Recent Issues
Volume 18, 4 issues
Volume 18
Issue 4, 567–746
Issue 3, 387–566
Issue 2, 181–385
Issue 1, 1–180
Volume 17, 5 issues
Volume 17
Issue 5, 723–899
Issue 4, 543–722
Issue 3, 363–541
Issue 2, 183–362
Issue 1, 1–182
Volume 16, 5 issues
Volume 16
Issue 5, 727–903
Issue 4, 547–726
Issue 3, 365–546
Issue 2, 183–364
Issue 1, 1–182
Volume 15, 5 issues
Volume 15
Issue 5, 727–906
Issue 4, 547–726
Issue 3, 367–546
Issue 2, 185–365
Issue 1, 1–184
Volume 14, 5 issues
Volume 14
Issue 5, 723–905
Issue 4, 541–721
Issue 3, 361–540
Issue 2, 181–360
Issue 1, 1–179
Volume 13, 5 issues
Volume 13
Issue 5, 721–900
Issue 4, 541–719
Issue 3, 361–539
Issue 2, 181–360
Issue 1, 1–180
Volume 12, 8 issues
Volume 12
Issue 8, 1261–1439
Issue 7, 1081–1260
Issue 6, 901–1080
Issue 5, 721–899
Issue 4, 541–720
Issue 3, 361–539
Issue 2, 181–360
Issue 1, 1–180
Volume 11, 5 issues
Volume 11
Issue 5, 721–900
Issue 4, 541–720
Issue 3, 361–540
Issue 2, 181–359
Issue 1, 1–179
Volume 10, 5 issues
Volume 10
Issue 5, 721–900
Issue 4, 541–720
Issue 3, 361–539
Issue 2, 181–360
Issue 1, 1–180
Volume 9, 5 issues
Volume 9
Issue 5, 721–899
Issue 4, 541–720
Issue 3, 361–540
Issue 2, 181–359
Issue 1, 1–180
Volume 8, 5 issues
Volume 8
Issue 5, 721–900
Issue 4, 541–719
Issue 3, 361–540
Issue 2, 181–359
Issue 1, 1–179
Volume 7, 6 issues
Volume 7
Issue 6, 713–822
Issue 5, 585–712
Issue 4, 431–583
Issue 3, 245–430
Issue 2, 125–244
Issue 1, 1–124
Volume 6, 4 issues
Volume 6
Issue 4, 383–510
Issue 3, 261–381
Issue 2, 127–260
Issue 1, 1–126
Volume 5, 4 issues
Volume 5
Issue 4, 379–504
Issue 3, 237–378
Issue 2, 115–236
Issue 1, 1–113
Volume 4, 4 issues
Volume 4
Issue 4, 307–416
Issue 3, 203–305
Issue 2, 103–202
Issue 1, 1–102
Volume 3, 4 issues
Volume 3
Issue 4, 349–474
Issue 3, 241–347
Issue 2, 129–240
Issue 1, 1–127
Volume 2, 5 issues
Volume 2
Issue 5, 495–628
Issue 4, 371–494
Issue 3, 249–370
Issue 2, 121–247
Issue 1, 1–120
Volume 1, 2 issues
Volume 1
Issue 2, 123–233
Issue 1, 1–121
Abstract
It is known that if the negative Pell equation
X 2
−
D Y 2
=
− 1 is solvable (in integers),
and if
( x , y ) is its solution with
the smallest positive
x
and
y , then all of
its solutions
( x n , y n )
are given by the formula
for
n
∈
ℤ .
Furthermore, a theorem of Walker from 1967 states that if the equation
a X 2
−
b Y 2
=
± 1 is solvable, and if
( x , y ) is its solution with
the smallest positive
x
and
y , then all of
its solutions
( x n , y n )
are given by
x n a
+ y n b
=
± ( x a
+
y b ) 2 n + 1
for
n
∈
ℤ .
We prove a unifying theorem that includes both of these results as special
cases. The key observation is a structural theorem for the nontrivial
ambiguous classes of the solutions of the (generalized) Pell equations
X 2
−
D Y 2
=
± N . We
also provide a criterion for determination of the nontrivial ambiguous classes of the
solutions of Pell equations.
Keywords
generalized Pell equation, ambiguous classes of solutions
Mathematical Subject Classification
Primary: 11D09
Milestones
Received: 2 June 2021
Revised: 23 March 2022
Accepted: 22 April 2022
Published: 14 April 2023
Communicated by Filip Saidak
© 2023 MSP (Mathematical Sciences
Publishers).