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AXIALLY MOVING THERMOELASTIC BEAM-PLATE

KYUNGSOO KWON AND USIK LEE

Axially moving thin-walled structures exposed to sudden external thermal loads
may experience severe vibrations. For accurate predictions of the thermally in-
duced vibrations, this paper develops a spectral element model for the axially
moving beam-plates subjected to sudden external thermal loads. The spectral
element model is formulated from the frequency-dependent dynamic shape func-
tions which satisfy the governing equations in the frequency domain. Thus,
when compared with the conventional finite element model in which simple
polynomials are used as the shape functions, the spectral element model provides
exact solutions by treating a whole uniform structure member as a single finite
element, regardless of its length. Numerical studies are conducted to evaluate
the present spectral element model and also to investigate the dynamic character-
istics of an axially moving beam-plate subjected to a sudden thermal load on its
upper surface.

1. Introduction

A sudden thermal load applied to a structure may induce rapid movements in that
structure, causing it to vibrate. These thermally induced vibrations may be encoun-
tered, for example, in high-speed modern aircraft subjected to aerodynamic heating,
nuclear reactors in extremely high temperature and temperature gradient environ-
ments, high-speed propulsion units, and galvanized steel strips passing through a
hot zinc tank.

The thermally induced vibration of a beam subjected to a suddenly applied heat
flux distributed along its span was studied in [Boley 1956]. Since then many studies
have been conducted for various thermoelastic structures such as beams [Boley
and Barber 1957; Yu 1969; Manolis and Beskos 1980; Massalas and Kalpakidis
1984; Eslami and Vahedi 1989; Kidawa-Kukla 1997], laminated beams [Al-Huniti
2004], plates [Boley 1956; Kozlov 1972; Takeuti and Furukawa 1981; Massalas
et al. 1982; Trajkovski and C̆ukić 1999; Verma 2001; Arafat et al. 2003; Al-Huniti
2004], laminated plates [Chandrashekhara and Tenneti 1994; Mukherjee and Sinha

Keywords: Thermally induced vibration, beam-plate, axially moving structure, spectral element
model, spectral element analysis, dynamic characteristics.
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1996], panels [Sharma 2001; Oguamanam et al. 2004], cylinders [Takeuti et al.
1983], and so forth. [Lee 1985] conducted thermoelastic damping analysis for the
beams, plates and shells undergoing flexural vibration, and [Kinra and Milligan
1994] considered thermoelastic damping for beams. [Tauchert 1991] presented
an extensive review on the subject of thermally induced vibrations of plates, and
[Thornton 1992] made a survey of the literature on thermal structures, mostly fo-
cusing on aerospace applications. To eliminate the paradox of infinite velocity
of heat propagation in the classical theory of thermoelasticity [Biot 1956], some
researchers such as [Lord and Shulman 1967] developed the generalized theory of
thermoelasticity by introducing thermal relaxation times. However, as the thermal
relaxation effect is very small at high temperatures [Lord and Shulman 1967], the
classical theory of thermoelasticity will be adopted in this study. In the existing
literatures, various solution techniques have been used: they include the Green
function method [Kidawa-Kukla 1997], integral transformation method [Massalas
et al. 1982; Trajkovski and C̆ukić 1999; Sharma 2001; Al-Huniti 2004], finite
element method [Eslami and Vahedi 1989; Chandrashekhara and Tenneti 1994;
Mukherjee and Sinha 1996; Oguamanam et al. 2004], and the modal analysis
method [Lee 1985].

Existing studies on thermally induced vibration have focused mostly on sta-
tionary (not axially moving) thermoelastic structures. Recently, Al-Huniti [2004]
considered the dynamics of a stationary laminated beam under the effect of a mov-
ing heat source. However, to our best knowledge, the dynamics of axially moving
thermoelastic structures such as the galvanized steel strips passing through a hot
zinc tank has not been investigated. Furthermore, the spectral element method
(SEM) has not been applied to such axially moving thermoelastic structures. The
SEM is an element method, like the finite element method (FEM). The fundamental
differences from FEM are:

(1) The SEM uses a spectral element matrix (exact dynamic stiffness matrix),
which is formulated in the frequency domain by using the dynamic (frequency-
dependent) shape functions exactly solved from governing equations.

(2) The FFT algorithm is used to efficiently reconstruct the time domain response
from the frequency domain solution. Because no approximation or assump-
tion is made in the course of spectral element formulation, SEM indeed pro-
vides exact solutions and thus it is well recognized as an exact solution method
[Lee and Leung 2000; Lee 2004].

In this paper we develop an SEM for an axially moving thermoelastic beam-
plate and conduct a spectral element analysis to investigate the dynamic behavior
of an axially moving beam-plate subjected to a sudden temperature change on its
surface.
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Figure 1. Geometry of an axially moving beam-plate.

2. Derivation of the governing equations

2A. Equations of motion. Consider a thin beam-plate moving in the x (axial) di-
rection at speed c, as shown in Figure 1. The beam-plate has thickness h and width
b. The material properties of the beam-plate are given by Young’s modulus E and
Poisson’s ratio ν. Assume that the beam-plate has a small amplitude vibration and
that its displacements don’t vary along the width direction as the word ‘beam-plate’
implies.

Using Kirchhoff’s hypothesis, one can write the displacements as

W (x, t) = w(x, t),

U (x, z, t) = u(x, t) − zw′(x, t),
(1)

where w(x, t) is the displacement of the midplane of the beam-plate in the z direc-
tion, u(x, t) the displacement in the x direction, z is the transverse distance from
the midplane to the point of interest on the cross-section of the beam-plate, and
the prime denotes the derivative with respective to x . From (1), the strain in the x
direction can be readily obtained as

εxx = U ′(x, z, t) = u′(x, t) − zw′′(x, t). (2)

The stress in the x direction, taking into account the thermal stress, is given by
[Ugral 1999]

σxx =
E

1 − ν2 εxx −
Eα

1 − ν
1T (x, z, t), (3)
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where 1T (x, z, t) is the difference between the absolute temperature T (x, z, t)
and the reference, stress-free absolute temperature T0 as

1T (x, z, t) = T (x, z, t) − T0.

Using (2) and (3) we can derive the strain energy P as

P =
1
2

∫ L

0

∫ h/2

−h/2
σxxεxx bdz dx =

1
2

∫ L

0
(Dw′′2

+ E Au′2
+ MT w′′

− NT u′) dx, (4)

where L is the span between two simple supports (see Figure 1), A is the cross-
sectional area of the beam-plate, and the following definitions are used:

D =
E I

(1 − ν2)
, I =

bh3

12
, E A =

E A
1 − ν2 . (5)

In Equation (4), MT and NT are the thermal moment and thermal (axial) force,
defined by

MT (x, t) =
Eαb
1 − ν

∫ h/2

−h/2
1T (x, z, t)z dz,

NT (x, t) =
Eαb
1 − ν

∫ h/2

−h/2
1T (x, z, t) dz.

(6)

Similarly, by using (1), the kinetic energy K can be derived as

K =
ρ

2

∫ L

0

∫ h/2

−h/2

(
(c + U̇ )2

+ (Ẇ + cW ′)2)b dz dx

=
ρ

2

∫ L

0

(
A(c + u̇)2

+ A(ẇ + cw′)2
+ I ẇ′2) dx .

(7)

Finally, the virtual work is given by

δW =

∫ L

0

(
px(x, t)δu(x, t) + pz(x, t)δw(x, t)

)
dx

+ M1(t)δφ1(t) + M2(t)δφ2(t) + V (t)1 δw1(t)

+ V2(t)δw2(t) + N1(t)δu1(t) + N2(t)δu2(t), (8)

where px(x, t) and pz(x, t) are distributed loads acting on the beam-plate in the
x and z directions. Mi , Vi and Ni (i = 1, 2) represent the boundary moments,
transverse shear forces and axial forces applied at x = 0 and L , respectively. The
transverse displacement, axial displacement and slope (φ = ∂w/∂x) at boundaries
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are defined by
w1(t) = w(0, t), w2(t) = w(L , t),

φ1(t) = w′(0, t), φ2(t) = w′(L , t),

u1(t) = u(0, t), u2(t) = u(L , t).

The equations of motion and the relevant boundary conditions of the beam-plate
can be derived from Hamilton’s principle:∫ t2

t1
(δK − δP + δW ) dt = 0.

Substituting (4), (7), and (8) into this equality and integrating by parts yields∫ t2

t1

∫ L

0

(
−Dw′′′′

− ρ Ac2w′′
− 2ρ Acẇ′

− ρ Aẅ + ρ I ẅ′′
−

1
2 M ′′

T + pz
)
δw dx dt

+

∫ t2

t1

∫ L

0

(
−ρ Aü + E Au′′

−
1
2 N ′

T + px
)
δu dx dt

+

∫ t2

t1

(
−M(x, t)δφ

∣∣L
0 + M1δφ1 + M2δφ2 −V (x, t)δw

∣∣L
0 +V1δw1 +V2δw2

−N (x, t)δu
∣∣L
0 + N1δu1 + N2δu2

)
dt = 0, (9)

where the limits 0 and L refer to the variable x , and where

M(x, t) = Dw′′
+

1
2 MT ,

V (x, t) = −Dw′′′
− ρhc2w′

−
1
2 M ′

T − ρ Acẇ + ρ I ẅ′,

N (x, t) = E Au′
−

1
2 NT .

(10)

From the first two integrals in (9) we obtain the equations of motion:

E Au′′
− ρ Aü = −px(x, t) +

1
2 N ′

T , (11)

Dw′′′′
+ ρ Ac2w′′

+ 2ρ Acẇ′
− ρ I ẅ′′

+ ρ Aẅ = pz(x, t) −
1
2 M ′′

T . (12)

The boundary conditions can be obtained from the last integral of (9) as

M(0, t) = −M1(t) or φ(0, t) = φ1(t),

M(L , t) = M2(t) or φ(L , t) = φ1(t),

V (0, t) = −V1(t) or w(0, t) = w1(t),

V (L , t) = V2(t) or w(L , t) = w2(t),

N (0, t) = −N1(t) or u(0, t) = u1(t),

N (L , t) = N2(t) or u(L , t) = u2(t).

(13)
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2B. Heat conduction equation. The temperature field T (x, z, t) or 1T (x, z, t) is
governed by the heat conduction equation. The heat conduction equation can be
derived from the law of energy conservation as [Lee 1985; Özisik 1993]

−q ′

x − q ′

z −
T0αE
1−2ν

∂e
∂t

= ρcp
∂T
∂t

, (14)

where α is the coefficient of thermal expansion and cp is the specific heat at constant
strain. The first two terms in the left of Equation (14) represent the net energy
inflow and qx and qz are the heat fluxes per unit area in the x and z directions,
respectively, defined by

qx(x, z, t) = −kT ′(x, z, t) + ρcpc1T (x, z, t),

qz(x, z, t) = −kT ◦(x, z, t),
(15)

where k is the thermal conductivity of the medium. The circle (◦) symbol denotes
the derivative with respective to z and this notation will be used throughout. Notice
that the effect of the moving speed c is taken into account in the heat flux qx

[Özisik 1993; Beck and McMasters 2004]. The term on the right in Equation (14)
represents the energy stored in the structure. The third term on the left represents
the rate of thermal energy generation due to elastic deformation, where e(x, z, t)
is the dilatation defined by [Lee 1985; Ugral 1999]

e = εxx + εyy + εzz ∼=

(1−2ν

1−ν

)
(u′

− zw′′)+

(1+v

1−ν

)
α1T ∼=

(1+v

1−ν

)
α1T, (16)

where εxx , εyy, εzz are the normal strains in the x, y, z directions. In (16), the strain
εyy is neglected because we are considering a beam-plate. The dilatation due to
the pure elastic deformation is also neglected in the last expression of (16) because
its effect on the temperature change will be a small, secondary effect.

Substituting (15) and (16) in (14) gives the heat conduction equation as

−k(T ′′
+ T ◦◦) + ρcpcT ′

+ (T0α
2 Eν + ρcp)Ṫ ∼= 0, (17)

where

Eν =
1 + v

(1 − 2ν)(1 − ν)
E . (18)

In deriving the heat conduction equation, we have implicitly assumed that the
heating of the plate will not exceed the limit where the material’s thermal and
mechanical properties become temperature-dependent. In addition, we will assume
that the beam-plate is subject to the thermal loads applied only on its top or bottom
surface and that the thermal loads do not vary along the width direction, y. Because
of the geometry of beam-plate and the y-axis independence of thermal loads, the
instantaneous temperature variation due to the sudden temperature change on the
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top or bottom surface of beam-plate will be more significant in the thickness direc-
tion than in the in-plane direction. Accordingly, one may assume the temperature
as the function of z and t to simplify (17) as follows:

kT ◦◦
−

(
T0α

2 Eν + ρcp
)
Ṫ = 0. (19)

Once the proper thermal boundary conditions are specified for a given problem,
one can readily solve Equation (18) for T (z, t) and then apply the solution to
Equation (11) to investigate the thermal-induced vibration of a beam-plate. Notice
that, because the temperature will be assumed in this study as the function of z
and t only, the thermal moment MT and thermal force NT defined by Equation
(6) will be functions of t only. In this case, the last terms in (11) will vanish
and the thermal loads will affect the vibration of beam-plate through the boundary
conditions, which can be guessed from Equations (10) and (13).

3. Spectral element formulation

3A. Brief review of DFT theory. (For more details, see for instance [Newland
1993].) In discrete Fourier transform (DFT) theory, a periodic function of time
x(t) with period T can be always expressed by the Fourier series as

x(t) =

∞∑
n=−∞

Xneiωn t , (20)

where i =
√

−1, ωn = n(2π/T ) = nω1 are the discrete frequencies, and Xn are
constant Fourier (or spectral) components given by

Xn =
1
T

∫ T

0
x(t)e−iωn t dt (n = 0, 1, 2, . . . ,∞). (21)

Equations (20) and (21) are the continuous Fourier transforms pair for a periodic
function.

Although x(t) is a continuous function of time t , it is often the case that only
sampled values of the function are available, in the form of a discrete time series
{x(tr )}. If N is the number of samples, all equally spaced with a time interval
1 = T/N , the discrete time series are given by xr = x(tr ), where tr = r1 and
r = 0, 1, 2, . . . , N − 1. The integral in Equation (21) can be replaced with the
summation as follows:

Xn =

N−1∑
r=0

x(tr )e−iωn tr (n = 0, 1, 2, . . . , N−1), (22)
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which is the DFT of the discrete time series {xr }. Any typical value xr of the series
{xr } can be obtained from the synthesis equation

x(tr ) =
1
N

N−1∑
n=0

Xneiωn tr (r = 0, 1, 2, . . . , N−1), (23)

which is the inverse discrete Fourier transform (IDFT). Thus Equations (22) and
(23) represent the DFT-IDFT pair. Although (22) is an approximation of (20), it
allows all discrete time series {xr } to be regained exactly [Newland 1993]. The
Fourier components Xn in (23) can normally be arranged as

X N−n = X∗

n (n = 0, 1, 2, . . . , N/2),

where ∗ denotes complex conjugation. X N/2 corresponds to the highest frequency
ωN/2 = (N/2)ω1, the Nyquist frequency.

The fast Fourier transforms (FFT) is an ingenious computer algorithm that per-
forms the synthesis analysis extremely efficiently, in time logarithmic rather than
linear in N . While the FFT-based spectral analysis uses a computer, it is not a
numerical method in the usual sense, because the analytical descriptions of Equa-
tions (22) and (23) are retained.

3B. Formulation of the spectral element matrix. Based on DFT theory, assume
the solutions of Equation (11) in spectral form are

u(x, t) =

N−1∑
n=0

Un(x)eiωn t , w(x, t) =

N−1∑
n=0

Wn(x)eiωn t , (24)

where Un(x) and Wn(x), for n = 0, 1, . . . , N−1, are the spectral components of
the dynamic responses u(x, t) and w(x, t). The accuracy of dynamic responses
may depend on how many spectral components are taken into account in the FFT-
based spectral analysis, for a chosen time window T . Similarly, one can express
the external loads and thermal loads in the spectral forms as

px(x, t) =

N−1∑
n=0

Pxn(x)eiωn t , pz(x, t) =

N−1∑
n=0

Pzn(x)eiωn t ,

NT (t) =

N−1∑
n=0

NT neiωn t , MT (t) =

N−1∑
n=0

MT neiωn t ,

(25)

where Pxn(x), Pzn(x), NT n(x) and MT n(x), for n = 0, 1, . . . , N−1, are the spectral
components of px(x, t), py(x, t), NT (t), and MT (t). The spectral components
MT n and NT n in Equation (25) are constant, rather than functions of x , because
the temperature is assumed to vary only in the thickness (z) direction.
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Substituting (24) and (25) into (11), we get

E AU ′′

n + ρ Aω2
nUn = Fxn,

DW ′′′′
n +

(
ρ Ac2

+ ρ Iω2
n
)
W ′′

n + 2iρ AcωnW ′

n − ρ Aω2
nWn = Fzn,

(26)

where

Fxn(x) = −Pxn +
1
2 N ′

T n = −Pxn, Fzn(x) = Pzn −
1
2 M ′′

T n = Pzn. (27)

Here the thermal force and moment terms do not appear because temperature is
assumed to vary only in the thickness direction. In a similar way, the resultant
moment, transverse shear force and axial force defined in (10) can be also expressed
in spectral form as

Nn(x) = E AU ′

n −
1
2 NT n,

Vn(x) = −DW ′′′

n −
(
ρ Ac2

+ ρ Iω2
n
)
W ′

n − iρ AcωnWn,

Mn(x) = DW ′′

n +
1
2 MT n,

(28)

where Nn(x), Vn(x) and Mn(x) are the spectral components of N (x, t), V (x, t)
and M(x, t), respectively.

The spectral element formulation begins with the governing equations without
external forces [Lee and Leung 2000; Lee 2004]. Therefore, the homogeneous
form of governing equations can be deduced from (26) as

E AU ′′

n + ρ Aω2
nUn = 0,

DW ′′′′
n +

(
ρ Ac2

+ ρ Iω2
n
)
W ′′

n + 2iρ AcωnW ′

n − ρ Aω2
nWn = 0.

(29)

The general solutions of (29) can be assumed to be

Un(x) = Aneκn x , Wn(x) = Bneλn x ,

where κn and λn are the wavenumbers for the axial and transverse vibration mode,
respectively. Substituting these equalities into (29) yields the dispersion relations

E Ak2
n + ρ Aω2

n = 0,

Dλ4
n +

(
ρ Ac2

+ ρ Iω2
n
)
λ2

n + 2iρ Acωnλn − ρ Aω2
n = 0.

From this, two wavenumbers knr (r = 1, 2) can be obtained for axial vibration
modes and four wavenumbers λnr (r = 1, 2, 3, 4) for the transverse vibration modes.
By using the wavenumbers thus computed, the general solutions of the dispersion
relations can expressed in summation form as

Un(x) =

2∑
r=1

Anr eknr x , Wn(x) =

4∑
r=1

Bnr eλnr x ,
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Figure 2. Sign convention for finite beam-plate element.

or in matrix-vector multiplication form as

Un(x) =
[
EUn(x; ωn)

]
{Cn},

Wn(x) =
[
EW n(x; ωn)

]
{Cn},

(30)

where [
EUn(x; ωn)

]
=

[
ekn1x 0 0 ekn2x 0 0

]
,[

EW n(x; ωn)
]
=

[
0 eλn1x eλn2x 0 eλn3x eλn4x

]
,

{Cn} =
{

An1 Bn1 Bn2 An2 Bn3 Bn4
}T

.

The constant vector {Cn} will be determined by the boundary conditions.
Now consider a finite beam-plate element of length l as shown in Figure 2.

The corresponding spectral components of the nodal degree of freedom (DOF) are
defined by

Un1 = Un1(0), Wn1 = Wn1(0), 8n1 = W ′

n1(0),

Un2 = Un2(l), Wn2 = Wn2(l), 8n2 = W ′

n2(l).

Applying these values to Equation (30) yields a relationship between the spectral
nodal DOF vector {dn} and the constant vector {Cn}:

{dn} =
[
Xn(ωn)

]
{Cn}, (31)

where {dn} =
{
Un1 Wn1 8n1 Un2 Wn2 8n2

}T and

[Xn] =



1 0 0 1 0 0
0 1 1 0 1 1
0 λn1 λn2 0 λn3 λn4

ekn1l 0 0 ekn2l 0 0
0 eλn1l eλn2l 0 eλn3l eλn4l

0 λn1eλn1l λn2eλn2l 0 λn3eλn3l λn4eλn4l


.
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One can use (31) to eliminate the constant vector {Cn} from Equation (30),
obtaining

Un(x) = [EUn][Xn]
−1

{dn} ≡ [NUn(x; ωn)]{dn},

Wn(x) = [EW n][Xn]
−1

{dn} ≡ [NW n(x; ωn)]{dn},
(32)

where [NUn] and [NW n] are the dynamic (frequency-dependent) shape function
matrices.

In the following, the well-known variational approach [Reddy 2002] is used to
formulate the spectral element matrix by using the displacement fields given by
Equation (32) and the temperature field given in the next section. The weak form
statements of the governing equations (26) are∫ l

0

(
E AU ′′

n + ρ Aω2
nUn + Pxn

)
δUn dx = 0,∫ l

0

(
DW ′′′′

n + (ρ Ac2
+ρ Iω2

n)W ′′

n + 2iρ AcωnW ′

n − ρ Aω2
nWn − Pzn

)
δWn dx = 0.

Substituting the loading terms from (27) into these equalities and integrating by
parts yields∫ l

0

(
E AU ′

n δU ′

n −ρ Aω2
nUn δUn

)
dx −

∫ l

0
Pxn δUn dx −

1
2 NT n δUn

∣∣l
0−Nn δUn

∣∣l
0 = 0,∫ l

0

(
DW ′′

n δW ′′

n − (ρ Ac2
+ ρ Iω2

n)W ′

n δW ′

n + iρ Acωn(W ′

n δWn − Wn δW ′

n)

−ρ Aω2
nWn δWn

)
dx−

∫ l

0
Pzn δWn dx+

1
2 MT n δW ′

n

∣∣l
0−Vn δWn

∣∣l
0−Mn δW ′

n

∣∣l
0 =0,

where Equation (28) has been used and where, as before, the limits 0 and l refer
to the variable x .

Substituting (32) into these two equalities yields

{δdn}
T (

[SUn]{dn} − { fUn}
)
= 0, {δdn}

T (
[SW n]{dn} − { fW n}

)
= 0, (33)

where

[SUn] =

∫ l

0

(
E A[N ′

Un]
T
[N ′

Un] − ρ Aω2
n[NUn]

T
[NUn]

)
dx,

[SW n] =

∫ l

0

(
D[N ′′

W n]
T
[N ′′

W n] − (ρ Ac2
+ ρ Iω2

n)[N ′

W n]
T
[N ′

W n]

+ iρ Acωn
(
[NW n]

T
[N ′

W n]−[N ′

W n]
T
[NW n]

)
−ρ Aω2

n[NW n]
T
[NW n]

)
dx, (34)
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{ fUn}=
{

N1n 0 0 N2n 0 0
}T

+

∫ l

0
Pxn(x)[NUn]

T dx−
1
2 NT n[NUn(l)−NUn(0)]T,

{ fW n} =
{
0 V1n M1n 0 V2n M2n

}T
+

∫ l

0
Pzn(x)[NW n]

T dx

+
1
2 MT n

[
N ′

W n(l) − N ′

W n(0)
]T

.

The details of the matrices [SUn] and [SW n] are given in the Appendix.
Since {δdn} is arbitrary, the spectral element equation can be deduced from (33):

[Sn(ω)]{dn} = { fn}. (35)

Here
[Sn(ω)] = [SUn(ω)] + [SW n(ω)]

is the frequency-dependent spectral element matrix and

{ fn} = { fn}1 + { fn}2

is the spectral nodal force, where

{ fn}1 = {N1n V1n M1n N2n V2n M2n}
T ,

{ fn}2 =

∫ l

0
Pxn(x)[NUn]

T dx +

∫ l

0
Pzn(x)[NW n]

T dx

−
1
2 NT n[NUn(l) − NUn(0)]T

+
1
2 MT n[N ′

W n(l) − N ′

W n(0)]T .

(36)

All spectral elements can be assembled in a completely analogous way to that
used in the conventional FEM. Assembling all spectral elements represented by
(35) and then applying appropriate boundary conditions yields a global system
equation in the form

[SG
n (ω)]{dG

n } = { fG
n }.

The natural frequencies ωNAT can be computed from the condition that the determi-
nant of global spectral stiffness matrix [SG

n ] should vanish at natural frequencies:

det[SG
n (ωNAT)] = 0.

3C. Temperature in the frequency domain. The approximate temperature field is
governed by Equation (18) and the thermal boundary conditions specified on the
upper and lower surfaces of the beam-plate. As done in the preceding section for
the displacements field, the temperature field can be also represented in the spectral
form as

T (z, t) =

N−1∑
n=0

Tn(z)eiωn t ,
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where Tn are the spectral components of temperature field T (z, t). Substituting
this equality into the heat conduction equation (18) yields

T ◦◦

n − iωnβ
2Tn = 0, (37)

where

β2
=

1
k

(
T0α

2 Eη + ρcp
)
.

The general solution of Equation (37) can be readily obtained as

Tn(z) = Bn1e−τn z
+ Bn2eτn z, (38)

where

τn = β
√

iωnβ = (1 + i)β
√

ωn

2
. (39)

The constants Bn1 and Bn2 are determined by the thermal boundary conditions spec-
ified on the upper and lower surfaces of beam-plate. Once the spectral components
of temperature T are computed from (38), the corresponding spectral components
of thermal moment MT and thermal force NT in (36) can be readily computed
from (6) and (25).

4. Numerical results and discussion

As an illustrative example, a beam-plate which is axially moving over two simple
supports of distance L = 2 m is considered. The beam-plate has thickness h = 5 mm,
width b = 0.5 m, Young’s modulus E = 73 GPa, Poisson’s ratio ν = 0.33, mass
density ρ = 2770 kg/m3, thermal expansion coefficient α23.0 × 10−6/K , thermal
conductivity k = 177 W/mK, and specific heat cp = 875 J/kg· K. As shown in Figure
3, the temperature change is applied only to the middle part of the upper surface,
while the remaining parts are allowed to remain at room temperature T0.

First, to show the high accuracy of the present spectral element model, we
compare in Table 1 the natural frequencies obtained for the beam-plate using the

L1 L2 L1

T0 T0+∆T(t) T0

T0

L

Figure 3. Example problem: thermal boundary conditions on the
upper and lower surfaces of the beam-plate which moves axially
over two simple supports.
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c (m/s) Method N ω
(w)

1 ω
(w)

2 ω
(w)

3 ω
(w)

4 ω
(w)

5 ω
(u)

15

0

Exact − 3.083 12.329 27.743 49.321 77.066 679.78

SEM 1 3.083 12.329 27.742 49.317 77.057 679.78

FEM

10 3.083 12.331 27.758 49.403 77.371 680.48
20 3.083 12.330 27.744 49.327 77.087 679.95
50 3.083 12.329 27.743 49.322 77.067 679.81

100 3.083 12.329 27.743 49.322 77.067 679.79

4

SEM 1 2.886 12.197 27.626 49.210 76.955 679.78

FEM

10 2.886 12.198 27.643 49.298 77.274 680.48
20 2.886 12.197 27.628 49.220 76.985 679.95
50 2.886 12.197 27.627 49.215 76.966 679.81

100 2.886 12.197 27.627 49.215 76.965 679.79

8

SEM 1 2.248 11.790 27.277 48.889 76.649 679.78

FEM

10 2.248 11.792 27.296 48.983 76.982 680.48
20 2.248 11.790 27.280 48.899 76.681 679.95
50 2.248 11.790 27.279 48.893 76.660 679.81

100 2.248 11.790 27.279 48.893 76.659 679.79

12.33

SEM 1 0.0 11.012 26.631 48.297 76.087 679.78

FEM

10 0.0 11.015 26.654 48.402 76.446 680.48
20 0.0 11.012 26.634 48.307 76.120 679.95
50 0.0 11.012 26.633 48.301 76.098 679.81

100 0.0 11.012 26.633 48.301 76.097 679.79

Table 1. Natural frequencies (Hz) of a beam-plate obtained by the
present SEM, the FEM and the exact theory [Blevins 1979]. N is
the number of finite elements used in the analysis, c is the fluid
velocity, and the superscripts (w) and (u) stand respectively for
the transverse and axial displacement modes.

present spectral element model (SEM), the finite element model (FEM), and the
exact theory (only for stationary beam), for various speeds of the beam-plate. The
number of finite elements used in the FEM varies from 10 to 100, while only one
finite element is used for the SEM. The table shows that the SEM results are almost
same as the exact values when c = 0, and the FEM values converge to the SEM
values when c 6= 0 as the number of finite elements used in FEM is increased. This
suggests that the present spectral element model is very accurate.

One more thing we can observe from Table 1 is that in general the magni-
tude of natural frequency (real part of eigenfrequency) decreases as the moving
speed of beam-plate is increased. The first natural frequency becomes zero at
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Figure 4. Moving speed dependence of the lowest first three
eigenfrequencies of beam-plate.

c = 12.33 m/s, which is the divergence speed at which the divergence instability
may occur. Figure 4 shows in detail how the eigenfrequency of beam-plate varies
as the moving speed of beam-plate is increased. One can see from Figure 4 that
the beam-plate will have divergence instability at c = 12.33 m/s and coupled-mode
flutter instability at c = 25.35 m/s.
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Figure 5. Time history of the thermal load applied on the middle
region (L2) of the upper surface of beam-plate shown in Figure 3.

To investigate the thermally induced vibration of the beam-plate, the temper-
ature on the middle part of the upper surface of the beam-plate is suddenly el-
evated so that 1T = 20 K and the elevated temperature is sustained for 0.01
seconds from t = 0, as shown in Figure 5. Figure 6 shows the time history of
the temperature distribution through the thickness of the beam-plate, and Figure 7
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Figure 6. Time history of temperature distribution through the
thickness of beam-plate.
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Figure 7. Time histories of the thermal moment MT and thermal
force NT in the region L1 ≤ x ≤ (L − L2).

shows the corresponding thermal moment MT and thermal force NT in the region
L1 ≤ x ≤ L − L2. Notice that L1 = L3 = 0.8 m and L2 = 0.4 m. Figure 6 shows
that the temperature quickly spreads out to become symmetric with respect to the
middle plane of the beam-plane. Accordingly the thermal moment MT disappears
after about 0.05 seconds, while the thermal force NT converges to a small value.
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Figure 8. Comparison of the frequency response functions of the
axial and transverse displacements obtained by the present SEM
and FEM when c = 4 m/s and L2 = 0.2L .

Figure 8 compares the frequency response functions obtained by the present SEM
and FEM. Similarly Figure 9 compares the corresponding time responses. It is
clear from both figures that FEM results converge to SEM results as the number
of finite elements used in FEM is increased, which also proves the high accuracy
of the present spectral element model. Notice that the minimum number of finite
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Figure 9. Comparison of the axial and transverse displacements
obtained by the present SEM and FEM when c = 4 m/s and L2 =

0.2L .

elements used in SEM is three, because the beam-plate has temperature disconti-
nuities at x = L1 and x = L1 + L2.

Figure 10 shows the time responses of transverse displacement at three different
moving speeds of beam-plate. From Figure 10, one can observe that the period of
time response increases as the moving speed increases. As previously discussed,
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Figure 10. Transverse displacement versus moving speed c when
L2 = 0.2L .
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Figure 11. Transverse displacements when c = 12.33 m/s (diver-
gence speed) and c = 25.35 m/s (flutter speed) when L2 = 0.2L .

this is because the natural frequencies decrease as the moving speed increases.
Figure 11 shows the time responses at divergence speed c = 12.33 m/s and flutter
speed c = 25.35 m/s. As expected, the divergence and flutter instabilities indeed
occur at the divergence and flutter speeds, respectively.
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Figure 12. Axial and transverse displacements versus size of L2

on which thermal load is applied when c = 4 m/s.

Figure 12 shows the time responses of axial and transverse displacements de-
pending on the length of middle part (L2) subjected to the sudden temperature
change of Figure 5, when the moving speed of beam-plate is c = 4 m/s. The time
responses in both axial and transverse displacements tend to increase as the length
of middle part becomes larger.
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Figure 13. Axial and transverse displacements versus excita-
tion frequency f of the thermal load given by 1T (x, t) =

10 sin(2π f t) + 20(K ) when c = 4 m/s and L2 = 0.2L .

Figure 13 compares the axial and transverse displacements excited by a har-
monic thermal load defined by 1T (x, t) = 10 sin(2π f t) + 20(K ) when c = 4 m/s
and L2 = 0.2L . It is obvious from Figure 13 that the resonance in transverse vibra-
tion mode occurs when the excitation frequency f is close to the first transverse
natural frequency 2.886 Hz (see Table 1).



SPECTRAL ELEMENT MODELING AND ANALYSIS OF A BEAM-PLATE 627

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

Time (sec)

M  t
n

e
m

o
m l

a
mr

e
h

T
T

)
m

N(  

∆t = 0.005 s

∆t =   0.01 s

∆t =   0.02 s

�

�

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

18

20

Time (sec)

N  
e

cr
of l

a
mr

e
h

T
T

)
N

k(  

∆t = 0.005 s

∆t =   0.01 s

∆t =   0.02 s

�

Figure 14. Time histories of the thermal moment MT and thermal
force NT in the region L1 ≤ x ≤ (L − L2) versus duration of
thermal load 1t when c = 4 m/s.

Figure 14 shows the time histories of the thermal moments MT and thermal
forces NT in the region L1 ≤ x ≤ (L − L2) for different durations of thermal load,
1t , and Figure 15 shows the corresponding axial and transverse displacements. In
general, it is shown that the amplitudes of vibration become larger as the duration
of thermal load becomes larger.
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Figure 15. Time responses of axial and transverse displacements
versus duration of thermal load 1t when c = 4 m/s.
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5. Conclusions

We develop a spectral element model for an axially moving beam-plate subjected
to external thermal loads. The model is formulated from frequency-dependent
dynamic shape functions that are exact frequency-domain solutions of governing
equations, and it is evaluated by comparison with the conventional finite element
model. Numerical studies show the high accuracy of the present method and al-
low us to model the thermally induced vibration of an axially moving beam-plate
subjected to a sudden temperature change on the upper surface of the beam-plate.

Appendix

Matrices [SUn] and [SWn] in Equation (34).

[SUn] = [X−1
n ]

T
[RUn][X−1

n ], where [RUn] =



Yn11 0 0 Yn14 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Yn14 0 0 Yn44 0 0
0 0 0 0 0 0
0 0 0 0 0 0


and

Yni j =
e(kni +knj )l − 1

kni + knj
(E Akni knj − ρ Aω2

n).

[SW n] = [X−1
n ]

T
[RW n][X−1

n ], where [RW n] =



0 0 0 0 0 0
0 Xn11 Xn12 0 Xn13 Xn14

0 Xn12 Xn22 0 Xn23 Xn24

0 0 0 0 0 0
0 Xn13 Xn23 0 Xn33 Xn34

0 Xn14 Xn24 0 Xn34 Xn44


and Xni j =

e(λni +λnj )l − 1
λni + λnj

(
Dλ2

niλ
2
nj − Rnλniλnj+iρ Acωn(λni − λnj ) − ρ Aω2

n
)
.

The finite element model

The finite element model used in this study is formulated by assuming the displace-
ment fields within a finite beam-plate element of length l as follows:

u(x, t) = [NU (x)]{d(t)}, w(x, t) = [NW (x)]{d(t)},

where {d(t)} is the nodal DOF vector defined by

{d(t)} =
{
u1(t) w1(t) φ1(t) u2(t) w2(t) φ2(t)

}T

and [NU (t)] and [NW (t)] are the shape function matrices defined by

[NU (x)] =
[
1 − ξ 0 0 ξ 0 0

]
and [NW (x)] =

[
0 NW 1 NW 2 0 NW 3 NW 4

]
,
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where ξ = x/ l and

NW 1 =2ξ 3
−3ξ 2

+1, NW 2 = lξ(ξ−1)2, NW 3 =−2ξ 3
+3ξ 2, NW 4 = lξ(ξ 2

−ξ).

Following the usual procedure [Reddy 2002], the finite element equation can be
derived as

[M]{d̈} + [C]{d̈} + [K ]{d} = { f},

where { f} is the nodal force vector defined by

{ f} =
{

N1−NT /2 V1 M1+MT /2 N2+NT /2 V2 M2−MT /2T }
+

∫ l

0

(
px [NU ]

T
+ pz[NW ]

T )
dx

and the finite element matrices [M], [C], and [K ] are given by

[M] =

∫ l

0

(
ρ A[NU ]

T
[NU ] + ρ A[NW ]

T
[NW ]−ρ I [N ′

W ]
T
[N ′

W ]
)

dx

=
ρ Al
420



140 0 0 70 0 0
0 156 22l 0 54 −13l
0 22l 4l2 0 13l −3l2

70 0 0 140 0 0
0 54 13l 0 156 −22l
0 −13l −3l2 0 −22l 4l2


−

ρ I
30l



0 0 0 0 0 0
0 36 3l 0 −36 3l
0 3l 4l2 0 −3l l2

0 0 0 0 0 0
0 −36 −3l 0 36 −3l
0 3l −l2 0 −3l 4l2



[C] =∫ l

0

(
ρ Ac

(
[NW ]

T
[N ′

W ] − [N ′

W ]
T
[NW ]

))
dx =

ρ Ac
30



0 0 0 0 0 0
0 0 6l 0 30 −6l
0 −6l 0 0 6l −l2

0 0 0 0 0 0
0 −30 −6l 0 0 6l
0 6l l2 0 −6l 0



[K ] =

∫ l

0

(
E A[N ′

U ]
T
[N ′

U ] + D[N ′′

W ]
T
[N ′′

W ] + ρ Ac2
[N ′

W ]
T
[N ′

W ]
)
dx

=
E A
l



1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


+

D
l3



0 0 0 0 0 0
0 12 6l 0 −12 6l
0 6l 4l2 0 −6l 2l2

0 0 0 0 0 0
0 −12 −6l 0 12 −6l
0 6l 2l2 0 −6l 4l2


−
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−
ρ Ac2

30l



0 0 0 0 0 0
0 36 3l 0 −36 3l
0 3l 4l2 0 −3l −l2

0 0 0 0 0 0
0 −36 −3l 0 36 −3l
0 3l −l2 0 −3l 4l2


.
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