Vol. 2, No. 1, 2007

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 4, 541–684
Issue 3, 303–540
Issue 2, 157–302
Issue 1, 1–156

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 8 issues

Volume 7, 10 issues

Volume 6, 9 issues

Volume 5, 6 issues

Volume 4, 10 issues

Volume 3, 10 issues

Volume 2, 10 issues

Volume 1, 8 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1559-3959
ISSN (print): 1559-3959
 
Author index
To appear
 
Other MSP journals
The flexibility of functionally graded material plates subjected to uniform loads

Yen-Ling Chung and Wei-Ting Chen

Vol. 2 (2007), No. 1, 63–86
Abstract

We analyze functionally graded material (FGM) plates with two opposite edges simply supported and the other two edges free subjected to a uniform load. Even though an FGM plate is a kind of composite material, if the Young’s modulus of the FGM plates varies along the thickness direction and the Poisson’s ratio is constant in the whole FGM plate, the bending and in-plane problems in FGM plates under transverse load only are uncoupled. Therefore, the analytical solution to the bending problem of FGM plates is obtained in this study by Fourier series expansions, which agrees very well with a finite element calculation. Results show that the maximum tensile stresses are located at the bottom of the FGM plates. However, the maximum compressive stresses move to the inside of the FGM plates. The coefficients A11,B11,C11 defined in this paper relate to the area and to the first and the second moments of the area under the E(z) curve from z = h2 to z = h2. The parameter Q11, representing the location of the centroid of the area under the E(z) curve, is related to the location of the neutral surfaces, and S11 represents the bending stiffness of the FGM plates.

Keywords
FGM plate, Fourier series expansion, finite element analysis
Milestones
Received: 5 December 2005
Revised: 13 April 2006
Accepted: 17 August 2006
Published: 1 March 2007
Authors
Yen-Ling Chung
Department of Construction Engineering
National Taiwan University of Science and Technology
P. O. Box 90-130
Taipei 10672
Taiwan
Wei-Ting Chen
Department of Construction Engineering
National Taiwan University of Science and Technology
P. O. Box 90-130
Taipei 10672
Taiwan