Vol. 14, No. 2, 2021

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 5, 723–899
Issue 4, 543–722
Issue 3, 363–541
Issue 2, 183–362
Issue 1, 1–182

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-4184 (online)
ISSN 1944-4176 (print)
 
Author index
To appear
 
Other MSP journals
When winning sets have full dimension

Pedro Birindiba and Katrin Gelfert

Vol. 14 (2021), No. 2, 195–207
Abstract

We investigate when sets which are winning in the sense of Schmidt games have full Hausdorff dimension. The classical result by Schmidt asserts that winning sets for games played in Euclidean spaces have full dimension. We recover this type of result for games played on attractors of contracting iterated function systems: either on a complete metric space with semiconformal contractions or on n and an iterated function system of C1 conformal maps with Hölder continuous derivative.

Keywords
Schmidt game, Hausdorff dimension, attractor of iterated function system, Ahlfors regularity, doubling measure
Mathematical Subject Classification 2010
Primary: 91A44, 28A80, 28A78, 37C45
Milestones
Received: 1 July 2019
Revised: 8 July 2020
Accepted: 23 December 2020
Published: 6 April 2021

Communicated by Kenneth S. Berenhaut
Authors
Pedro Birindiba
Instituto de Matemática
Universidade Federal do Rio de Janeiro
Cidade Universitária - Ilha do Fundão
Rio de Janeiro
Brazil
Katrin Gelfert
Instituto de Matemática
Universidade Federal do Rio de Janeiro
Cidade Universitária - Ilha do Fundão
Rio de Janeiro
Brazil