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NONLINEAR DYNAMIC CHARACTERISTICS OF A
VIBRO-IMPACT SYSTEM UNDER HARMONIC EXCITATION

JIANLIAN CHENG AND HUI XU

Dynamical behaviors of a two-degree-of-freedom (TDOF) vibro-impact system
are investigated. The theoretical solution of periodic-one double-impact motion
is obtained by differential equations, periodicity and matching conditions, and
the Poincaré map is established. The dynamics of the system are studied with
special attention to Hopf bifurcations of the impact system in nonresonance,
weak resonance, and strong resonance cases. The Hopf bifurcation theory of
maps in R2-strong resonance is applied to reveal the existence of Hopf bifurca-
tions of the system. The theoretical analyses are verified by numerical solutions.
The evolution from periodic impacts to chaos in nonresonance, weak resonance,
and strong resonance cases, is obtained by numerical simulations. The results
show that dynamical behavior of the system in the strong resonance case is more
complicated than that of the nonresonance and weak resonance cases.

1. Introduction

An impact damper is basically a small free mass within a main mass with clearances
between the moving masses. Impact dampers in various forms have been used
successfully for controlling high-amplitude vibration systems in many practical
applications, such as in cutting tools, turbine blades and tall flexible structures
like chimneys [Ema and Marui 1996; Cheng and Wang 2003; Wang et al. 2003;
Dimentberg and Iourtchenko 2004; Chatterjee and Mallik 1995]. If an impact
damper is properly designed, the vibration system structure can be effectively
simplified and its performance will be less sensitive to the changes of the sys-
tem parameters, as compared to a conventional dynamic vibration damper. The
vibration of the primary system is controlled by the transfer of momentum to a
secondary mass through repeated impacts. Impacts occur when the amplitudes
of vibration of the system exceed critical values. Investigation of vibro-impact
problems is of significance to the optimization design of machinery with clear-
ances or gaps, and to reliability analysis and noise suppression. Since systems
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with impact dampers are strongly nonlinear and discontinuous due to the existence
of one or more impact pairs of components, the vibro-systems can show very rich
and complicated dynamic behavior. In recent years, vibro-impact problems have
become a new subject in nonlinear dynamics. Subjects of recent research include
singularity [Chatterjee and Mallik 1996; Whiston 1992]; inelastic vibro-impacts
[Luo et al. 2001]; high codimension bifurcation [Wen 2001; Luo and Xie 2003;
Xie and Ding 2005]; Hopf bifurcations [Padmanabhan and Singh 1995; Luo and
Chen 2005; Ding et al. 2004; Luo 2004a]; and quasiperiodic impacts [Blazejczyk-
Okolewska 2001; Luo 2004b; Cone and Zadoks 1995]; and so on. Dynamics and
bifurcations of a class of single-degree-of-freedom self-excited oscillators with an
impact damper were studied by Chatterjee and Mallik [1995]. Cone and Zadoks
[1995] investigated the nonlinear behavior of an impact oscillator with the addition
of dry friction. The periodic solutions were interpreted by using bifurcation theory
and the nonlinear behavior of this system was identified as a function of both the
excitation amplitude and the excitation frequency for the two levels of dry friction
force. Many nonlinear dynamical behaviors including turning point bifurcations,
symmetry breaking pitchfork bifurcations, period-doubling bifurcation cascades,
and so on, were explained. Asfar and Akour [2005] studied the suppression of
self-excited vibrations with an impact viscous damper and used the optimization
method to determine the design parameters for suppressing self-excited vibrations.

In recent decades, nonsmooth dynamics of mechanical systems with impacts
have been a focus of several investigations; many new results were obtained and
a few new methods have been established. Holmes [1982] found small horse-
shoe maps in a mathematical model for the bouncing ball. The classical pattern
of period-doubling bifurcation cascade was observed numerically by Shaw and
Holmes [1983] and Thompson and Ghaffari [1982]. Recently, a few researchers
have begun to focus on the quasiperiodic and chaotic motions of vibro-impact
systems. Chatterjee and Mallik [1995] studied quasiperiodic vibro-impacts in a
class of single-degree-of-freedom self-excited oscillators with an impact damper.
Budd et al. [1995] studied vibro-impact of a single-degree-of-freedom system con-
tacting a single stop and proved that if the coefficient of restitution is less than
1, quasiperiodic motion cannot occur in the system. Luo and Xie [2003] inves-
tigated codimension-2 bifurcations of a single-degree-of-freedom impact oscilla-
tor and found a Hopf bifurcation of a period-2 two-impact orbit. Xie and Ding
[2005] studied Hopf bifurcations of a two-degree-of-freedom vibro-impact system
in the strong resonance, nonresonance, and weak resonance cases, and analyzed
the routes of quasiperiodic impacts to chaos. Nordmark [1991] investigated the
nonperiodic motion caused by grazing bifurcation. The normal form mapping
for such grazing phenomena was developed in [di Bernardo et al. 2001; 2002].
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Therefore, a periodically forced, piecewise, linear system with impacts is of great
interest.

In this paper, the impact damper system serves as a two-degree-of-freedom
(TDOF) vibro-impact system with a proportional damping property. We focus
our attention on Hopf bifurcation of period motions with one impact in the strong
resonance, nonresonance or weak resonance cases. Stability and bifurcation condi-
tions for periodic motion will be obtained. A Poincaré section of the vibro-impact
system with proportional damping is chosen to establish the Poincaré map, and
then periodic motion with one impact and the stability thereof are investigated by
analytical methods. Numerical simulations of periodic and chaotic motions will
be presented to validate the analytical results.

2. Mechanical model of the vibro-impact system

The mechanical model for a vibro-impact system with masses M1 and M2 is shown
in Figure 1. The main mass M1 is connected to the seat with a linear spring with
stiffness K and a linear viscous dashpot of damping constant C . In this system,
when the impact mass, or free mass, collides with the main mass during vibration,
an impulsive force acts on both and produces transfer of momentum with loss of
energy. Impact damping is used to simulate an inelastic collision with restitution
coefficient R < 1. We neglect friction and the duration of the impact between the
two masses.

The behavior of the system between any two consecutive impacts is considered.
For convenience, the time t between any two consecutive impacts is always set to
zero directly at the instant when the former impact is over, and the phase angle
is used only to make a suitable choice for the origin of time in the calculation.
Phase angle, velocities, and displacements of the system at that instant become
initial conditions in the subsequent process of the motion. Between impacts, the
differential equations of motion of the vibro-impact system are given by

M1 Ẍ1 + C Ẋ1 + K X1 = F0 sin(�T +ϕ), (1)

M2 Ẍ2 = 0 whenever |X1 − X2|< D/2, (2)

where the dot denotes differentiation with respect to time T .
Substituting the nondimensional parameters

ωn =
√

K/M1, ζ = n/ωn,

n = C/2M1, ω =�
√

M1/K ,

t = T
√

K/M1, xi = K X i/F0 (i = 1, 2),

δ = K D/2F0, µ= M2/M1
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Figure 1. Schematic diagram of the impact system.

into Equations (1) and (2) yields

ẍ1 + 2ζωn ẋ1 +ω2
nx1 = sin(ωt +ϕ), (3)

ẍ2 = 0 whenever |x1 − x2|< δ, (4)

where the dot denotes differentiation with respect to dimensionless time t .
When |x1 − x2| = δ, a collision occurs. According to the conservation law of

momentum and the definition of the restitution coefficient, we can obtain

ẋ1+ +µẋ2+ = ẋ1− +µẋ2−, (5)

ẋ2+ − ẋ1+ = R(ẋ1− − ẋ2−), (6)

where ẋi− and ẋi+ (i = 1, 2) denotes respectively, the instantaneous velocities
before and after impacts. By Equations (5) and (6), the departure velocities of the
masses M1 and M2 after impact at the instant are given by

ẋ1+ =
1 −µR
1 +µ

ẋ1− +
µ(1 + R)

1 +µ
ẋ2−,

ẋ2+ =
1 + R
1 +µ

ẋ1− +
µ− R
1 +µ

ẋ2−,

(7)

where µ= M2/M1.
The general solutions of Equations (3) and (4) are

x1(t)= e−ζωn t
(
a11 cos(ηωnt)+ b11 sin(ηωnt)

)
+ A sin(ωt + τ),

0 ≤ t ≤ t1,
x2(t)= a12 + b12t,

(8a)


x1(t)= e−ζωn(t−t1)

(
a21 cos(ηωn(t − t1))+ b21 sin(ηωn(t − t1))

)
+A sin(ωt + τ), t1 ≤ t ≤ tp,

x2(t)= a22 + b22(t − t1)
(8b)

where tp = t1 + t2, t1 and t2 are the traveling time of the impact mass M2 from
A → B and B → A in the groove. The integration constants are
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η =

√
1 − ζ 2,

γ = ω/ωn,

A = 1/ω2
n
(
(1 − γ 2)2 + (2ζγ )2

)1/2
,

τ = ϕ−ψ1,

ψ = tan−1(2ζγ /(1 − γ 2)),

aki and bki (k = 1, 2).

3. Stability of periodic motion and Poincaré map

We choose a Poincaré section σ ⊂ R4
× S, which is given by

σ =
{
(x1, ẋ1, x2, ẋ2, θ) ∈ R4

× S, ẋ1 = ẋ1+, ẋ2 = ẋ2+, x2 − x1 = δ
}
, (9)

to establish a Poincaré map

X ′
= f̃ (v, X), (10)

where θ = ωt , v ∈ R1 is a real parameter, X = X∗
+ 1X , X ′

= X∗
+ 1X ′,

1X = (1ẋ1+,1x10,1ẋ2+,1τ)
T , 1X ′

= (1ẋ ′

1+
,1x ′

10,1ẋ ′2+,1τ
′)T ,1X and

1X ′ are the disturbed vectors of X∗
· X∗

= (ẋ1+, x10, ẋ2+, τ )
T is a fixed point of

periodic impacts in Poincaré section, which corresponds to one impact during one
forcing cycle.

Under suitable system parameter conditions, the system given in Figure 1 can
exhibit 1-1-1 symmetrical periodic motion. We can characterize periodic motions
of the vibro-impact system by the symbol n-p-q, where p and q are the number
of impacts occurring at the stops A and B, respectively, and n is the number of
the forcing cycles. The periodic behavior means that if the dimensionless time t is
set to zero directly after an impact, it becomes 2π/ω just before the next impact
between the masses M1 and M2 at point location A, where the mass M2 come-and-
go motion time t1 and t2 in the groove are equal to π/ω. After the origin of the
θ -coordinate is displaced to an impact point, the determination is based on the fact
that they satisfy the following set of periodicity and matching conditions

xi (0)= −xi (π/ω)= xi0,

ẋi (2π/ω)= −ẋi−(π/ω)= ẋi−,

ẋ(0)= −ẋi+(π/ω)= ẋi+,

x2(0)− ẋ1(0)i = δ,

x2(π/ω)− x1(π/ω)= δ,

x2(2π/ω)− x1(2π/ω)= δ. (11)
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Substituting the periodicity boundary condition Equation (11) into the general so-
lution (8), we can solve for the integration constants aki , bki (k, i = 1, 2) and the
phase angle τ0. We obtain

ak1 = (−1)km(δ+ A sin τ0) ak2 = (−1)k+1(1 + m)(δ+ A sin τ0), (12)

bk1 = (−1)k+1πmn(δ+ A sin τ0) bk2 = (−1)kd(1 + m)(δ+ A sin τ0), (13)

τ0 = arccos
hq ± h

√
h2 − h2q2 + 1

1 + h2 , (14)

where

m =
sµde1

(e2
1 + 2ce1 + 1)ηωn − (se1d + ce1 + 1)µ

, d =
2ω
π
,

n =
1 + ce1

se1
, e1 = e−πζ/γ , γ = ω/ωn, s = sin ηπ/γ,

c = cos ηπ/γ, q = δ/A,

h =
(µ− R)(ω(1 + 2m)+πm(1 + 2ce1))+πmn(1 +µ)

πω(1 + R)

+
2me1(sη− cζ )− de1mn(sζ + cη)

dγ
. (15)

In Equation (14), “±” denotes that there may be two different 1-1-1 symmetrical
periodic motions under uniform system parameters. Because |cos τ0| ≤ 1, it should
be noted that the existence of periodic impacts meets the condition

h2
− h2q2

+ 1 ≥ 0,
∣∣∣∣hq ± h

√
h2 − h2q2 + 1

1 + h2

∣∣∣∣ ≤ 1. (16)

For expressing the actual motion of the system, the periodic solution must satisfy
simultaneously the conditions of existence and stability. We consider the perturbed
motion of 1-1-1 periodic motion to establish its Poincaré map. For simplicity of no-
tations, the origin of the θ -coordinate is displaced to an impact point; the solutions
of the perturbed motion are written in the form

x̃1(t)= e−ζωn t
(
ã11 cos(ηωnt)+ b̃11 sin(ηωnt)

)
+A sin(ωt + τ0 +1τ), 0 ≤ t ≤ t̃1,

x̃2(t)= ã12 + b̃12t

(17a)


x̃1(t)= e−ζωn(t−t1)

(
ã21 cos(ηωn(t − t̃1))+ b̃21 sin(ηωn(t − t̃1))

)
+A sin(ωt + τ0 +1τ), t̃1 ≤ t ≤ t̃p,

x̃2(t)= ã22 + b̃22(t − t̃1)

(17b)
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For the disturbed motion, the dimensionless time is set to zero directly after an
impact at point A between the masses M1 and M2. It becomes (2π + 1θ)/ω

just before the next impact at the same point, and the boundary conditions at two
successive impact points are given by

x̃i (0)= xi0 +1xi0, ˙̃xi (0)= ẋi+ +1ẋi+,

x̃i (t̃1)= −xi0 +1x ′

i0,
˙̃xi−(t̃1)= −ẋi− +1ẋ ′

i−,

˙̃xi+(t̃1)= −ẋi+ +1ẋ ′

i+, x̃i (t̃p)= xi0 +1x ′′

i0,

˙̃xi−(t̃p)= ẋi− +1ẋ ′′

i−,
˙̃xi+(t̃p)= ẋi+ +1ẋ ′′

i+,

(ẋ2+ +1ẋ2+)t̃1 + 2x10 +1x10 −1x ′

10 = −2δ,

(−ẋ2+ +1ẋ ′

2+
)(t̃p − t̃1)− 2x10 +1x ′

10 −1x ′′

10 = 2δ

1θ = ω(1t1 −1t2), (18)

where t̃1 = π/ω+1t1, t̃2 = π/ω+1t2.
Substituting the boundary condition Equation (12) into Equations (17a) and

(17b), we obtain

ã11 = x10 +1x10 − A sin(τ0 +1τ),

ã21 = −x10 +1x ′

10 − A sin(ωt̃1 + τ0 +1τ),

ã12 = x20 +1x20, ã22 = −x20 +1x ′

20, b̃12 = ẋ2+ +1x2+,

b̃22 = −ẋ2+ +1ẋ ′

2+
,

b̃11 = ẋ1+ +1ẋ1+ − Aω cos(τ0 +1τ)+ ζωn sin(τ0 +1τ)

+ ζωn(x10 +1x10)/ηωn,

b̃21 =

[
−ẋ1+ +1ẋ ′

1+
− Aω cos(ωt̃1 + τ0 +1τ)

− ζωn A sin(ωt̃1 + τ0 +1τ)− ζωn(x10 −1x ′

10)

]/
ηωn.

(19)

If we substitute the boundary condition Equation (18) into the perturbed solution
(Equations (17a) and (17b)) for t = te, we obtain

1x ′

10 = x̃1(te)− x10,

1ẋ ′1+ =
µ(1 + R)

1 +µ
˙̃x1(te)+

1 −µR
1 +µ

˙̃x2+(te)− ẋ1+,

1ẋ ′

2+
=
µ− R
1 +µ

˙̃x1(te)+
1 + R
1 +µ

˙̃x2(te)− ẋ2+,

1τ ′
=1τ +1θ. (20)
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Define a function w(1ẋ1+,1x10,1ẋ2+,1τ,1t1) as

w(1ẋ1+,1x10,1ẋ2+,1τ,1t1)
def
= x̃2(t̃1)− x̃1(t̃1)+ δ = 0. (21)

Assuming ∂w/∂1t1|(0,0,0,0) 6= 0, according to the implicit function theorem, Equa-
tion (21) can be solved as

1t1 =1t1(1ẋ1+,1x10,1ẋ2+,1τ).

Setting

1X = (1ẋ1+,1x10,1ẋ2+,1τ)
T

= (y1, y2, y3, y4)
T ,

we deduce the partial differentials of 1t1 with respect to 1ẋ1+,1x10,1ẋ2+ and
1τ , as follows:

∂1t1
∂y j

= −
∂w

∂y j

/
∂w

∂1t1
, j = 1, 2, 3, 4. (22)

In the same way, we define a function

h(1ẋ1+,1x10,1ẋ2+,1τ,1t1,1t2)
def
= x̃2(tp)− x̃1(tp)− δ = 0 (23)

By supposing ∂h/∂1t2|(0,0,0,0) 6= 0, based on the implicit function theorem, we
have

∂1t2
∂y j

= −

(
∂h
∂y j

+
∂h
∂1t1

∂1t1
∂y j

)/
∂h
∂1t2

. (24)

According to this analysis, we then obtain the Poincaré map, which is given by

1ẋ ′

1+
= f̃1(1ẋ1+,1x10,1ẋ2+,1τ,1θ)− ẋ1+

def
= f1(1ẋ1+,1x10,1ẋ2+,1τ),

1ẋ ′

10 = f̃2(1ẋ1+,1x10,1ẋ2+,1τ,1θ)− x10
def
= f2(1ẋ1+,1x10,1ẋ2+,1τ),

1ẋ ′

2+
= f̃3(1ẋ1+,1x10,1ẋ2+,1τ,1θ)− ẋ2+

def
= f3(1ẋ1+,1x10,1ẋ2+,1τ),

1τ ′
=1τ+1θ(1ẋ1+,1x10,1ẋ2+,1τ)

def
= f4(1ẋ1+,1x10,1ẋ2+,1τ). (25)

Letting v = ω, the Poincaré map Equation (25) can be expressed as

1X ′
= f̃ (v, X)− X∗ def

= f (v,1X), (26)

in which
f (v,1X)= ( f1, f2, f3, f4)

T ,

1X = (1ẋ1+,1x10,1ẋ2+,1τ)
T ,

1X ′
= (1ẋ ′

1+
,1x ′

10,1ẋ ′

2+
,1τ ′)T .
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We expand the function f (v,1X) as a Taylor series in the variables 1X and v, so
that it becomes

f (v,1X)=

∑
p+q≥1

Fpqv
p1Xq , (27)

Fpq =
1

p!q!

∂ p+q f (v,1X)
∂v p∂Xq

∣∣∣∣
(vc,0)

, Fp0 ≡ 0, p ≥ 1, (28)

f (v,1X)= F011X + vF111X + v2 F211X + F02[1X2
] + F03[1X3

] + · · · ,

(29)

where F02 and F03 denote the second-order and the third-order terms respectively.
Linearizing the Poincaré map at the fixed point X∗

= (ẋ1+, x10, ẋ2+, τ )
T results

in the matrix

D f (v, 0)=



∂ f1
∂1ẋ1+

∂ f1
∂1x10

∂ f1
∂1ẋ2+

∂ f1
∂1τ

∂ f2
∂1ẋ1+

∂ f2
∂1x10

∂ f3
∂1ẋ2+

∂ f4
∂1τ

∂ f3
∂1ẋ1+

∂ f3
∂1x10

∂ f3
∂1ẋ2+

∂ f3
∂1τ

∂ f4
∂1ẋ1+

∂ f4
∂1x10

∂ f4
∂1ẋ2+

∂ f4
∂1τ


(v,0,0,0,0)

. (30)

According to Equations (21) and (23), it is easy to calculate the derivatives in
the matrix Equation (30):

∂ f j

∂yi
=
∂ f̃ j

∂yi
+
∂ f̃ j

∂1t1

∂1t1
∂yi

+
∂ f̃ j

∂1t2

∂1t2
∂yi

i, j = 1, 2, 3, 4. (31)

It is possible to determine the stability of periodic impacts by the eigenvalues
of D f (v, 0). If all eigenvalues of D f (v, 0) are inside the unit circle, then the
periodic solution is stable; otherwise, it is unstable. If some of the eigenvalues of
the matrix D f (v, 0) lie on the unit circle in the complex plane when v = vc (vc is
the bifurcation value), then it is possible for bifurcations to take place. In general,
bifurcation occurs in various ways according to the number of the eigenvalues on
the unit circle and their position on the circle. When v = vc, D f (v, 0) has a pair
of simple complex conjugate eigenvalues λ1(vc) and λ̄1(vc) on the unit circle; all
other eigenvalues of D f (v, 0) are inside the unit circle. Under this circumstance,
1-1-1 symmetrical periodic motion may lead to Hopf bifurcation. In general, bifur-
cations from periodic motions to quasiperiodic ones occur under nonresonance or
resonance conditions in nonlinear dynamical systems.
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4. Hopf bifurcation in nonresonance and weak resonance cases

Consider the Poincaré map

1X ′
= f (v,1X). (32)

Let 1X∗(v) be a fixed point for the system Equation (32) for v in some neighbor-
hood of a critical value v = vc at which D f (v, 0) satisfies the following assump-
tions:

(A1) D f (v, 0) has a pair of complex conjugate eigenvalues

λ1 = λ1(vc) and λ2 = λ̄2(vc),

and satisfies |λ1(vc)| = 1. The other eigenvalues λi (vc) satisfy

|λi (vc)|< 1, i = 3, 4;

(A2) (d|λ1(vc)|dv)|v=vc > 0;

(A3) λm
1 (vc) 6= 1, m = 1, 2, 3, 4.

Let ki denote the eigenvector of D f (v, 0) corresponding to λi (v), for i = 1, 2, 3, 4.
If k3 and k4 are a complex conjugate pair of nonreal eigenvectors, define

H = (Re k1,− Im k1,Re k3,− Im k3);

otherwise,
H = (Re k1,− Im k1, k3, k4).

In some neighborhood of vc, the map Equation (32), under the change of variable

1X = HY, µ= v− vc, (33)

becomes
Y ′

= F(µ, Y ), (34)

where Y = (y1, y2, y3, y4)
T .

For the map Equation (34), there exists a local center manifold W (z, z̄;µ), on
which the local behavior of the map can be reduced to a two-dimensional map
8µ(z). This map can be presented

8µ(z)= λ(µ)z +

3∑
i+ j=2

gi j (µ)
zi z̄ j

i ! j !
+ O(|z|4), (35)

where λ(µ)= λ1(vc +µ), λ0 = λ(0), z = y1 + iy2, z̄ = y1 − iy2.
By center manifold theory, all bifurcation phenomena of F(µ, Y ) take place

on a two-dimensional manifold. Local dynamic behavior of the map Equation
(34) is equivalent to that of the two-dimensional map Equation (35) for µ in some
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neighborhood of a critical value µ= 0, so using the map Equation (35) and applying
the following lemma, we can discuss the existence of Hopf bifurcation for map
Equation (32) as v passes through vc.

Lemma 1 [Lanford 1973; Wan 1978]. Let 8µ(z) be a one-parameter family of
diffeomorphisms on R2 near z = 0, satisfying the following conditions:

(B1) 8µ(0)= 0 for all µ;

(B2) D8µ(0) has two conjugate eigenvalues λ(µ) and λ̄(µ), with |λ(0)| = 1;

(B3) (d|λ(µ)|/dµ)|µ=0 > 0;

(B4) λm(0) 6= 1, m = 1, 2, 3, 4.

Subject to assumptions (B1)–(B4), we can make a smooth µ-dependent change of
coordinates to put 8µ(z) into the normal form

8µ(z)= N8µ(z)+ O(|Y |
5). (36)

In polar co-ordinates,

N8µ(r, ϕ)= (|λ(µ)|r − f1(µ)r3, ϕ+ θ(µ)+ f3(µ)r3). (37)

If f1(0) > 0 (or f1(0) < 0), 8µ(z) has an attracting (repelling) invariant circle for
µ > 0 (or µ < 0). Suppose that the complex form of 80(z) is

80(z)= λ0z +

3∑
i+ j=2

gi j (0)
zi z̄ j

i ! j !
+ O(|z|4). (38)

Then, there is

f1(0)= Re
(
(1 − 2λ0)λ̄0

2(1 − λ0)
g20 g11

)
+

1
2 |g11|

2
+

1
4 |g02|

2
− Re

λ̄0g21

2
, (39)

where λ0 = λ(0), gi j (µ)(i + j = 2, 3) (see the Appendix).

If the Poincaré map Equation (32) satisfies the conditions (A1)–(A3), then it
is easy to show that the map Equation (35) satisfies the conditions (B1)–(B4).
If a set of system parameters can be chosen for the vibro-impact system under
which the Poincaré map Equation (32) satisfies the conditions (A1)–(A3), then by
computing f1(0), we can conclude the existence of an invariant circle for the map
Equation (35) and its stability in terms of the sign of f1(0). Because on the centre
manifold W (z, z̄;µ) the local behavior of the Poincaré map can be reduced to the
two-dimensional behavior of Equation (35), it is certain that if the map Equation
(35) has an attracting (repelling) invariant circle for µ> 0 (or µ< 0), a supercritical
(subcritical) Hopf bifurcation will take place for the vibro-impact system shown in
Figure 1 at v = vc.
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5. Numerical simulation of Hopf bifurcation and chaos
for the vibro-impact system

In this section, the analyses developed in the previous section are verified by the
numerical results for the impact system in Figure 1. The results of numerical
simulations are used to understand the rich dynamical behavior that our model
vibro-impact system exhibits. The use of these properties of chaotic systems can
offer special advantages in controlling chaotic systems. For instance, small per-
turbations can lead to large effects, and flexible switching is possible between
many different periodic orbits without changing the global configuration of the
system. Many feedback control strategies based on this general idea use small
perturbations in a control parameter to manipulate the behavior of chaotic systems.
These benefits cannot be achieved in nonchaotic systems in which large effects in
behavior typically require large changes in the control parameter.

Dynamic behavior of the vibro-impact system is shown in the projected Poincaré
sections. The Poincaré section is taken in the form 6 = {(x1, ẋ1, x2, ẋ2, θ) ∈ R4

×

S, ẋ1 = ẋ1+, ẋ2 = ẋ2+, x2 − x1 = δ}, which is four-dimensional. The section
is then projected onto the (x1, ẋ1) plane, which is called the projected Poincaré
section. Dynamic behavior of the vibro-impact system near the resonance point
can be demonstrated from those projected Poincaré sections.

5.1. Hopf bifurcation to chaotic motion in nonresonance and weak resonance
cases. Here we briefly analyze Hopf bifurcation to quasiperiodic torus and the
break of quasiperiodic torus to chaotic behavior of the model in nonresonance
and weak resonance cases. A set of parameters µ = 0.1, ωn = 0.5, ζ = 0.045,
R = 0.8, δ = 5.0 are considered. ω is taken as the control parameter, i.e. let v = ω.
The eigenvalues of D f (ω, 0) are computed for ω ∈ [0.5, 1.5]. A pair of complex
conjugate eigenvalues intersects the unit circle and the other eigenvalues are still
inside the unit circle as ω passes through ωc = 0.99176. ωc is a Hopf bifurcation
value, at which λ1,2(ωc) = 0.2730961 ± 0.9619876i , λ3,4(ωc) = 0.3047823 ±

0.2773642i , and |λ1,2(ωc)| = 1, λm
1,2(ωc) 6= 1, m = 1, 2, 3, 4. It is apparent that

the model with this set of system parameters satisfies a nonresonance or weak
resonance condition at the critical point. When ω ∈ (1.015, 1.45), the system can
exhibit stable symmetry 1-1-1 periodic motion. When ω = 1.2, the impact system
exhibits stable periodic 1-1-1 impact motion; see Figure 2(a). Figure 2(b,c) show
that the impact system exhibits unstable periodic motion, but in this case invariant
circle is not generated. Taking a theoretical fixed point of the system corresponding
to ω = 1.00857 as an initial map point, the attracting invariant circle is shown in
Figure 2(d,e,f). When the value of ω moves further away from the Hopf bifurcation
value, the invariant circle, in projected Poincaré sections, expands markedly; see
Figure 2(g,h). With further reduction in the control parameter ω, the attracting
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invariant circle is broken; see Figure 2(i,j) and gets locked into a periodic attractor
of higher period (higher than one cycle of the forcing). Subsequently, the system
becomes unstable and chaotic. The periodic attractors of higher period, via phase
locking (that is, the vibration frequencies of the oscillation system are locked in
various rational multiples of the forcing frequency), is shown for ω = 0.9817 in
Figure 2(k). The chaotic motion of the system, represented by an infinite point set
on a nonclosed curve in the projected Poincaré sections, is shown in Figure 2(l).

5.2. Quasiperiodic and chaotic behavior of the impact system in strong reso-
nance cases. There exists another route by which Hopf bifurcation leads to chaos
in the impact system shown in Figure 1. This route is characterized by a phenome-
non in which the system comes into the chaotic motion without a quasi-attracting
circle but with a single torus doubling. In order to study such a case, the dynamics
of the impact system with system parameters µ = 0.04, ωn = 0.6, ζ = 0.025,
R = 0.7, δ = 8.0 is analyzed for ω ∈ [0.93, 0.98] by numerical simulation. The
dynamic behavior of the system is shown in the projected Poincaré sections; see
Figure 4. The eigenvalues of D f (ω, 0) are computed, and the variation of the
eigenvalues is shown in Figure 3(a). When ω decreases through ωc = 0.976327,
a pair of complex conjugate eigenvalues λ1(ωc) and λ2(ωc) cross the unit circle
and all other eigenvalues λ3(ωc) and λ4(ωc) will still stay inside the unit circle.
Then ωc is a Hopf bifurcation value, and λ1,2(ωc) = −0.0000048 ± 1.000037i ,
λ4

1,2(ωc) = 1, λ3,4(ωc) = 0.2026327 ± 0.6311391i . It is obvious that the model
with this set of parameters satisfies the strong resonance condition at the critical
point.

Numerical simulation shows that the impact system exhibits an attracting invari-
ant circle in projected Poincaré section for 3561 impacts; see Figure 4(a). It is to
be noted that the attracting invariant circle is smooth in nature near the bifurcation
point. However, with a further decrease in the control parameter ω, the attracting
circle expands and the smoothness of circle is destroyed; see Figure 4(b,c). When
ω = 0.9454, the system yields 4-4-4 quasiperiodic impact motion in Figure 4(d).
Subsequently, at ω = 0.945, phase locking occurs, and the quasiperiodic motion
is locked into the periodic attractors of higher period (than one cycle of the force);
see Figure 4(e). With an increase in the control parameter ω, the invariant circle
becomes unstable and the system settles into chaotic motion. After the invariant
circle loses its stability, no tori doubling or phase locking occurs, and the circle
is quasi-attracting (map points inside the circle may be attracted to the circle and
map points on or outside the circle may stray from the circle). The chaotic motions
of system, represented by “belt-like” attractors in projected Poincaré sections, are
shown in Figure 4(f,g), and the width of the belt attractors increases with a decrease
in the control parameter. When ω= 0.9386, the chaotic motion of the system grows
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Figure 2. Projected Poincaré mapping section (x1, ẋ1+): (a) ω =

1.2, stable 1-1-1 fixed point; (b) ω = 1.01962, stable fixed point;
(c) ω = 1.0011368, unstable 1-1-1 fixed point; (d) ω=1.00857, un-
stable invariant torus; (e) ω = 1.00734, an attracting invariant cir-
cle; (f) ω = 1.00314, quasiperiodic 4-4-4 impacts; (g) ω = 0.9958,
quasiperiodic impacts; (h) ω = 0.99, quasiperiodic 10-10-10 im-
pact motions; (i) ω = 0.98193, initial break quasiperiodic in-
variant circle; (j) ω = 0.98185, break of quasiperiodic circle;
(k) ω = 0.9817, phase locked; (l) ω = 0.970453, chaotic motions
represented by a discontinuous infinite point set.
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Figure 3. The conjugate pair of eigenvalues intersecting the unit
circle for the strong resonance case.

out of the trivial attractor; see Figure 4(h). As the control parameter decreases
further, as ω = 0.937, the chaotic motion of the system disappears, and again the
system displays a stable 1-1-1 fixed point in projected Poincaré section; see Figure
4(i).

We next study the dynamic behavior of the impact system using numerical sim-
ulation, to determine the dynamics near the resonance point (λ2

1,2(ωc)= 1). The
system parameters µ= 0.05092, ζ = 0.015, ωn = 1, R = 0.7, δ = 6.0 are chosen.
The eigenvalues of D f (ω, 0) are computed for ω ∈ [0.415, 0.448] and two pairs of
complex conjugate eigenvalues λ1,2(ω) and λ3,4(ω) are obtained. The conjugate
pair of eigenvalues intersecting the unit circle is shown in Figure 3(b). When the
control parameter ω decreases to ωc = 0.43186, the complex conjugate eigenvalues
λ1,2(ωc) intersect the unit circle through the point (−1, 0), and λ3,4(ωc) remains
inside the unit circle. This ωc is the Hopf bifurcation value, at which λ1,2(ωc)=

−1.0000031 ± 0.00000272i , λ2
1,2(ωc) = 1, λ3,4(ωc) = 0.2054234 ± 0.4398154i .

Numerical simulation results in the projected Poincaré section are shown in Figure
5. After ω passes through the critical value ωc, the symmetric 1-1-1 periodic impact
motion destabilizes, which subsequently leads to a Hopf bifurcation into quasiperi-
odic motion, as seen in Figure 5(a). When ωc = 0.418, the smooth attracting
invariant circle is destroyed; see Figure 5(b). With a further decrease in ω, after
the invariant circle loses its stability, torus doubling and phase locking occur in
succession; see Figure 5(c,d). As ω is decreased further, chaotic motion arises:
Figure 5(e,f). The evolution from quasiperiodic motion to chaos is clearly shown
in the projected Poincaré map in Figure 5. This kind of route from quasiperiodic
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Figure 4. Projected Poincaré section (x1, ẋ1+): (a) ω = 0.975,
quasiperiodic motion represented by an attracting invariant circle;
(b) ω = 0.96, quasiperiodic impacts with wave of oscillation; (c)
ω = 0.9526, quasiperiodic impacts; (d) ω = 0.9454, 4-4-4 periodic
motion; (e) ω = 0.945, phased locked; (f) ω = 0.94, chaotic mo-
tion; (g) ω = 0.93998, chaotic motion; (h) ω = 0.9386, the chaotic
motion comes out the trivial attractor; (i) ω = 0.937, stable 1-1-1
fixed point.

impacts to chaos via quasi-attracting invariant circles is often observed in numerical
simulations of the dynamics of impact systems.

6. Conclusion

We studied the dynamic behavior of a two-degree-of-freedom impact system via
theoretical analysis and numerical simulation. The Poincaré map and fixed point
of period 1-1-1 impact are determined analytically. The local dynamical behavior
is discussed when the control parameters are changed near the critical point. The
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Figure 5. Projected Poincaré section (x1, ẋ1+): (a) ω = 0.4268,
an attracting invariant circle; (b) ω = 0.418, an attracting invari-
ant circle; (c) ω = 0.41754, the torus doubling; (d) ω = 0.41731,
phased locked; (e) ω = 0.41721, chaotic motion; (f) ω = 0.41719,
chaotic motion.

dynamic behavior of the system in the strong resonance case is more complicated
than in nonresonance and weak resonance cases. In the strong resonance case
λ4

1,2(ωc) = 1, the system can exhibit stable 4-4-4 periodic impact motion and
quasiperiodic motion, and the route from quasiperiodic motion to chaos is observed
by numerical simulation. In the strong resonance cases of λ2

1,2(ωc)= 1, the system
transitions from quasiperiodic impacts to chaos in a complicated way: quasiperi-
odic impacts → torus doubling → various kinds of phase locking → chaos. The
method established in the paper can be extended to some other analogous systems.
Machines and equipment whose behavior can be attempted to be modeled sy such
systems include vibration hammers, gear transmission, shakers, wheel-rail interac-
tion of high-speed coaches, and compacting machinery. However, it is necessary
to make further theoretical studies of the routes of bifurcation to chaos.
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Appendix

The relational coefficients are shown as follows:

g11 =
1
4

[
∂2 F1

∂y2
1

+
∂2 F1

∂y2
2

+ i
(
∂2 F2

∂y2
1

+
∂2 F2

∂y2
2

)]
(A1)

g02 =
1
4

[
∂2 F1

∂y2
1

−
∂2 F1
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2

− 2
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+ i
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W11 = (I − B)−1 H11, W02 =
(
λ̄2 I − B

)−1 H02, (A8)
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11, w

2
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n−2
11 )T , W02 = (w1
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02 )T .
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