4 ._. .,“..m_._. X

P THAMREHT -
. %__ | _T-.u__ i .-”.q”_”_ ....-._u_.h_. .
D BrIALY _.___";..“.. _.“__.__ Ik
_.._ _._“__h. n_-‘__ﬂn.L

i

i _
o wm.w_w
N e

A ’ (FaF
p fy

m ‘.- * .. g ... .

SN M e,

3 [t

S R g

L
L]

.
s



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES

http://www.jomms.org

EDITOR-IN-CHIEF  Charles R. Steele

ASSOCIATE EDITOR  Marie-Louise Steele
Division of Mechanics and Computation
Stanford University
Stanford, CA 94305
USA

SENIOR CONSULTING EDITOR  Georg Herrmann
Ortstrasse 7
CH-7270 Davos Platz
Switzerland

BOARD OF EDITORS

D. BIGONI  University of Trento, Italy
H.D.Bul Ecole Polytechnique, France
J. P. CARTER  University of Sydney, Australia
R. M. CHRISTENSEN  Stanford University, U.S.A.
G. M. L. GLADWELL  University of Waterloo, Canada
D. H. HODGES  Georgia Institute of Technology, U.S.A.
J. HUTCHINSON  Harvard University, U.S.A.
C.Hwu National Cheng Kung University, R.O. China
IWONA JASIUK  University of Illinois at Urbana-Champaign
B. L. KARIHALOO  University of Wales, U.K.
Y. Y. KiM  Seoul National University, Republic of Korea
Z.MROzZ Academy of Science, Poland
D. PAMPLONA  Universidade Catdlica do Rio de Janeiro, Brazil
M. B. RUBIN  Technion, Haifa, Israel
Y. SHINDO  Tohoku University, Japan
A. N. SHUPIKOV  Ukrainian Academy of Sciences, Ukraine
T. TARNAI  University Budapest, Hungary
F. Y. M. WAN  University of California, Irvine, U.S.A.
P. WRIGGERS  Universitdt Hannover, Germany
W. YANG Tsinghua University, PR. China
F. ZIEGLER  Technische Universitit Wien, Austria

PRODUCTION

PAULO NEY DE SOUZA  Production Manager
SHEILA NEWBERY  Senior Production Editor
SiLvio LEVy  Scientific Editor

See inside back cover or http://www.jomms.org for submission guidelines.

JoMMS (ISSN 1559-3959) is published in 10 issues a year. The subscription price for 2006 is US $400/year for the electronic
version, and $500/year for print and electronic. Subscriptions, requests for back issues, and changes of address should be sent to
Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840.

JoMMS peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY

:I mathematical sciences publishers
http://www.mathscipub.org

A NON-PROFIT CORPORATION
Typeset in IATEX
©Copyright 2006. Journal of Mechanics of Materials and Structures. All rights reserved.


http://www.jomms.org
http://www.jomms.org
http://www.mathscipub.org
http://www.mathscipub.org

JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 1, No. 7, 2006

dx.doi.org/10.2140/jomms.2006.1.1097

ANTIPLANE DEFORMATION OF ORTHOTROPIC STRIPS WITH MULTIPLE
DEFECTS

REZA TEYMORI FAAL, SHAHRIAR J. FARIBORZ AND HAMID REZA DAGHYANI

Stress analysis is carried out in an orthotropic strip containing a Volterra-type screw dislocation. The
distributed dislocation technique is employed to obtain integral equations for a strip weakened by cracks
and cavities under antiplane traction. These equations are of Cauchy singular kind, which are solved
numerically by generalizing a numerical method available in the literature. Several examples are solved
to demonstrate the validity and applicability of the procedure.

1. Introduction

In composite materials, defects in the form of cracks and cavities generate regions of high stress gradient.
These regions are the primary locus of failure in structures, even under moderate applied load. Therefore,
stress analysis in the vicinity of defects is imperative as the first stage of the design process.

Stress analysis in a strip with cracks under antiplane deformation has been investigated frequently.
Here, we review some recent pertinent articles. Zhou et al. [1998] showed that in the vicinity of two
collinear cracks perpendicular to the edges of an isotropic strip, the cracks were symmetrical with respect
to the centerline of the strip and subjected to antiplane traction. Li [2003] obtained a closed-form solution
for orthotropic strips. Stress analysis in an isotropic strip weakened by two collinear cracks situated on
the centerline under antiplane shear was carried out by [Zhou and Ma 1999]. In the above articles,
the application of boundary conditions resulted in a set of integral equations which are solved by the
Schmidt’s method. Wu and Dzenis [2002] obtained closed-form solutions for mode III stress intensity
factors for an interfacial edge crack between two bonded semi-infinite dissimilar elastic strips. Li [2005]
considered an interfacial crack between two bonded dissimilar semi-infinite orthotropic strips where the
crack surface was under antiplane traction. Closed form stress intensity factors were obtained for a strip
with either clamped or traction-free boundaries.

In this study, we perform stress analysis in an orthotropic strip weakened by cracks and cavities under
antiplane deformation. We obtain the solution of Volterra-type screw dislocation by means of Fourier
transformation, and use the solution to derive integral equations for cracks. Cavities are considered as
closed curved cracks without singularity. The integral equations are solved numerically for the dislocation
density function by generalizing the method developed by [Erdogan et al. 1973] to take into account
cavities, embedded cracks, and edge cracks. Finally, we obtain the stress intensity factor for cracks, and
the hoop stress for cavities for several examples.

We regret to inform that Hamid Reza Daghyani passed away in 2006.
Keywords: antiplane deformation, orthotropic strip, multiple defects, Cauchy-type singularity.
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2. Strip with screw dislocation

The distributed dislocation technique is an efficient means of treating multiple curved cracks with smooth
geometries. However, determining stress fields due to a single dislocation in the region has been a major
obstacle to the utilization of this method. We now take up this task for an orthotropic strip containing
a screw dislocation. We consider an orthotropic elastic strip with finite thickness 4 in the y-direction
and extended infinitely in the x-direction. The x-axis is situated at the distance /| below the upper edge
of the strip. The only nonzero displacement component under antiplane deformation is the out of plane
component w(x, y). Consequently, the constitutive relationships are

O'Zy:Gzyg, (1)
ow
Ozx :sza. (2)

In the above equalities, G, and G, are the orthotropic shear moduli of elasticity of material. The
equilibrium equations o;; ; = 0, in view of Equations (1)—(2), reduce to

02w 32w
Gax T2 + Sy =0. (3)
The traction-free condition on the strip edges implies that
oy (x, hy) =0, oy (x, hy —h) =0. (4)

A Volterra-type screw dislocation with Burgers vector § is situated at the origin of coordinates with
the dislocation line x =0, y > 0. The conditions representing the dislocation are

|1|im w=0, )
w(0F, y) —w(0™, y) =8H(y), (6)

where H (y) is the Heaviside step function. The conditions of continuity and self-equilibrium of stress
in the strip containing dislocation imply that

w(x,07) =w(x,0h), 0y (x,07) = 0y (x, 07). (7)

Since the problem is symmetric with respect to the y-axis, we may consider only the region x > 0.
Equation (3) is solved by Fourier sine transformation, which for a sufficiently regular function f(x) is
defined as

o0
F(A) = / f(x)sinAx dx. (8)
0
The inversion of the Fourier sine transform yields
2 o0
fx)= —/ F(A)sinAx d. 9
T Jo

The application of Equation (8) to Equation (3) with the aid of Equation (5) leads to a second order
ordinary differential equation, in each region 0 <y < h; and h; —h < y < 0. The solution satisfying
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Equation (6) is readily known, namely

a1e*® +bie* + L 0<y<h,

W, y) = (10)
Y are*0Y 4 bre 0y, hi—h<y<0,
where G = ,/G,/G,. The application of conditions (4) and (7) to Equation (10) results in
Se—ZAGm (eZ)\Gh _ eZ)»Ghl) S(ezA.Gh _ eZAGhl)
ay = ; by = ; (11)
4)(1 — e22Gh) 40 (1 — e2AGh)
582AGh(e—2kGh1 _ 1) 8(1 _ eZAGh])
a) = , by=———. (12)
40(1 — e22Gh) 4 (1 — e2AGh)
The displacement field in view of Equations (9)—(12) becomes
S 00 (eZ)»Gh _ eZkGhl)(ekG(y—Zhl) _i_e—)\Gy) 2 )
w(x,y):g/o ( (1 — e +X> sin Ax dA, O<y<h;, 13)
S 00 (e—ZAGhl _ 1)(ekG(y+2h) + e—kG(y—Zhl)) .
w(x,y)zE/O < (1 — G >s1nkxdk, hi—h<y<0. (14

Note that the rigid body motion of strip, that is, the unboundedness of the integrand in Equation (13)
as A — oo, may cause difficulties in carrying out the above integrations. Consequently, it is expedient to
obtain the displacement field from the stress components instead. Substituting Equations (13)—(14) into

Figure 1. Schematic view of the strip with a curved crack.
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Equations (1)—(2) yields

0y (X, y) = 8(;5” /0 g em};l )_(e;;%) —) Gnada, O<y<h, (5)
ox(x,y)= 52Gn” /‘X’ € == ez“”;l )_(e:j(cyhzhl) ) cosAx dX, 0<y<hy, (16)
ozy(x,y)= (Sigzy /OOO G 1)(??:;22)}1_ e 2O sinAxdk, hi—h<y<0, 17
o (x, ) = 85; / i i Dw:it:jz),f ) cosixdr, hi—h = y<0. (18)

The integrals in Equations (15)—(18) can be evaluated employing contour integration and the residue
theorem. The stress components are obtained in series form which are summed, leading, in the whole
strip region, to

3G,y sinhkx 1 1

Ooy (¥, ¥) = 4h (cosh/cx —coskGy coshkx —coskG(y — 2h1))’ (19)
3GGyy sink (y — 2hy) sinky

Our (X, y) = 4h <COSth —coskG(y—2hy) coshkx— cosxGy)’ 20)

where k = 7/Gh. Substituting the stress component o, into Equation (1), integrating the resultant
expression with respect to y, and ignoring the rigid body displacement, the displacement field becomes

8 G G(y—2h
wx,y)=— tan~! (tan Ky coth E) —tan~! (tan M coth E) . 20
2 2 2 2 2

The stress components (19)—(20) readily satisfy the boundary conditions in Equation (4). Furthermore,
choosing the proper branch of the multiple-valued function which is the first term in the right-hand side
of Equation (21), it is easy to verify that Equation (6) holds. In the particular case of screw dislocation in
the isotropic half-plane, letting G = 1 and s, — oo in Equations (19)—(21), the displacement and stress
fields become

o = 2 s () (52)).

8 1 - 1
sz(x:y) :_M —{y 2h1}_ { y } , for —OO<y§h1,
ooy (x, ) 27 \(y —2h)?+x21 —x y2+x2l—x
where p is the shear modulus of elasticity of the isotropic half-plane. The above solutions are identical
to those in [Weertman and Weertman 1992].

To investigate the behavior of stress fields at the dislocation position from Equation (19) we may
observe that

GGy as x — 0.

Toy(x, 0) ~

Note that the above Cauchy-type singularity at the dislocation location is a distinct feature of stress fields
in the two-dimensional regions containing a dislocation.
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3. Orthotropic strip with multiple cracks and cavities

The dislocation solutions accomplished in Section 2 can be used to analyze strips with multiple cracks
and cavities. The cavities are considered as closed-curve cracks without singularity. We consider a strip
weakened by M cavities, N; embedded cracks, and N, edge cracks. Henceforth, we designate cavities,
embedded cracks, and edge cracks with the respective subscripts

iefl,2,..., M},
jeM+1, M+2,...,M+ Ny},
ke{M+N+1,M+Ni+2,..., N},
where N = M + N + N, and represents the total number of defects. The stress components on the local
coordinates X;-Y; as seen in Figure 1 located on the surface of i-th crack in terms of stress components
in x-y coordinates become
07y, = 03y COS @; — O SIN @, (22)
0;X; = Ozx COS @; + 0y, Sing@;, (23)
where ¢; is the angle between X; and x axes. Suppose dislocations with unknown density B;; are
distributed on the infinitesimal segment d ; located at a point with coordinates (x;, y;) on the surface

of the j-th crack. The traction on the surface of i-th crack, due to the above distribution of dislocations,
and using Equations (19), (20), (22), and (23), becomes

G;yB;jd); (cos @i sinhk (x; —x;) + G sing; sink G(y; —y;)

oy, (Xi, yi) = m

coshk (x; —xj) —coskG(y; — y;)
cos ¢; sinhk (x; —x;) + G sing; sink G (y; + y; — 2h)

). @4
coshk(x; —x;j) —coskG(y; +y; —2h)

Covering crack surfaces by dislocations, the principle of superposition can be invoked to obtain traction
on a crack surface. We can thus integrate Equation (24) on the crack surfaces and superimpose the resul-
tant tractions. Integration of Equation (24) is facilitated by describing crack configurations in parametric
form x; = x;(s), yi = yi(s), fori =1,2,..., N, and where —1 < s < 1. The traction on the surface of
the i-th crack yields

N 1
7o (50,3 9) =3 bk .0 25)
j=1""

where b, (1) is the dislocation density on the nondimensionalized length —1 < ¢ < 1. From Equation
(24), the kernel k;; (s, ) is

Gy (x; (f))2 + (y; (t))z cos ¢; (s) sinh k (x,- () — x; (t)) + G sin @; (s) SiHKG(Yi (s) — y‘/(f))
4h ( coshK(x,' (s) — x; (t)) —cos KG(yi () =y, (f))

_ Cos g (s) sinhx(xi (s) —x; (t)) + G sing; (s) sink G(y; (s) +y; (t) — 2h)
cosh i (x; (s) — x; (1)) — cos k G (yi(s) + y; (t) — 2h)

kij(s,t)=

). (26)
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Substituting the crack angle ¢; (s) =tan™'(y/(s)/x/(s)) as seen in Figure 1, into Equation (26), the kernel
is recast in the more convenient form

koo (s, 1) = Gy (x; (t))2 + (y} (Z))2 (xl.’(s) sinh i (x; (s) — x; (1)) + Gy (s) sink G (yi (s) — y; (1))
ij\$, 1) =

4h (xlg(s))l + (yl{(s))z cosh i (x;(s) — x;j (1)) —cosk G (yi (s) — y; (1))
_ x{(s) sinh k(xi(s) —x; (1)) + Gy!(s) sink G (yi(s) + y; (t) — 2h) @n
coshk (xi(s) —x;(1)) — cosk G(yi (s) + y; (1) — 2h) '

Making use of Equation (27) we can conclude that k;; (s, t) has Cauchy-type singularity for i = j as
t — s. To illustrate this behavior, applying L’Hopital’s rule to Equation (27) gives

o
a_q m
k,,(s,t)_:—i—n;am(s—t) as t— s,
where the coefficient of the singular term a_y = GG, /2m. The coefficients a,,, m =0, 1, ... are regular
functions of variable s in the interval —1 <s < 1 which are too lengthy to be given here. By Bueckner’s
principle, changing the sign of the left-hand side of Equation (25) gives the traction caused by the external
loading on the uncracked strip at the presumed surface of cracks. In Appendix A, we present the Green’s
function solution of applied traction for a self-equilibrating load on strip edges. Using Equations (22)
and (A4), the following traction should be applied on the surface of i-th crack

o, (515), 31(5)) = 2fGoh ( x{(s) sink G (y;(s) — h) + Gy](s) sinhk (x; (S)z_ x0) :
(cosh e (xi(5) — x0) +cos kG (3 () — ) )y (xf)” + (5(5))
B x/(s) sink Gy;(s) + Gy/(s) sinh k (x; (s) — xo)
(cosh e (xi (5) — %) +cos € Gy (5))/ (/) + (yl-’(s))2>.

Employing the definition of dislocation density function, the equation for crack opening displacement
across the j-th crack is

W (s) = w; () = f_ V0P + (50 by 0 ar 28)

The displacement field is single-valued for the surfaces of embedded cracks and cavities. Conse-
quently, the dislocation density functions are subjected to the following closure requirement for j =
,2,....,. M+ N,

1
f 1 \/ (] )+ (y}(t))z b.j(t)dt =0. (29)

The Cauchy singular integral Equations (25) and (29) are solved simultaneously to determine dislo-
cation density functions. Cavities are defined as closed curved cracks with bounded dislocation density
at both ends of the cracks. Thus, for —1 <¢ <1, j=1,2,..., M the dislocation density functions for
cavities are expressed as

bj(t) = gz (V1 —12. (30)
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Stress fields for embedded cracks in orthotropic materials are singular at crack tips with square root
singularity [Delale 1984]. Thus, the dislocation density functions are represented for —1 <t < 1, j =
M4+1,M+2,...,M+ N as
8zj (t )
b,i(t) = .
N V1 =12
For edge cracks, taking the embedded crack tipatt = —1,for -1 <t <1, j=M+ N +1, M+ N, +
2,...,N welet

€1y

1—1
b;j(t) = g (1) I_—i-t

[Liebowitz 1968] gives the stress intensity factors for i-th crack in terms of crack opening displacement
as

(32)

2 ~(s) —w’
tanrns = Y266, tim WL

2 . w; (s) —wi(s)
kirrei = TGGzy lim —————, M, VR,-

rp;—0 ry;
for j=M+1,M+2,..., N, where r is the distance from a crack tip. Setting the points L; and R; on
the surface of the crack, as shown in Figure 1, yields

1

= (6@ =5 DY+ (i@ =30 =] (6 =)+ (10 = n )] G4

Bl

Substituting Equation (31) into Equation (28), deriving the resultant equations , substituting Equation
(34) into Equation (33), and finally employing L'Hopital’s rule yields the stress intensity factors for
embedded cracks

GG., ~GG.,

1 1
2 2\ 4 2 2\ 4
(/D) + (3 =D)) =D kinir=—5 (D) + (37(D)*) *gar (D,
wherei =M+ 1, M +2,..., M + Ni. Analogously, for an edge crack the stress intensity factor is

krpini=

ki = GGy ((x/(=1)* + (31(=1)?) "ga (=D,

wherei=M+N{+1, M+ N;+2,...,N.
To calculate hoop stress on the surface of cavities, we employ the definition of dislocation density
function valid for -1 <s <1, i=1,2,..., M

Vex, (Xi (5), i () = bi (s). (35)

From Hooke’s law and Equation (35), for —1 <s <1, i =1,2, ..., M the shear stress (see [Lekhnitskii

1963]) becomes
sz Gzy

Gy sin® ¢; + Gy cos? ¢;

aux; (xi (5), yi(9)) = bi(s). (36)

Substituting the crack angle ¢; (s) = tan™! (y/(s)x;(s)) into Equation (36) for -1 <s <1, i=1,2,..., M
results in

Gar((x/)* + (57)°)
(x/)” + G2 ()’

ozx, (xi (), yi(s)) = b.i(s).
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We define the nondimensionalized hoop stress for —1 <s <1, i=1,2,..., M as
ho.x. (x;(s), y; (s
oi(5) = zX,(t() vi( ))’
70

where £ is the strip thickness and g is the point load applied on the strip.

4. Solution of integral equations

The numerical solution of Equations (25) and (29) is carried out for a strip weakened by cavities, em-
bedded cracks, and edge cracks. The numerical procedure developed by [Erdogan et al. 1973] cannot
consider all these defects simultaneously. We have developed a minor generalization of the procedure
to provide the needed results. Expanding the continuous functions g;(¢) in Equations (30), (31), and
(32), respectively, by Tchebyshoff polynomials of first kind 7;(¢), second kind U;(t), and the Jacobi
polynomials Pl(l/ 271D gor 1 <t <1 leads to

2o BiuUi(), ji=1,2,.... M,
8z (1) =122 BjiTi(1), j=M+1,...,M+ N, (37)
S B PV = M4 Ny 1, N,

Using Equation (37), the integral Equation (25) can be rewritten for —1 <s <1, i=1,2,..., N as

M oo 1
o2y (xi (), yi($)) =YY Bji / kij (s, DUV 1=12 dit
j=11=0 -
M+N; oo

1—
+ ) ZBj,/ kij (s, t)#dl%— Z ZB,,[ kij (s, t)P,(t)“/Z*l/Z),/l—Jr;dr. (38)

j=M+1 [=0 J=M+N+1 1=0

Following [Theocaris and Iokimidis 1977] we conclude thatat s =s,,r =1,2,...,n—1,and s =1
the following approximations hold

Ti(t) T

[ kst i 1 5 3 o T, (39
Ti(t)
/ kij(1, )= di ~ i+ Zkl,(l 1T (1), (40)
- =

where §;; is the Kronecker delta, s, = cos(rrr/n) forr =1,2,...,n—1, and t; = cos(r (2k — 1) /2n) for
k=1,2,...,n. These are the zeros of U, (s,) and T}, (), respectively. Employing identities for / € N

Ti(t) — Ti42(2)
Ui(t)y/'1 —1? RN - 41)

241 —12

(42)

P[(l‘)(l/z’_l/z) I—1 _ rad+1/2) (7"1,1(t) + 1) — 1141 (2) — Tl+2(t))

1+ J7l! 2(1+0)V1—12
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and Equations (39)—(40), the remaining integrals in Equation (38) can be estimated as

/2
/ kij(sr, YU (V1 —12dt ~ it/ Zku(sr, U (1),

1 1— 2
/;klj(l HU OV 1 —t2dt ~ WZ&](I 1)U (1),

k=1

: a1y (L=t wd—#) (1/2.-1/2)
RCROLI0 AT ;kij(sr, 1) P (1) ,
[,

(1 —t) 12—
dt%—g ki (1, 5) P(t) /> ~1/2),
T . ij (1, ) P (1)

k=1

1
/ kij (1, 1) Py(e)1/2 =12
—1

1105

(43)

(44)

(45)

(46)

The integral Equations (29) and (38) at the points s =s,,r =1,2,...,n—1 and s = 1, by virtue of

Equations (41)—(46), can be expressed as

M n M+N; n

0o (305, i (51)) = o= D7 3 (A=t s 18y 0+ Y D ki sy 108 (1)

j=1k=1 J=M+1k=1

n
T .
+ Z Y A=tkij(sr g (0, i=1,...,N,  r=1,...

J=MAN+1 k=1

M n M+N; n
T T
ozy,.(x,-(l),yi(n):;E (l—z,ﬁ)ki,-(l,rk>gz,-<rk>+; > ki1 i) gz ()
j=1 k=1 j=M+1 k=1

N n
T .
+— E E (I=t1)kij (1, 1) gz (tx), i=M+N+1,...,N.
o MANH k=1

In matrix form the above system of algebraic equations is written

Hyiy Hpp ... Hiy gzl(tp) q1(sy)
Hyy Hy ... Hyy 8:2(tp) q2(sy)

Hyy Hyy ... Hyy | [ g8 (p) gn(sy)

(47)
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The matrix and vector components in the system of Equation (47) are

Ajkij(si,t1) ... Aja—ikii(st, tam1)  Ajpkij(si, )
Hyj = : » : :
Ajikij(sp—1,t1) .. Aju_1kij(Sn—1,tn—1) Ajnkij(Su—1,tn)
AjBij(t1) ...  Aju-1Bij(th-1) AjnBij(ty)
T .
ng:[ng(tl) ng([n)] > ]:172""’N’
T .
qi = [ozy, (xi(s1), yi(s1)) ... o2y, (xi(sn—1), yi(su—1)) O], i=1,...,M+Ny,

T .
gi = o2y, (xi (s, yi(s1)) - ooy, (xi(su=1), Yi(sa=1)) ouy (xi (D), yi(D)]",  i=M+N+1,....N.
In the above equalities, superscript 7 stands for the transpose of a vector and A j; and B;; () are
1—#2, j=1,....M,

T
Ajk:; 1, j=M+1,...,M+ Ny,
l—ty, j=M+N+1,....N, k=1,2,...,n,

8 (O + G102 =1, M+N,

Bij(t) =
kij(1,1), i=M+N;+1,...,N.

Note that the minor enhancement of [Erdogan et al. 1973] does not affect the convergence of numerical
results.

5. Numerical examples and results

The validity of analysis is examined by considering an orthotropic strip with thickness 4 where the x-axis
coincides with the lower edge of strip. The strip is weakened by a single crack located on the y-axis
extending over a < y < b. The crack is under antiplane traction 7o(s) on its surface. For this example,
the integral Equation (25) simplifies to

(b—a)GGy, /1 sin(zwy(t)/ h)
4h _1cos(my(t)/h) —cos(my(s)/h)

To(s) = b,(t)dt, (48)

where the crack equation for —1 <s < 1is
_ 1
y(s) = E(b +a+b— a)s).

The integral Equation (48) is identical to Equation (30) derived by [Li 2005]. This may demonstrate
that our method is valid for numerical analysis of cracks in strips.

For cavities, the formulations and also the numerical solution of integral equations are validated by
considering an infinite isotropic plane weakened by two identical circular approaching cavities. The
plane is under uniform antiplane traction typ at infinity. The variation of the nondimensionalized stress
component o, (d, 0) /7o versus the distance between cavities is shown in Figure 2. The results are in
reasonable agreement with those obtained by [Steif 1989]. As a final check of the formulation, we
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Figure 2. Comparison of hoop stress with Steif’s results.
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Figure 3. Variation of stress intensity factor with 2a/d.

analyze an embedded crack located between two approaching elliptical cavities under far field traction
(Figure 3), and show that the curves for k/tg+/a versus 2a/d coincide with Isida’s results in [Isida 1973].
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The procedure described in the preceding sections allows consideration of a strip with any number of
cracks and cavities, and with differing orientations. We now furnish four examples to demonstrate the
applicability of this method. In all examples, the ratio of the moduli of elasticity of the orthotropic strip
is taken as G = 1.135 which is representative of that for carbon-carbon plies. Moreover, the strip is under
antiplane point force with magnitude tp on the edges. The stress intensity factors become dimensionless
by using the divisor ko = 19+/I/h, where [ is the half length of embedded crack. For an edge crack, [ is
the crack length.

In the first example, we consider a pair of straight cracks with length 2/ = /3 and an elliptical cavity
with the length of major semi-axis a = h/6 and minor semi-axis b = h/12. The major axis of the
cavity and the cracks are located on the centerline of the strip. Therefore, the problem is symmetric with
respect to the y-axis. Figure 4 shows the variations of nondimensionalized stress intensity factors, k/ ko,
of crack tips against d/a for isotropic and orthotropic strips. As the crack tip approaches the elliptical
cavity, k/ ko at the tip L increases rapidly. In the orthotropic strip, weaker material stiffness in the y-
direction compared to that of the x-direction reduces the stress intensity factor. The plot of dimensionless
hoop stress on the elliptical cavity, ho,x /7o, versus angle 6, where 0 is measured from the minor-axis of
elliptical cavity, are shown for the orthotropic strip in Figure 5. A similar trend for dimensionless hoop
stress but with greater magnitude was observed for a cavity in the isotropic strip.

In the second example, we consider a orthotropic strip weakened by an edge crack with length 4 /4
perpendicular to the upper edge of strip, and a rotating embedded crack with length 2/ = h/2. The
plots of dimensionless stress intensity factors, k/ kg, versus the crack orientation, angle 6, are shown in
Figure 6. The interaction between cracks is weak, In particular, variation of k/ kg is small for the edge
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Figure 6. Variations of k;;;/ ko with 6 for orthotropic strips.
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Figure 7. Dimensionless hoop stress on the elliptical cavity versus 6 for different values

of .

crack. At 6 = /2, the embedded crack experiences some stress due to interaction with the edge crack.
For the isotropic strip, the plots of k/kq are very similar to those in Figure 6, but with slightly reduced
magnitude.

In the third example, we consider a strip weakened by a stationary inclined edge crack with length
[ = h/3 and an elliptical cavity with the length of major semi-axis a = #/8 and minor semi-axis b = h/12.
We let the cavity rotate around its center. Figure 7 shows the plot of dimensionless hoop stress for two
different orientations of cavity, ¥ = 0 and /2, versus the angle 6, where 6 is measured from the minor
axis of elliptical cavity. Figure 8 shows dimensionless stress intensity factors, k/ kg, for the crack tip
versus the cavity orientation. For all cavity orientations, the magnitude of the stress intensity factor in
the orthotropic strip is higher than that in the isotropic one.

In the fourth and last example, we consider a straight embedded crack with a fixed center, an inclined
edge crack, and a circular cavity with radius R = h/6. The center of the cavity and the embedded crack
are located on the line with distance //3 from the lower edge of strip. The edge crack is in the radial
direction of the cavity with a length half of the embedded crack. The distance from the center of the
embedded crack to the center of cavity is 44 /3. Figure 9 and shows the stress intensity factors for edge
cracks with changing crack length in isotropic and orthotropic strips, and Figure 10 shows the same
information, but for embedded cracks. The dimensionless hoop stress for the cavity, when [/ h =1, is
shown in Figure 11. Hoop stress is greatest at the points closest to crack tips.
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Appendix A

The Green’s function solution for elasticity problem of a strip under antiplane load may be obtained by
applying the following self-equilibrating traction to the strip edges

07y (x, h) = 198 (x — x0) = 0,,(x, 0). (A1)

The application of Fourier transform in x-direction to Equation (3) leads to a second order ordinary
differential equation with the solution

W(S2, y) = E(Q)e%0 4+ F(Q)e %Y. (A2)

The unknown coefficients in Equation (A2) are obtained by taking the Fourier transform of Equation
(A1) and applying them to Equation (A2), yielding
79 coshQGy —cosh QG(y — h)
GGy Qsinh QGh

W(Q,y) = e i, (A3)

Employing the inverse Fourier transform of Equation (A3) in conjunction with Equations (1)-(2) give
the stress fields as

. y) innG /oo coshQGy —coshQG(y —h) 6y, 4O

O X, - N e )

zxits 27 J_oo sinh QGh

oot y) = 70 /‘OO sinh QGy — sinh QG (y — h) RLTEE I
oY =0 sinh QGh '

To determine the above integrals, we can use contour integration. The results are

( - T0 ( sinh x (x — xq) sinh x (x — xq) ) (Ad)
o (X,
WY =5 coshi (x — xg) +coskG(y —h)  coshk(x — xg) + cos(kGy)
( ) 70 ( sink Gy sinkG(y —h) ) (AS)
Oy(X,y) = - .
%Y 2Gh \coshk(x —xg) +cosk Gy coshk(x —xg) +coskG(y —h)
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SWITCHING DEFORMATION MODES IN POST-LOCALIZATION SOLUTIONS
WITH A QUASIBRITTLE MATERIAL

PIERRE BESUELLE, RENE CHAMBON AND FREDERIC COLLIN

Localization in a quasibrittle material is studied using a local second-gradient model. Since localization
takes place in a medium assumed to be initially homogeneous, nonuniqueness of the solutions of an
initial boundary value problem is then also studied. Using enhanced models generalizes the classical
localization analysis. In particular, it is necessary to study solutions more continuous (that is, continuous
up to the degree one) than the ones used in analysis involving classical constitutive equations. Within the
assumptions done, it appears that localization is possible in the second-gradient model if it is possible
in the underlying classical model. Then the study of nonuniqueness is conducted for the numerical
problem, using different first guesses in the full Newton—Raphson procedure solving the incremental
nonlinear equations. Thanks to this method, we are able to simulate qualitatively the nonreproducibility
of usual experiment in the postpeak regime.

1. Introduction

Modeling the degradation of materials is a very challenging task. If the degradation is sufficiently high —
if the material exhibits some softening (here in a vague sense) —it is now well known that some unpleas-
ant features appear both in experiments and in computations.

From the experimental point of view, as soon as the softening is reached, it seems that the behavior is
poorly reproducible or nonreproducible. The first reason is that in main cases strain localization occurs
which means that contrary to current assumptions, laboratory samples are not strained homogeneously
up to the failure. Moreover localization patterns themselves are not easily reproduced. Let us first quote
Desrues and Viggiani [2004], who performed some biaxial tests twice:

[E]very test is somewhat unique as for the patterns of strain localization (location of the shear
band, appearance of nonpersistent and/or multiple bands).

Quite clearly such behavior is related to the loss of uniqueness of the problem (that is, in the reported case
the biaxial test) which allows shear bands to emerge. But, what is clear in [Desrues and Viggiani 2004] is
that there is a large variability in the observed patterns. This means that there is not only one alternative
solution involving a unique localized band. If it is quite clear that if orientation and width of the bands
are easily reproduced, on the contrary the number of bands and their position as well as their persistence
cannot be predicted in advance. This has some consequences for the load versus displacement curves
which can exhibit very different results in their postpeak parts (that is, when some localization can be

P.B. gratefully acknowledges financial support for a two-month stay for at the University of Liege through a Research Fellowship

of the Fonds National de 1a Recherche Scientifique (FNRS) of Belgium.

Keywords: continuum with microstructure, second gradient, finite element, bifurcation, strain localization, mode switching,
reproducibility.
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expected). This is clearly illustrated in [Desrues and Hammad 1985] or in [Desrues 1984] where the two
curves of duplicate tests are in many cases rather different as soon as the peak value is attained. Other
similar observations about tests performed twice can be found in [Viggiani et al. 2001]. These results are
often interpreted as the consequence of some (unfortunately unknown) initial imperfection in the studied
samples, and based on the deterministic principle, it is argued that if the initial state is completely known
the problem should disappear.

Following the previous ideas, numerical modeling of such postpeak phenomena is usually achieved
by introducing some (deterministic) initial imperfection into the computation, and it is believed that
uniqueness of the solution is restored. Consequently changing the imperfection can change the final
solution of the computation since it is assumed that there is a correspondence between a given imperfec-
tion and the resulting solution. Unfortunately we demonstrated recently that this way of thinking may
be erroneous; see [Chambon and Moullet 2004]. For the same imperfection several (properly converged)
solutions can be found provided an appropriate searching algorithm is used. Recently, introducing an
initial fluctuation of the mechanical properties has been used to deal with this problem, for instance in
[Niibel and Huang 2004]. In the quoted paper the introduction of this initial fluctuation is achieved by
initializing randomly the density for a model sensitive with respect to this parameter. The computations
performed seem very similar to what is usually observed. However, even in this case, it seems that the
author assumes implicitly that uniqueness is restored. Alternative solutions should be searched in order
to clarify this point.

Another way is followed in the numerical experiments detailed in the present paper. We choose to
solve the “perfect” (which means without any intentional imperfection) problem, and we try to exhibit
several solutions for this problem. Usually the method used to find alternative solutions is related to a
spectral analysis of the linearized velocity problem. Numerically this is achieved by searching when the
least eigenvalue of the tangent stiffness matrix related to the velocity discretized problem goes to zero;
see for instance [de Borst 1986] or [Ikeda and Murota 2002]. This method is based on a linearization of
the problem which is completely sound if the nonlinear problem is incrementally linear. Since we use
an elastoplastic model, elastic up to a given threshold and exhibiting a sudden softening as soon as this
threshold is reached, there are many possible linearizations depending on the choice of the unloading
area within the computed domain. Then the drawback of such a method is that the mode corresponding to
the null eigenvalue which allows theoretically to follow the bifurcated solution can correspond for some
point of the studied structure to a constitutive branch (loading or unloading) different to the one used to
compute the linearized stiffness matrix. In this paper we prefer to follow the ideas initially applied in
[Chambon et al. 2001b] where the solution for a time step is searched with a Newton—Raphson method
with different first estimations which can (if the problem has more than one solution) yield different
properly converged solutions.

On the other hand, it is now well known that localizations cannot be properly modeled with classical
media since this implies rupture without energy consumption as proved by Pijaudier-Cabot and BaZant
[1987]. Enhanced models are necessary. However, contrary to what is often believed, the use of an
enhanced model does not guarantee uniqueness of the solution of the corresponding boundary value
problems; this has been demonstrated in [Chambon et al. 1998; Chambon and Moullet 2004], the latter
employing the same model used in this paper. But it seems that the result is more general. Challamel
and Hijaj [2005] also found solutions for the same problem, but using a nonlocal, enhanced model.
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In this paper a second-gradient theory is used in conjunction with the method to search alternative
solutions recalled above. The first section of this paper is devoted to a brief recall of the model used and
of the principle of its numerical implementation.

In order to be able to perform easily different computations, the element has been first implemented in
the general purpose finite element code Lagamine developed at University of Li¢ge [Charlier 1987], and
we checked the accuracy of this implementation using extended tests. This is described in the second
section of this paper.

Then a localization analysis is performed in the third section of the paper. Such an analysis is necessar-
ily different from the original ones of [Rudnicki and Rice 1975] since the type of discontinuity assumed
in the aforementioned reference cannot be used due to the second-order terms.

After briefly recalling the method, the fourth section deals with the numerical experiments of non-
uniqueness and describes computations exhibiting switching modes. Such mode switching has already
been studied by Ikeda et al. [1997] in a different context. It has been made mainly for the incremen-
tally linear comparison solid, which on the one hand allows a sound mathematic treatment, but on the
other discards modes involving a change in the loading branches of the constitutive equations. Here, as
explained above, no assumption is done concerning the behavior but only a numerical treatment of the
problem is made.

As for our notations, a component of a tensor (or vector) is denoted by the name of the tensor (or
vector) accompanied by the indices. All tensorial indices are in lower position, since there is no need
to distinguish between covariant and contravariant components. Upper indices have specific meanings
defined in the text. The summation convention with respect to repeated tensorial indices is used.

2. Local second-gradient models

2.1. A microstructured continuum with kinematic constrains. Models with microstructure descend
from the pioneer works of the Cosserat brothers [Cosserat and Cosserat 1909], via [Toupin 1962],
[Mindlin 1964] and [Germain 1973]. They use an enriched kinematic description of the continuum,
with respect to classical continua, recalled hereafter. In addition to the displacement field, u;, a second-
order tensor, the microkinematic gradient v;;, is introduced. Particular subclasses of enriched models
introduce a constraint on the microkinematic field. For example, Cosserat models can be viewed as a
microstructured model for which the microstrain is vanishing, that is, the symmetric part of the tensor v;;
is zero. In the same spirit, (local) second-gradient models assume that the microkinetic gradient is equal
to the displacement gradient v;; = du; /dx;, where x; is the spatial coordinate. Recently, such models
have been developed for geomaterials [Chambon et al. 2001a; Matsushima et al. 2002; Chambon and
Moullet 2004] and for metals [Fleck and Hutchinson 1997].

For local second-gradient models, the virtual work principle can be summarized as follows. For every
kinematically admissible virtual displacement fields u},

/ SEE 82u; d /G *d +/ tiur + T ou; d (D)
0;i&;; ik V= iu; adv U ¥ S,
Q ALY ik 8Xj an Q T 0 i Y an

where o;; is the Cauchy stress, sl’.*j is the virtual macrostrain, ¥; jx is the dual static variable associated to
the second gradient of the virtual displacement, the so-called double stress; see [Germain 1973]. Further,



1118 PIERRE BESUELLE, RENE CHAMBON AND FREDERIC COLLIN

G; is the body force per unit volume, #; is the traction force per unit surface and T;; is the double
force per unit surface. However #; and T;; cannot be taken independently, since u} and du’/dx; are not
independent. More conveniently, the virtual work of external forces can be rewritten using the normal
derivative Du; = ny du; /0x; on the boundary. Here and in the following ny is the normal to the boundary
(assumed to be regular).

d%u*
/ (O—ijg;j'i'zijk ! ) dl):/ G,-ul-*dv-l—/ (p,-u?—l—PiDu;’) ds, 2)
Q Q Q2

axj 3xk

where p; and P; are two independent variables which can be prescribed on the boundary.
For such a class of models, the balance equations and boundary conditions yield

do;; %%y
% 9 Zk L G =0, 3)
ox;  0x; 0xg
DZijk DZijk Dnl Dnj
oijnj—nin; DYy — nj— n Yijn jng— ——Xjjk = Pi, 4
ijn; kT j jk Dx; j ij k+DX[ JjkI jhE Dx; jk Pi ( )
E,-.,-knjnk = P,' (5)

where Dg/Dx; denotes the tangential derivatives of any quantity g:

D a

1 -2 _y.pg. ©6)

Dx Jj ax j
2.2. Numerical implementation in a finite element code. A direct application of virtual work principle
(2) to solve equations of a boundary value problem needs to use C'! elements. To avoid this constraint, a
weak form of equation (2) can be introduced with help of a Lagrange multipliers field A;;, which yields,

for any time # and any kinematically admissible virtual fields u} and v

*

ij?

ot 2 + % v + A i ) av= [ Glutav + | (pluj + PiDu})ds, (7)
N\ T gyt ijk ax,l; i\ gxt ij = o i%i . piu; iDu; )
J J

and for any virtual field )Ll.*j,
L (oul
o (5 ) ae o ®

A complete description of the numerical treatment can be found in [Chambon and Moullet 2004].
The problem is discretized in time and for each finite step a full Newton—Raphson is applied to solve the
resulting nonlinear problem. In order to get the equations suitable for Newton—Raphson technique, the
unbalanced quantities are computed after the n-th iteration of the current time step. The same equations
are applied for the n + 1-th iteration, assuming these equations are well balanced. Then, by differentiation,
one gets a proper linearization of the set of equations for the Newton—Raphson method. Equations are
written in the actual configuration and the small strain assumption is not made, which introduces some
geometrical terms in the linearized equations.

The finite element is organized with 8 nodes for the displacement field u;, 4 nodes for the displacement
gradient field v;;, and a single node for the Lagrange multipliers field A;;. The element was introduced
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Figure 1. Nodal variables used in the finite element introduced in Lagamine.

in the finite element code Lagamine, initially developed at Liege University in Belgium [Charlier 1987].
The element used in Lagamine to implement our second-gradient model contains in fact 9 nodes each
with 6 possible degrees of freedom. For the present application, some of these are not used (see Figure 1):
only 36 degrees of freedom are activated by element [Bésuelle 2005].

The following algorithm is adopted for computing one time step from ¢ — At to ¢.

(1) Initial configuration: stress o/~*!, double stress X'~/, coordinates x’'~7,
(2) Assumption on the final configuration for the first iteration n = 1:

e initialization of the increment of nodal values [A U;;fie],
« update coordinates: x"".

(3) Beginning of the iteration n.
(4) For each element:

« for each integration point:

compute the strain rate, the rotation rate and the second-gradient rate,

compute Ac’" and AX"" using the constitutive equations,
update the stress and the double stress o' = /=4 + Ag’", I = BITA L AR,
compute the consistent tangent stiffness matrices of constitutive laws.

» compute the element stiffness matrix.
» compute the element out of balance forces.

(5) Compute the global stiffness matrix.
(6) Compute the global out of balance forces.

(7) Compute the corrections [§ U;gzie] of the increment of nodal values by solving the Newton—Raphson
linearized system.

(8) Check the accuracy of the computed solution:

« if convergence: go to 9,
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« if no convergence: update the new assumed final configuration, n =n 4 1 and go to 3.

(9) End of the step.

3. Validation

3.1. Constitutive model: a quasibrittle material. The constitutive model used in this paper is the same
as in [Matsushima et al. 2002] and [Chambon and Moullet 2004], and it can be decoupled into two
independent relations. The first is classical, and links the stress to the displacement gradient; it is a Von
Mises elastoplastic law based on the Prandt—Reuss model, with a strain softening regime. The second
relation gives the double stress as a function of the gradient of the field v;; (that is, the second gradient of
the displacement); it is a linear elastic law. Concerning the constitutive equation used here, we emphasize
that the classical part of the model involves no hardening but only sudden softening as soon as a threshold
is attained. Moreover this part is not a hyperelastoplastic model, contrary to the ones used for bifurcation
analyses in [Steinmann et al. 1997; Borja 2002; Ikeda et al. 2003]. From a thermodynamical point of view
it would presumably be better to use the hyperelastoplastic model, but in the second-gradient context it is
then necessary to build up a new theory. This has already been done in [Tamagnini et al. 2001] and [Cham-
bon et al. 2004], but the implementation of such a model in a finite element code has not yet been made.
The classical relation is

c=3Ke,
2G1 & for ||l < etim,
v .
Sij = ) G1— G2 suéu )
2G (8ij “ TG Wsij) for ||l > etim,

where §;; is the Jaumann rate of the deviatoric Cauchy stress tensor, &;; is the deviatoric strain rates, & is
the mean stress rate and ¢ is the mean strain rate. K, G; and G, are the bulk modulus, the shear moduli
before peak and after peak, respectively. ||| is the second invariant of the Green—Lagrange deformation
tensor, ey, is a deformation parameter of the model which corresponds to the deviatoric stress peak.

The bulk modulus K is assumed to be constant. The elastic shear modulus available for unloading is
assumed to be constant, while an exponential function is assumed as follows for the shear modulus after
the yield point so that the material could reach its residual state smoothly:

_ G
G2=G26XP<G 2 <||e||—ehm>>, (10)

1€lim — Ores

where G, is the value of the shear modulus just after yielding and oy is the residual deviatoric stress.
The second-gradient law has been chosen as simple as possible. It is a particular case of the more

general isotropic linear relation derived in [Mindlin 1964], involving six parameters corresponding to

five independent coefficients. The following relation is slightly different from the one in [Matsushima



et al. 2002] and [Chambon and Moullet 2004], in that some inaccuracies have been corrected:
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Figure 2. Constitutive relations in the one-dimensional case: (left) first grade term;
(right) second grade term.
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. . . . . . V . . .
where v;; is the material time derivative of v;;, and X;; is the Jaumann double stress derivative, defined

\ .
by Zijk = Zjjk + Zijkwii + Zimkwmj + Zijpwpk, where wy; is the spin tensor.

3.2. One-dimensional simulation. In order to validate the implementation of the element in Lagamine,
first a one-dimensional compression is computed. This problem has analytic solutions under the assump-
tion of small strain; see [Chambon et al. 1998]. The bar is 1 meter long. The degrees of freedom u,
v11, V12 and vy are blocked at each node, the direction 2 being the direction of compression. In order to
study the symmetrical localized solution composed of a central patch in the softening loading part and
two end patches in the elastic unloading part, two elements at the middle of the bar have a ejj,-value
reduced by 2%. The constitutive parameters are the same as those used in [Matsushima et al. 2002]:

G| =16.875MPa,

K = —7.5MPa,

G, = 0MPa,

€lim = 0.082,
D = 0.08 MN.

(12)
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Figure 3. Comparison of three mesh refinements in one-dimensional simulations: (left)
evolution of the resulting force versus the axial shortening, and (right) displacement
gradient along the bar.

The two constitutive relations are plotted in Figure 2. To observe the influence of the mesh on the
numerical solutions, three mesh refinements are used, with 11, 20 and 50 elements, respectively. The
three solutions are very close (Figure 3), in terms of force versus bar shortening and deformation profile.

3.3. Two-dimensional simulation. A biaxial test is computed in this section as an example of a two-
dimensional problem. Figure 4 shows the initial configuration of the specimen. It is 0.5 m wide and
1m high (and 1 m thick). The (classical) surface tractions per unit area at both sides of the specimen
are set equal to zero. The external additional double forces per unit area P; are assumed to be zero all
along the boundaries. At the top there is a smooth rigid plate remaining horizontal. Through this plate
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Figure 4. Initial configuration and boundary condition for biaxial test.



DEFORMATION MODES IN QUASIBRITTLE MATERIALS 1123

1.0
0.8 -
0.6
04

02

0.0 C -
0.00! 0.05 0.10 0.15 0.20

e, =0.01 ” ¢ ”

Figure 5. Classical part of the constitutive relation.

a compressive force F, is applied. The vertical displacement of this top plate is denoted by u,. At the
bottom, there is another rigid and smooth plate, which remains horizontal too. The central point of the
bottom plate is fixed to avoid rigid body displacement. The classical part of the constitutive relation is
plotted in Figure 5. The parameters are chosen as follows:

G, =50MPa, G,=-2MPa, e, =0.01,
K =97.3856 MPa, o0y =0.2MPa, D =0.2kN. (13)

Several meshes are compared: structured meshes with 10 x 20, 15 x 30, 20 x 40 and 40 x 80 elements,
and an unstructured mesh with 300 elements. The left bottom element of the mesh has a ej;,-value
reduced of 10% in order to force a localization band in this area. Here, we try to find similar solutions;
that is, we don’t try to find more than one alternative solution contrary to what is done in the following
sections.

The implementation of our element in a general purpose code allows us to go further in the validation
procedure. For example, we can work with unstructured meshes, an impossibility until now. Moreover,
the use of a general code makes it possible to compare more precisely the similarities (and likely the
differences) between different computations. It is often especially difficult to compare solutions of the
same problem obtained with different meshes. In the following computations, in order to determine
the width of the shear band, instead of comparing contours of some variable (often obtained by some
interpolation procedure), we have chosen to look directly at the part of the computed body which loads
plastically (inside the localized band). For this purpose, we have marked by a small open square the
(plastically) loading Gauss points. In the area where there are no such marks the material unloads
elastically.

The localization patterns of solutions (Figure 6) are very close, and the band thickness depends very
little on the mesh size. We want here to emphasize a new result: an unstructured mesh changes neither
the orientation nor the width of the band even if its position seems to be a little shifted. However, we
have to keep in mind that, since we use an imperfection related to an element, the problems solved in
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