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GEOMETRICALLY NONLINEAR EFFECTS IN THE FLEXURAL RESPONSE OF
MASONRY WALLS STRENGTHENED WITH COMPOSITE MATERIALS

EHAB HAMED AND ODED RABINOVITCH

The geometrically nonlinear effects in the out-of-plane flexural response of unreinforced masonry walls
strengthened with externally bonded composite materials are analytically investigated. The investigation
aims to explore the stabilizing or destabilizing influence of the arching action formed under realistic
supporting conditions (restricted longitudinal deformations) of the wall, and to quantify the contribution
of the strengthening system to improving the stability characteristics of the wall. The localized buckling
effects associated with the development of compressive stresses in the FRP strip are also examined.
Variational principles, large displacements kinematics, compatibility conditions between the structural
components (masonry units, mortar joints, FRP strips, and adhesive layers), and the assumption of one-
way flexural action are used for the formulation of the nonlinear analytical model. The cracking of the
mortar joints, which is essential to the development of the arching action, and the formation of debonded
zones are also considered. A numerical example that highlights the geometrically nonlinear effects in the
response of the strengthened wall and examines the influence of the slenderness ratio is presented. The
results quantify the potential increase of the limit point load and deflection due to the externally bonded
composite system. They also quantitatively reveal the wrinkling phenomenon of the compressed FRP
strip and the shear and peeling stress concentrations that develop in the vicinity of the cracked mortar
joints, the debonded regions, and the wrinkled FRP layer. The paper closes with concluding remarks.

Introduction

Unreinforced masonry structures are found in almost every modern or historic building environment
all over the world. With the advantages of this classical building technique, come critical deficiencies,
namely the vulnerability of masonry structures to lateral (out-of-plane) loads, and especially to wind
and seismic loads. This deficiency may result in considerable damage to the masonry structure, loss of
functionality, or even injury to the occupants.

Many strengthening and upgrading techniques have been proposed in attempt to improve the strength
and stability of unreinforced masonry (URM) walls. Recently, the use of externally bonded composite
materials in the form of fiber reinforced polymer (FRP) laminates and fabrics has gained widespread
acceptance. The behavior of URM walls strengthened with composite materials and subjected to out-of-
plane loading was examined in many experimental studies [Gilstrap and Dolan 1998; Velazquez-Dimas
et al. 2000; Albert et al. 2001; Hamilton and Dolan 2001; Hamoush et al. 2002; Kiss et al. 2002; Kuzik
et al. 2003; Ghobarah and El Mandooh Galal 2004; Tan and Patoary 2004]. These studies reveal that the
use of the externally bonded FRP system leads to an increase of 10–50 times the strength of the masonry
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Figure 1. Out-of-plane flexural response of strengthened masonry walls: (a) a one-way
strengthening system of FRP strips; (b) section A-A: formation of arching action; (c)
localized wrinkling.

wall. However, the majority of the experimental studies focused on ideal boundary conditions, in which
the masonry wall is simply supported with no restraint of its in-plane longitudinal deformations.

In practice, masonry walls are usually built within a surrounding frame that restrains the in-plane
deformations of the wall’s edges (see Figure 1a). These types of supporting conditions, along with the
cracking pattern of the wall, lead to the development of eccentric membrane thrust forces and to the
formation of the arching action (see Figure 1b) [McDowell et al. 1956; Anderson 1984; Dafnis et al.
2002; Griffith et al. 2004]. Under relatively low levels of lateral load (yet beyond the cracking point),
the thrust forces increase the compressive stresses in the masonry wall, restraining the cracking in the
joints, and forming an eccentric force couple that balances the external bending moment. In this sense the
arching action has a stabilizing or strengthening effect on the behavior of the wall. Under higher levels
of load, and particularly for slender walls, the geometric nonlinear effect of the compressive forces has
a destabilizing effect that may lead to loss of stability and total collapse of the wall. Hence, in the
common case of longitudinally constrained masonry walls, and especially for slender walls, the analysis
must account for the geometrically nonlinear effects associated with the arching action (see the British
standard BS5628 and [Hasetline and Moore 1981]).

The restriction of the longitudinal deformations and the formation of the thrust forces may induce
compressive stresses in the externally bonded FRP reinforcement, along with the global geometrically
nonlinear effects. These forces may trigger localized geometrically nonlinear effects in the form of
localized buckling or wrinkling of the FRP layer (see Figure 1c and [Rabinovitch 2004b; [UBC 1991,
pp. 227–232]; Deuring 1993]). Hence, the analysis of the strengthened wall must also account for the
geometrically nonlinear effects on the localized scale.

A comparatively small number of research projects focus on the out-of-plane behavior of strengthened
walls with realistically constrained edges, in contrast to the vast amount of research on unconstrained
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masonry walls strengthened with composite materials. [Tumialan et al. 2000; Tumialan et al. 2003] pre-
sented results of field tests conducted on existing URM walls. These studies showed that the capacity of
the strengthened wall is only about 1.4 times higher than the unstrengthened one. This strengthening ratio
is much smaller than the ones obtained using ideal, simply supported and longitudinally unconstrained
edges. Based on experimental observations, [Galati et al. 2002] indicated that strengthened URM walls,
with longitudinally constrained edges, may undergo two failure mechanisms that include flexural failure
(masonry crushing and FRP rupture) or shear-compression failure at the supports. The latter mode is
directly attributed to the formation of the arching thrust forces. The experimental study of [Davidson
et al. 2005] focused on the behavior of strengthened URM walls subjected to blast loadings. It was found
that the wall-frame gap, and thus the level of development of the arching action, affects the behavior of
the wall and its failure mechanisms.

In terms of theoretical models, [Tumialan et al. 2003] proposed a linear model for the evaluation of
the peak load and deflection of strengthened URM walls subjected to out-of-plane loading. This model
considers cracking of the mortar joints at midspan and at the supports only, and is based on the displace-
ment pattern of three hinged rigid bodies. At the section level, the strain compatibility approach was
adopted. This geometrically linear model provides an acceptable prediction of the ultimate load in cases
of crushing failure of the masonry units under relatively low levels of load. However, the consideration
of the geometrically nonlinear destabilizing effects of the arching action and the consideration of the
wrinkling and buckling of the compressed FRP strip near the mortar joints are beyond the scope of
this model. [Davidson et al. 2005] used nonlinear FE models for the analysis of strengthened masonry
walls subjected to blast loadings. This type of analysis accounts for the stability aspects. However, the
different length scales (thickness of the adhesive layer and the FRP strip with respect to the thickness of
the masonry unit), the differences in the mechanical properties of the materials, and the singularities and
stress concentrations at critical points, make the application of the FE method for the nonlinear analysis
of strengthened masonry walls computational effort consuming.

In this paper, the global and local geometrically nonlinear effects are investigated. The objectives of
this paper are to gain insight into the geometrically nonlinear effects in the out-of-plane flexural response
of URM walls strengthened with composite materials, and to provide a theoretical approach for the
nonlinear analysis of the strengthened wall. In particular, the paper focuses on exploring and quantifying
the stabilizing/destabilizing influence of the arching effect; the contribution of the strengthening system
to the improvement of the stability characteristics of the wall; and the localized buckling/wrinkling of
the compressed FRP strip near the mortar joints. The analytical model assumes a one-way flexural
response of the strengthened wall. Although in some cases two-way out-of-plane flexural action is
possible, in most practical cases, the boundary conditions of the existing wall (which usually consist of
only two opposite supported edges) and the use of strengthening system with one-way FRP strips (which
is generally easier to install) yield an overall one-way action of the strengthened wall [Davidson et al.
2005]. It is also assumed that the stress and deformation fields are uniform through the width of the FRP
strips and the adhesive layers, as well as through the active width of the masonry strip, as seen in Figure
1a,b [Davidson et al. 2005; Hamilton and Dolan 2001].

The geometrically nonlinear effects are considered through the large displacements, moderate rota-
tions, and small strain kinematic relations. Variational principles, static equilibrium, and compatibility
requirements between the masonry units, mortar joints, FRP strips, and the adhesive layers, are also
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Figure 2. Geometry, loads, sign conventions, and stress resultants: (a) geometry and
loads; (b) cracked mortar joint and debonded regions; (c) section I-I (cross section); (d)
coordinate systems and deformations; (e) stresses and stress resultants.

used in the derivation of the analytical model. The material behavior of the masonry units, the FRP
strips, and the adhesive material is assumed to be linear elastic, whereas the constitutive model for the
mortar joints accounts for their brittle cracking behavior. Compatibility and continuity conditions are
used for the assembly of the various components of the wall into a whole structure. Perfect bonding
and the ability to transfer shear and normal stresses are assumed at the interfaces between the various
components. Yet, the formation of debonded regions, in which the adhesive-mortar interface cannot
transfer shear stresses, is considered in case the mortar joint is cracked, or in case the masonry-mortar
interface is partially detached [Hamilton and Dolan 2001; Albert et al. 2001]. Finally, it is assumed that
the debonded regions do not grow under loading.

The mathematical formulation of the nonlinear analytical model is presented next. It is followed by
a numerical example and a comparison of the theoretical results with finite element analyses. Finally,
concluding remarks are presented.

Mathematical formulation

The strengthened masonry wall is shown in Figure 1 and the sign conventions for the coordinates, defor-
mations, loads, stresses, and stress resultants are shown in Figure 2. Note that, due to the one-way action
of the strengthening system, the formulation focuses on a characteristic masonry strip. The masonry units
and the mortar joints are modeled using the first order shear deformation theory (Timoshenko’s beams,
[Timoshenko and Goodier 1970]). The FRP strips are modeled using the lamination and the first order
shear deformation theories, and the adhesive layers are modeled as 2D linear elastic continua with shear
and out-of-plane normal rigidities only [Rabinovitch and Frostig 2000]. In the masonry unit section,
the longitudinal rigidity of the adhesive layers is neglected, due to its minor contribution to the overall
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flexural rigidity of the strengthened section. In the mortar joint section, the increased longitudinal strains
that develop in the FRP strips bridging over the cracked mortar joint result in a failure of the adhesive
material that may still be attached to the debonded FRP strip. Thus, the longitudinal rigidity of the
adhesive is neglected in this region as well.

Figure 2a shows that the strengthened strip may consist of regions strengthened on two sides and
regions that are not strengthened through the height of the wall. In other cases, strengthening on one side
of the wall may also be considered. For the sake of generality, the formulation presented next focuses
on walls externally strengthened on both sides. Figure 2b shows that the two-side strengthened region
may include two types of subregions. The first one is a fully bonded sub-region in which the FRP strip is
firmly attached through the adhesive layer (section I-I in Figure 2b). The second sub-region is a debonded
one in which one of the interfaces loses its ability to transfer shear stresses (sections II-II and III-III in
Figure 2b). Such debonded regions may result from improper fastening of the bonded system, unleveled
faces of the masonry wall, gaps near the mortar joints, or, most likely, from cracking of the mortar joints.
While the debonded interface cannot resist shear stresses, it can transfer out-of-plane normal compressive
stresses where contact exists. Hence, the model further distinguishes between debonded subregions with
contact and debonded subregions without contact.

The field equations and the boundary/continuity conditions for the fully bonded region and for the
two types of debonded subregions are derived using the variational principle of virtual work:

δ(U + V )= 0; (1)

where U is the strain energy, V is the potential of the external loads, and δ is the variational operator.
The first variation of the strain energy is

δU =

Nmu∑
1

∫
Vmu

(
σmu

xx δε
mu
xx + τmu

xz δγ
mu
xz

)
dvmu +

Nmj∑
1

∫
Vmj

(
σmj

xx δε
mj
xx + τmj

xz δγ
mj
xz

)
dvmj

+

∫
Vfrp1

(
σ frp1

xx δεfrp1
xx + τ frp1

xz δγ frp1
xz

)
dvfrp1 +

∫
Vfrp2

(
σ frp2

xx δεfrp2
xx + τ frp2

xz δγ frp2
xz

)
dvfrp2

+

∫
Va1

(
τ a1

xz δγ
a1
xz + σ a1

zz δε
a1
zz

)
dva1 +

∫
Va2

(
τ a2

xz δγ
a2
xz + σ a2

zz δε
a2
zz

)
dva2; (2)

where the notations ‘mu’, ‘mj’, ‘frp1’, ‘frp2’, ‘a1’ and ‘a2’ refer to the masonry unit, mortar, inner FRP
strip, outer FRP strip, inner adhesive layer, and the outer adhesive layer, respectively; σ i

xx and εi
xx are

the in-plane normal stress and strain in the masonry unit (i = mu), the mortar joint (i = mj), and the
FRP strips (i = frp1 or i = frp2); τ i

xz and γ i
xz (i = mu,mj, frp1, frp2) are the shear stress and shear

angle in the masonry unit, the mortar joint, the FRP strips, respectively; σ aj
zz and εaj

zz ( j = 1, 2) are the
out-of-plane normal stresses and strains in the inner and the outer adhesive layers, respectively; τ aj

xz and
γ

aj
xz ( j = 1, 2) are the shear stress and shear angle in the adhesive layers; and Nmu and Nmj are the number

of the masonry units and the mortar joints, respectively.
The nonlinear kinematic relations for the masonry units, the mortar joints, and the FRP strips follow

the first order shear deformation theory and the assumption of large displacements, moderate rotations,
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and small strains as follows:

wi (x, zi )= wi (x); (3a)

ui (x, zi )= uoi (x)− ziφi (x); (3b)

γ i
xz(x, zi )= wi,x(x)−φi (x); (3c)

εi
xx(x, zi )= uoi,x(x)+

1
2
(wi,x(x))2 − ziφi,x(x); (3d)

where wi (x), uoi (x) and φi (x) are the out-of-plane displacement, the in-plane displacement, and the
rotation of the reference line of the masonry unit (i = mu), the mortar joint (i = mj), and the FRP strips
(i = frp1, frp2), respectively, zi is measured from the reference line of each component inwards (the
reference lines are arbitrarily located at the middle plane of each component, see Figure 2d), and ( ),x
denotes a derivative with respect to x . Since both the masonry units and the mortar joints are modeled
using the same kinematic assumptions and differ in their constitutive model only, the superscripts mu
and mj are replaced with c. Thus, c = mu refers to the masonry unit regions (sections I-I and II-II in
Figure 2b), and c = mj refers to the mortar regions (section III-III in Figure 2b).

The kinematic relations for the adhesive are:

εaj
zz (x, zaj )= waj,z(x, zaj ); (4a)

γ aj
xz (x, zaj )= uaj,z(x, zaj )+waj,x(x, zaj ) ( j = 1, 2); (4b)

where waj and uaj are the out-of-plane and in-plane displacements of the inner ( j = 1) and outer ( j = 2)
adhesive layers, respectively.

The loads are exerted at the masonry wall only. Thus, the first variation of the potential of the external
loads equals:

δV = −

x=H∫
x=0

(qzδwc + nxδuoc + m yδφc) dx

−

NC∑
k=1

x=H∫
x=0

(
Pkδwc(xk)+ Nkδuoc(xk)+ Mkδφc(xk)

)
δD(x − xk)dx; (5)

where qz , nx , and m y are distributed loads and bending moments, respectively, Pk , Nk , and Mk are
concentrated loads and bending moments at x = xk (see Figure 2a), δD is the Dirac function, and NC is
the number of the concentrated loads and moments.

Compatibility and debonding conditions. In the fully bonded subregions, the compatibility conditions
at the adhesive-masonry, adhesive-mortar, and adhesive-FRP interfaces read:

wa1(x, za1 = 0)= wc(x); (6a)

ua1(x, za1 = 0)= uoc(x)−
dc

2
φc(x); (6b)
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wa1(x, za1 = ca1)= wfrp1(x); (7a)

ua1(x, za1 = ca1)= uo frp1(x)+
dfrp1

2
φfrp1(x); (7b)

wa2(x, za2 = 0)= wfrp2(x); (8a)

ua2(x, za2 = 0)= uo frp2(x)−
dfrp2

2
φfrp2(x); (8b)

wa2(x, za2 = ca2)= wc(x); (9a)

ua2(x, za2 = ca2)= uoc(x)+
dc

2
φc(x); (9b)

where dc(= dmu or dmj), dfrp1 and dfrp2 are the thicknesses of the masonry unit, the mortar joint, and
the FRP strips, respectively; ca1 and ca2 are the thicknesses of the inner and outer adhesive layers,
respectively; and zaj ( j = 1, 2) are measured from the outer interface of each adhesive layer inwards;
see Figure 2d.

In the debonded subregions, the interfaces are free of shear and may slip with respect to each other.
Hence, the condition of compatible longitudinal deformations is replaced with the condition of shear
free interface. For example, in case the inner adhesive-masonry interface is debonded, Equation (6b) is
replaced with:

τ a1
xz (x, za1 = 0)= 0. (10)

If the debonded interfaces are in contact, the condition of compatible out-of-plane deformations holds.
If out-of-plane contact does not exist, the compatibility condition is replaced with the null normal stress
condition. In the case mentioned above, Equation (6a) is replaced with:

σ a1
zz (x, za1 = 0)= 0. (11)

Nonlinear field equations. The nonlinear field (equilibrium) equations for the strengthened (bonded or
debonded) regions are formulated using the variational principle (Equations (1), (2), (5)), along with
the kinematic relations (Equations (3a)a–d, (4)) and the compatibility requirements (Equations (6)–(11)).
The field equations take the following form:

N frp1
xx,x(x)−α

f r p
1 bfrp1τ

a1
xz (x, za1 = ca1)= 0; (12)

N c
xx,x(x)−α

c
2bfrp2τ

a2
xz (x, za2 = ca2)+α

c
1bfrp1τ

a1
xz (x, za1 = 0)= −nx(x); (13)

N frp2
xx,x(x)+α

f r p
2 bfrp2τ

a2
xz (x, za2 = 0)= 0; (14)

V frp1
xz,x (x)+

(
N frp1

xx (x)wfrp1,x(x)
)
,x −β

f r p
1 bfrp1σ

a1
zz (x, za1 = ca1)= 0; (15)

V c
xz,x(x)+ (N

c
xx(x)wc,x(x)),x +βc

1bfrp1σ
a1
zz (x, za1 = 0)−βc

2bfrp2σ
a2
zz (x, za2 = ca2)= −qz(x); (16)
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V frp2
xz,x (x)+

(
N frp2

xx (x)wfrp2,x(x)
)
,x +β

f r p
2 bfrp2σ

a2
zz (x, za2 = 0)= 0; (17)

M frp1
xx,x(x)− V frp1

xz (x)+α f r p
1 bfrp1

dfrp1

2
τ a1

xz (x, za1 = ca1)= 0; (18)

Mc
xx,x(x)− V c

xz(x)+α
c
1bfrp1

dc

2
τ a1

xz (x, za1 = 0)+αc
2bfrp2

dc

2
τ a2

xz (x, za2 = ca2)= m y(x); (19)

M frp2
xx,x(x)− V frp2

xz (x)+α f r p
2 bfrp2

dfrp2

2
τ a2

xz (x, za2 = 0)= 0; (20)

τ a1
xz,x(x, za1)+ σ

a1
zz,z(x, za1)= 0; (21)

τ a1
xz,z(x, za1)= 0; (22)

τ a2
xz,x(x, za2)+ σ

a2
zz,z(x, za2)= 0; (23)

τ a2
xz,z(x, za2)= 0; (24)

where N i
xx , V i

xz , and M i
xx (i = c, frp1, frp2) are the in-plane, shear, and the bending moment stress

resultants, respectively, in the masonry unit, the mortar joint, and the FRP strips; bi (i = frp1, frp2) is
the width of the inner and outer FRP strips; αn

m is a flag that equals 0 for a debonded interface or equals
1 for a bonded one (m = 1 for the inner adhesive layer and m = 2 for the outer adhesive layer; n = f r p
for the adhesive-FRP interface and n = c for the adhesive-masonry/mortar interface, see Figure 2d); βn

m
is also a flag that equals 0 for debonding without contact or equals 1 for debonding with contact, with
the above notation for m and n. Note that Equations (12)–(24) are valid for both the masonry regions
(c = mu) and the mortar regions (c = mj), whereas the distinction between the two cases is achieved
through the constitutive relations.

Boundary and continuity conditions. The boundary conditions at the edges of the masonry panel and
the FRP strips are:

ψN i
xx = ϑNk or uoi = ūoi ; (25)

−ψM i
xx = ϑMk or φi = φ̄i ; (26)

ψ(V i
xz + N i

xxwi,x)= ϑPk or wi = w̄i ; (27)

where Pk , Nk and Mk are external loads and bending moments at xk = 0 or xk = H ; ūoi , w̄i and
φ̄i (i = c, frp1, frp2) are prescribed deformations and rotations; ψ = 1 where x = H ; ψ = −1 where
x = 0; ϑ = 1 for the boundary conditions of the masonry units or the mortar joints; and ϑ = 0 for the
boundary conditions of the FRP strips.

The boundary conditions at the edges of the adhesive layers are:

τ aj
xz (zaj )= 0 or waj (zaj )= w̄aj (zaj ); (28)

where w̄aj (zaj )( j = 1, 2) are prescribed deformation distributions through the thicknesses of the adhesive
layers.
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The continuity conditions at any point x = xk within the fully bonded sub-region are i = c, frp1, frp2;
j = 1, 2

u(−)oi = u(+)oi ; w
(−)
i = w

(+)
i ; φ

(−)
i = φ

(+)
i ; (29)

N i(−)
xx − N i(+)

xx = ϑNk; −M i(−)
xx + M i(+)

xx = ϑMk; (30)

V i(−)
xz + N i(−)

xx w
(−)
i,x − V i(+)

xz − N i(+)
xx w

(+)
i,x = ϑPk; (31)

τ aj (−)
xz (zaj )= τ aj (+)

xz (zaj ); w
(−)
aj (zaj )= w

(+)
aj (zaj ); (32)

where the superscripts (−) and (+) denote quantities left and right to the point x = xk , respectively.

Constitutive relations. The cracking of the mortar joints is a critical condition for the development of
the arching action. Hence, the analysis must account for this type of physical nonlinear constitutive
behavior. Based on the experimental observations of [Velazquez-Dimas et al. 2000] and [Hamilton and
Dolan 2001], it is assumed that cracking is limited to the mortar joints. Hence, the constitutive relations
for the masonry units assume linear elastic behavior, whereas the constitutive model for the mortar
assumes a linear elastic behavior in compression and a brittle cracking behavior in tension. (Note that
the constitutive model for the mortar can be extended to include a nonlinear behavior in compression.
However, these effects are beyond the scope of this paper and are not considered here). The material
point level constitutive relation for the normal stresses in the mortar is:

σmj
xx =

{
Emjε

mj
xx , if εmj

xx ≤ ε
mj
t

0, if εmj
xx > ε

mj
t

}
, (33)

where Emj is the modulus of elasticity of the mortar, and εmj
t is its the ultimate tensile or bond strain.

The generalized (cross-sectional) constitutive relations for the masonry units and the mortar joints are:

N c
xx =

∫
Ac

σ c
xx(zc)d Ac =Ac

11

(
uoc,x +

1
2
(wc,x)

2
)

− Bc
11φc,x (c = mu or mj); (34)

Mc
xx =

∫
Ac

σ c
xx(zc)zcd Ac = Bc

11

(
uoc,x +

1
2
(wc,x)

2
)

− Dc
11φc,x (c = mu or mj); (35)

V c
xx =

∫
Ac

τ c
xz(zc)d Ac = Ac

55(wc,x −φc) (c = mu or mj); (36)

where Ac
11, Bc

11, Dc
11 and Ac

55 are the extensional, coupling, flexural, and shear rigidities of the masonry
unit (c = mu) or the mortar joint (c = mj), multiplied by bc, which is the width of the examined
strengthened masonry strip.

Due to the assumed linear elastic behavior of the masonry unit material, the equivalent rigidities of
the masonry units reduce to the traditional extensional, flexural and shear rigidities of the elastic section:
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Amu
11 =

dmu/2∫
−dmu/2

bmu Emudzmu = E Amu; (37a)

Bmu
11 =

dmu/2∫
−dmu/2

bmu Emuzmudzmu = 0; (37b)

Dmu
11 =

dmu/2∫
−dmu/2

bmu Emuz2
mudzmu = E Imu; (37c)

Amu
55 =

dmu/2∫
−dmu/2

bmuGmudzmu = κG Amu; (37d)

where Emu and Gmu are the elastic and shear moduli of the masonry unit, E Amu, E Imu and G Amu are
the extensional, flexural and shear stiffnesses of the masonry unit section, respectively, bmu = bc, and κ
is the shear correction constant.

In the mortar joint, the nonlinear constitutive law and the combined in-plane and bending tractions
require special consideration. The general stress and strain distributions under various combined tractions
appear in Figure 3a–c. In case the tensile strains are lower than the ultimate tensile/bond strain εmj

t (Figure
3a), the mortar joint is uncracked and it exhibits a linear elastic behavior. Therefore, the equivalent
rigidities are given by Equation (37)a–d with the subscript/superscript mj instead of mu. In case the
tensile strains exceed εmj

t (Figure 3b), the mortar joint is cracked and the equivalent rigidities take the
following form:

Amj
11 =

zmj
act∫

−dmj/2

bmj Emjdzmj = Emjbmj

(
dmj

2
+ϕzmj

act

)
; (38a)

Bmj
11 =

zmj
act∫

−dmj/2

bmj Emjzmjdzmj = −ϕ
Emjbmj

2

((
dmj

2

)2

−
(
zmj

act
)2

)
; (38b)

Dmj
11 =

zmj
act∫

−dmj/2

bmj Emjz2
mjdzmj =

Emjbmj

3

((
dmj

2

)3

+ϕ
(
zmj

act
)3

)
; (38c)

Amj
55 =

zmj
act∫

−dmj/2

bmjGmjdzmj = κGmjbmj

(
dmj

2
+ϕzmj

act

)
; (38d)
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Figure 3. Stress distributions through the mortar joint: (a) uncracked joint; (b) cracked
joint; (c) detached joint; (d) stress distribution under positive moment and compressive
force; (e) stress distribution under negative moment and compressive force.

where according to Figure 3, bmj and zmj
act define the width and the depth of the active zone in the mortar

cross section, ϕ = 1 in case the mortar section is locally subjected to in-plane compression combined
with a positive bending moment (Figure 3d), ϕ = −1 if the in-plane compression is combined with a
negative bending moment (Figure 3e) and Gmj is the shear modulus of the mortar. In case the mortar
joint is fully detached (Figure 3c), its rigidities are zero and the functionality of the strengthened wall
depends on the FRP strips only. In most practical cases, the contribution of the tensioned mortar to the
stiffness of the cracked cross section is negligible, and thus zmj

act can be replaced with zmj
o , which is the

height of the neutral axis; see Figure 3.
The constitutive relations of the FRP strips follow the classical lamination theory and use Equa-

tions (33)–(35) with the superscripts/subscripts frp1 or frp2 instead of c. In this case, Ai
11, Bi

11, Di
11

and Ai
55(i = frp1, frp2) are the extensional, coupling, flexural, and shear rigidities of the inner and outer

FRP strips, respectively [Vinson and Sierakowski 1986], multiplied by the width of the strip. Note that
the shear rigidity of the FRP strip may be one or two orders of magnitude smaller than its extensional
rigidity, which may affect the localized buckling characteristics of the FRP strip [Sheinman and Adan
1987].
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The constitutive relations for the adhesive material assume linear-elastic behavior, and read

σ aj
zz = Eajε

aj
zz , τ aj

xz = Gajγ
aj
xz , ( j = 1, 2), (39)

where Eaj and Gaj ( j = 1, 2) are the modulus of elasticity and the shear modulus of the adhesive
material, respectively. Note that in some cases, the material behavior of the adhesive may exhibit some
nonlinear or inelastic characteristics. These effects, and especially their influence on the localized stress
concentrations in the adhesive layer in externally strengthened reinforced concrete beams, are studied in
[Rabinovitch 2005]. For brevity, and in order to focus on the geometrically nonlinear effects, they are
not studied here.

Adhesive layers—stress and displacement fields. The stress and displacement fields of the adhesive
layers follow the high-order approach [Rabinovitch and Frostig 2000], and are derived using Equa-
tions (21)–(24), along with the compatibility requirements/debonding conditions (Equations (6)–(11))
and the kinematic and constitutive relations (Equations (4), (39)). In the fully bonded regions they take
the following form:

τ aj
xz (x, zaj )= τ aj

xz (x)= τaj ; (40)

σ aj
zz (x, zaj )= −

2zaj − caj

2
τaj,x +

λEaj (wi −wc)

caj
; (41)

waj (x, zaj )= −
z2

aj − caj zaj

2Eaj
τaj,x +

λ(wi −wc)zaj

caj
+
(1 + λ)

2
wc +

(1 − λ)

2
wfrp2; (42)

uaj (x, zaj )=
τaj zaj

Gaj
+
τaj,xx

2Eaj

( z3
aj

3
− caj

z2
aj

2

)
−
λ
(
wi,x −wc,x

)
z2

aj

2caj

−
(λ+ 1)

2

(
wc,x za1 − uoc +

dc

2
φc

)
+
(λ− 1)

2

(
wfrp2,x za2 − uoc +

dfrp2

2
φfrp2

)
; (43)

where λ= 1 for j = 1 and i = frp1, and λ= −1 for j = 2 and i = frp2. The stress fields in the debonded
subregions (with or without contact) are:

τ aj
xz (x, zaj )= τ aj

xz (x)= τaj = 0; (44)

σ aj
zz (x, zaj )=

β jλEaj (wi −wc)

caj
; (45)

where β j = βc
j ·β

f r p
j .

Nonlinear governing equations. The nonlinear governing equations for the strengthened regions (fully
bonded or debonded) are derived using Equations (12)–(20), the constitutive relations (Equations (34)–
(39)), the compatibility requirements, Equations (7b), (9b) (in the bonded case), and the stress and
deformation fields of the adhesive layers (Equations (40)–(45)). The governing equations are stated in
terms of the unknown displacements and rotations, (wc, wfrp1, wfrp2, uoc, uo frp1, uo frp2, φc, φfrp1, φfrp2),
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and the unknown shear stresses (τa1 and τa2), and read:

Afrp1
11

(
uo frp1,xx +wfrp1,xwfrp1,xx

)
− Bfrp1

11 φfrp1,xx −α
f r p

1 αc
1bfrp1τa1 = 0; (46)

Ac
11

(
uoc,xx +wc,xwc,xx

)
− Bc

11φc,xx −α
f r p

2 αc
2bfrp2τa2 +α

f r p
1 αc

1bfrp1τa1 = − nx ; (47)

Afrp2
11

(
uo frp2,xx +wfrp2,xwfrp2,xx

)
− Bfrp2

11 φfrp2,xx +α
f r p

2 αc
2bfrp2τa2 = 0; (48)

Afrp1
55

(
wfrp1,xx −φfrp1,x

)
+ Afrp1

11

(
(wfrp1,x uo frp1,x),x +

3
2
wfrp1,xx(wfrp1,x)

2
)

−Bfrp1
11

(
wfrp1,xφfrp1,x

)
,x +

α
f r p

1 αc
1bfrp1ca1

2
τa1,x −β1

bfrp1 Ea1

ca1
(wfrp1 −wc)= 0; (49)

Ac
55(wc,xx −φc,x)+ Ac

11

(
(wc,x uoc,x),x +

3
2
wc,xx(wc,x)

2
)

− Bc
11(wc,xφc,x),x +

α
f r p

2 αc
2bfrp2ca2

2
τa2,x +

α
f r p

1 αc
1bfrp1ca1

2
τa1,x

+β2
bfrp2 Ea2

ca2
(wfrp2 −wc)+β1

bfrp1 Ea1

ca1
(wfrp1 −wc)= −qz; (50)

Afrp2
55 (wfrp2,xx−φfrp2,x)+Afrp2

11

(
(wfrp2,x uo frp2,x),x +

3
2
wfrp2,xx(wfrp2,x)

2
)
−Bfrp2

11 (wfrp2,xφfrp2,x),x

+α
f r p

2 αc
2bfrp2ca2τa2,x−β2

bfrp2 Ea2

ca2
(wfrp2 −wc)=0; (51)

Dfrp1
11 φfrp1,xx−Bfrp1

11

(
uo frp1,xx+wfrp1,xwfrp1,xx

)
+Afrp1

55 (wfrp1,x−φfrp1)−α
f r p

1 αc
1bfrp1

dfrp1

2
τa1=0; (52)

Dc
11φc,xx−Bc

11
(
uoc,xx+wc,xwc,xx

)
+Ac

55(wc,x−φc)−α
f r p

2 αc
2bfrp2

dc

2
τa2−α

f r p
1 αc

1bfrp1
dc

2
τa1= − m y; (53)

Dfrp2
11 φfrp2,xx− Bfrp2

11

(
uo frp2,xx+wfrp2,xwfrp2,xx

)
+ Afrp2

55 (wfrp2,x −φfrp2)−α
f r p

2 αc
2bfrp2

dfrp2

2
τa2 = 0; (54)

α
f r p

1 αc
1

(
uoc − uo frp1 −

ca1

2
(wfrp1,x +wc,x)+

τa1ca1

Ga1
−
τa1,xx c3

a1

12Ea1
−

dfrp1

2
φfrp1 −

dc

2
φc

)
= 0; (55)

α
f r p

2 αc
2

(
uo frp2 − uoc −

ca2

2
(wfrp2,x +wc,x)+

τa2ca2

Ga2
−
τa2,xx c3

a2

12Ea2
−

dfrp2

2
φfrp2 −

dc

2
φc

)
= 0. (56)

In the debonded subregions, the shear stresses τa1, τa2, or both vanish. Correspondingly, Equation (55),
Equation (56), or both, which result from the requirement of compatible longitudinal deformation, also
vanish.

The nonlinear governing equations and the corresponding boundary and continuity conditions are
numerically solved using the Nonlinear Multiple Shooting method [Stoer and Bulirsch 1993]. Along
with the geometrical nonlinearity, the model is associated with further nonlinearities due to the unknown
type of debonded subregions (with or without out-of-plane contact), and due to the cracking of the mortar
joints. The determination of the type of debonded subregions is conducted iteratively. Namely, one type
is assumed and verified through the results of the analysis. If the results contradict the assumption,
the assumed type of the debonded region is switched and the structure is reanalyzed. The nonlinearity
associated with the cracking of the mortar joints is considered through the following iterative procedure.
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Step 1: initial guess. All mortar joints are assumed uncracked.

Step 2: analysis of the structure. Using the rigidities calculated in the initial guess or in the previous
iteration, the nonlinear governing equations are numerically solved using the multiple shooting method
[Stoer and Bulirsch 1993].

Step 3: analysis of the mortar joints cross-section. Based on the solution obtained in Step 2, the location
of the cracked mortar joints and the depth of the compression zone in each cracked joint are determined
as follows.

(i) The strain distribution in each mortar joint is determined through Equation (3a). If the maximum ten-
sile strain plus the initial compressive strain due to the self-weight exceeds the ultimate tensile/bond
strain of the mortar, the joint is considered cracked.

(ii) In each cracked joint, the depth of the active zone is determined as:

zmj
act =

uo mj,x +
1
2
(wmj,x)

2

φmj,x
−

ε
mj
t

φmj,x
; (57)

where uo mj,x , wmj,x and φmj,x are obtained in Step 2.

(iii) Once zmj
act is determined, the rigidities of each joint are evaluated using Equations (38)a–d. Due to

the relatively small height of the joints (with respect to the height of the wall), it is assumed that the
rigidities are uniform through the height of each joint.

Step 4: convergence criterion. If the norm of the relative difference between the magnitudes of the
equivalent rigidities of the mortar joints in two successive iterations is sufficiently small, the iterative
procedure is stopped. Otherwise, the procedure returns to Step 2 with the updated rigidities determined
in Step 3.

Numerical study

The numerical study focuses on the geometrically nonlinear effects in the bending behavior of a ma-
sonry wall strengthened with externally bonded FRP strips. In many practical cases, masonry walls are
strengthened to carry sign-reversing loads and the FRP strengthening system is applied on both faces
of the wall. This type of strengthening scheme is examined as follows. The geometry of the wall,
the strengthening scheme, the mechanical properties of the materials, and the static load pattern appear
in Figure 4. The FRP strips are assumed to be fully bonded in the uncracked stage. However, once
the joint is cracked, it is assumed that the crack opening, the extensive longitudinal strains in the FRP
strip bridging over the crack, and the inability of the cracked faces to transfer shear stresses trigger the
formation of a debonded region along the cracked joint. Studies on externally strengthened concrete
beams [Rabinovitch and Frostig 2000; Rabinovitch and Frostig 2001; Teng et al. 2002] and preceding
studies on the geometrically linear response of strengthened masonry walls [Hamed and Rabinovitch
2005] revealed that the characteristic length scale of the peeling stress concentrations near the edge of
the FRP strip, near cracks, or near the mortar joint is about the thickness of the adhesive layer. (The
peeling stress concentration decays within a distance of about 2 to 3 times the thickness of the adhesive
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layer). Hence, it is assumed that the height of each debonded region equals the height of the mortar joint
plus twice the thickness of the adhesive layer (Figure 4d). In order to examine the role of the assumed
height of the debonded region, the influence of this parameter is parametrically studied over a range of
zero to three times the thickness of the adhesive layer. The effect of the existence of debonded regions
in all mortar joints, which may result from imperfect placement of the adhesive or from preloading of
the strengthened wall, is also investigated. Finally, the effect of the slenderness ratio is examined.

The load-deflection curves (equilibrium paths) and the in-plane thrust force (the arching force) versus
the out-of-plane deflection curves of the strengthened and the unstrengthened masonry walls appear in
Figure 5. In order to highlight the geometrically nonlinear effects, the results of a geometrically linear,
but physically nonlinear (cracking) analysis of the strengthened wall also appear in Figure 5. The results
show that both the unstrengthened wall and the strengthened wall are characterized by a limit point
and a snap-through type of behavior [Simitses 1986]. Due to the ability of the strengthened wall to
carry bending moments through tensile stresses in the FRP strip and compressive stresses in the masonry
panel, the post-limit-point slope of the equilibrium path and the magnitudes of the arching force in the
strengthened wall are lower than those in the unstrengthened one (see Figure 5b). The latter observation is
in qualitative agreement with the experimental findings of [Galati et al. 2002], which revealed a reduction
in the magnitude of the thrust force with the increase of the width (and cross sectional area) of the
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strengthening system. The comparison between the nonlinear results and the linear ones clearly indicates
that the decrease in the overall flexural rigidity of the strengthened wall along its equilibrium path results
from the destabilizing nonlinear effects of the arching action, and not from the progressive cracking of
the mortar joints. Note that the load-deflection curve in the geometrically linear case is almost linear due
to the early cracking of the mortar joints under very low load levels.

In quantitative terms, Figure 5a shows that the limit point load and deflection of the unstrengthened
masonry wall are about 25.4 kN and 40 mm, respectively, while those of the strengthened wall are about
36 kN and 55.5 mm, respectively. Thus, the use of the bonded FRP strips improves the stability charac-
teristics of the wall (both the limit point load and the limit point deflection) by a factor of about 1.4. A
similar improvement factor of the limit point load was detected in the experimental study of [Tumialan
et al. 2003]. Yet, this value is much smaller than the factors experimentally detected for strengthened
simply supported and longitudinally unconstrained walls [Gilstrap and Dolan 1998; Albert et al. 2001;
Hamilton and Dolan 2001; Hamoush et al. 2002].

The response of the strengthened and the unstrengthened masonry walls under a displacement level
of 20 mm at midspan and load levels of about 24 kN and 20 kN, respectively, is studied in Figure 6. The
out-of-plane and the in-plane deflections appear in Figure 6 a,b. These figures reveal that due to the
progressive cracking of the critical mortar joints at the edges and at midspan, the deformation of the
wall is governed by a system of three hinged rigid bodies. A level of elastic curvature, which is slightly
more prominent in the strengthened wall, is also observed due to localized bending of the masonry units
(Figure 6a). Figure 6b further reveals the jumps in the distribution of the longitudinal deformations due
to cracking of the critical joints. The distributions of the bending moments, the in-plane forces, and the
shear forces appear in Figures 6c–e, respectively, and reveal the localized effects in the vicinity of the
cracked mortar joints. These effects result from the prominent change in stiffness between the masonry
unit section and the cracked mortar joint section. In the masonry unit section, the considerable flexural
stiffness of the masonry unit allows a larger portion of the global bending moment to be carried by the
masonry unit itself. As a result, the part of the global moment carried in the form of tensile forces in the
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FRP strip and compressive force in the wall (the composite action moment) is much smaller than in the
cracked mortar joint section. The variation of the tensile force in the FRP strip from the cracked joint
section to the masonry unit section yields the shear stress concentrations observed in Figure 6f. Figures 6d
and 6e also reveal locally increased shear and compressive forces in the masonry panel. These effects
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may lead to the shear-compression crushing failure experimentally observed by Tumialan et al., [2000;
2003] and Galati et al. [2002].

The localized effects near the cracked joints and especially the rapid variation in the shear stresses
(Figure 6f) also trigger the development of out-of-plane normal (peeling) stress concentrations (see Fig-
ures 6g, 6h and Equation (41)). Note that in the inner adhesive layer, the stress concentrations develop
due to crack opening at the inner face of the mortar joints near midspan. In the outer adhesive layer, they
develop due to crack opening at the outer face of the edge joints. These stress concentrations quantify
and explain the debonding mechanisms experimentally observed by Hamilton and Dolan [2001], Carney
and Myers [2005] and others.

Effect of debonded regions and local buckling. In many cases, the development of debonded regions
is not limited to the vicinity of the cracked joints, but may also form due to imperfect placement of the
adhesive or to preloading of the strengthened wall. The influence of the existence of debonded regions
near all mortar joints is studied in Figure 7. Figure 7a shows that the overall equilibrium path (load-
deflection curve) of the strengthened wall is only slightly affected by the existence of the debonded
regions near all mortar joints (as compared to the case debonded regions are formed near the cracked
joints only). On the other hand, the response in terms of the longitudinal normal stresses at the inner and
outer faces of the compressed FRP strip near midspan (Figure 7b) reveals significant differences between
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the two cases. In case the FRP strip is fully bonded, the two faces are subjected to an almost equal level
of compressive stresses, and the effect of the local bending moment is minor. In the debonded case,
starting from a load level of about 31.3 kN (and a displacement level of about 32 mm), the local bending
moment significantly affects the in-plane normal stresses. This bending moment is a direct result of the
local buckling (wrinkling) of the compressed FRP.

The effect of the localized buckling and wrinkling phenomena on the shear and the out-of-plane
normal stresses in the adhesive at the edges of the debonded region near midspan is studied in Figures 7c
and 7d, respectively. These curves show that once the compressed FRP has buckled, the shear stresses
and, particularly, the out-of-plane normal stresses are significantly increased. Furthermore, while the
adhesive-masonry interface is in compression in the prebuckling stage, beyond the local buckling point
it is subjected to tensile stresses. Due to the brittleness and the low out-of-plane tensile strength of the
masonry material, this may trigger the growth of the debonded region, and may lead to total failure of
the strengthening system. The results presented here in terms of stress fields in relation to this effect
can be used for the quantitative evaluation of a fracture-mechanics based criterion for the growth of the
debonded regions [Rabinovitch and Frostig 2001; 2006; Rabinovitch 2004a]. The results also show that
the local buckling of the FRP strip occurs at a load level that is lower than the limit point load. Hence,
in this case, the localized stability effects are expected to be more dominant than the global ones.

The out-of-plane deflections and the in-plane normal stresses in the FRP strip under load levels of
28.5 kN and 33.5 kN appear in Figure 8 and clearly show the wrinkling of the FRP strip within the
debonded region (Figure 8a). Figure 8b reveals the considerable amplification of the in-plane normal
stresses in the inner and outer faces of the FRP strip. Also there, is the direct result of the bending
moments that develop due to the local buckling of the FRP strips.

Effect of the height of the debonded regions (hdeb). The influence of the height of debonded regions
on the local and global behavior of the strengthened wall (in case debonded regions are formed near all
joints) is parametrically studied in Figure 9. The results show that the height of the debonded regions does
not qualitatively affect the general pattern of the nonlinear behavior of the strengthened wall. However,
Figures 9 a, c, d show that the limit point loads and the limit point displacements detected with very
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short debonded regions (hdeb → 0) are notably higher than the ones detected with the higher (up to
70 mm) ones. In other words, the results show that the height of the debonded regions affects the limit
point load and the limit point deflection improvement factors of the strengthening system (that is, the
ratios of the limit point load or deflection of the strengthened wall over those of the original wall). These
factors range from about 1.65 for the short debonded regions to only about 1.2 for the longer debonded
regions. Figures 9b and 9d further show that, as expected, the magnitudes of the wrinkling load of the
compressed FRP strip significantly decrease with the increase of the height of the debonded regions.
Note that in the case of debonded region shorter than 20 mm, wrinkling of the FRP strip does not occur.
The results observed in Figure 9 clarify that the height of the debonded region quantitatively affects the
global nonlinear behavior of the wall and critically governs the localized response (wrinkling) near the
cracked joint. Furthermore, the results highlight the necessity of a fracture mechanics approach to the
debonding growth mechanism [Rabinovitch and Frostig 2001; 2006; Rabinovitch 2004a]. This approach
can be applied based on the stress and displacement fields detected here.

Effect of the slenderness ratio. Four strengthened URM walls with different slenderness ratios, (H/hc =

21.1, 31.6, 40, and 52.6) are examined. The dimensions of the masonry units and the mortar joints are
the same for all walls, while the slenderness ratio is controlled by modifying the number of the masonry
units. The normalized load-deflection curves (equilibrium paths) for the four unstrengthened walls, the
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strengthened walls with debonded regions near the cracked joints only, and the strengthened walls with
debonded regions near all joints appear in Figure 10. (Note that in some cases, numerical convergence
was not achieved and the deep post-limit-point response, which is of less practical importance, was
not detected). The normalized results show that walls with different slenderness ratios exhibit a qual-
itatively similar nonlinear behavior with a limit point and a snap through. Considering the limit point
load improvement factor of the strengthening system it is seen that for the configuration studied here
(with hdeb = 30 mm), this normalized factor is about 1.4 for all slenderness ratios. The results further
show that the strengthening system modifies the limit point deflection and increases it from about 0.4hc

in the unstrengthened walls to about 0.55hc in the strengthened ones. Also, the limit point deflection
improvement factor equals about 1.4 for all slenderness ratios.

In quantitative terms, the critical limit point load drops down from 223 kN in the strengthened stubby
wall to about 29 kN in the most slender one. Yet, the critical limit point deflection is about 55 mm in
all cases. The reduction in the critical load (limit point loads, Plim , or wrinkling load, Pwr ) with the
increase of the slenderness ratio is quantitatively studied in Figure 11. These results emphasize that in
the high slenderness ratios (H/hc = 40, 52.6), the geometrically destabilizing effects may lead to loss
of stability before exceeding the ultimate strength of the materials [Carney and Myers 2005]. The ability
to explore and quantify these geometrically nonlinear effects is essential for the design and use of the
strengthened wall.
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Comparison to finite element analysis

In this section, the results obtained through the nonlinear theoretical model developed here are compared
to finite element analysis (FEA), using the commercial package ANSYS. The geometry of two blocks
specimen, the mechanical properties of the materials, and the 2D finite element model appear in Figure 12.
The analytical model assumes that debonded regions develop at the mortar joints in case of imperfect
placement of the adhesive, or in case of cracking of the joint. Correspondingly, the same assumption
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is made in the FE model and a 3.0 mm deep and 10.0 mm high gap is assumed between the mortar
and the adhesive (see Figure 12a). The nonlinear effect of mortar joint cracking is considered as a
contact problem, using contact and target surface elements located at midspan. The masonry, the mortar,
the FRP strip, and the adhesive are modeled using 4 node elements, and they are assumed to be linear
elastic. Yet, due to the extensive longitudinal strains and the probable cracking or yielding of the adhesive
fillet that is attached to the debonded FRP strip within the cracked mortar joint, it is assumed that its
longitudinal rigidity is significantly smaller than its out-of-plane normal rigidity. The number of elements
used through the thin adhesive layer varies from 5 to 15 at the critical locations. The number of elements
used through the thickness of the FRP strip is 4, and the number of elements through the depth of the
masonry block is about 15. The total number of elements used in the nonlinear FEA of the two masonry
units specimen is as large as 21588. This huge number of elements is required, due to the different length
scales of the structure components and due to the singular points near the debonded region and near the
edges of the FRP strip (also see the FE model in [Davidson et al. 2005]). Two point supports that restrict
the longitudinal and the vertical displacements are located at the edges of the specimen at midheight.

The nonlinear equilibrium paths of the strengthened and the unstrengthened specimens obtained by
the theoretical and the FE models appear in Figure 13. The results reveal fair agreement between the
numerical and the theoretical curves. In the strengthened wall, good agreement is observed at relatively
low and medium load levels. Under higher loads, the results of the FE model deviate from the equilibrium
path obtained by the theoretical model. This is mainly attributed to the localized effects observed near the
supports in the FE model (stress concentrations and localized deformations), and the different modeling
of the cracking at the mortar joint (critical section cracking in the FE model compared with cracking of
the entire length of the mortar joint in the theoretical model). The different modeling of the effect of shear
deformation (first order beam theory versus 2D elasticity) may also contribute to the differences observed;
however, this effect is probably secondary to other contributing factors mentioned above. Figure 13
also shows that the theoretical model predicts the limit point behavior of the strengthened masonry
specimen, whereas the FE model diverges under a displacement level that is 3% higher than the limit
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point displacement predicted by the theoretical model. At that point, the load predicted by the FE model
is about 25% higher than the limit point load determined by the theoretical model. In the unstrengthened
wall, the FE model succeeds in describing the limit point behavior and predicts a limit point load that is
about 10% lower than the one predicted by the theoretical model.

The distributions of the normalized axial force in the FRP strip and the shear and peeling stresses in
the adhesive are described in Figure 14. It is seen that the results of the FE analysis and those of the
theoretical model are in good agreement. Figure 14a shows that the FEA also predicts that the axial
force in the FRP strip is almost constant through the length of the debonded region at the mortar joint.
This is due to the negligible shear stresses in the adhesive within the debonded region (Figure 14b). In
the theoretical model these stresses totally vanish (Figure 14b), and the axial force in the FRP strip is
uniform within the debonded region (Figure 14a). The distribution of the peeling stresses at the interfaces
of the adhesive layer near the cracked mortar joint appears in Figure 14c, and also reveals an impressive
agreement between the numerical and the theoretical models.

50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

N
  

 /
N

x
x

fr
p

x[mm]

(a)

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

50 100 150 200 250 300 350

x[mm]

(b)

m
ax

t 
/t

a
m

ax

Nmax

tmax

190 195 200 205 210 215 220

-1

-0.5

0

0.5

s
  
/|
s

  
 |

zza

(c)

smax

m
ax

x[mm]

Figure 14. Response of the strengthened masonry specimen under a midspan displace-
ment of 4 mm: (a) normalized axial forces in the FRP; (b) shear stresses in the adhesive;
(c) peeling stresses in the adhesive near the joint. (Legend: — theoretical model; - - - FE
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Opposed to the analytical stress fields used in the theoretical model (Equations (40)–(45)), the FEA
is strongly affected by the singular character of the stresses near the edges of the debonded region. As
a result, it is sensitive to the mesh characteristics in this region. The convergence of the FE peak shear
and normal stresses in the adhesive, with the refinement of the mesh, is studied in Figure 15 (note that
in both analyses, the same debonded region is assumed). The results are normalized and the ratios
of the peak stresses computed by the FE model (τFE and σ zz

FE) over the peak stresses obtained by the
theoretical model (τTh and σ zz

Th) are presented. The results in Figure 15 indicate that the numerical FE
results converge towards the theoretical values with the refinement of the mesh. This trend is most
notable in terms of the peak normal stresses, which are more affected by the singularity at the edges of
the debonded region. This observation indicates that for cases in which the mesh of the FE model is not
as fine as required, the FE model could underestimate the critical stresses in the adhesive. Due to the
critical importance of theses stresses, the results presented here highlight one of the most problematic
aspects of the FEA of the strengthened wall and emphasize the advantages of the theoretical model.
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Concluding remarks

The geometrically nonlinear effects of the out-of-plane flexural response of URM walls strengthened with
composite materials have been investigated. A general theoretical approach and a nonlinear analytical
model for the geometrically nonlinear analysis of the strengthened masonry wall have been presented.
The analytical model and the numerical study have revealed a global limit-point and snap-through type
of behavior that is governed by the destabilizing influence of the arching action as well as localized
wrinkling effects in the compressed FRP strip. The results have also shown that the use of the bonded
FRP system can potentially improve the global stability characteristics of the wall and increases its limit
point load and deflection by a factor of 1.2–1.65.

The effect of the formation of debonded regions in the vicinity of the mortar joints has been examined.
It has been shown that the formation of debonded regions promotes the development of wrinkling or local
buckling of the compressed FRP strip. This phenomenon significantly magnifies the normal stresses in
the FRP strip as well as the shear and peeling stresses in the adhesive. Thus, it may trigger an overall
debonding failure of the strengthening system. In addition, it has been quantitatively shown that the
increase in the height of the debonded regions affects the global nonlinear behavior of the strengthened
wall and reduces the magnitude of the local wrinkling load as well as the effectiveness of the strengthening
system.

The study of the influence of the slenderness ratio has shown that strengthened walls of different
slenderness ratios exhibit a qualitatively similar nonlinear behavior. Quantitatively, the investigation has
characterized the reduction in the global limit point load with the increase of the slenderness ratio and
has highlighted the role of the geometrically nonlinear effects in the response of the slender strengthened
walls.

In conclusion, the analytical model and the numerical study presented have shed some light on the
global (limit-point and snap through behavior) and localized (wrinkling) geometrically nonlinear effects
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in the out-of-plane behavior of URM walls strengthened with composite materials. Due to their critical
influence on the structural response of the strengthened wall, these geometrically and physically nonlin-
ear effects must be carefully considered in order to assure the effective design and the safe use of the
strengthened wall.
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