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In this paper an analytical solution of an elastic isotropic thin-film on an elastic
substrate under an axisymmetric loading on the plane surface is presented. The
analysis is intended to model the micronanoindentation tests to evaluate some of
the relevant properties of thin films and provide information about the influence
of interface conditions between the film and the substrate.

The theoretical solution of the equations of three-dimensional elasticity is
obtained by using Dini and Fourier–Bessel expansions for the displacement field.
To describe the elastic mechanical interaction between the indenter and the film
for low load, we make use of the pressure distribution for contact between
two homogeneous bodies, and the corresponding displacement field is solved
in explicit form. The contact law is obtained with two different ideal interface
conditions between the film and the substrate: perfectly bonded and frictionless
contact.

This form of the elastic solution may be utilized for different axisymmetric
pressure distributions performed to model the interaction between the indenter
and the film, thus obtaining an analytical framework for comparing experimental
and numerical results.

1. Introduction

The growing importance of nanomicroscale materials has recently rekindled the
interest in thin-film technology and the mechanical properties of a thin solid film
deposited on a substrate. The interaction between a rigid indenter and an elastic
half-space is a classical problem of contact mechanics that was studied by Sned-
don [1966] by using the integral transforms technique. When a solid thin film is
deposited over the substrate, the problem becomes more complex and the elastic
response of the film subjected to indentation can be categorized according to the
film/substrate material properties. In the first case, the film is soft in comparison
with the substrate stiffness (soft-film); in the second case, the elastic properties of
the film and the substrate are comparable; and in the third case the thin film is stiffer
(hard film). For the first case, some investigators assume a mathematical artifice
that simplifies the analysis: the substrate is approximated as rigid [Matthewson
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1981]. However, for the other cases, a correct evaluation of the mechanical behav-
ior of the indentation problem requires knowledge of the effects of elastic properties
of both the film and the substrate.

Experimental indentation tests are frequently used to measure the elastic prop-
erties of materials and to investigate the role of adhesion forces. In order to exper-
imentally measure “film-only” properties, a commonly used rule of thumb for the
substrate influences is to limit the indentation depth to less than 10% of the film
thickness. Actually, some studies have shown that the critical parameter to take into
account in the experimental indentation tests is the ratio between the thickness of
the film and the contact area radius a; also in this case, it is proposed that the limit
is less than 10% in order to use the monolithic theory. While using this rule is
experimentally feasible for films that are greater than about a micrometer in thick-
ness, this approach cannot be used for very thin films. Hence these assumptions,
frequently accepted in the experimental tests for a large class of materials, are not
applicable at the nanoscale [VanLandingham 2003; Fischer-Cripps 2004].

Intense studies have taken into account the adhesion forces which arise between
the indenter and the film and on the interface film/substrate, and which give rise to
an increasing of the contact area with respect to the contact without adhesion case
[Maugis 1999].

In this work, we consider an isotropic film coating an isotropic elastic substrate
subjected to an axisymmetric loading condition which simulates the presence of
an indenter of assigned form in a quasi-static indentation test. We make two main
assumptions. First, in view of the local character of the indentation problem, we
introduce a suitable parameter b representing the radius in which the contact phe-
nomenon is contained. In such a way, we write the components of the displacement
field by means of Dini and Fourier–Bessel expansions, so avoiding the use of the
Hankel integral transforms and, consequently, the problem of their inversions [Yu
et al. 1990]. We shall subsequently show that, under suitable conditions, the spe-
cific value assumed for the parameter b is not relevant. Second, since the original
mixed boundary value indentation problem leads to dual integral equations that,
due to their complexity, can only be solved numerically by means of the Fred-
holm integral technique, we have changed the boundary conditions by assuming
a preassigned distribution of traction on the free surface; this assumption is also
introduced in the paper of Li and Chou [1997] within the framework of the Hankel
integral transform technique.

In so doing, we solve the elastic problem of a thin film coating/substrate system
under a prescribed axisymmetric load by using a Dini and a Fourier–Bessel expan-
sion for the radial and the vertical component of the displacement field respectively.
The elastic response of the film is analyzed with two different interface conditions
between the substrate and the film to bound the real case: frictionless contact
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and perfectly bonded. We also analyze the case in which the elastic properties
of the film are very different from the substrate ones (soft-film/hard substrate).
We get an explicit analytical form for the displacement and stress fields in terms
of Fourier–Bessel expansions depending on some coefficients related to the form
of the indenter and to the preassigned pressure distribution suitable to model the
interaction film-indenter.

Although we do not assume specific restrictions on the thickness of the film,
we consider the film “thin” for two reasons: first, because of its experimental rel-
evance in micro and nanoindentation tests; and second, because we are interested
in evaluating substrate effects that are not relevant for thick films (see the classical
half-space theory [Sneddon 1966]).

Finally, we remark that the indentation test involves plastic deformation; indeed
if we consider the loading of an initially flat specimen with a spherical indenter,
after an initial elastic response at low loads, there is an elastic-plastic deformation.
However, the elastic three-dimensional solution presented in this paper may be
used to describe the low load elastic film response when the classical half-space
solution is no longer true due to the presence of the film thickness.

The elastic solution may also be used to describe the unloading curve by adopt-
ing the Oliver and Pharr method; of course, one has to take into account the residual
depth at complete unload [Oliver and Pharr 1992; Field and Swain 1993].

2. Problem formulation

In this section we study the indentation problem of a rigid, frictionless axisymmet-
ric indenter on a circular thin-film/substrate system of radius b. The film is assumed
to be either in frictionless contact or perfectly bonded to an elastic substrate. The
thickness of the finite film overlaying the substrate is denoted as h. We choose a
cylindrical coordinate system (0, r, ϑ, z) such that z is parallel to the generator of
the indenter and the origin 0 is placed at the first contact point between the indenter
and the film.

Due to the local character of the effect, we limit our study to the volume of
a cylinder of radius b (the centre is the origin); by assuming that b is sufficiently
large with respect to the radius a of the contact area, we can suppose that, for r ≥ b,
the vertical displacement does not change in the presence of the indenter; in other
words, we assume w(b, z)= 0.

By considering an axisymmetric loading condition on the plane surface, we limit
our attention to the radial and the transversal displacement fields u(i)

= u(i)(r, z)
and w(i)

= w(i)(r, z) for the film and the substrate respectively (with i = f, s);
by using a Dini expansion in r for u(i)(r, z) and a Fourier–Bessel expansion in r
for w(i)(r, z) (see [Watson 1944], p. 576–577, equation (5) with ν = 1, H = 1 in
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equation (1), respectively), we write

u( f )(r, z)=−
∞∑
j=1

g( f )

j (z)φ j J1(φ jr), w( f )(r, z)=
∞∑
j=1

f ( f )

j (z)J0(φ jr), (1)

u(s)(r, z)=−
∞∑
j=1

g(s)
j (z)φ j J1(φ jr), w(s)(r, z)=

∞∑
j=1

f (s)
j (z)J0(φ jr). (2)

The functions g(s)
j (z) and f (s)

j (z) denote the variations of the displacements
through the thickness of the film and of the substrate; we have put

φ j =
Z (0)

j

b
,

where Z (0)
j denote, for j = 1, 2, 3, . . ., the positive zeros of the zero-order Bessel

function J0(r).
In this paper we assume that the film and the substrate are both isotropic; the

linear elasticity equations therefore assume the form

(λi+2µi )

(
∂2

∂r2 u(i)
+

1
r

∂

∂r
u(i)
−

1
r2 u(i)

+
∂2

∂z∂r
w(i)

)
+µi

(
∂2

∂z2 u(i)
−

∂2

∂z∂r
w(i)

)
= 0,

(λi+2µi )

(
∂2

∂z2 w(i)
+

1
r

∂

∂z
u(i)
+

∂2

∂z∂r
u(i)

)
+µi

(
∂2

∂r2 w(i)
−

∂2

∂z∂r
u(i)

)
−µi

1
r

(
∂

∂z
u(i)
−

∂

∂r
w(i)

)
= 0,

where λi and µi are the Lamé moduli.
By substituting the displacement field (1), (2) into these equations, we get the

differential equations

(λi + 2µi )
d2

dz2 f (i)
j +φ2

j

(
(λi +µi )

d
dz

g(i)
j −µi f (i)

j

)
= 0, (3)

µi
d2

dz2 g(i)
j − (λi +µi )

d
dz

f (i)
j −φ2

j (2µi + λi )g
(i)
j = 0, (4)

whose solution has the form

f ( f )

j (z)= C ( j)
1 cosh(φ j z)+C ( j)

2 sinh(φ j z)+C ( j)
3 z cosh(φ j z)+C ( j)

4 z sinh(φ j z),

g( f )

j (z)=−
1
φ j

C ( j)
1 sinh(φ j z)−

1
φ j

C ( j)
2 cosh(φ j z)
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−
1
φ j

C ( j)
3

(
1
φ j

λ f + 3µ f

λ f +µ f
cosh(φ j z)+ z sinh(φ j z)

)
−

1
φ j

C ( j)
4

(
1
φ j

λ f + 3µ f

λ f +µ f
sinh(φ j z)+ z cosh(φ j z)

)
,

f (s)
j (z)= Q( j)

1 cosh(φ j z)+ Q( j)
2 sinh(φ j z)+ Q( j)

3 z cosh(φ j z)+ Q( j)
4 z sinh(φ j z),

g(s)
j (z)=−

1
φ j

Q( j)
1 sinh(φ j z)−

1
φ j

Q( j)
2 cosh(φ j z)

−
1
φ j

Q( j)
3

(
1
φ j

λs + 3µs

λs +µs
cosh(φ j z)+ z sinh(φ j z)

)
−

1
φ j

Q( j)
4

(
1
φ j

λs + 3µs

λs +µs
sinh(φ j z)+ z cosh(φ j z)

)
.

in the film and in the substrate, respectively. The coefficients C ( j)
1 , C ( j)

2 , C ( j)
3 , C ( j)

4

and Q( j)
1 , Q( j)

2 , Q( j)
3 , Q( j)

4 will be uniquely determined by imposing the boundary
and interface conditions that will be introduced in the next section.

The displacement field is obtained by considering the sum over all values of j ;
thus

u( f )(r, z)=
∞∑
j=1

(
C ( j)

1 sinh(φ j z)+C ( j)
2 cosh(φ j z)

+C ( j)
3

( 1
φ j

λ f + 3µ f

λ f +µ f
cosh(φ j z)+ z sinh(φ j z)

)
+C ( j)

4

( 1
φ j

λ f + 3µ f

λ f +µ f
sinh(φ j z)+ z cosh(φ j z)

))
J1(φ jr), (5)

w( f )(r, z)=
∞∑
j=1

(
C ( j)

1 cosh(φ j z)+C ( j)
2 sinh(φ j z)

+C ( j)
3 z cosh(φ j z)+C ( j)

4 z sinh(φ j z)
)

J0(φ jr). (6)

u(s)(r, z)=
∞∑
j=1

(
Q( j)

1 sinh(φ j z)+ Q( j)
2 cosh(φ j z)

+ Q( j)
3

( 1
φ j

λs + 3µs

λs +µs
cosh(φ j z)+ z sinh(φ j z)

)
+ Q( j)

4

( 1
φ j

λs + 3µs

λs +µs
sinh(φ j z)+ z cosh(φ j z)

))
J1(φ jr), (7)
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w(s)(r, z)=
∞∑
j=1

(
Q( j)

1 cosh(φ j z)+ Q( j)
2 sinh(φ j z)

+ Q( j)
3 z cosh(φ j z)+ Q( j)

4 z sinh(φ j z)
)
J0(φ jr). (8)

3. Boundary and interface conditions

In order to explicitly find the form of the elastic solution (5)–(8), we investi-
gate the boundary condition on the free surface of the film and on the interface
film/substrate.

Due to the complexity of the indentation problem, an axisymmetric normal pres-
sure and vanishing shear stress components are assumed on the free surface, in
z = 0, as follows

σ ( f )
zz (r, 0)= p(r) and σ ( f )

r z (r, 0)= 0. (9)

It is convenient to write the normal pressure distribution p(r) with a Fourier–
Bessel expansion in the form

p(r)=

∞∑
j=1

A j J0(φ jr), where A j =
2

∫ a
0 r p(r)J0(φ jr)dr

b2 J1(bφ j )2 . (10)

A detailed discussion on the expansion convergence can be found in [Watson
1944]. On the other hand, in the substrate, for large z, we assume

lim
z→∞

u(s)(r, z)= 0 and lim
z→∞

w(s)(r, z)= 0. (11)

These conditions give the following equations: Q( j)
1 =−Q( j)

2 and Q( j)
3 =−Q( j)

4 .
Now we introduce two different conditions in the interface zone; the film is as-

sumed to be in frictionless contact or perfectly bonded to a substrate. The solutions
obtained for both these ideal cases are introduced to bound the real cases where
the contact between the film and the substrate is neither frictionless nor perfectly
bonded.

3.1. Perfectly bonded case. On the interface surface z = h, we require the conti-
nuity of displacement and traction components as follow

[w(r, h)] = 0, [u(r, h)] = 0, (12)

[σzz(r, h)] = 0, [σr z(r, h)] = 0. (13)

The conditions in (12), (13) together with (9) allow us to get the explicit form of
the remaining unknown coefficients C ( j)

α , α = 1, . . . , 4 and Q( j)
α , α = 2, in terms

of the A j coefficients.
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In the case of a rigid substrate, by putting λ( f )
= λ and µ( f )

= µ, the interface
conditions

w(r, h)= 0 and u(r, h)= 0 (14)

give rise to the following simplified forms for the coefficients:

C ( j)
1 =−

(λ+ 2µ)
(
(λ+ 3µ) sinh(2φ j h)− 2φ j h(λ+µ)

)
4µφ j

(
(λ+µ)(λ+ 3µ) sinh2(φ j h)+φ2

j h2(λ+µ)2+ (2µ+ λ)2
) A j ,

C ( j)
2 =

(λ+ 2µ)(λ+ 3µ) cosh(2φ j h)+ 2φ2
j h

2(λ+µ)2
+ (λ+ 2µ)(λ+ 3µ)

4µφ j
(
(λ+µ)(λ+ 3µ) sinh2(φ j h)+φ2

j h2(λ+µ)2+ (2µ+ λ)2
) A j ,

C ( j)
3 =−

(λ+µ)
(
(λ+ 3µ) cosh(2φ j h)+ (λ+µ)

)
4µ

(
(λ+µ)(λ+ 3µ) sinh2(φ j h)+φ2

j h2(λ+µ)2+ (2µ+ λ)2
) A j ,

C ( j)
4 =

(λ+µ)
(
(λ+ 3µ) sinh(2φ j h)− 2hφ j (λ+µ)2

)
4µ

(
(λ+µ)(λ+ 3µ) sinh2(φ j h)+φ2

j h2(λ+µ)2+ (2µ+ λ)2
) A j .

The coefficients A j can be found by using the expression in (10) for the pressure
on the free film surface.

3.2. Frictionless contact. On the interface surface z = h, we require the continu-
ity of transversal displacement components, traction components, and null shear
traction, as follows:

[w(r, h)] = 0, σ (i)
r z (r, h)= 0,

[σzz(r, h)] = 0, [σr z(r, h)] = 0.

Together with (9), these conditions allow us to get the coefficients C ( j)
α , α =

1, . . . , 4 and Q( j)
α , α = 2, 3, in terms of the A j .

For a rigid substrate the coefficient expressions assume the simplified form

C ( j)
1 =−

(λ+ 2µ)(cosh(2φ j h)− 1)

2µφ j (λ+µ)(sinh(2φ j h)+ 2φ j h)
A j ,

C ( j)
2 =

(λ+ 2µ) sinh(2φ j h)+ (λ+µ)2φ j h
2µφ j (λ+µ)(sinh(2φ j h)+ 2φ j h)

A j ,

C ( j)
3 =−

sinh(2φ j h)

2µ(sinh(2φ j h)+ 2φ j h)
A j ,

C ( j)
4 =

cosh(2φ j h)− 1
2µ(sinh(2φ j h)+ 2φ j h)

A j .
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The displacement field is obtained in explicit form from Equations (5)–(8), by
taking into account the coefficients expression A j for detailed preassigned pressure
form (10) and the coefficients C ( j)

α , α = 1, . . . , 4 and Q( j)
α , α = 2, for different

interface conditions (Sections 3.1, 3.2).
Now we specify the form of the indenter since it is related to the pressure field

on the free surface. Specifically, in the following we assume that the pressure
distribution is given by the classical solutions for the indentation on an elastic half-
space.

We remark that it is also possible to introduce different pressure distributions
to simulate different effects between the indenter and the film (adhesion forces,
approximate pressure distribution taking into account the thickness of the films;
see [Yang 2003; Chadwick 2002]).

3.2.1. Rigid flat-ended cylindrical punch. We consider the case in which the film
is deformed by a flat-ended rigid cylinder with radius a. In this case the pressure
distribution for the homogeneous half-space is:

p(r)=−p0

(
1−

r2

a2

)− 1
2

, p0 =
P

2πa2 ,

where P is the resultant applied load. By using equation (10) the coefficients A j

assume the following form

A j =
2ap0 sin(aφ j )

b2φ j J1(bφ j )2 .

3.2.2. Rigid spherical punch with shallow indentation. We consider a spherical
punch by assuming that the radius a of the contact area is much smaller than the
radius R of the sphere, that is, a� R. The pressure distribution, for r < a, has the
form

p(r)=−p0

(
1−

r2

a2

) 1
2

with p0 =
3P

2πa2 and a3
=

3P R(1− ν2)

4E
.

In this case the coefficients A j are

A j =
2p0

(
sin(aφ j )− aφ j cos(aφ j )

)
ab2φ3

j J1(bφ j )2
.

3.2.3. Rigid conical punch. We consider a right circular cone with semi-vertical
angle α whose axis coincides with the z-axis and the vertex points downward into
the interior of the layer. The pressure distribution under the punch is

p(r)=−p0 cosh−1
(

a
r

)
with p0 =

P
πa2 , a2

=
2P(1− ν2)

π E tan β
with β =

π

2
−α.
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The j-th coefficient has the form

A j =
p0a2

(
1− 1

12a2φ2
j +

1
360a4φ4

j − · · ·
)

b2 J1(bφ j )2 .

This expression was obtained by using an expansion of the J0(r) Bessel function.

4. Contact law and stress distribution in thin film

The contact law is obtained by using the explicit form of the transversal displace-
ment (6) in z = 0 and r = 0 and can be written in the following compact form

δfilm =

∞∑
j=1

K j A j (15)

Now, by using the explicit form of the coefficients C ( j)
α , α = 1, . . . , 4 and

Q( j)
α , α = 2, we get the terms K j in which we take into account the interface

conditions; the pressure distribution form allows us to determine the terms A j .
In the case of a thin film on a rigid substrate, the terms K j are

K bonded
j =

(ν2
− 1)

(
(4ν− 3) sinh(2φ j h)+ 2φ j h

)
Eφ j

(
(4ν− 3) cosh(φ j h)2− (2ν− 1)2−φ2

j h2
) ,

K contact
j =

2(ν2
− 1)(cosh(2φ j h)− 1)

Eφ j (sinh(2φ j h)+ 2φ j h)
,

where ν is the Poisson’s ratio and E the Young’s modulus.
The knowledge of the stress field is relevant for the understanding of the failure

mechanism of the coating/substrate system. The j -th term of the stress components
for the case of a rigid substrate can be written as follows:

σ ( j)
zz = 2µJ0(φ jr)

(
C ( j)

1 φ j sinh(φ j z)+C ( j)
2 φ j cosh(φ j z)

+C ( j)
3

( µ

λ+µ
cosh(φ j z)+φ j z sinh(φ j z)

)
+C ( j)

4

( µ

λ+µ
sinh(φ j z)+φ j z cosh(φ j z)

))
,
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σ ( j)
r z = 2µJ1(φ jr)

(
C ( j)

1 φ j cosh(φ j z)+C ( j)
2 φ j sinh(φ j z)

+C ( j)
3

(
λ+ 2µ

λ+µ
sinh(φ j z)+φ j z cosh(φ j z)

)
+C ( j)

4

(λ+ 2µ

λ+µ
cosh(φ j z)+φ j z cosh(φ j z)

))
,

σ ( j)
rr =

2µ

r

(
C ( j)

1 sinh(φ j z)+C ( j)
2 cosh(φ j z)

)(
−φ jr J0(φ jr)+ J1(φ jr)

)
+

2µC ( j)
3

rφ j

((λ+ 3µ

λ+µ
cosh(φ j z)+φ j z sinh(φ j z)

)
J1(φ jr)

−

(
φ jr

2λ+ 3µ

λ+µ
cosh(φ j z)+φ2

j r z sinh(φ j z)
)

J0(φ jr)

)
+

2µC ( j)
4

rφ j

((λ+ 3µ

λ+µ
sinh(φ j z)+φ j z cosh(φ j z)

)
J1(φ jr)

−

(
φ jr

2λ+ 3µ

λ+µ
sinh(φ j z)+φ2

j r z cosh(φ j z)
)

J0(φ jr)

)
,

σ
( j)
ϑϑ =−

2µ

r

(
C ( j)

1 sinh(φ j z)J1(φ jr)+C ( j)
2 cosh(φ j z)J0(φ jr)

)
−

2µC ( j)
3

rφ j

((λ+ 3µ

λ+µ
cosh(φ j z)+φ j z sinh(φ j z)

)
J1(φ jr)

+φ jr
λ

λ+µ
cosh(φ j z)J0(φ jr)

)
−

2µC ( j)
4

rφ j

((λ+ 3µ

λ+µ
sinh(φ j z)+φ j z cosh(φ j z)

)
J1(φ jr)

+φ jr
λ

λ+µ
sinh(φ j z)J0(φ jr)

)
.

The explicit expressions for the case in which the film and the substrate are both
elastic are obtained in an analogous way.

5. Numerical results

In this section we present two numerical examples useful to analyze the behavior
of the contact law and the stress distribution in terms of the film thickness and the
elastic properties of the substrate and the film.

Consider therefore a thin isotropic film (E = 2 MPa and ν = 0.25) coated on a
rigid substrate and in contact with a rigid sphere of radius R = 10 µm. In Figure 1
we show the contact law, for different thickness of the film (h = 5 µm and 10 µm),
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obtained by using the solutions presented in Section 4 with Hertzian pressure dis-
tributions.

We remark that, when the thickness of the film is very large with respect to the
contact area radius a (i.e. h� a), we obtain numerical results in agreement with
the theory of an elastic half-space with the properties of the film. On the other
hand, when the thickness of the film is within the range between a and 10a, the
elastic response of the film changes for the presence of the rigid substrate [Yu et al.
1990; Li and Chou 1997]. Moreover, when the contact area radius is very large
with respect to the film thickness (i.e. h� a), or in the case of a very soft material,
the pressure distribution on the free surface of the film, and therefore the terms
A j of the expansion (10), must be assigned by using models suitable to take into
account the adhesion forces or the different pressure distribution [Maugis 1999].

Figure 2 shows the radial displacement in two ideal interface cases when the
film thickness is h = 5 µm. The radial displacement, near the edge of the contact
area, has a change of sign in the thickness; in particular, for r = a and z = 0 the
radial displacement is negative (for both the interface cases) while it is positive in
the interface for the frictionless case and zero for the perfectly bonded case.

Figures 3 and 4 show the normal, radial and tangential stress components for
P = 2 µN; the maximum value of the normal compression stress is present on the

P (µN)

δ (µm)

h = 10 µm

h = 5 µm
Hertzian contact law

Frictionless contact

Perfectly bonded interface

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 1. Contact laws for different film thicknesses.
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z (µm)

ur (nm)

frictionless contact

perfectly bonded interface

−40

−30

−20

−10

0

10

20

1 2 3 4 5

Figure 2. Radial displacement along the z-axis (P = 2 µN, r = a).
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Figure 3. Radial and normal stress along the z-axis (P = 2 µN,
r = 0).
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Figure 4. Shear stress along the z-axis (P = 2 µN, r = a).

free surface and it is equal, for r = 0, to the value of load pressure distribution po

(see Section 3.2.2). An analysis for different film thickness values shows that the
component stress σzz in the interface zone increases as the thickness of the film
decreases.

The second example deals with different films on an elastic substrate. We have
considered thin films (oxide SiO2 and tungsten W) coated on a silicon substrate
(E = 165 GPa and ν = 0.27) and we have compared the numerical analytical results
with the experimental data obtained in Chudoba et al. [2000].

Figure 5 shows the results for the oxide film (E = 72 GPa and ν = 0.17) with
different thicknesses; the analytical model with Hertzian pressure distributions is
suitable to describe the load-displacement behavior for elastic indentations with a
spherical indenter for small values of the contact area radius a. In a first range,
the contact law is in agreement with the elastic homogeneous half-space solution
for oxide bulk material; in a second range, the contact law is different from the
Hertzian contact law due to the substrate effects. Finally, for large contact area
radius, the analytical results underestimate the experimental results to the order
of 20%; the reason for this fact is that the present analysis is limited to the ide-
alized static problem in which other effects encountered in indentation problems
are neglected (the different pressure distribution taking into account the substrate,
adhesion forces, large deformation, and dynamic effects). In this case the Hertzian
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Figure 5. Contact law for SiO2 films on Si for different interface conditions.

contact law for a half-space with the film constitutive properties overestimate the
experimental results.

The results for a tungsten film (E = 409 GPa and ν = 0.28) are shown in Figure
6; the analytical model with a Hertzian pressure is suitable to describe the load-
displacement behaviour for small values of the contact area radius; for large values
of a, the results obtained overestimate the experimental results since the Hertzian
pressure distribution of the half-space is inaccurate to simulate the action of the
indenter on the film for the soft substrate effect and a more appropriate pressure
distribution needs to be assigned [Yang 2003; Chadwick 2002]. In this case the
Hertzian contact law underestimates the experimental results.

More explicitly, the analytical results obtained for large a show that the Hertzian
overestimation for soft films on hard substrates and the underestimation for hard
films on soft substrates are significant when the indentation depth is less than one-
tenth of the film thickness. This behaviour of over and underestimation by the
Hertzian theory for soft and rigid films is in agreement with the results recently
obtained by Wang et al. [2004], where a finite element analysis devoted to finding
substrate effects at the nanoscale is presented.

Finally we remark that, for the cases discussed in this paper, we have numer-
ically checked that, for value of b greater than 10a, the values obtained become
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Figure 6. Contact law for tungsten film (W) on Si for different
interface conditions.

numerically stable (by further increasing b) and so the specific choice assumed for
b becomes irrelevant. On the other hand, assuming a large b requires considering
Fourier–Bessel and Dini expansions up to very high terms, whose evaluation is
unfruitful and very time-consuming. In our examples we assumed b = 10a and we
truncated the series when the data stabilized: typically with about 300 terms.

6. Conclusions

An elastic analysis has been performed to determine the displacement and the stress
fields of thin-film coating/substrate system subjected to an axisymmetrical contact
loading. The contact law presented in Section 4 approaches the half-space one
when the film thickness is sufficiently large with respect to the contact area ra-
dius. If the film thickness is not large compared to the contact radius area, the
response of the film is different because of the influence of the substrate. On the
other hand, if the film thickness is very small compared to the contact radius, the
classical pressure distribution in the half-space simulates inaccurately the action
of the indenter on the film and a more appropriate pressure distribution has to be
preassigned. Not only the classical pressure distributions under the indenter are



556 ROBERTA SBURLATI

potentially inaccurate, but so are the classical relations between contact area and
load.

The solutions presented in Section 3, for different indenter shapes, furnish good
suggestions for the study of the effect of adhesive forces that become more relevant
when the coating bodies are small or compliant in nature. Finally, we remark that it
is possible to extend the analysis of [Johnson and Sridhar 2001] adhesion theory for
a thin elastic film on an elastic substrate by using the solution obtained in Section 4
[Maugis 1999].
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