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ON UNIQUENESS IN THE AFFINE BOUNDARY VALUE PROBLEM OF THE
NONLINEAR ELASTIC DIELECTRIC

R. J. KNOPS AND C. TRIMARCO

An integral identity is constructed from properties of the energy momentum tensor and is used to demon-
strate uniqueness of the displacement on star-shaped regions to the affine boundary value problem of the
nonlinear homogeneous elastic dielectric. The method of proof, nontrivially adapted from that of the
corresponding elastic problem, assumes the electric enthalpy function to be rank-one convex and strictly
quasiconvex. Furthermore, for a given displacement gradient, the electric quantities are proved unique
for specified nonaffine and nonuniform electric boundary conditions subject to the electric enthalpy and
strain energy functions satisfying additional convexity conditions.

1. Introduction

This paper considers uniqueness of smooth solutions to certain simple boundary value problems for
the nonlinear homogeneous elastic dielectric in equilibrium and occupying a bounded region of n-
dimensional Euclidean space subject to zero body-force and electric source charges. Uniqueness in corre-
sponding electromagnetic problems is guaranteed by strict convexity of the energy. A similar condition on
the strain energy function also ensures uniqueness to boundary value problems of nonlinear elastostatics,
but several well known counterexamples demonstrate that universal uniqueness is untenable. The coun-
terexamples mean that also for the nonlinear elastic dielectric unqualified uniqueness is unacceptable
and consequently the condition of strict convexity is too restrictive even for ferroelectrics and similar
materials exhibiting phase transitions. But equally, we do not expect there to be universal nonuniqueness
since it is intuitively evident that certain simple problems should possess a unique solution.

In elastostatics, this topic has been treated in [Knops and Stuart 1984] where the notions of strict quasi-
convexity and rank-one convexity of the strain energy function are introduced to establish uniqueness of a
smooth solution to affine displacement boundary value problems on star-shaped bounded regions. Pivotal
to the proof is a Noetherian conservation law [Gelfand and Fomin 1963] which in the context of elasticity
has been separately derived either directly or from properties of the energy-momentum (Eshelby) tensor.
Contributions notably include those by Chadwick [1975], Eshelby [1975], Green [1973], Günther [1962],
Gurtin [2000], Hill [1986], Knowles and Sternberg [1972]. Pohozaev [1965] and Pucci and Serrin [1986]
are among those who have used a similar law in partial differential equations.

The uniqueness proof presented here for the nonlinear elastic dielectric is patterned on that described
in [Knops and Stuart 1984], and therefore is likewise restricted to star-shaped regions. Another appli-
cation of the basic proof is by Mareno [2004] who investigated uniqueness in the second order theory
of nonlinear elasticity. As a consequence of these previous studies, the intrinsic mathematical interest
of the present paper is seen as lying not so much in the details required to extend the proof, but rather
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in the electromagnetic problems under consideration, for which the uniqueness results are new. In this
respect, it is perhaps worth remarking that uniqueness results generally are restricted to the linear theory
and comparatively little information appears available for nonlinear elastic dielectrics. Therefore the
following conclusions are viewed as contributing to a basic understanding of the coupled theory of
elasticity and electromagnetism, with particular relevance for numerical computation and those aspects
concerned with buckling and hysteresis.

For ease of presentation, it is convenient to ignore magnetic effects, although these may also be
included. It is also convenient to conduct the analysis with respect to the reference configuration which
requires the electric fields and the governing Maxwell–Lorentz equations to be appropriately transformed
from their usual formulation in the current configuration. For this purpose, we appeal in part to a vari-
ational procedure in which the strain energy function is replaced by an electric enthalpy regarded as a
function of the deformation gradient, electric field and the polarization referred to the reference config-
uration. The consequent enlarged set of Euler–Lagrange equations contain the transformed Maxwell–
Lorentz equations, and enable certain properties of the energy-momentum tensor to be derived. These
in turn lead to an identity, analogous to the elastostatic conservation law, whose construction, while
nontrivial, appears to be more direct than is usual; compare for example, [Ericksen 2006, to appear;
Maugin 1993; Maugin and Trimarco 1991; 2001, Trimarco 2002; 2003; and Pack and Herrmann 1986].
The Maxwell–Lorentz equations also imply that the electric enthalpy is independent of the polarization,
so that the conditions for the electric enthalpy to be quasiconvex and rank-one convex, both essential for
the proof, need only be defined in terms of the deformation gradient and the electric field. As is well
known, these generalized notions of convexity hold for deformation gradients and electric fields that may
be discontinuous across an internal surface provided both satisfy geometrical compatibility conditions
that characterize coherent phases in solids. This aspect is not developed in what follows. Furthermore, the
generalized convexity notions both reduce to convexity in the usual sense for functions whose arguments
are vectors or scalars. The reduction is pertinent to the concluding discussion regarding uniqueness under
mixed boundary conditions of the electric constituents for a given deformation gradient, which includes
application to a dielectric embedded in a capacitor.

Section 2 assembles essential preliminaries, introduces the electric enthalpy function, states, and, for
completeness, proves the conservation law. The notions of rank-one convexity and quasiconvexity are
introduced in Section 3 which also specifies the affine boundary conditions and constructs the unique-
ness proof. The concluding remarks, given in Section 4, include alternative conditions for uniqueness
in the affine boundary value problem, and a discussion of uniqueness of the electric displacement and
polarization in the affine problem. For completeness, we supplement these results by demonstrating
that for a given deformation gradient the electric field remains unique when the affine electric boundary
conditions are replaced by those of standard nonuniform mixed type. Under these boundary conditions
we also prove uniqueness of the polarization and the electric displacement subject additionally to the
strain energy being rank-one convex with respect to the polarization, a condition possibly too severe
for ferroelectrics but for which uniqueness of the deformation and electric field remains valid. The
conclusions are, of course, not unexpected, although perhaps less so in the nonlinear theory, and merely
reflect the reduction, already remarked, of generalized notions of convexity to that of standard convexity
for functions of vector quantities.
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The direct tensor notation is mainly employed except when greater clarity is achieved by the corre-
sponding suffix notation. Existence of a smooth solution is assumed, but in this respect we note that
under the generalized convexity conditions discussed here, existence of elastostatic weak solutions has
been established by Ball [1976], while Serre [2004] has discussed the corresponding electromagnetic
problem.

2. Notation and other preliminaries

A nonlinear homogeneous elastic dielectric in its reference configuration occupies the bounded region
�⊂ IRn of n-dimensional Euclidean space. The piecewise continuously differentiable boundary ∂� of �
has unit outward normal N and is assumed to be star-shaped with respect to an interior point. Boundary
conditions, precisely stated in the next section, produce an equilibrium deformation of the dielectric
in which a point X ∈ � becomes displaced to the point x , where X, x represent vectors in IRn whose
components with respect to a Cartesian coordinate system are X A and xi . The deformation, supposed
smooth, possesses a gradient expressed by

F =
∂x
∂X

, Fi A =
∂xi

∂X A
, (2–1)

while the inverse is given by

F−1
=
∂X
∂x
, F−1

Ai =
∂X A

∂xi
, (2–2)

and the determinant associated with Equation (2–1) is J = det F . Let Mm×n denote the set of m × n
matrices and suppose that J ∈ Mn×n

+ , the set of square matrices with positive determinant. The transpose
of a tensor A is denoted by AT ; the identity tensor by I ; and the tensorial trace operator by tr . Tensor
and vector multiplication is indicated by juxtaposition, the precise form being clear from the particular
context, while the inner product of tensors AB is given by

AB = tr ABT .

In the deformed dielectric there is an electric field e, an electric displacement d , and a polarization p
per unit deformed volume. These vector quantities satisfy the appropriate time independent Maxwell–
Lorentz equations which in the assumed absence of electric source charges lead to the following the
expressions e = − grad ϕ and d = ε0e+ p, where grad denotes the gradient operator with respect to the
system of current coordinates x , ϕ(x) is a scalar potential function of the variables x , and ε0 is the in
vacuo dielectric constant supposed positive.

It is convenient to develop the subsequent analysis with respect to the reference configuration �. Now,
in terms of the notation

E = FT e, D = J F−1d, P = J F−1 p, (2–3)

it has been shown by, for example, Walker et al. [1965] that the Maxwell–Lorentz equations in the
reference configuration imply the relations

E =−Grad8, (2–4)

D = ε0 J F−1 F−T E + P, (2–5)
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where Grad represents the standard gradient operator with respect to the system of reference coordinates
X , and 8(X) is a scalar potential function of the variable X .

Next, we suppose that the dielectric possesses a strain energy function

W : M (n+1)×n
→ IR

per unit volume of the reference configuration that depends upon both the deformation gradient and the
electric polarization:

W =W (F, F P). (2–6)

Furthermore, we introduce the electric enthalpy function H(F, P, E) [Maugin and Trimarco 1991; Tri-
marco 2002] defined by

H(F, P, E)=W (F, F P)−
1
2
ε0 J E F−1 F−T E − E P, (2–7)

from which the identity immediately follows:

D =−
∂H
∂E

(F, P, E). (2–8)

The complete set of equations governing the deformation of the dielectric may be obtained by consid-
ering the stationary points of the electric enthalpy (2–7) with respect to independent variations of 8, F,
and P . (See, for example, [Trimarco 2002; 2003; Maugin and Trimarco 1991; 2001; Maugin 1993; Pack
and Herrmann 1986; Yu 1995] and the important discussion in [Ericksen 2006, to appear].) This yields
the Euler–Lagrange equations:

Div
∂H
∂F

(F, P, E)= 0, (2–9)

Div D = 0, (2–10)

∂H
∂P
≡
∂W
∂P
− E = 0, (2–11)

where Div denotes the divergence operator with respect to the system of reference coordinates X .
We observe that Equations (2–10) and (2–4) are the usual electrostatics equations in the absence of

electric free charge, and in fact (2–10) implies that d is solenoidal in the current configuration of the
elastic dielectric. The classical electrostatics equations are consequentially recovered. Moreover, the
transformation (2–3) and (2–5) together with (2–10) are consistent with the fundamental requirement
that total electric charge be conserved.

From (2–11) we conclude that H is independent of P so that H(F, E) : M (n+1)×n
→ IR.

A crucial ingredient of the uniqueness proof described in the next section is a conservation law (or
integral identity) that is stated and proved in the following lemma.

Lemma 2.1 [Ericksen 2006, to appear; Maugin 1993; Maugin and Epstein 1991; Trimarco 2002; 2003].
Let �⊂ IRn have smooth boundary ∂� with unit outward normal N . Let (2–4), (2–5) and (2–7) hold, let
(x,Grad 8) be a smooth solution to the equilibrium equations (2–9)–(2–11), and let the electric enthalpy
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satisfy H ∈ C2(M (n+1)×n, IR). Then:

n
∫
�

H(F, E) d X =

∫
∂�

(
(N X)H(F, E)+ tr ∂H(F, E)

∂F
(
x − (X Grad)x

)
+N D(F, E) (8− (X Grad)8)

)
d S, (2–12)

where d X and d S represent respectively the volume and surface elements of integration in the reference
configuration.

Proof. The identity Equation (2–12) may be established by application of the divergence theorem either
to the surface integral on the right and noting that

∂H
∂X
=
∂H
∂F

Grad F − (D Grad)E, (2–13)

or, after rearrangement of the integrand and appeal to (2–9), to the integral identity∫
�

(
X FT Div

∂H
∂F

)
d X = 0. (2–14)

Instead, we prefer to employ the energy-momentum, or Eshelby, tensor B defined by

B = (W − E P)I − FT ∂W
∂F
+ E ⊗ P, (2–15)

where E ⊗ P denotes the tensor product of the vectors E and P . The relation

∂H
∂F
=
∂W
∂F
+ J T F−T , (2–16)

where T is the Maxwell stress tensor given explicitly by

T = ε0(e⊗ e−
1
2

eeI ), (2–17)

enables (2–15) to be alternatively expressed as

B = H I − FT ∂H
∂F
+ E ⊗ D, (2–18)

from which by appeal to (2–9) and (2–10) we may directly prove that

Div B = 0. (2–19)

On following Chadwick’s [Chadwick 1975] or Hill’s [Hill 1986] approach to the corresponding elastic
problem, we have

Div(X B)= tr B

= nH −Div(x
∂H
∂F
−Div(D8), (2–20)

which by integration over � leads to (2–12). �
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3. Uniqueness in the affine boundary value problem

In this section we prove that the affine boundary value problem has a unique smooth solution provided the
electric enthalpy satisfies generalized convexity conditions. The region � is supposed to be star-shaped
with respect to an interior point which without loss may be taken as the origin of coordinates so that

N X > 0, X ∈ ∂�. (3–1)

We commence by considering two distinct smooth equilibrium solutions (x,8) and (y, 9) to the
dielectric Equations (2–9)–(2–11) that satisfy the same boundary conditions in the following sense

x − y = 0, X ∈ ∂�, (3–2)

8−9 = 0, X ∈ ∂�. (3–3)

Then by Hadamard’s lemma [Hadamard 1903] it follows that

Grad(y− x)= λ⊗ N , λ= N Grad(y− x), X ∈ ∂�, (3–4)

Grad(9 −8)= µN , µ= N Grad(9 −8), X ∈ ∂�. (3–5)

The first convexity assumption imposed on the electric enthalpy is that of rank-one convexity. The
precise notion used is defined in the second of the following two related definitions.

Definition 3.1 (Rank-one convexity at a point). The function

H ∈ C(M (n+1)×n, IR)

is (strictly) rank-one convex at F and E if and only if

H(F + ta⊗ b, E + t Q)≤ t H(F + a⊗ b, E + Q)+ (1− t)H(F, E), (3–6)

for all
t ∈ [0, 1], F ∈ Mn×n

+
, E ∈ IRn, Q ∈ IRn, a ∈ IRn, b ∈ IRn,

such that F + ta⊗ b ∈ Mn×n
+ . Strict rank-one convexity at a point holds when the inequality in (3–6) is

strict.

When H ∈ C1(M (n+1)×n, IR), an immediate deduction from (3–6), obtained on taking the limit t→ 0,
is the further inequality

H(F + a⊗ b, E + Q)≥ H(F, E)+
∂H(F, E)

∂F
a⊗ b+

∂H(F, E)
∂E

Q, (3–7)

for all
F ∈ Mn×n

+
, a ∈ IRn, l b ∈ IRn, E ∈ IRn, and Q ∈ IRn+,

such that F + a⊗ b ∈ Mn×n
+ .

Definition 3.2 (Rank-one convexity). The function H(F, E) is (strictly) rank-one convex if and only if
H is (strictly) rank-one convex at F and E for all F ∈ Mn×n

+ , and all E ∈ IRn.

We can now state and prove the first lemma needed in the proof of uniqueness.
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Lemma 3.1. Let � be star-shaped with respect to the origin, and let

H : M (n+1)×n
→ IR

be rank-one convex. Let (x,8) and (y, 9) be distinct pairs of equilibrium smooth solutions to (2–9)–
(2–11) that satisfy the same Dirichlet boundary conditions in the sense of (3–2) and (3–3). When

H ∈ C1(M (n+1)×n, IR),

we have

n
∫
�

(
H(Grad x,−Grad 8)− H(Grad y,−Grad 9)

)
d X

≤

∫
∂�

{
∂H(Grad x,−Grad 8)

∂F
−
∂H(Grad y,−Grad 9)

∂F

}
×{N ⊗ (y− (X Grad) y)} d S

+

∫
∂�

{
N
∂H(Grad x,−Grad 8)

∂E
− N

∂H(Grad y,−Grad 9)
∂E

}
×{−9 + X Grad 9} d S. (3–8)

Proof. The conservation law (2–12) by hypothesis is satisfied by both solutions (x,8) and (y, 9).
Consequently, subtraction of the respective identities and appeal to (3–2)–(3–5) leads to the relation

n
∫
�

(
H(Grad x,−Grad 8)− H(Grad y,−Grad 9)

)
dX

=

∫
∂�

N X
(
H(Grad x,−Grad 8)− H(Grad x + λ⊗ N ,−Grad 8−µN )

)
dS

+

∫
∂�

N X
(∂H
∂F

(Grad x,Grad 8)N ⊗ λ−µN
∂H
∂E

(Grad x,Grad 8)
)

dS

+

∫
∂�

(∂H
∂F

(Grad x,Grad 8)−
∂H
∂F

(Grad y,Grad 9)
)
×
(
N ⊗ (y− X,Grad y)

)
dS

+

∫
∂�

(
N D(Grad x,Grad 8)− N D Grad (y,Grad 9)

)
× (9 − X Grad 9) dS. (3–9)

The first two terms on the right are nonpositive by virtue of the star-shaped assumption (3–1) and
inequality (3–7) for the rank-one convex function H . Consequently, the lemma is proved. �

Remark 3.1. It is apparent from the proof of Lemma 3.1 that rank-one convexity of H is required only
on the set of surface values of Grad(y− x) and Grad(9 −8).

We next restrict our attention to affine boundary conditions. We have as a corollary to Lemma 3.1 the
following lemma:

Lemma 3.2. Let � be star-shaped and let (3–1) be satisfied. Let (x,8) be a smooth equilibrium solution
to (2–9)–(2–11), let the electric enthalpy H be rank-one convex, and let x and 8 satisfy the respective
affine boundary conditions

x = c+ AX, X ∈ ∂�, (3–10)

8= d + bX, X ∈ ∂�, (3–11)
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where A ∈ Mn×n
+ , c ∈ IRn, b ∈ IRn and d ∈ IRn are constant.

Then ∫
�

H(Grad x,−Grad 8) d X ≤
∫
�

H(A,−b) d X. (3–12)

Proof. Consider the affine equilibrium solution pair (y, 9) given by

y = c+ AX, X ∈ �̄, (3–13)

9 = d + bX, X ∈ �̄, (3–14)

where as usual the overbar denotes closure; that is, �̄=�∪ ∂�. It easily follows that (y, 9) satisfies
the boundary conditions (3–10) and (3–11), and also the relationships

Grad y = A, Grad 9 = b, X ∈ �̄, (3–15)

and

y− X Grad y = c, X ∈ �̄, (3–16)

9 − X Grad 9 = d, X ∈ �̄. (3–17)

The proof of the Lemma is completed upon noticing that the right side of Equation (3–8) vanishes by
virtue of (3–15)–(3–17), the divergence theorem, and the equilibrium equations (2–9)–(2–10). �

Uniqueness of the affine solution (3–13) and (3–14) requires the introduction of our second general
convexity assumption defined as follows:

Definition 3.3 (Quasiconvexity). The function H ∈ C(M (n+1)×n, IR) is quasiconvex at (A, b) if and only
if ∫

6

H(A+Grad χ,−b+Grad θ) d X ≥
∫
6

H(A,−b) d X, (3–18)

for every bounded open set 6, and χ ∈W 1,∞
0 (6, IR), θ ∈W 1,∞

0 (6, IR).

Definition 3.4 (Strict Quasiconvexity.). The function H is strictly quasiconvex at (A, b) if and only if H
is quasiconvex at (A, b) and equality holds only when χ = θ = 0.

The relation between rank-one convexity, quasiconvexity, and other notions of convexity is further
discussed in, for example, [Ball 1976] and [Knops and Stuart 1984]. For present purposes, it is sufficient
to note that all generalized notions of convexity reduce to the standard condition of convexity when the
functions concerned are defined only on scalar and vector quantities.

We now proceed to establish uniqueness of the solution to the affine boundary problem. We have:

Proposition 3.1 (Uniqueness). Let� be star-shaped with respect to the origin, and let the affine boundary
conditions be (3–10) and (3–11). Let H ∈ C2(M (n+1)×n, IR) be rank-one convex and strictly quasiconvex
at (A,−b). Then the unique smooth equilibrium solution is

x = c+ AX, X ∈ �̄, (3–19)

8= d + bX, X ∈ �̄. (3–20)
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Proof. Suppose that (x,8) and (y, 9) are equilibrium solutions satisfying the affine boundary conditions
(3–10) and (3–11) such that x 6≡ y ≡ c+ AX and 8 6≡ 9 ≡ d + bX for X ∈ �. Consider the volume
integral on the left of Equation (2–12), which may be rewritten∫

�

H(Grad x,−Grad 8) d X

=

∫
�

H
(
Grad y+Grad(x − y),−Grad9 +Grad(9 −8)

)
d X

=

∫
�

H
(

A+Grad(x − y),−b+Grad(9 −8)
)

d X. (3–21)

By hypothesis, x− y=9−8= 0 for X ∈ ∂�, and consequently strict quasiconvexity of H at (A,−b)
implies that ∫

�

H(Grad x,−Grad8) d X >
∫
�

H(A,−b) d X, (3–22)

which contradicts inequality Equation (3–12) and the Proposition is proved. �

4. Concluding Remarks

This final section provides several remarks that supplement the previous results. In particular, we explore
the implication of Proposition 3.1 for the uniqueness of the electric displacement and polarization, and
consequently the electric free charge density on the surface ∂�. For completeness, we also demon-
strate for a given deformation gradient that the electric constituents are uniquely determined subject to
mixed boundary conditions and a rank-one convex electric enthalpy. The conclusion represents a slight
extension of the familiar property in electrostatics.

We commence with an observation whose validity is evident from an examination of the proof of
Proposition 3.1.

Remark 4.1 (Alternate conditions). The conditions stipulated in Proposition 3.1 for H may be replaced
by the alternative conditions of strict rank-one convexity and quasiconvexity at (A,−b).

Remark 4.2 (Electric displacement and polarization). Suppose for simplicity that the strain energy
function W is convex with respect to P so that (2–11) is invertible to give P uniquely in terms of
E and F . We conclude that the conditions of Proposition 3.1 uniquely determine P to be constant.
Consequently, (2–8) yields a unique constant value for D under the same conditions. Furthermore, the
electric free charge surface density σ(X) for X ∈ ∂� is given by

DN = σ. (4–1)

where from (2–10) it necessarily follows that
∫
∂� σ d S = 0. An appeal to (2–5) and (4–1) shows that σ

is uniquely determined by P, E, and F , and therefore under the stipulated conditions is likewise unique.
On the other hand, when the electric potential is constant on the boundary, it follows as a special

case of Proposition 3.1 that the electric field E vanishes everywhere in �, and by the assumed unique
invertibility of (2–11), that the polarization is also identically zero. (See also Remark 4.4).
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Remark 4.3 (Mixed boundary conditions: electric field). Suppose that

H(F, E) : M (n+1)×n
→ IR

is strictly rank-one convex with respect to E ∈ IRn at each F ∈ Mn×n
+ so that

H(F, t E + (1− t)Q) < t H(F, E)+ (1− t)H(F, Q), (4–2)

for all E ∈ IRn, Q ∈ IRn and t ∈ [0, 1]. Notice, as already observed, that (4–2) is the usual condition for
strict convexity as generalized definitions of convexity reduce to the corresponding standard definitions
for scalar and vector quantities. Now consider the function defined by

I (t)=
∫
�

(
H(F, t E + (1− t)Q)− t H(F, E)− (1− t)H(F, Q)

)
d X, (4–3)

which by inspection and (4–2) possesses the properties

I (0)= I (1)= 0, (4–4)

I (t) < 0, t ∈ (0, 1). (4–5)

Next assume that for each F there exist two distinct electric fields E, Q with potentials 8,9 and corre-
sponding electric displacements D(F, E) and D(F, Q). Instead of the affine boundary condition (3–11)
we suppose nonaffine and nonuniform mixed boundary conditions such that for all F ∈ Mn×n

+ and E 6≡ Q
we have:

8=9, X ∈ ∂�1, (4–6)

D(F, E)N = D(F, Q)N , X ∈ ∂�2, (4–7)

where ∂�= ∂�1 ∪ ∂�2, and

E =−Grad 8, Q =−Grad 9, X ∈�. (4–8)

Let a superposed prime denote differentiation with respect to t . Examination of the graph of I (t) imme-
diately shows that

0> I ′(0)=
∫
�

(∂H(F, Q)
∂E

(E − Q)− H(F, E)+ H(F, Q)
)

d X

=

∫
�

(∂H(F, Q)
∂E

(Grad 9 −Grad 8)− H(F, E)+ H(F, Q)
)

d X

=

∫
�

(
−D(F, Q)(Grad 9 −Grad 8)− H(F, E)+ H(F, Q)

)
d X,

which after an integration by parts and appeal to Equation (2–10) and (4–6) gives∫
�

H(F, E) d X >
∫
�

H(F, Q) d X +
∫
∂�2

D(F, Q)N (8−9) d S. (4–9)
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On noting Equation (4–7) and either by reversing the roles of E and Q, or by evaluating I ′(1) > 0, we
are led to a contradiction and consequently we conclude that

8≡9, X ∈ �̄, (4–10)

and uniqueness of the electric field is established. This is not necessarily constant, unlike the case of the
affine boundary value problem.

Remark 4.4 (Mixed boundary conditions: electric displacement and polarization). The conditions in-
troduced into the previous remark are insufficient to provide uniqueness of the corresponding electric
displacement and polarization vectors, which is not surprising, especially for ferroelectrics and similar
materials. We emphasize, however, that for such materials the argument can easily be modified as follows
to additionally obtain uniqueness of the electric displacement and polarization. Assume the conclusion is
false and that P and R are the distinct respective polarizations. Let the nonaffine and nonuniform mixed
boundary conditions be such that Equations (4–6) and (4–7) hold, and in addition to (rank-one) convexity
of the electric enthalpy (4–2) with respect to E , suppose that the strain energy is strictly (rank-one) convex
with respect to P in the sense that for each given F

W (F, t F P + (1− t)F R) < tW (F, F P)+ (1− t)W (F, F R), (4–11)

for P, R ∈ IRn . The function G(t), defined by

G(t)= ∫
�

(
W (F, t F P + (1− t)F R)− tW (F, F P)− (1− t)W (F, F R)

)
d X, (4–12)

satisfies G(0)= G(1)= 0, and G(t) < 0, 0< t < 1, so that G ′(0) < 0 and therefore by Equation (2–11)
we have ∫

�

(
E(P − R)−W (F, F P)+W (F, F R)

)
d X < 0. (4–13)

But for each F we have shown already that E is uniquely determined, and so by interchange of P and
R we are led to a contradiction and the polarization is unique. It is worth remarking that uniqueness of
P is established here subject to conditions more general than those assumed in Remark 4.2. Uniqueness
of the electric displacement now follows from relation (2–5).
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