
inv lve
a journal of mathematics

msp

Peg solitaire in three colors on graphs
Tara C. Davis, Alexxis De Lamere, Gustavo Sopena,

Roberto C. Soto, Sonali Vyas and Melissa Wong

2020 vol. 13, no. 5



msp
INVOLVE 13:5 (2020)

https://doi.org/10.2140/involve.2020.13.791

Peg solitaire in three colors on graphs
Tara C. Davis, Alexxis De Lamere, Gustavo Sopena,

Roberto C. Soto, Sonali Vyas and Melissa Wong

(Communicated by Joseph A. Gallian)

Peg solitaire is a classical one-person game that has been played in various
countries on different types of boards. Numerous studies have focused on the
solvability of the games on these traditional boards and more recently on mathe-
matical graphs. In this paper, we go beyond traditional peg solitaire and explore
the solvability on graphs with pegs of more than one color and arrive at results
that differ from previous works on the subject. This paper focuses on classifying
the solvability of peg solitaire in three colors on several different types of common
mathematical graphs, including the path, complete bipartite, and star. We also
consider the solvability of peg solitaire on the Cartesian products of graphs.

1. Introduction

Peg solitaire has been played in cultures across the world for over 300 years. Boards
can come in a variety of shapes and sizes, each with a different number of pegs.
The standard rules for a game of peg solitaire state that a board starts with a certain
number of pegs and one hole placed anywhere on the board, usually the center. The
player must have an ending state in which only one peg is remaining on the board by
removing all other pegs achieved by jumping adjacent pegs over one another. There
is a rich history of problems posed and solved on different types of boards [Beasley
1985] and recently there has been renewed interest in the subject [Bell 2007; 2008].

In the last few years Robert A. Beeler and his students have studied peg soli-
taire on graphs by modifying the rules as follows [Beeler et al. 2017; Beeler and
Paul Hoilman 2011; 2012; Beeler and Walvoort 2015]: suppose there is an edge
connecting vertices v1 and v2 and a second edge connecting vertices v2 and v3 with
pegs in vertices v2 and v3 (see Figure 1). Then a player may jump the peg in v3

over the peg in v2 to obtain the result in Figure 1. Following [Beeler and Walvoort
2015], we denote such a jump by v3 · Ev2 ·v1. Once the player jumps one peg over the
other, as seen in Figure 1, the peg that was jumped over is then removed. Although

MSC2010: primary 05C57; secondary 91A43.
Keywords: peg solitaire, combinatorial games, games on graphs.

791

http://msp.org
http://msp.org/involve/
https://doi.org/10.2140/involve.2020.13-5
http://https://doi.org/10.2140/involve.2020.13.791


792 T. C. DAVIS, A. DE LAMERE, G. SOPENA, R. C. SOTO, S. VYAS AND M. WONG

v1 v2 v3

v1 v2 v3

v1 v2 v3

Figure 1. Example of a move in peg solitaire.

others have created and analyzed different variations of peg solitaire on graphs
[Beeler and Rodriguez 2012; Engbers and Weber 2018; Engbers and Stocker 2015;
Loeb and Wise 2015], the goal of this paper is to generalize the results in [Beeler
and Paul Hoilman 2011] by adding an additional, “third,” color to the game. We
recognize that although the pegs in our version of the game come in two colors, it
might be best to think of the “third” color as the white holes, since, as explained
in Section 2, our version of the game is closely aligned with arithmetic in Z3. In
Section 2 we present the rules of peg solitaire on graphs with pegs with different
colors, in Section 3 we give results on different graphs with these new rules, and in
Section 4 we discuss some open questions.

2. Three-color peg solitaire

As described in [Beeler and Paul Hoilman 2011], each game consists of a graph,
G = (V, E), with |V | ≥ 2, that serves as the board, and a starting state S depicting
the initial placement of the pegs. As in that paper, we also assume that all graphs
are finite and undirected with no loops or multiple edges and that graphs are always
connected. In this version of peg solitaire we include two different types of pegs
and adjust the criteria for what moves can be executed. The starting state of each
game includes the following components:

• a singleton set S0 consisting of the vertex that has a peg of color 0, also called
the initial hole in the board;

• a set S1 which consists of vertices that have pegs of color 1; and

• a set S2 which is made up of vertices that have pegs of color 2.

Thus a starting state S will be denoted as S = (S0, S1, S2)

As in [Beeler and Paul Hoilman 2011] we note that a player can only execute a
jump x · Ey · z if xy, yz ∈ E and if z has color 0, while x and y do not. A difference
in the rules is that when a player jumps a peg with the same color, the peg that
has been jumped over then switches to the second color (see Figure 2). Moreover,
when adjacent pegs have different colors, then the peg that jumps over the different
colored peg creates a hole (see Figure 3).
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2 2 1

2 1 1
v1 v2 v3 v4

Figure 2. Example of moving a peg over a peg of the same color.

2 1 1

2 1
v1 v2 v3 v4

Figure 3. Example of moving a peg over a peg of a different color.

Moreover we note that we can translate the color rules in terms of modular
arithmetic as follows: If we allow the darker gray color in Figure 2 to correspond to
the number 2 and the lighter gray color to correspond to the number 1, then when a
peg jumps over another peg into a hole, the middle peg is replaced with the result of
an addition modulo 3. This generalizes the rules in [Beeler and Paul Hoilman 2011],
since in that paper all pegs have color 1, and the result of any jump is 1+1=0 mod 2,
a hole. Using modular arithmetic we obtain the following notation for Figure 2:

0 2 2 1
2 1 0 1.

In other words, when the peg in vertex v3 jumped over the peg in vertex v2 we add
the values of the pegs in v3 and v2 modulo 3 and obtain the number 1 in vertex v2.
This corresponds to the move in Figure 2. The new notation would express the
move in Figure 3 as

2 1 0 1
0 0 2 1.

Note that there is a game that is closely related to the one in the previous paragraph
and which can be played in a similar manner, namely the game

0 1 1 2,

where each color in the original game is replaced with the opposite1 color. Following
the same two moves highlighted above we obtain the following configurations of
the game:

0 1 1 2
1 2 0 2
0 0 1 2.

1The opposite color refers to the fact that 1 and 2 are additive inverses in Z3.
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Thus if 0 is a game on a graph G with starting state S1 = {u1, u2, . . . , um},
S2={v1, v2, . . . , vn}, and S0={vo}, then the game 0′ given by S′1={v1, v2, . . . , vn},
S′2 = {u1, u2, . . . , um}, and S0 = {vo} is called the opposite of 0. As in the example
above, the properties of the addition table for Z3 imply that any move made on a
game in three colors will be mirrored in the opposite game. This observation allows
us to reduce later arguments in the sense that the actual colors being used in the
game do not matter, only whether the peg that jumps is of the same or a different
color than the one that is being jumped over.

Similar to the traditional game of peg solitaire, the goal of this version is to
have one remaining peg, regardless of the color, on the board at the end of the
game. The game is in its terminal state when one of two things happen. Firstly, the
game is in its terminal state if the goal has been reached and there is only one peg
remaining on the board. In the second option, the game is in its terminal state if the
board has reached a point where there are no remaining moves to solve the game.
For example, there may be no allowable moves remaining (see Proposition 3.4).
Otherwise, there may be allowable moves creating a repeating loop in which no
additional pegs are removed (see Theorem 3.7).

We define the terminal state T = (T0, T1, T2) of each game as follows:

• a set T0 containing the vertices with remaining pegs of color 0, or holes;

• a set T1 that consists of the vertices with remaining pegs of color 1; and

• a set T2 that consists of the vertices with remaining pegs of color 2.

Thus the goal of playing each game is to reach a terminal state T, where |T1∪T2|= 1.
We say that a game on a graph, i.e., a graph G together with a starting state S,
has been won if there is a sequence of moves leading to a terminal state with
|T1 ∪ T2| = 1. We say that a game on a graph is a losing game if it is not a winning
game: no sequence of moves leads to a terminal state with |T1∪T2| = 1. This leads
us to the following definitions, where we intuitively think that a game is solvable if
we can win at least one game; and freely solvable if we can win every game.

Definition 2.1 (solvable). A graph G = (V, E) is solvable if there exists a starting
state S = (S0, S1, S2) that has an associated terminal state T = (T0, T1, T2) such
that |T1 ∪ T2| = 1.

Definition 2.2 (freely solvable). A graph G = (V, E) is freely solvable if for
every starting state S = (S0, S1, S2), there exists an associated terminal state T =
(T0, T1, T2) such that |T1 ∪ T2| = 1.

Definition 2.3 (k-solvable). A graph G = (V, E) is k-solvable for k ∈ N when k
is the minimal value such that there exists a starting state S = (S0, S1, S2), with
associated terminal state T = (T0, T1, T2) such that |T1 ∪ T2| = k, and all vertices
in T1 ∪ T2 are nonadjacent.
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We finish this section by noting our first result following from the discussion
thus far.

Lemma 2.4. Let G be a graph and let 0 be a game on G. Then 0 is a winning
game if and only if its opposite is a wining game.

In the next section we determine the solvability of many of the same graphs
considered in [Beeler and Paul Hoilman 2011].

3. Results

3A. Games on path and cyclic graphs. We begin by showing that path graphs with
n vertices, n ≥ 3, are solvable but not freely solvable. We remark that this result
provides a distinction between the results occurring in two [Beeler and Paul Hoilman
2011] versus three colors. We further note that while, at this point, we do not have
an example of a graph that is solvable in two colors yet not solvable in three colors,
there are individual games where this is the case, such as in P4. See Theorem 2.3
in [Beeler and Paul Hoilman 2011] for these examples.

A path graph Pn has n vertices and n− 1 edges connecting each of the vertices
along a line. The cycle graph Cn is the same as the path graph with one additional
edge connecting the first and last vertex. For more on path graphs and other basic
graph theory terminology, refer to [West 2001]. In the proofs below we label the
vertices as in Figure 4.

Theorem 3.1. The path graph on n vertices, Pn , is solvable for n ≥ 2. Moreover,
Pn is not freely solvable for n ≥ 3.

Proof. We begin by noting that we can win every game on the path graph P2; thus
P2 is freely solvable. We now show that Pn is solvable for all n ≥ 3, proceeding by
induction on the number of vertices. Suppose that we can win the game, 0, with
starting state S0 = {v1}, S1 = {v2, . . . , vn}, and S2 =∅; i.e., we can win the game

0 1 1 1 1 1 · · · 1.

Consider a similar game in Pn+1, denoted by 0′, with starting state S′0 = {v1},
S′1 = {v2, . . . , vn, vn+1}, and S′2 =∅,

0 1 1 1 1 1 · · · 1 1.

Then by moving v3 · Ev2 · v1 and then back v1 · Ev2 · v3, we see that we now have
holes in vertices v1 and v2 and pegs of the color 1 in vertices v3, . . . , vn+1. Now if

v1 v2 v3 · · · vn

Figure 4. A path graph with n vertices.
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we consider the vertices v2, . . . , vn+1 on their own, we see that their configuration
matches the starting state of the game 0. We can play the rest of the game 0′ as we
would the game 0 and win the game. Thus Pn is solvable for all n.

We can show that Pn is not freely solvable for n ≥ 3 in a similar manner. We
begin by noting that we cannot win the game 1 0 2 in P3. Now suppose n = 2k+ 1
for some integer k, and consider the game 0 in Pn with starting state given by
S0 = {v1}, S1 = {v2, v4, . . . , v2k}, and S2 = {v3, v5, . . . , v2k+1}, i.e.,

0 1 2 1 2 1 · · · 1 2.

Note that we only have one move, v3 · Ev2 · v1, at our disposal and we are left with

2 0 0 1 2 1 · · · 1 2.

We are again left with one possible move, v5 · Ev4 · v3, and now obtain

2 0 2 0 0 1 · · · 1 2.

We continue in this manner, always forced to make one move, v2i+1 · Ev2i · v2i−1, as
i goes from 3 to k so that our terminal state becomes T0 = {v2, v4, . . . , v2k, v2k+1},
T1 =∅, and T2 = {v1, v3, . . . , v2k−1}, i.e.,

2 0 2 0 2 0 2 · · · 2 0 0.

Thus |T1 ∪ T2| 6= 1 and since this is the only way to play this particular game we
conclude that Pn is not freely solvable for n odd.

Now consider a game in P2k , k ≥ 2, with the starting state S0 = {v1}, S1 =

{v2, v4, . . . , v2k}, S2 = {v3, v5, . . . , v2k−1}, given by

0 1 2 1 2 1 · · · 2 1.

Then just as before we note that we are forced to make one move each time we
try to play, namely, v2i+1 · Ev2i · v2i−1, as i goes from 1 to k − 1. Our terminal
state is similar to the one above: T0 = {v2, v4, . . . , v2k−2, v2k−1}, T1 = {v2k}, and
T2 = {v1, v3, . . . , v2k−3}, illustrated as

2 0 2 0 2 0 2 · · · 2 0 1.

Thus, |T1 ∪ T2| 6= 1 and so Pn is not freely solvable when n is even. �

The following result follows immediately from Theorem 3.1 and the fact that Pn

is a spanning subgraph of Cn .

Corollary 3.2. The cyclic graph on n vertices, Cn , is solvable for n ≥ 2.

The following lemma will be useful in a couple of proofs, both in this paper
and a subsequent paper, so we state it here. Moreover, this lemma introduces an
interesting phenomenon with cycle graphs alluded to below.
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1
2

2
1

Figure 5. A game that cannot be won in C5.

Lemma 3.3. The cycle graph on three vertices, C3, is freely solvable.

Proof. Let v1, v2, and v3 be the three vertices of the graph C3 such that there are
edges between v1 and v2, v2 and v3, and v3 and v1. Without loss of generality,
suppose that S0 = {v1}. Then we have two cases to consider.

• Case 1: The two pegs on the graph, in vertices v2 and v3, are different colors.
Then by v3 · Ev2 · v1 we win this game.

• Case 2: The two pegs on the graph, in vertices v2 and v3, are the same color.
Then by v3 · Ev2 · v1 we obtain a game equivalent to the game in Case 1. �

At this time we cannot determine if Cn is freely solvable for all n≥ 2, but playing
each game in C2, C3, C4, . . . , C11, with the aid of a computer program [Sopena
2019] we have determined that each of these graphs are freely solvable with the
exception of C5. The game in Figure 5 is a game that cannot be won in C5, which
we prove below.

Proposition 3.4. The game 0 with starting state S0 = {v1}, S1 = {v2, v5}, and
S2 = {v3, v4}, or any equivalent game, cannot be won.

Proof. Note that our first move is either v3 · Ev2 · v1 or v4 · Ev5 · v1. Regardless, we
create a situation where there is a vertex (either v2 or v5) that has a peg of one color,
while the vertices adjacent to it have pegs of a different color. Moreover, the other
two vertices have holes. Again, there is a choice of two moves but either one leads
to a terminal state with two pegs. �

3B. Games on complete bipartite graphs. In this section we will prove a result
that complements Theorem 2.7 of [Beeler and Paul Hoilman 2011], namely that
the complete bipartite graph is freely solvable. The complete bipartite graph, Km,n ,
has as its vertex set the union of disjoint sets of vertices X = {x1, . . . , xm} and
Y = {y1, . . . , yn}. The set of edges E connects all vertices from X to all vertices
in Y, but none from X to other vertices in X and none from Y to other vertices in Y.

Theorem 3.5. The complete bipartite graph Km,n is freely solvable for all m, n > 1.

Proof. Without loss of generality, let S0 = {x1}. The first step is to remove the peg
in y1 by x2 · Ey1 · x1. If the pegs in x2 and y1 are of the same color, we add a second
move of jumping back x1 · Ey1 · x2. After relabeling, we now have holes in x1 and y1.
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x1

y1

x2

y2

x3

Figure 6. An example of a complete bipartite graph, K3,2.

We repeat this action n−2 more times to remove all but one peg in Y until we have
holes in exactly the vertices y1, . . . , yn−1 and x1.

Now we will remove the peg in x2 by jumping yn · Ex2·yn−1. If the pegs in x2 and yn

are of the same color, we add a second move of jumping yn−1·Ex2·yn . After relabeling,
we now have holes in x1, x2, and y1, . . . , yn−1. We repeat this action m− 2 more
times to remove all pegs in X until we have holes in all vertices except yn . �

Corollary 3.6. The complete graph, Kn , is freely solvable for n > 1.

Proof. When n = 2, the graph is P2, which is clearly freely solvable. When n = 3,
the graph is C3, which is freely solvable by Lemma 3.3. For n > 3, the complete
bipartite graph is a spanning subgraph of the complete graph, so the result follows
from Theorem 3.5. �

Theorem 3.7. The star graph K1,n is (n−1)-solvable for n > 2.

Proof. Note that for n = 1, the graph is P2 and so is freely solvable, and for n = 2
the graph is P3, which is also solvable. We remind the reader that the graph K1,n

has vertex set {x1, y1, y2, . . . , yn} with an edge between x1 and yi for all 1≤ i ≤ n,
and no other edges.

If S0 = {x1}, then there are no possible moves. Otherwise, note that a peg in x1

is the only one that can possibly be removed from the graph. Suppose without loss
of generality that S0 = {yn} and that the first jump is y1 · Ex1 · yn . If the color of y1

is the same as x1, then the peg in x1 has not been removed. Therefore, we should
assume that the color of y1 is different than x1, in which case the move creates a
hole in x1 and a hole in y1. There are no possible moves after this. The terminal
state has |T1 ∪ T2| = n− 1. �

3C. Cartesian products of graphs. In this section we show that if we have a
graph G that is solvable, and H is any graph, then the Cartesian product of the two
graphs, G and H, is also solvable. If V (G) is the set of vertices a graph G and
V (H) is the set of vertices of graph H, then the set of vertices of the Cartesian
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(v1, y1)

(v2, y1)

(v1, x1)

(v2, x1)

(v1, y3)

(v2, y3)

(v1, y2)

(v2, y2)

Figure 7. An example of the Cartesian product of P2 and K1,3.

product G� H is given by V (G� H)= {(u, v) | u ∈ V (G), v ∈ V (H)}. Moreover,
as in [Beeler and Paul Hoilman 2011], we define Gu to be the copy of G induced
by u ∈ V (H). Note that Figure 7 shows us the Cartesian product P2 � K1,3 and
that there are new edges introduced between both copies of K1,3.

We begin by making a remark about a strategy that we have used before (see
proof of Theorem 3.1) and will be used heavily hereafter.

Remark 3.8 (there and back strategy). Let x, y and z be three vertices with edges
xy and yz. Suppose that a hole exists in either vertex x or z and that the other two
vertices contain pegs of the same color. Without loss of generality suppose the hole
is in the vertex z. Then we remove the peg in vertex y by x · Ey · z followed by z · Ey ·x .
We shall denote this “there and back move” by z ·←→y · x .

Theorem 3.9. Let G be a solvable graph and let T be a tree. Then G � T is
solvable.

Proof. Let V (G) be the vertices of G and V (T ) be the vertices of T. Furthermore,
let ur be the root of T, suppose that the height of T is n, and let Ui be the set of all
descendants of ur at height i for i ∈ {1, . . . , n}. Consider a winning game, 0, in G
with starting state (S0, S1, S2) and associated winning terminal state (T0, T1, T2).
Define the following starting state (S′0, S′1, S′2) for G � T :

• S′0 = {(v0, ur )} for S0 = {v0}.

• S′1 contains all of the vertices (v, u) such that v ∈ S1 and u = ur or u ∈Ui for
i ∈ {1, 2, . . . , n}.

• S′2 contains all of the vertices (v, u) such that v ∈ S2 and u = ur or u ∈Ui for
i ∈ {1, 2, . . . , n}.

Note that the description above has placed a copy of the winning game 0 in each
copy of G. We now fill in the vertices that are copies of the hole in vertex (v0, ur ).



800 T. C. DAVIS, A. DE LAMERE, G. SOPENA, R. C. SOTO, S. VYAS AND M. WONG

We choose and fix a vertex in V (G) that is adjacent to v0, call it v′, and note the
color of the peg in v′. Without loss of generality suppose that v′ is in S1. Let
(v0, u) ∈ S′1 for all u ∈Ui with i ∈ {1, . . . , n}. In other words, all of the vertices in
{v0}� T that are not (v0, ur ) have a peg of the same color as the peg in v′.

The proof proceeds in three steps, the first of which removes pegs that are in
vertices (v0, u) with u ∈Ui with i ∈ {1, . . . , n} so that we have holes in all of the
vertices in {v0}� T. The second step wins the game 0 now found in each copy
of T. The final step eliminates the remaining pegs except for one.

We begin the first step by inductively using Remark 3.8. We take the pegs in ver-
tices (v′, u)∈G�U1 to remove all pegs in vertices (v0, u)∈G�U1. In other words,
we are removing the pegs in vertices (v0, u) ∈ G �U1 by (v′, u) ·

←−−→
(v0, u) · (v0, ur )

for every u ∈U1. We now inductively use the vertices (v′, u) ∈ G �U2 to remove
all pegs in vertices (v0, u) ∈ G �U2 via (v′, u) ·

←−−→
(v0, u) · (v0, ur ) and proceed until

all of the vertices (v0, u) ∈ G � T have holes. Thus there is a copy of 0 in each
copy of G given by G � {u} for u ∈ T.

The second step follows easily as it involves winning the game 0 on each copy
of G on T. This leads to a peg on one vertex for each copy of G on T, say (t, u) for
some t ∈ G and for every u ∈ T. Again we proceed inductively but this time from
the “bottom up”. We begin by using the pegs in vertices (t, u) for all u ∈Un−1 to
remove the pegs in vertices (t, w) for all w ∈Un by (t, u) ·

←−→
(t, w) · (v, w) for some

v ∈ G adjacent to t ∈ G. We then repeat this step using the pegs in vertices (t, u)

for all u ∈Un−2 to remove the pegs in (t, w) for all w ∈Un−1 in a similar manner
until we reach the top of the tree. That is, after this process the last peg is in
vertex (t, ur ). �

Corollary 3.10. Let G be a solvable graph and let H be any graph. Then G � H
is solvable.

Proof. Every graph has a spanning tree T. Now we use the spanning tree of H and
Theorem 3.9. �

We leave the proof of the following corollary to the reader.

Corollary 3.11. Let G be a solvable graph and T a tree. Then G � T n is solvable
for all n ≥ 1.

4. Discussion

We conclude this paper with some open questions related to this project. Following
[Beeler et al. 2017; Beeler and Walvoort 2015] it is natural to ask about solvability
of peg solitaire in three colors on caterpillars and trees. It would be interesting to
explore peg solitaire in three colors on more traditional boards as well. As noted in
Section 3A, it remains a natural open question, building on the characterization of
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free solvability of cycle graphs in two colors given by [Beeler and Paul Hoilman
2011], as to whether the cycle graph Cn is freely solvable in three colors. We would
also propose creating a three-color variant of fool’s solitaire to compare with the
results in [Beeler and Rodriguez 2012].
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