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FINITE ELEMENT MODELING OF A LAYERED, MULTIPHASE
MAGNETOELECTROELASTIC CYLINDER SUBJECTED TO AN

AXISYMMETRIC TEMPERATURE DISTRIBUTION

N. GANESAN, A. KUMARAVEL AND RAJU SETHURAMAN

This paper presents finite element formulation for dynamic behavior of magnetoelectroelastic axisym-
metric cylinder coupled with a thermal field. The finite element formulation derived based on the
interaction between mechanical, electrical, magnetic and thermal fields. The formulation is reduced to
static case to analyze the static behavior of layered and multiphase magnetoelectroelastic axisymmetric
cylinder under the circumstances of axisymmetric temperature distribution. The finite element model
is developed using a four-noded axisymmetric element with four nodal degrees of freedom that is, two
elastic displacements (ur , uz) with two potentials, electric (φ) and magnetic (ψ). The static behavior of
axial and radial displacements, electric potential, magnetic potential and stresses on radially symmetric
magnetoelectroelastic cylinder is investigated. The numerical results are compared between layered and
multiphase magnetoelectroelastic cylinder with different boundary conditions.

1. Introduction

The combination of piezoelectric phase and piezomagnetic phase forms the layered and multiphase mag-
netoelectroelastic composites, which exhibit coupling effects between the mechanical/thermal, electrical
and magnetic fields. It is also observed that the piezoelectric and piezomagnetic composites used for
engineering structures, particularly in smart and intelligent structure systems in the recent years. Due to
their ability of converting energy from one form to the other (among magnetic, electric and mechanical
energies) these materials have been widely used in ultrasonic imaging devices, sensors, actuators, trans-
ducers and many other emerging components [Nan 1994; Harshe et al. 1993; Benveniste 1995; Ding et al.
2005]. There is a strong need for theories or techniques that can predict the coupled response of these
smart materials, as well as structure composed of them. Various numerical studies have been carried out to
study the behavior of composite laminates that consist of elastic and piezoelectric materials [Lee and Jian
1996; Heyliger 1997; Lee and Saravanos 1997, 2000; Vel and Batra 2000]. The generalized thermoelastic-
piezoelectric coupled finite element equations are derived by Tianhu et al. [2002], based on the theory
of Green–Lindsay with two relaxation times to solve the thermal shock problem. Buchanan [2003] has
studied the behavior of infinitely long magnetoelectroelastic cylindrical shells using semianalytical finite
element methods. Micro-mechanical analysis of fully coupled electromagnetothermoelastic composites
has been carried out by Aboudi [2001] for prediction of the effective moduli of magnetoelectroelastic
composites. Sunar et al. [2002] derived the finite element equations for thermopiezomagnetic medium
based on linear constitutive equations using Hamilton’s principle. Wang and Zhong [2003] analytically
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investigated a long cylindrical shell of piezoelectric/piezomagnetic composite under pressure loading and
temperature change through the power series expansion method and the Fourier series expansion method.
Surveying the literature, we found that there have been no studies are on magnetoelectroelastic cylinder
using finite element method under thermal environment. In this paper layered and multiphase magne-
toelectroelastic cylinder subjected to axisymmetric temperature distribution under different boundary
conditions is investigated. Even though this paper presents the fully coupled finite element formulation,
the numerical study is carried out for the thermal field decoupled with other fields.

2. Finite element formulation

The generalized governing differential equations for magnetoelectrothermoelastic problem without body
force, free charge, free current density or inner heat source can be written as

σi, j = ρüi , Di,i = 0, Bi,i = 0, qi,i = −T0ρη̇,

where ρ represents the mass density and T0 represents the reference temperature. In a cylindrical
coordinate system (r, θ, z), the coupled constitutive equation for linearly magnetoelectroelastic three-
dimensional solid with thermal effect can be written as

σi = ci j S j − eik Ek − dik Hk −βi j2, Dl = el j S j + εlk Ek + mlk Hk + pl2,

Bl = dl j S j + mlk Ek +µlk Hk + τl2, ρη = βi j S j + pk Ek + τk Hk + a2,
(1)

where i, j = 1, . . . , 6 and l, k = 1, . . . , 3. The reduced notation has been used for each tensor representa-
tions, (σ1 = σrr , σ2 = σθθ , σ3 = σzz , σ4 = σθ z , σ5 = σr z and σ6 = σrθ ). σi , Dl, Bl, η are the components of
stress, electric displacement, magnetic induction and entropy per unit volume; ci j , εlk, µlk are the elastic,
dielectric and magnetic permeability coefficients; eki , dki ,mik are the piezoelectric, piezomagnetic and
magnetoelectric material coefficients; βi j , pl, τl,2 are stress temperature coefficient, pyroelectric con-
stant, pyromagnetic constant and temperature difference; S j , Ek, Hk are linear strain tensor, electric field
and magnetic field vectors. a = ρCE/T0, where CE is the specific heat of the material. and 2= T − T0

where T is absolute temperature and T0 is reference temperature. The discretization of the finite element
model is shown in Figure 1.

The strain-displacement, electric field-electric potential and magnetic field-magnetic potential are used
in the finite element analysis along with the constitutive Equation (1). The strain-displacement relation
for axisymmetric case can be written as

Srr = S1 =
∂ur

∂r
, Sθθ = S2 =

ur

r
, Szz = S3 =

∂uz

∂z
, Szr = S5 =

∂uz

∂r
+
∂ur

∂z
.

The electric fields Ei , magnetic fields Hi and heat flux qi are related to electric potential φ, magnetic
potential ψ and temperature distribution 2 for axisymmetric case as

Er = E1 = −
∂φ

∂r
, Ez = E3 = −

∂φ

∂z
, Hr = H1 = −

∂ψ

∂r
, Hz = H3 = −

∂ψ

∂z
,

qr = q1 = −krr
∂2

∂r
, qz = q3 = −kzz

∂2

∂z
,



FE MODELING OF A LAYERED, MULTIPHASE MAGNETOELECTROELASTIC CYLINDER 657

 1

  

 

 

 

 

                                                                                                         2          

               

                                                                                      

 

 

 

 

 

ro 

ri 

r 

z

θ  

ζ

ξ  

1

1

4

 

3 

Figure 1. Schematic diagram of discretization of magnetoelectroelastic cylinder with
four noded axisymmetric element.

where k is thermal conductivity of the material. For an axisymmetric cylinder geometry, load and material
property does not vary in the circumferential direction. Semianalytical finite element approach for the
axisymmetric problem, the displacements, electric potential and magnetic potential are expressed using
Fourier series in the circumferential θ direction as

ur =

∑
un

r cos nθ, uθ =

∑
un
θ sin nθ, uz =

∑
un

z cos nθ, φ =

∑
φn cos nθ, ψ =

∑
ψn cos nθ,

where n = 0 for the axisymmetric problem. The analysis has been reduced for finite element in radial and
axial direction. The finite element formulation of the coupled magnetoelectrothermoelastic problem is
derived by approximating the displacement, electric potential, magnetic potential and temperature fields
on the element level using two sets of shape functions:

{u} = [N e
1 ]{ue

}, φ = [N e
2 ]{φe

}, ψ = [N e
2 ]{ψe

}, 2= [N e
2 ]{2e

},

where {ue
} = {ur uθ uz}

T is the displacement vector. For obtaining the element level governing equa-
tions, {S}, {E} and {H} are expressed in terms of derivatives of shape functions and elemental level
degrees of freedom as,

{S} = [B1]{ue
}, {E} = −[B2]{φ

e
}, {H} = −[B2]{ψ

e
}, {2′

} = [B2]{2
e
},

where [B] is the derivative of shape function matrix. It can be written as

[B1] =


∂
∂r 0
1
r 0

0 ∂
∂z

∂
∂z

∂
∂r


[

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

]
, [B2] =

[
− ∂
∂r

− ∂
∂z

] [
N1 N2 N3 N4

]
.
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Considering the body force { f }, the virtual displacement principle can be written as∫
V

(
δ{S}

T
{σ } − δ{E}

T
{D} − δ{H}

T
{B} − δ2T0{η}

)
dV =∫

V
δ{u}

T ({ f } − ρ{ü})dV +

∫
Aσ
δ{u}

T
{t̄}d A +

∫
Aq

δ2q̄d A, (2)

where {t̄} represents the components of the traction vector and q̄ represents the heat flux. Substituting
the constitutive relations from Equation (1) into Equation (2) and simplifying leads to∫

V
δ{S}

T
{σ }dV =

δ{ue
}

∫
V

[B1]
T
(
[c][B1]{ue

} − [e](−[B2]{φ
e
})− [d](−[B2]{ψ

e
})− {β}[N e

2 ]
T
{2e

}

)
dV =

δ{ue
}

T
(
[K e

uu]{u
e
} + [K e

uφ]{φ
e
} + [K e

uψ ]{ψe
} − [K e

u2]{2e
}

)
, (3)∫

V
(−δ{E}

T
{D})dV =

δ{φe
}

T
∫

V
[B2]

T
(
[e]T

[B1][ue
] + [ε](−[B2]{φ

e
})+ [m](−[B2]{ψ

e
})+ {p}[N e

2 ]
T
{2e

}

)
dV =

δ{φe
}

T
(
[K e

φu]{u
e
} − [K e

φφ]{φ
e
} − [K e

φψ ]{ψe
} + [K e

φ2]{2e
}

)
, (4)∫

V
(−δ{H}

T
{B})dV =

δ{ψe
}

T
∫

V
[B2]

T
(
[d]

T
[B1][ue

] + [m](−[B2]{φ
e
})+ [µ](−[B2]{ψ

e
})+ {τ }[N e

2 ]
T
{2e

}

)
dV =

δ{ψe
}

T
(
[K e

ψu]{u
e
} − [K e

ψφ]{φ
e
} − [K e

ψψ ]{ψe
} + [K e

ψ2]{2e
}

)
, (5)∫

V
(−δ2T0{η̇})dV =

− δ{2e
}

T
∫

V

(
T0[N e

2 ]){β}
T
[B1]{u̇e

} + {p}
T (−[B2]{φ̇

e
})+ {τ }T (−[B2]{ψ̇

e
})+ a[N e

2 ]
T
{2̇e

}

)
dV =

δ{2e
}

T
(
−[Ce

2u]{u̇
e
} + [Ce

2φ]{φ̇
e
} + [Ce

2ψ ]{ψ̇e
} − [Ce

22]{2̇e
}

)
, (6)∫

V
δ{2′

}
T
{q}dV = δ{2e

}
T

∫
V

[B2]
T (−[k][B2]{2

e
})dV = δ{2e

}
T (−[K e

22]{2e
}), (7)∫

V
δ{u}

T ({ f } − ρ{ü})dV = δ{ue
}

T
∫

V
[N e

1 ]
T
({ f } − ρ[N e

1 ]{üe
})dV = δ{ue

}
T ({ f e

m} − [Me
uu]{ü

e
}), (8)∫

Aσ
δ{u}

T
{t̄}d A = δ{ue

}
T

∫
Aσ

[N e
1 ]{t̄}d A = δ{ue

}
T
{T e

u }, (9)∫
Aq

δ2{q̄}d A = δ{2e
}

T
∫

Aq

[N e
2 ]{q̄}d A = δ{2e

}
T
{T e
2}. (10)
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From Equations (3)–(10) we can obtain

[Me
uu]{ü

e
} − [Ce

u2]{2̇e
} + [K e

uu]{u
e
} + [K e

uφ]{φ
e
} + [K e

uψ ]{ψe
} − [K e

u2]{2e
} = { f e

u } + {T e
u }

[K e
uφ]

T
{ue

} − [K e
φφ]{φ

e
} − [K e

φψ ]{ψe
} + [K e

φ2]{2e
} = 0

[K e
uψ ]

T
{ue

} − [K e
φψ ]

T
{φe

} − [K e
ψψ ]{ψe

} + [K e
ψ2]{2e

} = 0

[Ce
2u]{u̇

e
} − [Ce

2φ]{φ̇
e
} − [Ce

2ψ ]{ψ̇e
} + [Ce

22]{2̇e
} + [K e

22]{2e
} = −{T e

2}.

Above equation can be expressed in the matrix form
Me

uu 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




üe

φ̈e

ψ̈e

2̈e

 +


0 0 0 −Ce

u2
0 0 0 0
0 0 0 0

Ce
2u −Ce

2φ −Ce
2ψ Ce

22




u̇e

φ̇e

ψ̇e

2̇e

 +


K e

uu K e
uφ K e

uψ −K e
u2

K e
φu −K e

φφ −K e
φψ K e

φ2

K e
ψu −K e

ψφ −K e
ψψ K e

ψ2

0 0 0 K e
22




ue

φe

ψe

2e

 =


f e
u + T e

u
0
0

−T e
2

 , (11)

where different elemental matrices in Equation (11) are defined as

[K e
uu] =

∫
V

[B1]
T
[c][B1]dV, [K e

uφ] =

∫
V

[B1]
T
[e][B2]dV,

[K e
uψ ] =

∫
V

[B1]
T
[d][B2]dV, [K e

φφ] =

∫
V

[B2]
T
[ε][B2]dV,

[K e
ψψ ] =

∫
V

[B2]
T
[µ][B2]dV, [Ce

2u] =

∫
V

T0[N2]
T
{β}

T
[B1]dV,

[Ce
2φ] =

∫
V

T0[N2]
T
{p}

T
[B2]dV, [Ce

2ψ ] =

∫
V

T0[N2]
T
{τ }T

[B2]dV,

[K e
u2] =

∫
V

[B1]
T
{β}[N2]

T dV, [K e
φψ ] =

∫
V

[B2]
T
[m][B2]dV,

[K e
φ2] =

∫
V

[B2]
T
{p}[N2]

T dV, [K e
ψ2] =

∫
V

[B2]
T
{τ }[N2]

T dV,

[Ce
22] =

∫
V

T0[N2]
T a[N2]dV, [K e

22] =

∫
V

[B2]
T
[k][B2]dV,

[Me
uu] =

∫
V

[N1]
Tρ[N1]dV, { f e

u } =

∫
V

[N e
1 ]{ f }dV,

{T e
u } =

∫
Aσ

[N e
1 ]

T
{t̄}d A, {T e

2} =

∫
Aq

[N e
2 ]q̄d A.

The volume integration is replaced with dV = 2πrdrdz for axisymmetric problems. From Equation
(11), assembling the all element contributions, the equation of motion can be written as,

[M]{v̈} + [D]{v̇} + [K ]{v} = {F}, (12)
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where

[M] =


Muu 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , [D] =


0 0 0 −Cu2

0 0 0 0
0 0 0 0

C2u −C2φ −C2ψ C22

 ,

[K ] =


Kuu Kuφ Kuψ −Ku2

Kφu −Kφφ −Kφψ Kφ2

Kψu −Kψφ −Kψψ Kψ2

0 0 0 K22

 , {F} =


fu + Tu

0
0

−T2

 , {v} =


u
φ

ψ

2

 ,
with {u} = [ur uz]

T . The equation of motion (12) can be used to investigate the dynamic behavior of
the magnetoelectrothermoelastic material where mechanical, electrical, magnetic and thermal fields are
fully coupled. To investigate the static behavior of magnetoelectroelastic cylinder the above equation is
reduced along with the following assumptions,

1. Absence of body force, free charge density and free current density.

2. The temperature distribution is evaluated explicitly assuming the coupling between mechanical,
electrical and magnetic fields.

The finite element equation can be written as,

[Kuu]{u} + [Kuφ]{φ} + [Kuψ ]{ψ} = {Fth},

[Kuφ]
T
{u} − [Kφφ]{φ} − [Kφψ ]{ψ} = 0,

[Kuψ ]
T
{u} − [Kφψ ]

T
{φ} − [Kψψ ]{ψ} = 0.

(13)

The thermal load vector can be written as {Fe
th} =

∫
V [B1]

T
{β}2dv. By using standard condensation

techniques, the equivalent stiffness matrix is derived by eliminating the electric potential φ and magnetic
potential ψ in Equation (13). The derived stiffness matrix [Keq ] and load vector {Fth} is used to solve
for nodal thermal displacements.

[Keq ]{u} = {Fth}, (14)

where [Keq ] = [Kuu] + [Kuφ][K I I ]
−1

[K I ] + [Kuψ ][K I V ]
−1

[K I I I ], and

[K I ] = [Kuφ]
T

− [Kφψ ][Kψψ ]
−1

[Kuψ ]
T , [K I I ] = [Kφφ] − [Kφψ ][Kψψ ]

−1
[Kφψ ]

T ,

[K I I I ] = [Kuψ ]
T

− [Kφψ ]
T
[Kφφ]

−1
[Kuφ]

T , [K I V ] = [Kψψ ] − [Kφψ ]
T
[Kφφ]

−1
[Kφψ ].

The coupled magnetoelectroelastic finite element Equation (14) is solved subject to thermal loading. The
four-point gaussian integration scheme has been adopted to evaluate the integrals involved in different
elemental stiffness matrices and thermal load vectors. The elemental stiffness matrices and thermal
load vectors are assembled to get the global stiffness matrices and global thermal load vector. The
coupled equivalent stiffness matrix [Keq ] of magnetoelectroelastic system has been inverted to evaluate
the thermal displacements. After evaluating the thermal displacements, the electric potential φ and
magnetic potential ψ can be derived at each nodal points using the following equations,

φ = [K I I ]
−1

[K I ]{u}, ψ = [K I V ]
−1

[K I I I ]{u}.
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Figure 2. Schematic diagram of layered magnetoelectroelastic hollow cylinder along
with thermal boundary conditions.

3. Evaluation of temperature distribution across the thickness of the axisymmetric cylinder under
steady state heat conduction

We consider steady state one-dimensional heat conduction analysis to evaluate the temperature distribu-
tion across the thickness of the magnetoelectroelastic cylinder under temperature boundary conditions.
The temperature along the length of the cylinder is constant subject to axisymmetric temperature distri-
bution. Figure 2 shows the schematic diagram of problem considered for steady state heat conduction
analysis and finite element discretization across thickness direction. The finite element formulation used
in the present work is based on the procedure reported in [Reddy 1984]. By neglecting the convective
and radiation heat transfers, the governing differential equation for steady state heat conduction equation
in radial direction is given by

−
d
dr

(
k(r)

dT
dr

)
= 0.

In the present study, thermal boundary conditions considered in such a way that Ti is the temperature
on the inner surface of the cylinder and T0 is the temperature on the outer surface of the cylinder, which
is normally ambient temperature. Applying variational principle on the governing equation, the finite
element equation [Kcond]{T } = 0, to evaluate temperature distribution due to heat conduction is obtained
[Ross 1990]. Here [Kcond] is the heat conduction matrix and {T } is the vector of nodal temperature.

The above equation is solved for the specified temperature boundary condition at the inner and outer
surface to obtain the temperature distribution across the radial direction.

4. Validation of the present formulation

The present formulation developed for the analysis of layered and multiphase magnetoelectroelastic
cylinder has been validated with the stresses reported in [Wang and Zhong 2003] under internal pressure
loading.

The dimensions of cylinder are as follows: length of the cylinder (l) = 4.0 m, inner radius (ri ) =

0.7 m and thickness of the cylinder (t)= 0.6 m. Figure 3 illustrates the comparison of results of axial
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Figure 3. Variation of normal radial stress σr and shear stress τzr on the outer surface
at r = ro along the axial direction subjected to internal pressure loading under simply
supported boundary condition.

stresses for B/F layered magnetoelectroelastic cylinder under internal pressuring loading with simply
supported boundary condition. The thermal load vector have been validated using commercial finite
element software [ANSYS 1999], by evaluating the thermal displacement along the axial length of simply
supported piezoelectric cylinder under uniform temperature rise of 75◦ C.

Figure 4 illustrates the comparison of results on thermal displacement for simply supported piezoelec-
tric cylinder. This was performed primarily because of the lack of literature on the evaluation of thermal

Figure 4. Variation (a) radial displacement ur and (b) axial displacement uz on the outer
surface at r = ro subjected to uniform temperature rise.
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stresses of magnetoelectroelastic cylinder using finite element method. Observe that the results obtained
by present formulation are in close agreement with the available literature and commercial finite element
software ANSYS.

5. Results and discussions

We consider a two layered and multiphase magnetoelectroelastic composite cylinder composed of piezo-
electric BaTiO3 and piezomagnetic CoFe2O4 materials. Two-layered cylinder is made of the inner surface
with piezoelectric BaTiO3 material and outer surface made of piezomagnetic CoFe2O4 material (B/F).
The multiphase magnetoelectroelastic cylinder made of piezomagnetic (CoFe2O4) matrix reinforced by
piezoelectric (BaTiO3) material for different volume fraction. The V f = 1.0 corresponds to piezoelectric
(BaTiO3) material and V f = 0.0 corresponds to piezomagnetic (CoFe2O4) material. The dimensions of
cylinder are as follows: length of the cylinder (l)= 4.0 m, inner radius (ri )= 0.995 m, thickness of the
cylinder (t) = 0.01 m, r/t ratio = 100, l/r ratio =4.0. The present finite element model is discretized
using 600 four-noded axisymmetric elements with 3355 degrees of freedom (dof): 2013 displacement
dof, 671 electric dof and 671 magnetic dof. The simply supported and clamped-clamped (ur = φ =ψ = 0
at simply supported edge and ur = uz = φ = ψ = 0 at clamped edge) boundary conditions are adopted.
The material constants listed in Table 1 reported by Aboudi [2001] are used for the present study. The
thermal conductivity k and the coefficient of thermal expansion α are obtained from the literature as
reported by Ootao and Tanigawa [2005]. In the above literature the coefficient of thermal expansion α
is taken for CoFe2O4. The diffusivities for BaTiO3 and CoFe2O4 given in [Ootao and Tanigawa 2005]
are not needed, since the present analysis assumed as steady state problem. Thermal properties are not
reported in the literature for different volume fraction. The coefficient of thermal expansion are evaluated
from the values of BaTiO3 and CoFe2O4 for different volume fractions of 0.2, 0.4, 0.6 and 0.8 using the
following expression [Tan and Tong 2002]:

α11 =c11

(
V f α

p
11

cp
11

+
(1 − V f )α

m
11

cm
11

)
, α33 = V f α

p
33+(1−V f )α

p
33+

c13α11

c11
−

V f cp
13α

p
11

cp
11

−
(1 − V f )cm

13α
m
11

cm
11

.

The densities reported by Ramirez et al. [2006] for BaTiO3 and CoFe2O4 are used for the present
analysis. The density and thermal conductivities are evaluated from the values of BaTiO3 and CoFe2O4

using the rule of mixture,

ρ = V f ρ
p
+ (1 − V f )ρ

m, k11 = k33 = V f k p
11 + (1 − V f )km

11,

where the superscript p stands for piezoelectric and m stands for piezomagnetic.

Evaluation of temperature distribution. The magnetoelectroelastic cylinder is discretized using two-
noded element with temperature degree of freedom as shown in Figure 2. These nodal temperatures are
used to evaluate the element temperature of four-noded axisymmetric element and utilized to evaluate
thermal load vector. Figure 5 shows the temperature distribution across thickness direction for layered
and multiphase magnetoelectroelastic cylinder.

Distribution of displacement, electric potential, magnetic potential and thermal stresses subjected to
simply supported boundary condition. Figure 6(a) shows the distribution of radial displacement ur on
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V f = 0.0 V f = 0.2 V f = 0.4 V f = 0.6 V f = 0.8 V f = 1.0

Elastic constants
c11 269.5 240 220 190 170 162
c12 = c13 170 145 125 110 100 78
c23 173 146 125 110 100 77
c22 = c33 286 250 225 200 175 166
c55 45.3 45 45 45 50 43

Piezoelectric constants
e11 0 4 7 11 14 18.6
e12 = e13 0 −2 −3 −3.5 −4 −4.4
e35 0 0 0 0 0 11.6

Dielectric constants
ε11 0.093 2.5 5.0 7.5 10 12.6
ε33 0.08 0.33 0.8 0.9 1.0 11.2

Magnetic permeability constants
µ11 1.57 1.33 1.0 0.75 0.5 0.1
µ33 −5.9 −3.9 −2.5 −1.5 −0.8 0.05

Piezomagnetic constants
q11 700 550 380 260 120 0
q12 = q13 580 410 300 200 100 0
q35 560 340 220 180 80 0

Magnetoelectric constants
m11 0 2000 2750 2500 1500 0
m33 0 2.8 4.8 6.0 6.8 0

Coefficient of thermal expansion
α11 10.0 9.72 9.15 8.37 7.44 6.4
α33 10.0 11.7 13.0 14.11 14.98 15.7

Density
ρ 5300 5400 5500 5600 5700 5800

Thermal conductivity
k11 = k33 3.2 3.06 2.92 2.78 2.64 2.5

Table 1. Material properties as a percentage (volume fraction V f ) of CoFe2O4 – BaTiO3,
where ci j is measured in 109 N/m2, ei j in C/m2, εi j in 10−9 C/Vm, qi j in N/Am, µi j in
10−4 Ns2/C2, mi j in 10−12 Ns/VC, αi j in 1/K , ρ in kg/m3, and ki j in W/mK.
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Figure 5. Distribution of temperature across thickness direction for layered and multi-
phase magnetoelectroelastic cylinder.

Figure 6. Distribution of (a) radial displacement ur and (b) axial displacement uz on
the outer surface at r = ro along the axial direction under simply-supported boundary
condition.

the outer surface along the axial direction for B/F layered and multiphase with different volume fraction
of magnetoelectroelastic cylinder. It is observed that the radial displacement ur of B/F layered cylinder
is slightly higher as compared to multiphase magnetoelectroelastic cylinder with V f = 1.0. The radial
displacement is increasing with volume fraction of multiphase magnetoelectroelastic cylinder and the
magnitude is higher near the simply supported edge. Figure 6(b) shows the axial displacement uz on the
outer surface along the axial direction. Observe that the magnitude of axial displacement uz is higher at
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Figure 7. Distribution of (a) electric potential φ and (b) magnetic potential ψ on the
outer surface at r = ro along the axial direction under simply-supported boundary condi-
tion.

the simply supported edge. The axial displacement uz is increasing with volume fraction of multiphase
magnetoelectroelastic cylinder.

Figure 7(a) shows the distribution of electric potential φ on the outer surface along the axial direction
for B/F layered and multiphase with different volume fraction of magnetoelectroelastic cylinder. It is
observed that the electric potential is higher for B/F layered case as compared to multiphase magneto-
electroelastic cylinder and magnitude is higher near the simply supported edge. Figure 7(b) shows the
distribution of magnetic potential ψ on the outer face along the axial direction.

The magnetic potential is higher for V f = 0.0 as compared to other volume fraction and B/F layered
cylinder. Figure 8(a) shows the distribution of radial displacement ur at z = l/2 along the radial direc-
tion for B/F layered and multiphase with different volume fraction of magnetoelectroelastic cylinder.
Observe that the B/F layered radial displacement ur is higher as compared to multiphase magneto-
electroelastic cylinder. It is increases with volume fraction for multiphase case. Figure 8(b) shows the
distribution of axial displacement uz at z = l along the radial direction for B/F layered and multiphase
magnetoelectroelastic cylinder. Note that the similar trend is observed for axial displacement uz .

Figure 9 illustrates the distribution of electric potential φ and magnetic potential ψ at z = l/2 along
the radial direction for B/F layered and multiphase multiphase magnetoelectroelastic cylinder. Observe
that the electric potential φ is higher for layered magnetoelectroelastic case and magnetic potential ψ is
higher for V f = 0.0. Note that variation of electric potential φ in the piezoelectric phase and constant in
the piezomagnetic phase. The electric potential φ is zero for V f = 0.0 due to the fact that the piezoelectric
constants are zero. Figure 9(b) illustrates the variation of magnetic potential ψ at z = l/2 along the radial
direction for B/F layered and multiphase magnetoelectroelastic cylinder.

Figure 10 illustrates the distribution of normal stress σr and shear stress τzr at r = 0.005 m along the
axial direction for B/F layered and multiphase magnetoelectroelastic cylinder. Observe that the normal
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Figure 8. Distribution of (a) radial displacement ur at z = l/2 and (b) axial displacement
uz at z = l along the radial direction under simply-supported boundary condition.

Figure 9. Distribution of (a) electric potential φ and (b) magnetic potential ψ at z = l/2
along the radial direction under simply-supported boundary condition.

stress σr for layered cylinder is higher as compared to multiphase cylinder and there is no significant
effect on shear stress τzr . Figure 11 illustrates the distribution of normal stress σr and σθ for B/F layered
magnetoelectroelastic cylinder at z = l/2 along the radial direction.

Note the discontinuity of radial stress σr at the material interface. Observe that the normal stress
σθ compressive in nature at the inner surface and tensile on the outer surface. Figure 12 shows the
distribution of normal stress σr and σθ at z = l/2 along the radial direction. It is noticed that the normal
stress σr increases with volume fraction decreases for multiphase magnetoelectroelastic cylinder. It can
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Figure 10. Distribution of (a) normal stress σr and (b) shear stress τzr at r = 0.005 m
along the axial direction under simply-supported boundary condition.

Figure 11. Distribution of normal stress σr and σθ for B/F layered magnetoelectroe-
lastic cylinder at z = l/2 along the radial direction under simply-supported boundary
condition.

be seen that the normal stress σθ compressive in nature at the inner surface and tensile on the outer
surface. Its magnitude is minimum for V f = 0.0 and maximum for V f = 1.0.

Distribution of displacement, electric potential, magnetic potential and thermal stresses subjected to
clamped-clamped boundary condition. Figure 13(a) shows the distribution of radial displacement ur on
the outer surface along the axial direction for B/F layered and multiphase with different volume fraction
of magnetoelectroelastic cylinder under clamped-clamped boundary condition.
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Figure 12. Distribution of (a) normal stress σr and (b) normal stress σθ at z = l/2 along
the radial direction under simply-supported boundary condition.

Figure 13. Distribution of (a) radial displacement ur (l = 2.0 to 4.0 m) and (b) axial
displacement uz (l = 0.0 to 4.0 m) on the outer surface at r = ro along the axial direction
under clamped-clamped boundary condition.

A similar trend is observed compared to simply supported boundary condition with higher radial
displacement. From Figure 13(b), it is observed that the maximum axial displacement occurs near the
clamped edge and the distribution is quite different as compared to simply supported boundary condition.
Figure 14(a) shows the distribution of electric potential φ on the outer surface along the axial direction
for clamped-clamped boundary condition. The maximum electric potential occurs close to the clamped
edge, further the electric potential decreases and remains constant in magnitude over the length of the
cylinder. The zero electric potential for V f = 0.0 due to fact that the piezoelectric constants are zero.
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Figure 14. Variation of (a) electric potential φ and (b) magnetic potential ψ on the outer
surface at r = ro along the axial direction under clamped-clamped boundary condition.

Figure 15. Distribution of radial displacement ur at z = l/2 along the radial direction
subjected to thermal loading under clamped-clamped boundary condition.

Figure 14(b) shows the distribution of magnetic potential ψ on the outer surface along the axial direction
for clamped-clamped boundary condition.

Figure 15 shows the distribution of radial displacement ur at z = l/2 along the radial direction subjected
to thermal loading under clamped-clamped boundary condition. Observe that the radial displacement ur

is higher as compared to simply supported boundary condition and increasing with volume fraction. This
is because the stiffness is greater for V f = 0.0 and less for V f = 1.0 due to elastic properties of materials.
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Figure 16. Distribution of (a) electric potential φ and (b) magnetic potential ψ at z = l/2
along the radial direction subjected to thermal loading under clamped-clamped boundary
condition.

Figure 17. Distribution of (a) normal stress σr and (b) shear stress τzr at r = 0.005 m
along the axial direction under clamped-clamped boundary condition.

Figure 16 illustrates the distribution of electric potential φ and magnetic potential ψ at z = l/2 along
the radial direction for clamped-clamped magnetoelectroelastic cylinder. A similar trend is observed with
higher magnitude compared to simply supported boundary condition. Figure 17 illustrates the distribution
of normal stress σr and shear stress τzr at r = 0.005 m along the axial direction for clamped-clamped
magnetoelectroelastic cylinder. Observe that the normal stress σr is higher for B/F layered cylinder.

There is no significant difference along the length and higher in the clamped end as compared to
Simply-Supported boundary condition. Figures 18 and 19 illustrate the distribution of normal stress σr
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Figure 18. Distribution of normal stress σr and σθ for B/F layered magnetoelectroelas-
tic shell at z = l/2 along the radial direction under clamped-clamped boundary condition.

Figure 19. Distribution of (a) normal stress σr and (b) normal stress σθ at z = l/2 along
the radial direction subjected to thermal loading under clamped-clamped boundary con-
dition.

and σθ for B/F layered magnetoelectroelastic cylinder at z = l/2 along the radial direction and normal
stress σr and σθ for multiphase magnetoelectroelastic cylinder at z = l/2 along the radial direction. A
similar behavior is observed compared to afore mentioned boundary condition.
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6. Conclusions

A semi-analytical finite element model is used for the analysis of layered and multiphase magnetoelectroe-
lastic cylinder under axisymmetric temperature distribution. The finite element formulation for transient
analysis of magnetoelectrothermoelastic cylinder has been derived from coupled constitutive equations.
The numerical results are presented based on the coupling between mechanical, electrical and magnetic
fields. The thermal field is coupled with mechanical fields alone. It is found that the layered magnetoelec-
troelastic cylinder have substantial effect on induced magnetic, electric and elastic fields as compared
to multiphase magnetoelectroelastic cylinder with different volume fraction under different boundary
conditions. We feel that the present numerical study is highly useful for design of magnetoelectroelastic
sensors and actuators.
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