1, 2,...,n} is n — 1. In other words, for a
progression that starts at 1, the last term in the progression is, 1 + Y 7=, d;||d;|. If
we want to determine a difference that is as large as possible, we can assume that
1+ Y7L, di|d;i| is as large as possible. Thus, we assume 1 + Y /=, d;||d;i|| =n
(and we consider issues of whether this value is an integer later). Thus, to determine
the maximum value for d; we must remove d;||d;|| from n — 1 for each known
difference dy,d,, ..., d;_;.

Similar to the proof for Lemma 2.13, since we want to determine the largest
possible value for d;, we will assume for each j > i that d; is as small as possible
while still maintaining the inequality from Remark 3.3. That is, we will assume for
each j > i that d; =d; + (j —i). For example, d; 1 = d; + 1.

However, since we are determining the value of d;, we will account for each
dj of size d; + (j — i) by removing (j —i)||d;|| from n — 1 and distributing the
remaining value equally between the remaining k — 1 — ]_1 ||dj || possible skips.

The floor of this expression gives the largest possible value for the difference of
size d;. O

Proposition 3.5. Given fixed dy,d>, ..., dm, ||d1|, ||d2]|. ... ||dm]| such that
m
> lldill =k —1.
i=1

and difference pattern, the number of k-term m-pseudo progressions in{1,2,...,n}
with a fixed difference pattern is

m
n—3_dildll.
j=1

Proof. This result follows the same reasoning as Proposition 2.15. O

Proposition 3.6. Given n, k and m, the total number of k-term pseudo progressions
in{l,2,...,n} with exactly m distinct differences is

k—1 k—(m—1) d, dm

)SIRTD DD SECIED SN (PR ||dm||)( Zd”d”)

ldill=1  ldm-ill=1di=1  dn=dpn_i+1

This can be written more succinctly as

k—1 m S
§(nd1n,||d2||,...,||dm||)("—j§ il ,||),

where D={(dy,....dm. \d\|..... |dml) suchthat |d;|| #0, Yi Idil =k
1 <d; <d;,and d; < dj wheneveri < j}.
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In order to compute the total number of k-term m-pseudo progressions (that is,
progressions with up to m distinct differences), sum the above over all m from 1

to m.
Proof. We can determine the total number of m-pseudo progressions in {1,2, ..., n}
with a given set of fixed positive integers d1,ds, ..., dm, ||di|, |dall, ..., ||dmll

such that Y 7, ||d;|| = k — 1 and a fixed difference pattern from Proposition 3.5.
By Lemma 2.5, we can scale this count by the number of possible difference
patterns to determine the number of m-pseudo progressions with fixed parameters
di,dy,....dm, d1]l, |d2]l, ..., ||dn]. The number of such difference patterns is
the number of ways to choose where the ||d; || differences of size d; occur for each i
from 1 to m. That is, the multinomial coefficient

(haat sl U
Il lldzll. . ... lldmll J*

To determine the allowable collections of numbers dq,d3, ..., dy and || d4 |,
ldall, - .., |dmll, we continue with similar reasoning as in Proposition 2.16. That
is, we iterate over all possible values of ||d;|| from 1 to k — 1 — (m — 1) (in order to
ensure ||d;|| # 0 for all i) such that Y_/*, ||d;|| = k — 1. In order to maintain the
inequality from Remark 3.3 and the maximum in Proposition 3.4, we iterate over the
values of d; from d;_; + 1 to d;. All such valid lists of differences dy, d, ..., dm
and amounts ||dq||, ||[d2]|,. ... ||dm| can be represented by the set D. O

3C. Reinterpreting combinatorial identities. Observe that if a (kK — 1)-pseudo
progression has j numbers in [v] (which can occur in (;’) ways), then the other
k — j numbers in the pseudo progression can be anywhere in {v 4+ 1,v+2,...,n},
which has size n —v. The number of ways to complete this is Fy_j_;(n—v,k — j).
Thus,

k
v .
Fiet(n.k) = Y2 () Fimamy 0 = v k= ).
=0
Recalling that Fj._;(n, k) = (Z), this gives a new proof of the Chu—Vandermonde

identity .
0)-2(06)
4. Generating functions

An m-pseudo progression places a limit of 7 on the number of distinct differences
within such a progression. In this section, we go to the opposite extreme and ask
what happens if we demand all of the differences be distinct. Indeed, below we find
the generating function which counts the number of k-term pseudo progressions in
{1,2,...,n} where all of the k — 1 differences are distinct.
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We will be discussing m-pseudo progressions without needing to refer to any
particular m (m = k — 1 would suffice, except that we do not wish to allow fewer
than k — 1 distinct differences). Therefore we will continue to refer to these as
pseudo progressions without mentioning any .

It is well known that

k(k—1)
X 2

(=) (1 —x2)- (1 —xk=T)

is the generating function for integer partitions with & — 1 distinct parts. That is,
the coefficient of x’ in this generating function gives the number of partitions of ¢
into k — 1 distinct parts: t = py + pa + -+ 4+ px—1, wWhere each p; is a positive
integer and py < pp <+ < Pg—i-

Definition 4.1. Fix a k and n. For ¢ < n, let ¢(¢) be the number of partitions of ¢
into k& — 1 distinct parts.

Lemma 4.2. There are

n—1
> k=Dl n—10)c)

_ k(=1
="

k-term pseudo progressions in {1,2, ..., n} with distinct common differences.

Proof. Given a partition of ¢ into kK — 1 distinct parts, note that we can create a pseudo
progression in {1, 2,...,n} which starts at 1, ends at # 4+ 1, and whose common
differences are distinct. Namely, if the partition is t = p1 + pp + -+ + pr—1, then
the pseudo progression is

1, 1+p;, 14+pi+py, ..., 1+12.

Also, observe that because p; < py <---< pr_1, we in fact can find (k—1)! pseudo
progressions which start at 1 and end at ¢ 4 1 by simply considering all possible
permutations of {p1, ..., px_1}, and adding in the p; in the order determined by
the permutation.

Moreover, all k-term pseudo progressions with distinct common differences that
start at 1 and end at # 4+ 1 can be realized in this way. To see this, simply take such
a pseudo progression, 1 = ay,ds,...,a; =t + 1, and observe the k — 1 distinct
common differences,

ap —daj, as —dj, RN} af —dg—1-

The sum of these common differences telescopes, so their sum can be seen as
ar—ay = (t+1)—1 =1t. And being distinct, once they are reordered in increasing
order they do indeed form a partition of ¢ with k — 1 distinct parts.
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So there is in fact a total of (k—1)! ¢(¢) k-term pseudo progressionsin {1,2,...,n}
which start at 1, end at ¢ + 1, and have distinct common differences. To obtain
a count for all such progressions, we simply need to multiply by the number of
possible starting points. The progressions could begin at 1 and end at z 4 1, begin
at2andend atf + 2, ..., begin at n —¢ and end at ¢ 4+ (n —¢). In total, there are
n —t ways that we can “shift” these progressions which start at 1 into progression
that start at higher values. Thus, by multiplying by n — ¢t we get the total number
of (n—1t)(k —1)!c(t) k-term pseudo progressions in {1,2,...,n} with distinct
common differences.

Finally, we must sum over all possible values of 7. The smallest ¢ corresponds to
the smallest value which can be partitioned into & — 1 distinct parts, which is

k(k —1)
—

The largest possible ¢ is n — 1, since this corresponds to a progression which starts
at 1 and ends at # + 1 = n. Thus, by summing over these possible vales of 7, we
get our final count

1+243+-+(k—1)=

n—1
> k=D n—1)c@). O

__k(k—1)
==

We now use this to find the generating function for the number of k-term pseudo
progressions in {1, 2, ..., n} with distinct common differences.

Theorem 4.3. The number of k-term pseudo progressions in {1,2,...,n} with
distinct common differences is the coefficient on X" in the generating function

k(k=1)

(k—1)!Ix!T73
(1—-x)3(1=x2)(1=x3)--- (1 —xk=1)’
Proof. Recall that the generating function for the number of integer partitions with
distinct parts is

k(k—=1)
2

(1=x)(1=x2)--- (1 =xk=1)’

That is, the coefficient of x in this generating function gives ¢ (7). By scaling, the

coefficient of x” in

xn_t+ k(kz—l)

(1—=x)(1—x2)--- (1 —xk-1)

now gives c(¢). Thus, by Lemma 4.2, since there are Z’:;Ilc(k—l)/Z(k_ D! (n—t)c(2)
k-term pseudo progressions in {1, 2, ..., n} with distinct common differences, this
value is given by the coefficient of x” in
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k(k 1)

n—1

(k=) (n—0)x""1t"2
_k;” (1—x)(1—x2)--- (1 —xk=1)
’ k(k—1)

_ (k—=D!x 2 n—l1 o
C(1=-x)(1-x )...(_xk—l)t_k(zk_l)(l’l Hx"

By substituting i for n — ¢, which reverses the order of summation, the above is
equivalent to

k(k—1) n_@

(k—=D!x 2 y
(1 —x)(1 —x2)--- (1 —xk=1) ; ixt,

Notice that the coefficient on x” here is the same as in
)

(e — 1) x"
(T 1>Z”‘

and so this new expression also has the property that the coefficient on x” gives the
number of k-term pseudo progressions in {1, 2, ..., n} with distinct common dif-
ferences. Since Y o, ix' has generating function x/(x — 1), this is equivalent to

k(k—1)
2

(k — 1)l x1+
(1—x)3(1—x2)(1—x3)--- (1 —xk-1)’

as desired. O

5. Symmetries

We have observed (see Section 7) that for certain small values of k, the number of
k-term m-pseudo progressions in {1, 2, ...,n} is equal to the number of (n — k)-
term m-pseudo progressions in {1, 2, ..., n}. Indeed, the relationship seems to be
related to the complement. Consider a k-term m-pseudo progression and let K be
the subset of {1, 2, ..., n} consisting of the elements of the progression. Then, the
set K¢ ={1,2,...,n}\ K corresponds to an (n — k)-term progression.

Note that the K¢ progression will include a difference of 1 Whenever there are
two adjacent numbers in {1, 2,...,n} which are not in K (for k < 5 — 1, this is
guaranteed). The K¢ progression will include a difference of 2 whenever the K
progression had a term i € {2,3,...,n— 1} for whichi — 1 and i 4+ 1 are not in K
(for most sets K of small size, such an i will exist). For the K¢ progression to have a
difference of d > 1, the K progression would have to include d —1 consecutive terms.

Since terms from the K progression have to be used to create differences in the
K¢ progressions, | K| creates a bound on how many differences the K€ can have.
Indeed, by this reasoning, it is impossible for the K¢ progression to have more than
m differences if
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m+1 +1
Kl <1+ Y @-n=1+("] )

d=2
In Section 7, these symmetries appear in our tables of values, which also show other
interesting behaviors. For example, the number of 4-term 3-pseudo progressions in
{1,2,...,14} is equal to the number of 10-term 3-pseudo progressionsin {1,2,...,14}.

6. Further directions

We were motivated to study this problem because of a problem in Ramsey theory,
and it is in this direction that we plan to move to next.

Consider the positive integers 7T = {1,2,3,4,...}. An r-coloring of these
integers is produced by assigning each of these integers one of » colors. The question
is whether every r-coloring of Z1 contains a k-term monochromatic arithmetic
progression. Such a progression is a collection of integers a, a +d,a+2d, ...,
a + (k — 1)d which are all assigned the same color. Here, d is called the common
difference. The seminal van der Waerden theorem [1927] says that given any k
and r, there exists some N such that every r-coloring of {1,2,3,..., N} contains
a k-term monochromatic arithmetic progression; the smallest such N is denoted
by w(k, r). For example, w(3,2) = 9. That is, every 2-coloring of {1,2,3,...,9}
contains a 3-term monochromatic arithmetic progression, and furthermore it is
not true that every such coloring of {1,2,3,...,8} does. For example, here is a
2-coloring that avoids such a progression:

1234567 8.

Much work has been done to try to bound w(k, 7). The best upper bound is
y2k+9

wk,ry<2?

and is due to Tim Gowers.

Brown, Graham and Landman [Brown et al. 1999] investigated what happens
when you restrict the allowable set of arithmetic progressions. In particular, if
D C 77 is aset of allowable common differences, they asked whether there must still
exist an NV for which every r-coloring of {1,2, 3, ..., N} contains a monochromatic
arithmetic progression whose common difference is in D. That is, their research
focused on a subset of the collection of arithmetic progressions. It seems natural
then to ask what happens when you instead consider a superset of this collection.

Landman and Robertson recently asked about generalizations of van der Waer-
den’s theorem to m-pseudo progressions. Now that m-pseudo progressions are
better understood through their count, we aim to determine the smallest values
of N for which every r-coloring of {1,2,..., N} contains a monochromatic
m-pseudo progression.
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7. Tables of values and graphs

Number of k-term 2-pseudo progressions in {1,2,...,n}.

kin—| 5 6 7 8 9 10 11 12 13 14 15 16
1 5 6 7 8 9 10 11 12 13 14 15 16
2 10 15 21 28 36 45 55 66 78 91 105 120
3 10 20 35 56 84 120 165 220 286 364 455 560
4 515 29 52 84 126 180 249 331 431 549 686
5 1 6 21 44 78 120 186 264 363 478 627 792
6 0 1 7 28 64 120 182 274 386 533 715 918
7 0 0 1 836 90 180 282 426 582 795 1060
8 0 0 0 1 9 45 123 264 433 672 919 1236
9 0 0 0 0 1 10 55 164 379 658 1057 1472
10 00 0 0 0 1 11 66 214 533 987 1654
11 00 0 0 0 0 1 12 78274 735 1458
12 0O 0 0 0 O 0 o0 1 13 91 345 995
13 00 000 0 0 0 1 14 105 428
14 00000 0 0 0 0 1 15 120
15 0O 0 0 0 O 0o 0 O 0 o0 1 16
16 00000 0 0 0 0 0 0 1
1500 -

nE

s 1000~ o Bt ) s

2 71 - ¢

5 - . \ — 10

8 1 o

500- = \ I

e SN i

4 8 12 16
k
Number of k-term 3-pseudo progressions in {1,2,...,n}.

kins| 5 6 7 8 9 10 11 12 13 14 15 16
1 5 6 7 8 9 10 11 12 13 14 15 16
2 10 15 21 28 36 45 55 66 78 91 105 120
3 10 20 35 56 84 120 165 220 286 364 455 560
4 515 35 70 126 210 330 495 715 1001 1365 1820
5 1 6 21 56 126 252 438 720 1119 1666 2379 3312
6 0 1 7 28 84 210 462 864 1476 2343 3505 5128
7 0 0 1 8 36 120 330 792 1596 2892 4755 7240
8 0 0 0 1 9 45 165 495 1287 2793 5385 9300
9 0O 0 0 O 1 10 55 220 715 2002 4669 9592
10 00 0 0 0 1 11 66 28 1001 3003 7504
11 00 00 0 0 1 12 78 364 1365 4368
12 o 0 0 0 o0 0 O 1 13 91 455 1820
13 0600 00 0 0 0 0 1 14 105 560
14 o o0 0 0 O 0 o0 O 0 1 15 120
15 o 0 0 0 O 0 o0 O 0 0 1 16
16 6000 0 0O 0O 0 0 0 0 1




count

Number of k-term 4-pseudo progressions in {1,2,...,n}.
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k| n— 5 6 7 8 9 10 11 12 13 14 15 16
1 5 6 7 8 9 10 11 12 13 14 15 16
2 10 15 21 28 36 45 55 66 78 91 105 120
3 10 20 35 56 84 120 165 220 286 364 455 560
4 5 15 35 70 126 210 330 495 715 1001 1365 1820
5 1 6 21 56 126 252 462 792 1287 1666 2379 4368
6 0 1 7 28 84 210 462 924 1716 3003 5005 7888
7 0 0 1 8 36 120 330 792 1716 3432 6435 11440
8 0O 0 0 1 9 45 165 495 1287 3003 5385 12870
9 0O 0 0 O 1 10 55 220 715 1666 5005 11440

10 0O 0 0 O 0 1 11 66 286 1001 3003 8008
11 0O 0 0 O 0 0 1 12 78 364 1365 4368
12 0O 0 0 O 0 0 0 1 13 91 455 1820
13 0O 0 0 O 0 0 0 0 1 14 105 560
14 0O 0 0 O 0 0 0 0 0 1 15 120
15 0O 0 0 O 0 0 0 0 0 0 1 16
16 0O 0 0 O 0 0 0 0 0 0 0 1
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