Download this article
 Download this article For screen
For printing
Recent Issues

Volume 18
Issue 5, 747–926
Issue 4, 567–746
Issue 3, 387–566
Issue 2, 181–385
Issue 1, 1–180

Volume 17, 5 issues

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-4184 (online)
ISSN 1944-4176 (print)
 
Author index
To appear
 
Other MSP journals
Counting hyperbolic components in the main molecule

Schinella D’Souza and Giulio Tiozzo

Vol. 18 (2025), No. 5, 747–754
Abstract

We count the number of hyperbolic components of period n that lie on the main molecule of the Mandelbrot set. We give a formula for how to compute the number of these hyperbolic components of period n in terms of the divisors of n and, in the prime power case, an explicit formula is derived.

Keywords
Mandelbrot set, hyperbolic components, holomorphic dynamics
Mathematical Subject Classification
Primary: 37F20
Secondary: 37F10
Milestones
Received: 14 July 2022
Revised: 14 July 2024
Accepted: 17 July 2024
Published: 13 November 2025

Communicated by Kenneth S. Berenhaut
Authors
Schinella D’Souza
Department of Mathematics
University of Michigan
Ann Arbor, MI
United States
Giulio Tiozzo
Department of Mathematics
University of Toronto
Toronto, ON
Canada