Vol. 14, No. 1, 2021

Download this article
Download this article For screen
For printing
Recent Issues

Volume 15, 1 issue

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-4184 (e-only)
ISSN: 1944-4176 (print)
Author Index
Coming Soon
Other MSP Journals
Solutions of the variational equation for an $n$-th order boundary value problem with an integral boundary condition

Benjamin L. Jeffers and Jeffrey W. Lyons

Vol. 14 (2021), No. 1, 155–166

We discuss differentiation of solutions to the boundary value problem

y(n) = f(x,y,y,y,,y(n1)),a < x < b, y(i)(x j) = yij,0 i mj,1 j k 1, y(i)(x k) +cdpy(x)dx = yik,0 i mk, i=1kmi = n,

with respect to the boundary data. We show that under certain conditions, partial derivatives of the solution y(x) of the boundary value problem with respect to the various boundary data exist and solve the associated variational equation along y(x).

variational equation, integral condition, continuous dependence, smoothness, Peano theorem
Mathematical Subject Classification
Primary: 34B10
Secondary: 34B15
Received: 20 August 2020
Revised: 14 September 2020
Accepted: 28 September 2020
Published: 4 March 2021

Communicated by Johnny Henderson
Benjamin L. Jeffers
Trinity University
San Antonio, TX
United States
Jeffrey W. Lyons
The Citadel
Charleston, SC
United States