Vol. 14, No. 3, 2021

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 5, 723–899
Issue 4, 543–722
Issue 3, 363–541
Issue 2, 183–362
Issue 1, 1–182

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-4184 (online)
ISSN 1944-4176 (print)
 
Author index
To appear
 
Other MSP journals
A core model for $G_2$

Benjamin Cotton and Nathan F. Williams

Vol. 14 (2021), No. 3, 401–412
Abstract

The action of the affine Weyl group of type An on its coroot lattice is classically modeled using n-cores, which are integer partitions with no hooks of length n. Exploiting an identification between the coroot lattices of types G2 and A2, we use 3-cores to give a combinatorial model for the action of the affine Weyl group W˜(G2) on its coroot lattice.

Keywords
partitions, cores, affine Weyl group, affine symmetric group, coroot
Mathematical Subject Classification
Primary: 05E10
Milestones
Received: 12 June 2020
Revised: 9 February 2021
Accepted: 10 February 2021
Published: 17 July 2021

Communicated by Jim Haglund
Authors
Benjamin Cotton
Department of Mathematical Sciences
University of Texas at Dallas
Richardson, TX
United States
Nathan F. Williams
Department of Mathematical Sciences
University of Texas at Dallas
Richardson, TX
United States