
JOURNAL OF
MECHANICS OF MATERIALS AND STRUCTURES

Volume 2 No. 7 September 2007

JournalofM
echanics

ofM
aterials

and
S

tructures
2007

Vol.2,N
o.7

Journal of

Mechanics of
Materials and Structures

Volume 2, Nº 7 September 2007

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES

http://www.jomms.org

EDITOR-IN-CHIEF Charles R. Steele

ASSOCIATE EDITOR Marie-Louise Steele
Division of Mechanics and Computation
Stanford University
Stanford, CA 94305
USA

BOARD OF EDITORS

D. BIGONI University of Trento, Italy
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IN MEMORIAM: LIVIU LIBRESCU

SILVIO LEVY

In this issue we publish posthumously an article coauthored by Liviu Librescu (1930–2007). This
unassuming man stood out not only as a research pioneer in many fields, but as an accomplished, warm,
and generous teacher and human being. Since 1986 he had been a Professor of Engineering Science and
Mechanics at the Virginia Polytechnic Institute and State University in Blacksburg, VA, where he lost
his life on April 16 while saving those of his students. He left behind his wife Marlena (photo) and his
sons Aryeh and Joe.

Born in Ploies,ti, Romania, a mere seven years
after the Jewish residents of that country achieved
equality of rights, he soon saw those rights taken
away as the Nazi-aligned Legionnaire regime took
over. His father spent years in labor camps and
the family survived great hardship. After the War,
Librescu continued his studies and graduated in
1953 from the Faculty of Aeronautical Engineer-
ing of the Bucharest Polytechnic Institute.

He then started his fecund research career at the
Institute of Applied Mechanics of the Romanian
Academy of Science in Bucharest, at first working
on elastic shells but soon branching out into fluid
mechanics and aeroelasticity. In 1969 he obtained a Ph.D. from the Institute of Fluid Mechanics of the
same Academy. In the 1970s he was again the target of government persecution, for refusing to pledge
allegiance to the communist regime and for trying to move to Israel. He was finally allowed to emigrate
in 1978, after the intervention of Israel’s Prime Minister, and joined the faculty of Tel-Aviv University.

In 1985–86 he spent a sabbatical at Virginia Tech and was offered a professorship, so he moved
to the United States and there continued his research in aeroelasticity, thermal stresses and composite
materials. With 250 refereed journal articles in French, German, English and Russian, an equal number
of contributed book chapters and proceedings articles, and a handful of research monographs, Librescu
is surely one of the most published authors in the field.

Librescu’s heroism during the Virginia Tech murders has been amply chronicled. He was buried in
Israel with honors, and was equally recognized in Romania, whose president conferred on him on April
18 the highest civil order of that country, the Star of Romania (Grand Cross rank), for his scientific
accomplishments and his selflessness.

We asked his coauthor Karam Y. Maalawi, as well as his colleagues from Virginia Tech, to write a
few words in his memory, and we reproduce them on the next page.
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IN MEMORY OF A VERY DEAR FRIEND

With great sorrow and deeply saddened heart, we mourn the
passing away of our teacher, mentor and friend Professor
Liviu Librescu.

Professor Librescu, a pioneer in the field of aerospace engi-
neering, helped me a great deal during my stay in Virginia.
His scientific guidance was invaluable to our research work.

Librescu’s generosity extended to several of my colleagues
at Virginia Tech in addition to myself.

Such was his kindness and love.

His memory will remain with me the rest of my life, and I
promise to continue the work we planned to complete.

God rest his soul.
– Karam Y. Maalawi

FROM HIS COLLEAGUES AT VIRGINIA TECH

Liviu Librescu died as he lived, devoted to his students and
his profession. He loved his position as professor, and gave
himself to research and teaching, solely for the love of it. His
son, Joe, says it best: “He was a scientist who did not work
for money, but for the pleasure he got from his occupation.”
Always available to students, a caring teacher and inspiring
graduate advisor, his last act was to sacrifice himself to save
the students in his solid mechanics class. On that gruesome
morning, he blocked the door of 204 Norris Hall with his
body and ordered his students out the window. He saved all
but one, and fell at last, pierced by several bullets.

We are thankful for all the years we had with him at Vir-
ginia Tech. It was fortunate for us that he chose to spend his
1985 sabbatical in our Engineering Science and Mechanics
Department, and accepted the department’s invitation to join
us permanently. He was a helpful colleague, always ready
to talk about research with anyone. His attitude towards the
profession was based on a deep devotion to knowledge.

We miss him greatly. We will fulfill our mission with in-
creased resolve in order to honor his memory. He will not be
forgotten.
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NONLINEAR SHELL THEORY: A DUALITY APPROACH

GIOVANNI ROMANO, CARMEN SELLITTO AND RAFFAELE BARRETTA

The nonlinear kinematics of thin shells is developed in full generality according to a duality approach in
which kinematics plays the basic role in the definition of the model. The Kirchhoff–Love shell model is
the central issue and is discussed in detail but shear deformable and polar models are also considered and
critically reviewed. The analysis is developed with a coordinate-free approach which provides a direct
geometrical picture of the shell model. The finite and tangent Green strains of the foliated continuum
are explicitly expressed in terms of middle surface kinematics. The new expressions contributed here do
not require the splitting of the velocity into parallel and normal components to the middle surface, and
provide a computationally convenient context. Finite strain measures for the shell and their tangent and
secant rates are analyzed and consistency and nonredundancy properties are discussed. The relations
between the finite Green strain, its tangent and secant rates and the corresponding shell strains, are
provided. The differential and boundary equilibrium equations of the shell are given in variational terms,
both in unsplit and split form. A new expression of the boundary equilibrium equations is contributed
and its mechanical soundness with respect to the classical one is emphasized. Equilibrium in a reference
placement for the shell model is briefly discussed.

1. Introduction

The theory of shells is intimately connected with the geometry of Riemannian manifolds and elements of
the relevant theory are summarized in the paper. The middle surface of a shell model is a two-dimensional
submanifold of the three-dimensional euclidean space (the classical physical space). The treatment of
large configuration changes of the Kirchhoff–Love shell is conveniently carried out by considering the
shell as a foliation of the middle surface induced by a distance function. The description of the shell
kinematics in terms of that of the middle surface is carried out by considering the nonlinear projection
of the points of the foliation onto the middle surface and its derivative which is a symmetric linear
operator expressible in terms of the linear projector onto the tangent plane and of the middle surface
shape operator. Remarkably, this result is also useful in elastoplasticity for conveniently estimating the
algorithmic tangent stiffness [Romano et al. 2005a; Romano et al. 2006]. The properties of consistency
and nonredundancy to be fulfilled by a well defined strain measure are briefly illustrated to provide a basis
for the analysis of shell models. The nonlinear analysis of shell deformation is developed in detail with a
coordinate-free exposition. The treatment is founded on a variational approach in which kinematics plays
a primary role while statics is introduced by duality. Stress fields are envisaged as Lagrange multipliers
of the implicit representation of the rigidity constraint provided by a strain measure. In the classical
three-dimensional continuum mechanics the Green strain measure is the most natural one. Accordingly,

Keywords: strain measures, nonlinear shells, kinematics, equilibrium.
The financial support of the Italian Ministry for the University and the Scientific Research (MIUR) is gratefully acknowledged.
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a shell theory requires one to provide the expression of this strain measure and its rates in terms of
the shell kinematical parameters. For the Kirchhoff–Love shell an expression is also provided in terms
of the membrane and curvature strains of the middle surface and the relevant properties of consistency
and nonredundancy are proven. The tangent deformation of the shell is then investigated to provide
explicit expressions of the membrane and curvature tangent strains in terms of the velocity field of the
shell middle surface, and their relation to the tangent Green strain is provided. The presentation is
nontraditional since it makes no reference to coordinate systems and does not require one to split the
velocity field into tangent and normal components to the middle surface. The equilibrium of membrane
and flexural shells is analyzed in variational terms by relying on the virtual work theorem and on the
divergence theorem on a surface, and the relevant differential and boundary conditions are provided. New
results concerning both finite transformations and rate kinematics of the shell are contributed and a new
expression of the equilibrium boundary condition is shown to have a sound mechanical interpretation.
In fact, for nonflat shells, the classical expression of the boundary conditions does not properly take into
account the rotation rate of the transversal fibers. The models of shear deformable shells and of polar
shells, often adopted in computational mechanics, are illustrated and critically discussed.

2. Distance function and shape operator

A differentiable manifold M is a set locally diffeomorphic by Ck-charts to an open set of a model
Banach space E . The tangent space TM(x) at a point x ∈ M is the linear space of tangent vectors
{x, v} : Ck(Ux; R) 7→ Ck−1(Ux; R) where Ck(Ux; R) is the germ of scalar functions which are k-times
continuously differentiable in a neighborhood Ux of x ∈ M. Tangent vectors at a point are uniquely
defined by requiring that they fulfill the formal properties of a point-derivation:

(v1 + v2)( f )= v1( f )+ v2( f ), additivity,

v(a f )= av( f ), a ∈ R, homogeneity,

}
R-linearity,

v( f g)= v( f )g + f (v(g)), Leibniz rule,

where f ∈ Ck(Ux; R). The tangent bundle TM of M is the disjoint union of the pairs {x,TM(x)} with
x ∈ M. An element {x, v} ∈ {x,TM(x)} is said to be a tangent vector applied at the base point x ∈ M. We
denote by TM(P) ⊆ TM the disjoint union of the pairs {x,TM(x)} with x ∈ P ⊆ M. With a look at the
theory of shells, we recall some basic ingredients of surface theory. More generally, we may consider a
(n − 1)-dimensional hypersurface M embedded in an n-dimensional Riemannian manifold {S, g}. Since
in shell theory the manifold {S, g} is the euclidean space, the relevant connection will be denoted by the
symbol ∂ of ordinary derivation. A distance function from M ⊂ S is a twice continuously differentiable
scalar valued map r ∈ C2(S; R) such that its gradient is a vector field with unitary norm: ‖∂r(x)‖ = 1.
To build a distance function we consider an open strip UM ⊂ S including M whose thickness is so small
that every point x ∈ UM can be g-orthogonally projected in an unique fashion onto a point P(x) ∈ M.
Denoting by n(P(x)) the normal versor to M at P(x) ∈ M, and by n(x) the normal versor at x ∈ UM to
the parallel hypersurface Mr to M passing through the point x ∈ UM, we have n(x)= n(P(x)) and hence

x = P(x)+ r(x)n(x)= P(x)+ r(x)n(P(x)).
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Given n(x) = ∂r(x) for all x ∈ UM, the hessian ∂2r(x) provides the variation of the normal to the
hypersurface Mr through x ∈ UM and is named the shape operator of Mr . Two basic properties are
proven in the next Lemmas.

Lemma 2.1. The shape operator S(x) := ∂n(x)= ∂2r(x) is symmetric.

Proof. The symmetry of S(x) = ∂2r(x) is a direct consequence of the symmetry of the Riemannian
connection of {S, g}. �

Lemma 2.2. At any point x ∈ Mr the normal versor n(x) ∈ TS(x) belongs to the kernel of the shape
operator S(x) ∈ BL(TS(x); TS(x)):

S(x)n(x)= ∂2r(x)n(x)= 0,

hence Im S(x)= (Ker S(x))⊥ ⊆ TMr (x).

Proof. By the symmetry of S(x) ∈ BL(TS(x); TS(x)) we have

g(Sn,h)= g(Sh,n)= g(∂hn,n)=
1
2
∂hg(n,n)= 0,

for any h ∈ TS(x). The last statement holds since the kernel and the image of a symmetric operator are
mutual orthogonal complements.

From Lemma 2.2 it follows that the shape operator S ∈ BL(TS; TS) may be also considered as an
operator S ∈ BL(TM; TS) or as an operator SM ∈ BL(TM; TM), named the Weingarten operator. �

3. Nonlinear projector

Let us provide here, for subsequent use, a formula concerning the derivative of the nonlinear projector
P ∈ C1(UM; M) on the hypersurface M.

Lemma 3.1. Let P ∈ C1(UM; M) be the nonlinear projector of the points of the foliation UM ⊂ S on the
hypersurface M. Its derivative at x ∈ Mr

⊂ UM is a symmetric linear operator

∂P(x) ∈ BL(TS(x); TMr (P(x))),

related to the linear projector 5(x) ∈ BL(TS(x); TMr (x)) of the vectors h ∈ TS(x) on the tangent plane
at x ∈ Mr to the r -level folium Mr , by the formulas

5(x)= ∂P(x)+ r(x)Sr (x)= (I + r(x)S(P(x)))∂P(x)=5(P(x)),

where S(P(x)) is the shape operator of M at the point P(x) ∈ M and Sr (x) is the shape operator of Mr at
the point x ∈ Mr . Moreover

Ker ∂P(x)= Ker5(x)= Span n(x) and ∂P(x)= (I + r(x)S(P(x)))−15(x).

Proof. Taking the directional derivative along any h ∈ TS(x) in the formula

x = P(x)+ r(x)n(x)= P(x)+ r(x)n(P(x))

and observing that

∂n(x)= Sr (x), ∂(n ◦ P)(x)= ∂n(P(x))∂P(x)= S(P(x))∂P(x),
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we get h = ∂hP(x)+ r(x)Sr (x)h = ∂hP(x)+ r(x)S(P(x))∂hP(x). The symmetry of ∂P(x) follows from
that of Sr (x). Since

∂nP(x)= 0, Sr (x)n = 0, S(P(x))n = 0,

we infer that n is in the kernel of the symmetric linear operator

∂P(x)+ r(x)Sr (x)= (I + r(x)S(P(x)))∂P(x).

By projecting on TMr (x), we get the first result. To get the last formula we remark that the linear projector
5(x)∈ BL(TS(x); TS(x)) is symmetric since g(5a,b)= g(5a,5b), for all a,b ∈ TS(x) [Yosida 1974].
Moreover, the operator I + r(x)Sr (x) is symmetric and positive definite, and hence invertible, due to the
suitably small value of the thickness of the shell ensuring that the nonlinear projector P ∈ C1(UM; M) is
well defined. �

Remark 3.1. The ranges of the operators 5(x) ∈ BL(TS(x); TS(x)) and ∂P(x) ∈ BL(TS(x); TS(P(x)))
at x ∈ Mr are TMr (x) and TM(P(x)). In a euclidean space the linear subspaces TS(x) and TS(P(x)) are
identified by means of a translation. Accordingly, the subspaces TMr (x) and TM(P(x)) are also identified
and considered as subspaces of the linear space TS(x).

4. First and second fundamental forms

The first fundamental form is the twice covariant tensor field gM ∈ BL(T2
M; R) defined on M as the

restriction of the metric g ∈ BL(T2
S
; R) of {S, g} to the vectors of the tangent spaces TM(x). The pair

{M, gM} is a Riemannian manifold. The second fundamental form on M is the twice covariant tensor
field sM ∈ BL(T2

M; R) defined by

sM (a,b)= gM (SMa,b), for all a,b ∈ TM.

Lemma 4.1. The Weingarten operator SM ∈ BL(TM; TM) meets the identity

gM (SMa,b)= −g(n, ∂ab), for all a,b ∈ TM.

Proof. For any vector field b ∈ C1(M; TM) the inner product g(n,b) vanishes identically on M, so that
0 = ∂ag(n,b)= gM (SMa,b)+ g(n, ∂ab), for all a ∈ TM. �

Remark 4.1. The identity in Lemma 4.1 is often taken as the definition of the Weingarten operator. It
is important to highlight the tensoriality property of the bilinear form g(n, ∂ab) in spite of the apparent
dependence of the derivative ∂ab on the local behavior of the field b ∈ C1(M; TM).

5. Strain measures and constrained continua

As a premise to the discussion of shell models, we present here some general considerations that will
be referred to in Section 13. A detailed account may be found in [Romano et al. 2002]. Motions of
a continuous body are mathematically described by flows of a submanifold B in a finite dimensional
ambient manifold S, whose points are the kinematical parameters. Vector fields v ∈ C1(B; TS), defined
on the body-submanifold and tangent to the ambient manifold, are called virtual displacements. The basic
issue in formulating a structural model is the statement of what is understood for a rigid transformation
of the body in the ambient manifold, when passing from any placement to another one. Rigidity is an
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essential issue in defining the elastic response of materials and in formulating the equilibrium conditions.
Rigid transformations form a group under map composition. Once the group of rigid transformations
has been defined, one may choose among several alternative ways to provide an implicit description of
the rigidity group as a submanifold of the manifold of all configuration-changes. This description is
accomplished by choosing a strain measure, that is a suitable differential operator which associates, to
any configuration-change of the body from any given placement, a set of tensor-valued fields, defined on
that placement, which vanish if and only if the configuration-change is a rigid transformation. Although
there are many possible choices in defining a strain measure, definite rules must be fulfilled. A first
rule is expressed by a nonredundancy requirement, a condition which in optimization theory is dubbed
constraint qualification. It is expressed by the property that no set of lower dimensional tensor-valued
fields can do the job in providing an implicit description of the rigidity group. A further consistency
requirement states that a strain measure must meet a pseudo-additivity property as a function of the
configuration-changes. To state this property let us consider a flow ψτ,t ∈ C1(B; S) with ψτ,s =ψτ,t ◦ψ t,s
and ψ s,s the identity map. Denoting by G(ψτ,s) the strain measure corresponding to the configuration-
change ψτ,s , the pseudo-additivity property is

G(ψτ,s)= G(ψ t,s)+ A(ψ t,s,G(ψτ,t)), with A(ψ t,s, 0)= 0,

so that the strain measure value is unaffected by a post composition of the configuration-change by a
rigid transformation. The operator A is assumed differentiable with respect to the second argument, with
an invertible derivative so that a stress field conjugate to the strain measure can be defined. Indeed a
stress field is the Lagrange multiplier associated with an implicit representation of the rigidity constraint.
It follows that the equilibrium of the body at any placement can be expressed in terms of the virtual
work of the stress field by the time derivative of the strain measure from that placement to the actual one
[Romano et al. 2002]. The three-dimensional Cauchy continuum is the standard model for experimental
tests on materials and elastic stress and strain computations on a body. To define lower-dimensional
structural models providing suitable approximations, the first step is to choose a simplified kinematics
by specifying which configuration changes are admissible. If the Green strain measure of the continuum
from a reference natural placement can be expressed as a differentiable function of the strain measure of
the approximate model (by means of a strain-relating map) the elastic potential of the model is defined
as the composition between the elastic potential of the continuum and the strain-relating map. Once
the elastic solution of the model is found, the corresponding Green strain measure of the continuum
is available and hence the approximate Cauchy stress field is recovered by means of the constitutive
relations via the one-to one correspondence with the referential stress field. Often engineers, in assign-
ing the constitutive properties of approximate models, are guided by the results to be expected for the
standard three-dimensional continuum. Accordingly, in shell theories, when the transversal shell fibers
are considered elastically inextensible, the elastic relations of the linear isotropic material in a plane
stress state are assumed and the Poisson effect in the transversal direction is taken into account only
after the elastic solution in terms of stress is found. The following basic result of three-dimensional
kinematics in the euclidean space ensures that, for any diffeomorphic transformation ψ ∈ C2(B; S) of a
three-dimensional continuum, the difference between the pull-back of the metric tensor and the metric
tensor itself is a well defined strain measure. This measure is known as the Green strain and is defined
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by

2g(Gψh1,h2 ) :=g((∂h1ψϕ), (∂h2ψϕ))− g(h1,h2 ), for all h1,h2 ∈ TS.

A direct computation shows that the Green strain is consistent.

Theorem 5.1 (Homogeneous finite strains). Let B ⊂ S be a connected open set and ψ ∈ C2(B; S) be a
diffeomorphism such that the associated Green strain tensor field is constant on B. Then the differential
∂ψ ∈ C1(B; BL(TS(B); TS(ψ(B)))) is a constant field. If the Green strain field vanishes on B, the
differential ∂ψ is a constant isometry on B.

Proof. Let h1,h2,h ∈ TS be arbitrary constant fields. By assumption:

∂hg(∂h1ψ(x), ∂h2ψ(x))= g(∂2
hh1
ψ(x), ∂h2ψ(x))+ g(∂2

hh2
ψ(x), ∂h1ψ(x))= 0.

By exchanging h1 with h and h2 with h we get the relations:

g(∂2
hh1
ψ(x), ∂h2ψ(x))+ g(∂h1ψ(x), ∂2

hh2
ψ(x))= 0,

g(∂2
h1hψ(x), ∂h2ψ(x))+ g(∂hψ(x), ∂2

h1h2
ψ(x))= 0,

g(∂2
h2h1

ψ(x), ∂hψ(x))+ g(∂h1ψ(x), ∂2
h2hψ(x))= 0.

From these equalities, by the symmetry of the second derivative, we infer that g(∂2
h1h2

ψ(x), ∂hψ(x))= 0.
Then, by the nonsingularity of ∂ψ(x), we have ∂2

h1h2
ψ(x)= 0 for all x ∈ B and by the connectedness of

B, we get that ∂ψ is a constant field. �

Let Flv
t,s ∈ C1(S; S) be a flow in the space S, with velocity field v ∈ Ck(S; TS), that is, v = ∂t=sFlv

t,s .
The tangent Green strain at s is the time-derivative at t = s of the Green strain evaluated at the configu-
ration change from B to ψ t,s(B):

g(Ġ(v)h1,h2 ) :=
1
2
∂t=sg(∂h1Flv

t,s, ∂h2Flv
t,s )= g((sym ∂v)h1,h2 ),

Then the following rate counterpart of Theorem 5.1 holds.

Theorem 5.2 (Homogeneous tangent strains). Let B ⊂ S be a connected open set and v ∈ C2(B; TS) be
a tangent displacement such that the associated tangent Green strain tensor field is constant on B. Then
the gradient field ∂v ∈ BL(TS(B); TS(B)) is constant on B. In particular, if the tangent Green strain field
vanishes in B then the tangent displacement is rigid:

v(x)− v(y)= W(x − y), for all x, y ∈ B,

where W ∈ BL(TS(x); TS(x)) is a skew-symmetric tensor.

Proof. Let h1,h2,h ∈ TS be arbitrary constant fields. By assumption:

∂h(g(∂h1v(x),h2 )+ g(∂h2v(x),h1 ))= g(∂2
hh1

v(x),h2 )+ g(∂2
hh2

v(x),h1 )= 0.
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By exchanging h1 with h and h2 with h, we get two more relations, so that

g(∂2
hh1

v(x),h2 )+ g(∂2
hh2

v(x),h1 )= 0,

g(∂2
h1hv(x),h2 )+ g(∂2

h1h2
v(x),h)= 0,

g(∂2
h2h1

v(x),h)+ g(∂2
h2hv(x),h1 )= 0.

From these equalities, by the symmetry of the second derivative, we infer that g(∂2
h1h2

v(x),h)= 0 and
hence that ∂2

h1h2
v(x)= 0 ⇐⇒ ∂2v(x)= 0, for all x ∈ B. By the connectedness of B we infer that ∂v is

a constant field. If its symmetric part vanishes, we get ∂v = W, a skew-symmetric tensor. �

6. Shell models

We will primarily be interested in presenting a general, coordinate free exposition of the classical shell
model without shear deformation, known in the literature as the Kirchhoff–Love shell model. This basic
model provides also the guidelines for the investigation of some more sophisticated shell models proposed
in the discouragingly vast literature on the topic. We will not even try to be exhaustive in this respect
and will limit our attention to the most popular shell models for computational purposes. These models
will be briefly illustrated, with critical remarks, in Section 13.2. Also, neither constitutive relations nor
computational issues will be treated in detail, since attention is focused on the basic kinematical aspects
of the models.

6.1. Kirchhoff–Love shell model. In the classical Kirchhoff–Love model, a shell is described as the
foliation UM ⊂ S of a regular surface M in the three-dimensional euclidean physical space {S, g}. To
this end we consider a distance function from it and define the folii of the shell as level sets for the
distance function by assuming that the thickness of the shell is small enough to ensure that a distance
function of any of its points from the middle surface M is well defined. Let ϕ ∈ C1(M; S) be a one-to-one
transformation of the middle surface M of the shell in the physical space S which is a diffeomorphism
from the placement M ⊂ S to the placement ϕ(M)⊂ S. The differential ∂ϕ(x)∈ BL(TM(x); Tϕ(M)(ϕ(x)))
is a linear isomorphism:

Im ∂ϕ(x)= Tϕ(M)(ϕ(x)),
Ker ∂ϕ(x)= {0} ∈ TM(x).

The g-transposed operator ∂ϕT (ϕ(x)) ∈ BL(Tϕ(M)(ϕ(x)); TM(x)) is a linear isomorphism too, with

Im ∂ϕT (ϕ(x))= (Ker ∂ϕ(x))⊥ = TM(x),

Ker ∂ϕT (x)= (Im ∂ϕ(x))⊥ = {0} ∈ Tϕ(M)(ϕ(x)).

Performing the decomposition x = P(x)+ r(x)n(P(x)), with x ∈ UM, the induced transformation

ψϕ ∈ C1(UM; S)

of the shell is defined by

ψϕ(x) := ϕ(P(x))+ r(x)nϕ(ϕ(P(x))), for all x ∈ UM,
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where nϕ(ϕ(P(x))) is the normal versor to ϕ(M) at ϕ(P(x)). This is the basic kinematical assumption
in the Kirchhoff–Love shell model: material fibers normal to the middle surface remain normal to it and
do not change their length when transformations of the shell in the physical space take place. Given
∂hr = g(h,n), the differential ∂ψϕ is given by:

∂hψϕ= (I + rSϕ)∂ϕ∂hP + g(h,n)nϕ ◦ϕ ◦ P, for all h ∈ TS,

where Sϕ := ∂nϕ ∈ BL(Tϕ(M); Tϕ(M)) is the shape operator of the deformed middle surface ϕ(M). The
last two terms are mutually orthogonal. If r = 0 and h ∈ TM by Lemma 3.1 it is ∂hψϕ = ∂hϕ.

Proposition 6.1. The Green’s strain

Gϕ :=
1
2
(ψT

ϕψϕ − I),

is expressed, in terms of the transformation ϕ ∈ C1(M; S) of the shell middle surface M, by:

2g(Gϕh1,h2 ) := g((∂h1ψϕ), (∂h2ψϕ))− g(h1,h2 )= g((I + rSϕ)2∂ϕ∂h1P, ∂ϕ∂h2P)− g(5h1,5h2 ),

for all h1,h2 ∈ TS(x), x ∈ UM or, in operator form:

2Gϕ =5T ((I + rSM)
−1∂ϕT (I + rSϕ)2∂ϕ(I + rSM)

−1
− I)5

=∂PT (∂ϕT ∂ϕ+ 2r∂ϕT Sϕ∂ϕ+ r2∂ϕT S2
ϕ∂ϕ)∂P −5T5,

with ∂P = (I + rSM)
−15=5− rSr

= ∂PT and 5T
=5 and 52

=5.

Proof. From the expression of ∂ψϕ ∈ C1(UM; BL(TS; TS)) we have

g(∂h1ψϕ, ∂h2ψϕ )= g((I + rSϕ)∂ϕ∂h1P, (I + rSϕ)∂ϕ∂h2P)+ g(h⊥

1 ,h⊥

2 ).

Subtracting g(h1,h2 )= g(h||

1,h||

2 )+ g(h⊥

1 ,h⊥

2 ), we get the result. �

Proposition 6.2. The Green strain field in the shell vanishes if and only if the following two conditions
are fulfilled:

∂ϕT ∂ϕ = IM, ∂ϕT Sϕ∂ϕ = SM,

where IM is the identity in TM.

Proof. To prove the if part of the statement we observe that from the two assumptions it follows that

∂ϕT Sϕ∂ϕ = SM = ∂ϕT ∂ϕSM ⇐⇒ ∂ϕT (Sϕ∂ϕ− ∂ϕSM)= 0.

Since Ker ∂ϕT (x)= {0}, we get Sϕ∂ϕ = ∂ϕSM. Then

∂ϕT S2
ϕ∂ϕ = ∂ϕT Sϕ∂ϕSM = S2

M,

and, substituting in the expression for the Green strain field, we get

2Gϕ =5T ((I + rS)−1(I + rS)2(I + rS)−1)5−5T5= 0.

The proof of the only if part of the statement is conveniently carried out by making recourse to Theorem
5.1 which ensures that, if Gϕ = 0, the differential ∂ψϕ ∈ C1(UM; BL(TS; TS)) of the transformation
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ψϕ ∈ C2(UM; S) is a constant proper isometry in S. Then ∂ϕT ∂ϕ = IM and nϕ = ∂ψϕ · n. Taking the
derivative along any vector in TM, and observing that ∂ψϕ is constant, we get the equality

Sϕ∂ϕ = ∂nϕ = ∂ψϕ · ∂n = ∂ϕ∂n = ∂ϕS.

Then ∂ϕT Sϕ∂ϕ = ∂ϕT ∂ϕS = S.
To provide an explicit expression of the tangent Green’s strain in terms of the shell kinematics, we

consider the middle surface M flying in the euclidean space S dragged by a flow Flv
t,s ∈ C1(S; S)

associated with the velocity field v ∈ C1(S; TS), defined by the differential equation: v = ∂t=sFlv
t,s . The

time derivative of the normal versor to the middle surface Flv
t,s(M) is defined by

ṅ := ∂t=snFlv
t,s
.

Since g(nFlv
t,s
,nFlv

t,s
)= 1 at any time t we have

∂t=sg(nFlv
t,s
,nFlv

t,s
)= 2g(ṅ,n)= 0.

We denote by ∂vM5 the derivative of a vector field vM ∈ C1(M; TS(M)) along vectors in TM and by
∇vM =5∂vM5 the covariant derivative in M. �

Lemma 6.1. The material time derivative of the normal versor to a surface M dragged by the flow
Flv

t,s ∈ C1(S; S) is given by
ṅ = − (∂vM5)

T n = SMvM − ∇vn,

where vM ∈ C1(M; TS(M)) is the velocity of the middle surface M dragged by the flow Flv
t,s ∈ C1(S; S)

and ∇vn ∈ TM is the gradient of vn = g(vM,n) ∈ C1(M; R).

Proof. The first equality holds since, for all a ∈ TM(x):

0 = ∂t=sg(nFlv
t,s
, ∂aFlv

t,s )= g(ṅ, a)+ g(n, ∂t=s∂aFlv
t,s )

= g(ṅ, a)+ g(n, ∂a∂t=sFlv
t,s )

= g(ṅ, a)+ g(n, ∂avM )

= gM (ṅ, a)+ gM ((∂vM5)
T n, a).

The second equality follows from Leibniz rule:

g(n, ∂avM )= ∂a(g(vM,n))− gM (vM,SMa)= gM (∇vn, a)− gM (SMvM, a).

�

Theorem 6.1. If the middle surface M is dragged by a flow Flv
t,s ∈ C1(S; S), the tangent Green strain

in the shell Ġ(v) := ∂t=sGFlv
t,s

= sym ∂v in terms of the middle surface velocity vM ∈ C1(M; TS(M)) is
given by:

g(Ġ(v)h1,h2 ) = gM ((sym ∇vM)a,b) + rgM (∇aṅ,b)+ rgM (SMa,∇bvM ) + r2gM (sym(SM∇ṅ)a,b),

where a := ∂h1P, b := ∂h2P and ṅ = − (∂vM5)
T n by Lemma 6.1. In operator form:

Ġ(v)= ∂PT (sym ∇vM + r(∇ṅ + (SM∇vM)
T )+ r2 sym(SM∇ṅ))∂P.
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Proof. A direct computation shows that

∂t=sg(∂aFlv
t,s, ∂bFlv

t,s )= gM (∇avM,b)+ gM (a,∇bvM ),

∂t=sg(∂anFlv
t,s
, ∂bFlv

t,s )= gM (∇aṅ,b)+ gM (SMa,∇bvM ),

∂t=sg(∂anFlv
t,s
, ∂bnFlv

t,s
)= gM (∇aṅ,SMb)+ gM (SMa,∇bṅ),

and the result follows from the formula in Proposition 6.1. �

Let us explicitly observe that the operator ∇ṅ + (SM∇vM)
T is symmetric despite of the single terms

∇ṅ and SM∇vM being not symmetric, in general.

Remark 6.1. Let a spherical shell of mean radius R be subject to a homothetical transformation

ψϕ(x)= αx,

with x originating from the center. Then S = R−1IM, ∂ϕT ∂ϕ = α2IM, and nϕ = n, so that:

∂anϕ = ∂an,
g(Sϕ∂aϕ, ∂bϕ )= αg(Sa,b),

g(Sϕ∂aϕ,Sϕ∂bϕ )= g(Sa,Sb).

Given (1 + r R−1)∂P =5, the Green strain is given by the formula

2(1 + r R−1)2Gϕ = (α2
− 1 +α(2r R−1

+ r2 R−2)5.

If r R−1
� 1 we may set Gϕ ≈

1
2
(α2

− 1)5.

7. Shell strains

The result of Proposition 6.2 shows that a strain measure of the shell, associated with a configuration
change ϕ ∈ C1(M; S) of the middle surface, is provided by the pair of symmetric operators

Eϕ(x) ∈ BL(TM(x); TM(x)), Kϕ(x) ∈ BL(TM(x); TM(x)),

defined by
2Eϕ := ∂ϕT ∂ϕ− IM, Kϕ := ∂ϕT Sϕ∂ϕ− SM,

where ∂ϕ(x) ∈ BL(TM(x); Tϕ(M)(x)) and ∂ϕT (x) ∈ BL(Tϕ(M)(x); TM(x)). The related pair εϕ = gEϕ
and χϕ = gKϕ of symmetric tensor fields εϕ(x) ∈ BL(T2

M(x); R), χϕ(x) ∈ BL(T2
M(x); R) are given by:

2εϕ(a,b) :=g(∂aϕ, ∂bϕ )− g(a,b),

χϕ(a,b) :=g(∂a(nϕ ◦ϕ), ∂bϕ )− g(∂an,b)= g(Sϕ∂aϕ, ∂bϕ )− g(Sa,b),

where a,b ∈ TM. The symmetric tensor fields εϕ and χϕ are called the membrane and the curvature
strains and can be expressed in terms of pull-backs of the first and of the second fundamental forms of
the middle surface: 2εϕ := ϕ↓gϕ(M) − gM and χϕ := ϕ↓sϕ(M) − sM.
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By Proposition 6.2, the shell strain fields vanish on M if and only if the configuration change ψϕ ∈

C1(UM; S) is a rigid transformation of the shell. Consistency of the shell strain measure follows from
the relations:

εψ◦ϕ(a,b)=εψ(∂aϕ, ∂bϕ)+ εϕ(a,b),

χψ◦ϕ(a,b)=χψ(∂aϕ, ∂bϕ)+χϕ(a,b).

Theorem 7.1. The Green finite strain measure in the shell is expressed in terms of the membrane and
the curvature strains of the middle surface and of the shape operators by:

g(Gϕh1,h2 )= εϕ(a,b)+ rχϕ(a,b)+
1
2

r2χϕ(a,Sb)+
1
2

r2g(Sϕ∂aϕ, (Sϕ∂ϕ− ∂ϕS)b),

with a := ∂h1P, b := ∂h2P. In operator form, we have

Gϕ =∂PT (Eϕ + rKϕ +
1
2r2(Kϕ + S)(IM + 2Eϕ)−1(Kϕ + S)− 1

2r2S2)∂P.

Note that Gϕ and ∂P are evaluated at x ∈ Mr while all other tensors are evaluated at P(x) ∈ M.

Proof. By Proposition 6.1 we have 2g(Gϕh1,h2 )= A + 2rB + r2C with

A= g(∂aϕ, ∂bϕ )− g(5h1,5h2 ),

B= g(Sϕ∂aϕ, ∂bϕ ),

C= g(Sϕ∂aϕ,Sϕ∂bϕ ).

A little algebra shows that

A= 2εϕ(a,b)+ g(a,b)− g(5h1,5h2 ),

B= χϕ(a,b)+ g(Sa,b),

C= χϕ(a,Sb)+ g(Sa,Sb)+ g(Sϕ∂aϕ, (Sϕ∂ϕ− ∂ϕS)b).

The result then follows by observing that

g(a,b)+ rg(Sa,b)= g((I + rS)a,b)= g(5h1,b),

rg(Sa,b)+ r2g(Sa,Sb)= rg((I + rS)a,Sb)= rg(5h1,Sb),

g(5h1,b)+ rg(5h1,Sb)= g(5h1,5h2 ).

To get the operator expression we write

χϕ(a,Sb)= g(Kϕa,Sb)= g(SKϕa,b),

g(Sϕ∂aϕ, (Sϕ∂ϕ− ∂ϕS)b)= g(a, ∂ϕT Sϕ(Sϕ∂ϕ− ∂ϕS)b).

Then, given Sϕ = ∂ϕ−T (Kϕ + S)∂ϕ−1, we have

∂ϕT Sϕ(Sϕ∂ϕ− ∂ϕS)= (Kϕ + S)∂ϕ−1∂ϕ−T (Kϕ + S)− (Kϕ + S)S.

Recalling that ∂ϕT ∂ϕ = 2Eϕ + IM and taking the transpose, we get

(∂ϕT Sϕ(Sϕ∂ϕ− ∂ϕS))T = (Kϕ + S)(2Eϕ + IM)
−1(Kϕ + S)− S(Kϕ + S).
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Adding the two expressions, the terms in SKϕ cancel and we get the result. �

Remark 7.1. For an initially flat shell (a plate) the expression of the Green strain becomes

Gϕ =5T (Eϕ + rKϕ +
1
2

r2Kϕ(IM + 2Eϕ)−1Kϕ)5.

If the extensional strain Eϕ vanishes, then Gϕ =5T ((IM + rKϕ)
2
− IM)5 and the ratio between final

and initial lengths of the principal fibers has a linear variation along the thickness.

8. Tangent shell strains

The tangent membrane strain ĖM(vM) ∈ BL(TM; TM), associated with a flow Flv
t,s ∈ C1(S; S), is defined

by

ĖM(vM) := ∂t=sEFlv
t,s

=
1
2
∂t=s(∂Flv

t,s)
T ∂Flv

t,s,

and the tangent curvature strain K̇M(vM) ∈ BL(TM; TM) is given by

K̇M(vM) := ∂t=sKFlv
t,s

= ∂t=s(∂Flv
t,s)

T SFlv
t,s
∂Flv

t,s .

We have the following results.

Theorem 8.1 (Tangent membrane strain). The tangent membrane strain ĖM(vM)∈ Ck−1(M; BL(TS; TS))

is expressed in terms of the velocity field vM ∈ Ck(M; TS(M)) of the middle surface dragged by the flow
by the formula:

ĖM(vM)= sym(5∂vM5)= sym(∇vM).

Proof. The result follows from the equality:

g(∂aFlv
t,s, ∂bFlv

t,s )= g(∂avM,b)+ g(a, ∂bvM ), for all a,b ∈ TM.

It is often expedient to decompose a vector field vM ∈ TS(M) into its parallel and orthogonal components
to the tangent plane to M: vM = v||

M + vnn, with vn = g(vM,n) and v||

M = 5vM := vM − vnn, so that
g(v||

M,n)= 0. �

Theorem 8.2 (Tangent membrane strain — second formula). Setting vM = v||

M + vnn with v||

M ∈ TM, the
tangent membrane strain is given by

ĖM(vM)= sym(∇v||

M)+ vnSM.

Proof. The formula follows from the equality:

g(∂avM,b)= g(∂a(v
||

M + vnn),b)

= g(∂av||

M,b)+ vng(Sa,b)+ (∂avn)g(n,b)

= g(∇av||

M,b)+ vng(Sa,b),

for all a,b ∈ TM. �
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Theorem 8.3 (Tangent curvature strain). The tangent curvature strain field K̇M(vM) ∈ BL(TM; TM) is
given by the formula

K̇M(vM)= ∇ṅ + (SM∇vM)
T

= −∇((∂vM5)
T n)+ (SM∇vM)

T .

Proof. The result follows from Theorem 6.1. �

Theorem 8.4 (Tangent curvature strain — second formula). The tangent curvature strain is expressed in
terms of the normal and parallel components of the velocity field by the formula:

K̇M(vM)= ∇(SMv||

M)− ∇
2vn + (SM∇v||

M)
T

+ vnS2
M.

Proof. Given ṅ = SMvM −∇vn, we infer that ∇ṅ = ∇(SMv||

M)−∇
2vn. Moreover, since Sn = 0, we have

S∇vM = SM∇v||

M + S∇(vnn)= SM∇v||

M + S(n ⊗ ∇vn + vn∇n)= SM∇v||

M + vnS2
M,

Substituting in the formula of Theorem 8.3 we get the result. �

Remark 8.1. At a planar point of the shell the shape operator S vanishes and we get the formula
K̇M(vM) = ∇(SMv||

M) − ∇
2vn. In a planar shell (a plate) the normal versor n ∈ C2(M; TS(M)) is a

constant field and the shape operator S vanishes identically so that the general formula specializes into
K̇M(vM)= −∇

2vn and the expression of the linearized curvature strain tensor field of a plate, in terms
of the transversal displacement field, is recovered.

Theorem 8.5 (Tangent Green strain). The tangent Green strain in the shell Ġ(v) := ∂t=sGFlv
t,s

= sym ∂v,
in terms of the tangent membrane and curvature strains, is expressed by:

g(Ġ(v)h1,h2 )= g(ĖM(vM)a,b)+rg(K̇M(vM)a,b)+r2(g(sym(SK̇M(vM))a,b)−g(SĖM(vM)Sa,b))

where a := ∂h1P, b := ∂h2P. In operator form we may write

Ġ(v)= ∂PT (ĖM(vM)+ rK̇M(vM)+ r2 sym(SK̇M(vM)− SĖM(vM)S)∂P.

Proof. The result follows by computing the derivative ∂t=sGFlv
t,s

by the formula in Theorem 7.1 and
observing that by the formula for the derivative of the inverse, it is

∂t=s(2EFlv
t,s

+ IM)
−1

= − 2ĖM(vM).

A direct proof in components notation is provided in [Ciarlet 2000, Theorem 2.6-2]. �

Remark 8.2. If a spherical balloon of mean radius R is inflated we see that vn is a constant field and
v||

= 0 identically. Hence ĖM(v) = vnS and K̇M(v) = vnS2. The tangent Green strain is then given by
the formula (1 + r R−1)2Ġϕ(v) = vn(S + rS2). Since S = R−15, all material fibers tangent to a shell
folium have the same elongation rate vn R−1(1 + r R−1)−1. If r � R we may assume the elongation rate
to be ≈ vn R−1.

Theorem 8.6. The tangent Green strain of the shell vanishes if and only if the tangent membrane and
curvature strains of the middle surface vanish.
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Proof. That ĖM(vM) = 0, K̇M(vM) = 0 implies Ġ(v) = 0 follows directly from Theorem 8.5. To get
the converse implication we set r = 0 to infer that ĖM(vM) = 0 and hence, by a continuity argument
for r → 0, conclude that K̇M(vM) = 0. That Ġ(v) = 0 implies ĖM(vM) = 0, K̇M(vM) = 0 may be also
deduced from Theorem 5.2. Indeed, if Ġ(v)= 0, we infer that

vM(x)= v0 + Wx and ∂vM(x)= W.

Then
ĖM(vM)= sym(∇vM)= sym(5T W5)= 0,

and also

K̇M(vM)= − ∇((∂vM5)
T n)+ (S∇vM)

T
= −∇((W5)T n)+ (SW5T )T =5W∇n −5W∇n = 0.

�

Remark 8.3. Let {eα ∈ TM, α = 1, 2} be base vectors of a coordinate system on M. Recalling that the
Christoffel symbols associated with the covariant derivative on M are defined by the relation

∇eαeβ :=5∂eαeβ = 0
γ

αβeγ ,

and that the components of the second fundamental form are given by

Sαβ := g(∂eαn, eβ )= g(Seα, eβ )= − g(∂eαeβ,n),

we get the Gauss formula

∂eαeβ =g(∂eαeβ, eγ )eγ + g(∂eαeβ,n)n = 0
γ

αβeγ − Sαβn = ∇eαeβ − Sαβn.

By these formulas we may put all the relations above in component form.

9. Divergence theorem on a manifold

We recall here some basic definitions and results for subsequent reference [Marsden and Hughes 1983;
Romano et al. 2005b]. The exterior derivative of a (n − 1)-form is uniquely defined by Stokes formula:∫

M

dω =

∮
∂M

ω.

It states the equality of the integral of a differential (n − 1)-form ω on the boundary ∂M, a (n − 1)D
manifold, to the integral of the exterior derivative dω, which is a differential n-form, on the nD manifold
M. The divergence of a vector field w ∈ Ck(M; TM) on a nD manifold M is defined, in terms of the
exterior derivative, by the formula: d(µ

M
w) = (divw)µ

M
, where µ

M
w is the (n − 1)-form obtained

by evaluating the n-form µ
M

with w as the first argument. Substituting in Stokes formula, we get the
divergence theorem ∫

M

(divw)µ
M

=

∮
∂M

µ
M

w.

Let us now recall the definition of the divergence of tensor fields on a submanifold M of a Riemannian
manifold {S, g}. We are interested in the definition of the divergence for two kinds of tensor fields.



NONLINEAR SHELL THEORY: A DUALITY APPROACH 1221

(i) The divergence div maps a tensor field L ∈ Ck(M; BL(TM; TM)) into the vector field divL ∈

Ck−1(M; TM) defined by the relation

g(divL, a) := div(LT a)− L : ∇a, for all a ∈ C1(M; TM),

with LT a ∈ Ck(M; TM) and div(LT a) := tr(∇(LT a)) and L : (∇a) := tr(LT
∇a)). At any x ∈ M, the

l.h.s in the definition of divL is an inner product which depends only on the point value a(x)∈ TM(x)
of the vector field a ∈ C1(M; TM). However, the evaluation of (divL)(x) requires to compute the
r.h.s and this requires that a field of frames be assigned on M.

(ii) The divergence Div maps a tensor field A ∈ Ck(M; BL(TM; TS(M))) into the vector field DivA ∈

Ck−1(M; TS(M)) defined by the relation

g(DivA, v) := div(AT v)− A : ∂v5, for all v ∈ C1(M; TS(M)),

with AT
∈ Ck(M; BL(TS(M); TM)) so that AT v ∈ Ck(M; TM) and

div(AT v) := tr(∇(AT v)), A : ∂Mv := tr(AT ∂v5)).

At any x ∈ TM(M), the l.h.s in the definition of DivA is an inner product which depends only on
the point value v(x) ∈ TM(x).

If the tensor field A ∈ Ck(M; BL(TM; TS(M))) is such that ImA ⊂ TM ⊂ TS(M), then the divergence
formulas yield the identity

g(DivA, v) := div(AT v)− A : ∇v = g(divAM, v), for all v ∈ C1(M; TM),

where A = AM ∈ Ck(M; BL(TM; TM)).

10. Equilibrium of a membrane shell

A membrane is a shell model whose kinematics admits any change of curvature strain in a rigid trans-
formation. Accordingly, the strain measure reduces to the variation of the first fundamental form of
the middle surface due to the transformation and the dual field is the membrane stress. The tangent
membrane strain

ĖM(vM) ∈ Ck−1(M; BL(TM; TM))

associated with a velocity field vM ∈ Ck(M; TS(M)) is ĖM(vM) = sym(∇vM) and hence the mem-
brane stress is a symmetric tensor field NM ∈ L2(M; BL(TM; TM)) or equivalently a tensor field N ∈

L2(M; BL(TM; TS(M))) with ImN ⊂ TM ⊂ TS(M). Assuming that the vector field

DivN ∈ L2(M; TS(M))

is square integrable on M, the divergence theorem yields the Green’s formula:∫
M

N : (∂vM5)µM
=

∫
M

−g(DivN, vM )µM
+

∮
∂M

g(Nn∂M, vM )µ∂M
,
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and hence the differential and boundary Cauchy’s laws of equilibrium:{
−DivN= p ∈ L2(M; TS(M)), body force on M,

Nn∂M= t ∈ L2(∂M; TM(∂M)), boundary traction on ∂M.

Splitting the body force on the shell middle surface into the parallel and the normal component,

p = p||
+ pnn,

with p||
∈ TM, being NT n = 0 identically, from the divergence formula we get

pn = g(p,n)= − g(DivN,n)= −div(NT n)+ N : ∂Mn = NM : SM.

Given that

g(DivN, v||

M )= gM (divNM, v||

M ),

we have p||
= − divNM.

Equilibrium then requires that normal loads must vanish at planar points of the membrane shell and
that boundary tractions must be tangent to the middle surface of the membrane shell.

11. Equilibrium of a membrane-flexural shell

The tangent strain for the Kirchhoff–Love shell model is provided by the rates of variation of the first and
second fundamental forms of the middle surface along a virtual transformation. The dual stress fields
are represented by tensor fields of membrane stresses and bending-torsional moments. The basic step in
the analysis of the equilibrium of the shell consists again in providing the relevant Green’s formula. The
virtual work principle for the shell subject to a force system f has the expression:∫

M

NM : ĖM(vM)µM
+

∫
M

MM : K̇M(vM)µM
= 〈 f, vM 〉,

where vM ∈ C1(M; TS(M)) is a virtual displacement field of the actual placement of the shell. Recalling
that the tangent membrane and curvature strains are given by

ĖM(vM)= sym(∇vM) and K̇M(vM)= ∇ṅ + (SM∇vM)
T ,

the appropriate divergence formulae yield

NM : ĖM(vM)= N : ∇vM = div(NT vM)− g(DivN, vM ),

MM : K̇M(vM)= MM : ∇ṅ + MM : S∇vM = MM : ∇ṅ + SMMM : ∇vM = div(MMṅ)− gM (divMM, ṅ)

+div((SMMM)
T vM)− g(Div(SMM), vM ).
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It is convenient to define the shear vector field TM ∈ Ck−1(M; TM) to be TM := divMM and its normal
component at the boundary T := gM (TM,n∂M ). Then, being ṅ = − (∂vM5)

T n, we may write:

−gM (divMM, ṅ )= gM (TM, (∂vM5)
T n)= gM ((∂vM5)TM,n)

= n ⊗ TM : ∂vM5

= div((TM ⊗ n)vM)− g(Div(n ⊗ TM), vM )

= div(vnTM)− g(Div(n ⊗ TM), vM ).

An application of the divergence theorem provides the variational form of the equilibrium condition:

〈 f, vM 〉 =

∫
M

−g((Div(N + SMM + n ⊗ TM), vM )µM

+

∮
∂M

g((N + SMM)n∂M, vM )+ gM (MMn∂M, ṅ)+ T vnµ∂M
,

for any virtual displacement vM ∈ C1(M; TS(M)).

11.1. Differential equilibrium equation. By localizing the variational form of the equilibrium condition
we get the differential equilibrium equation:

− Div(N + SMM + n ⊗ TM)= p,

To split this equation into tangent and normal components to the middle surface, we observe that:

− g(Div(N + SMM), v||

M )= − div((N + SMM)v
||

M),

− g(Div(N + SMM),n)= − div((N + SMM)
T n)+ (NM + SMMM) : SM

= (NM + SMMM) : SM,

since (N + SMM)
T n = 0. Moreover, substituting (n ⊗ T) : ∇n = tr(∇n(n ⊗ T))= 0, we have

g(Div(n ⊗ T),n)= div((T ⊗ n)n)− (n ⊗ T) : ∇n = divT,

g(Div(n ⊗ T), v||

M )= g((∇n)T, v||

M )+ (divT)g(n, v||

M )= g(ST, v||

M ).

Hence the differential equilibrium equation may be split into

−div(NM + SMMM)− SMTM = p||,

−div divMM + (NM + SMMM) : SM = pn.

11.2. Interpretation of the boundary terms. To get a clearer mechanical interpretation of the boundary
virtual work, we split the boundary spin ṅ into the bending and the torsional components: ṅ = ṅbn∂M +

ṅt t∂M with ṅb = − gM (∂n∂M
vM,n) and ṅt = − gM (∂t∂M

vM,n). Setting MMn∂M = Mbn∂M + Mt t∂M we
have ∮

∂M

gM (MMn∂M, ṅ)µ
∂M

=

∮
∂M

(Mbṅb + Mt ṅt)µ∂M
.
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Then, given ∮
∂M

Mt ṅtµ∂M
= −

∮
∂M

g(∂t∂M
vM,Mt n)µ∂M

= −

∮
∂M

∂t∂M
(Mtvn)µ∂M

+

∮
∂M

g(∂t∂M
(Mt n), vM )µ∂M

=

∮
∂M

(∂t∂M
Mt)vnµ∂M

+

∮
∂M

Mt g(St∂M, vM )µ∂M
,

the boundary virtual work may be written as∮
∂M

g((N + SMM)n∂M + Mt St∂M, v||

M )µ∂M
+

∮
∂M

(T + ∂t∂M
Mt)vnµ∂M

+

∮
∂M

Mbṅbµ∂M
.

Hence the boundary equilibrium conditions are given by

(N + SMM)n∂M + Mt St∂M = t||, dual of v||

M,

T + ∂t∂M
Mt = tn, dual of vn,

Mb = m, dual of ṅb.

These boundary conditions differ from the ones reported in the literature which will be referred to as the
standard boundary conditions. Indeed, the bending couple Mb, per-unit-length along the boundary, is
here considered as the force system dual of the bending spin

ṅb = gM (ṅ,n∂M )= − gM (∂n∂M
vM,n).

In the literature, the bending couple per-unit-length along the boundary has typically been assumed to
be the force system dual of the derivative ∂n∂M

vn of the virtual velocity vn, normal to the middle surface,
along the outward normal to the boundary. This choice has been apparently suggested by the analogous
formula for flat plates. However, when the shell is not flat, the two choices are not equivalent since

ṅb = − ∂n∂M
vn + gM (Sn∂M, v||

M ).

In fact, the derivative ∂n∂M
vn has not a clear kinematical meaning, while apparently ṅb = gM (ṅ,n∂M )

is the appropriate expression for the bending rate of the normal fibers of the shell at a boundary. To
highlight the connection between the new and the standard boundary equilibrium conditions we observe
that

Mbṅb= MbgM (ṅ,n∂M )= MbgM (SvM − ∇vn,n∂M )

= gM (SvM,MMn∂M )− gM (SvM,Mt t∂M )− Mb∂n∂M
vn

= gM (SMMn∂M − Mt St∂M, vM )− Mb∂n∂M
vn.

Substituting this expression into the boundary virtual work we recover the standard boundary conditions:

(N + 2SMM)n∂M = t||, dual of v||

M,

T + ∂t∂M
Mt = tn, dual of vn,

Mb = m∗, dual of − ∂n∂M
vn.
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Remark 11.1. The split form of the differential condition of equilibrium is reported in coordinate ex-
pression in [Ciarlet 2000; 2005]. The coordinate form of the standard boundary conditions can be found
in [Ciarlet 2005, Theorem 4.4-4]. The unsplit differential condition and the new form of the boundary
conditions are contributed here for the first time in the context of a duality approach to shell theory.
The treatment of shell equilibrium, according to the so-called direct approach in the restricted theory,
is reviewed in the comprehensive article by [Naghdi 1972, section 15] and in the book by [Libai and
Simmonds 1998]. In this context, a differential equilibrium equation formally similar to our was provided
in [Steele 1971].

12. Equilibrium in a reference placement

In the nonlinear analysis of elastic shells the equilibrium condition must be written in terms of fields
defined in a reference placement since constitutive laws are expressed in terms of strain measures from a
natural reference placement. Moreover, in computational mechanics the suitable form of the equilibrium
condition is the variational one in terms of virtual work. Once the referential stress fields are evaluated, it
is needed to recover the physically significant stress fields in the actual placement. To this end we remark
that, by the consistency of the shell strain measure, proven in Section 6.1, the rigid virtual displacements
can be characterized as vector fields in the kernel of the rates of the strain measure from a fixed reference
placement M to the moving actual one ϕ(M). The strain measure associated with the configuration map
ϕ ∈ C1(M; S) is given by the pair of strain fields:

2Eϕ := ∂ϕT ∂ϕ− IM, Kϕ := ∂ϕT Sϕ∂ϕ− SM.

Let Flv
t,s ∈ C1(S; S) be a flow with velocity v = ∂t=sFlv

t,s ∈ C1(S; TS). The tangent membrane and
curvature strain rates at ϕ(M), are the time derivative ∂t=s of the shell strains in the transformation from
ϕ(M) to (Flv

t,s ◦ϕ)(M) evaluated at ϕ(M), and are given by

Ėϕ(M)(v)= sym ∇v, K̇ϕ(M)(v)= ∇ṅϕ + (Sϕ∇v)T .

The secant membrane and curvature strain rates at ϕ(M), are the time derivative ∂t=s of the shell strains
in the transformation from M to (Flv

t,s ◦ϕ)(M) evaluated at ϕ(M), and are given by

Ė{M,ϕ(M)}(v):= ∂t=sEFlv
t,s◦ϕ

= sym(∂ϕT ∂v∂ϕ)= ∂ϕT Ėϕ(M)(v)∂ϕ,

K̇{M,ϕ(M)}(v):= ∂t=sKFlv
t,s◦ϕ

= ∂ϕT (∇ṅϕ + (Sϕ∇v)T )∂ϕ = ∂ϕT K̇ϕ(M)(v)∂ϕ.

The shell stress tensors in the reference placement are defined, in tems of the shell stress tensors in the
actual placement, by the invertible relations

Nϕ(M) = Jϕ∂ϕN{M,ϕ(M)}∂ϕ
T , Mϕ(M) = Jϕ∂ϕM{M,ϕ(M)}∂ϕ

T ,
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where Jϕ is the jacobian determinant associated with the map ϕ ∈ C1(M; S). Then we have the equality:∫
ϕ(M)

Nϕ(M) : Ėϕ(M)(v)µ+

∫
ϕ(M)

Mϕ(M) : K̇ϕ(M)(v)µ

=

∫
M

N{M,ϕ(M)} : Ė{M,ϕ(M)}(v)Jϕµ+

∫
M

M{M,ϕ(M)} : K̇{M,ϕ(M)}(v)Jϕµ,

for any virtual displacement v ∈ C1(ϕ(M); TS) of the actual placement of the shell.

13. Shear deformable and polar shell models

In what follows we outline the main ingredients of two shell models proposed in the literature and
widely adopted for computational purposes. In the former model the shear defomability of the shell
is approximately taken into account since the transversal fibers are allowed to rotate with respect to
the middle surface. In the latter model, a polar structure is introduced with the aim to match the shell
kinematic parameters with that of a shear deformable beam. We will not develop these models here
in full detail but will illustrate some critical remarks that provide guidelines for their modification or
rejection.

13.1. Shells with transversal shear deformation. In this shell model transversal shear deformation is
simulated by means of rigid oriented needles hinged at the points of the middle surface. The middle
surface has then the geometrical structure of a fiber manifold and is commonly called a Cosserat surface
[Naghdi 1972]. However, such a nickname may lead to the misleading conclusion that the need for
a polar structure of the ambient space is implied. The needles are described by a field of directors
d ∈ C1(M; S2(1)) defined on M and with values on the unit sphere S2(1), which is a 2D submanifold of
the euclidean space S. Directors play a role similar to that of normal versors in the Kirchhoff–Love shell
model and hence the shell kinematics describes a 2D model which is a constrained three-dimensional
Cauchy continuum model. In a model with inextensible needles, the shell thickness is assumed to be
small enough to ensure that for all x ∈ UM there exists an unique decomposition such that:

x = Pd(x)+ r(x)d(Pd(x))= Pd(x)+ r(x)d(x),

with Pd ∈ C1(UM; M) and ∂Pd(x) ∈ BL(TS(x); TM(Pd(x))). The surfaces which are level sets of the
function r ∈ C2(UM; R) do not form a foliation of the shell middle surface. Indeed g(∂r,d) = 1 and
g(d,n)∂r = n. Hence r is not a distance function unless d = n. The derivative ∂d ∈ BL(TM; TS) is
not necessarily symmetric, so that d ∈ Ker ∂dT and Im ∂d ⊆ (Span∂d)⊥. Taking the derivative we get:
h = ∂hPd + r∂d∂hPd + (∂hr)d.

The transformation ψϕ,d ∈ C1(UM; S) of the shell, induced by a diffeomorphic transformation ϕ ∈

C1(M; S) of the middle surface M and by a field of directors dϕ ∈ C1(ϕ(M); TS), is given by

ψϕ,d(x) := ϕ(Pd(x))+ r(x)dϕ(ϕ(Pd(x))), for all x ∈ UM.

with dϕ ∈ C1(ϕ(M); S2(1)) director field on ϕ(M).
Then

∂hψϕ,dϕ = (I + r∂dϕ)∂ϕ∂hPd + (∂hr)dϕ ◦ϕ,
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and Green strain is:

Gϕ,dϕ = ∂PT
d (∂ϕ

T ∂ϕ+ r sym(∂ϕT ∂M(dϕ ◦ϕ))

+
1
2

r2∂M(dϕ ◦ϕ)T ∂M(dϕ ◦ϕ))∂Pd + sym(∂PT
d ∂ϕ

T (dϕ ◦ϕ⊗ ∂r))− I.

In the relevant literature, [Simo and Fox 1989; VuQuoc et al. 2000], membranal, curvature and shear
strains for the shell have been defined as:

2εϕ(a,b):= g(∂aϕ, ∂bϕ )− g(a,b),

χϕ,dϕ (a,b):= g(∂a(dϕ ◦ϕ), ∂bϕ )− g(∂ad,b),

δϕ,dϕ (a):= g(dϕ ◦ϕ, ∂aϕ )− g(d, a),

where a,b ∈ TM. The membranal strain is a 2 × 2 symmetric tensor, while the curvature strain is a
2 × 2 unsymmetric tensor and the shear strain is a 2D vector. We have then 3 + 4 + 2 = 9 scalar strain
parameters. Despite of its wide usage, this strain measure is redundant. A more economical set of strain
fields can be envisaged by substituting the unsymmetrical curvature strain χϕ,d with its symmetric part
or by retaining the same membranal and curvature strains of the Kirchhoff–Love shell model, adding to
these the shear strain measure. We have then 3 + 3 + 2 = 8 scalar strain parameters. In the literature
no attention seems to have been payed to the issue of redundancy but the topic has been only indirectly
treated by assuming that the shell stress tensor dual of the curvature strain be symmetric [Naghdi 1972;
Simo and Fox 1989]. Moreover, an explicit expression of the Green strain in terms of shell strains is still
lacking. A computational analysis of the shell model with transversal shear strain can be carried out by
a direct recourse to the expression of the Green strain provided above thus avoiding the introduction of
shell strain fields.

13.2. Polar Shells. In the polar model of a shell, a rigid triad is hinged at each point of the middle
surface and arbitrary rotations are allowed for. This is called the shell model with drilling rotations [Fox
and Simo 1992; Ibrahimbegovic 1994]. A placement of the polar shell is described by a placement
of the middle surface M and by a field of rotations which simulate a rigid body kinematics along the
thickness of the shell. The ambient space is then the Cosserat manifold S × SO(3) which is a trivial fiber
bundle whose base manifold is the euclidean space S. The nonlinear fiber manifold SO(3) is the three-
dimensional compact group of rotations, the special orthogonal group. A configuration change is a map
ut,s : M 7→ S × SO(3) described by a configuration change ϕt,s ∈ C1(M; S) of the base manifold M and
by a field of rotations Qt,s ∈ C1(M; SO(3)), with respect to a reference triad. Then, at each point x ∈ M,
we have ut,s(x)= {ϕt,s(x),Qt,s(x)} ∈ S × SO(3). In the literature [Fox and Simo 1992; Ibrahimbegovic
1994], the strain measure is defined to be the pairQT

t,s
∂Mϕt,s − IM, membrane-shear strain,

QT
t,s
∂MQt,s, wryness strain,

where ∂M denoted the derivative along tangent vectors in TM and IM is the identity in TM. Since the
tangent spaces TM(x) are 2D and Q belongs to the three-dimensional manifold SO(3), the vanishing of
the wryness is expressed by 6 scalar differential conditions. The vanishing of the membrane-shear strain
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is also expressed by 6 scalar differential conditions. By decomposing the membrane-shear strain into its
normal and tangent components, the membrane and shear components of the strain measure are given
by [Ibrahimbegovic 1994]:

εϕ,Q(a,b):= g(∂ϕ · a1,Qa2 )− g(a1, a2 ), a,b ∈ TM,

δϕ,Q(a):= g(∂ϕ · a,Qn)− g(a,n), a ∈ TM.

The wryness may be also expressed in terms of the axial vector �b := axial((∂bQ)QT ). An expression
of the wryness as a 2 × 2 bilinear form was provided in [Ibrahimbegovic 1994] by setting χQ(a,b) :=
g(Qa,�b) but this is a misstatement since only 4 scalar components are involved, instead of the 6
needed. The polar shell model is redundant. To see this, let us assume that the membrane-shear strain
vanishes, that is, ∂ϕ(x) · a = Q(x)a, for all a ∈ TM(x). Hence nϕ(x) = Q(x)n(x). Then the membrane
strain εϕ vanishes and moreover it is sufficient to impose the vanishing of the curvature strain χϕ to
ensure that the shell transformation is rigid, so that ∂MQ = 0. We then need only 6 + 3 = 9 scalar
differential expressions to get a strain measure instead of the 6 + 6 = 12 included in the strain measure of
the polar shell model. This basic criticism, which stems from integrability requirements, also applies to
the Cosserat polar model of a three-dimensional continuum and to the more sophisticated polar models
of micromorphic and microstretch continua proposed in the literature [Eringen 1998]. A discussion on
this topic is presented in [Romano 2002]. Since the polar shell model is a constrained three-dimensional
Cosserat continuum, the constitutive relations of a Cauchy continuum are not applicable and this should
compel the supporters of this model to envisage new nonconventional ones.

14. Concluding remarks

The initial motivation for this investigation on shell models stemmed from the unpleasant sensation
that any aesthetically minded scholar feels in reading most treatises or articles on shells, and from the
headaches provoked by the hoard of indexes that have to be dealt with. Also, it is hard to keep track
of the geometrical significance of the quantities involved when the notation is too disturbing. In the
attempt to overcome these shortcomings, several useful facts have been discovered and the ones most
deserving of attention are recalled below. Basic results of surface geometry needed in a shell theory
have been presented without recourse to coordinate systems or fields of frames. As a premise, the
rules to be followed in the formulation of a structural model as a constrained three-dimensional Cauchy
continuum are illustrated, to ensure that the model itself is well posed and that the experimental evidences,
provided in the three-dimensional context, be available for the model. The rigidity theorem providing
the uniqueness, up to isometries, of a surface with given first and second fundamental forms, is proven
as a special case of a more general result of kinematics in an euclidean space. The result is given both
in finite and in rate form (Theorems 5.1 and 5.2). Explicit expressions of the finite and tangent Green
strains for a Kirchhoff–Love shell, in terms of the shell kinematical parameters and of the membranal and
curvature strains of the shell, are provided. These basic tools are needed to properly state the variational
equilibrium condition and the constitutive laws for the shell. A new expression of the tangent curvature
strain is provided and allows for a direct application of the divergence theorem to get Green’s formula
for the shell model. The basic differential and boundary equilibrium conditions are derived in a straight
way without performing the usual split into tangent and normal components. A new set of boundary
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conditions is provided, since it is shown that the classical definition of the bending couple does not take
properly into account the bending rotation rate of the transversal fibers. Equilibrium conditions in a
reference placement are also dealt with. Two shell models, presently most popular in the computational
mechanics community, are also discussed (Section 13). The former is the shell with transversal shear
deformation while the latter, the polar shell with drilling rotations, has been proposed in the literature to
provide rotational kinematical parameters which allow for the assembly between shell elements and beam
elements, with the aim to give a tool to engineers for the analysis of shells with beam-like reinforcements.
The polar shell model is then a constrained Cosserat three-dimensional continuum model. A closer look
at the strain measure adopted for these shell models reveals, on the basis of the discussion in Section 5,
that the set of strain parameters is redundant in both cases. This unpleasant feature forces one, by duality,
to introduce more stress parameters than necessary and renders the models mechanically unsound. A
suitable remedy for the former model is proposed. Unfortunately, the redundancy of the polar model, also
shared by the Cosserat three-dimensional continuum model, appears to be of a troublesome resolution
and should eventually force researchers to open new ways for the proposal of well posed mechanical
models with a polar structure or to find better alternatives.
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A COHESIVE ZONE FINITE ELEMENT APPROACH TO MODEL TENSILE
CRACKS IN THIN FILM COATINGS

SRIKANT NEKKANTY, MARK E. WALTER AND RAJIV SHIVPURI

A two-dimensional finite element model using cohesive zone elements was developed to predict cracking
in thin film coating-interlayer-substrate systems that are subjected to tensile loading. The constitutive
models were chosen to represent a metal carbide/diamond-like carbon composite coating with a titanium
interlayer and a steel substrate. Material properties of the coating and interlayer along with the cohesive
finite element parameters were varied to study effects on stress distributions and coating cracking. Stress
distributions were highly nonuniform through the coating thickness. Thus the initiation and arrest of
tensile cracks differed from what is predicted by simple shear-lay theory. Intercrack spacing distribu-
tions resulting from the variation of different parameters were quantified and compared with those from
experiments.

1. Introduction

Coating systems provide enabling technologies that have enhanced productivity for a wide variety of
applications. Hard coatings are a class of coating that has been developed as a surface engineering
enhancement solution for cutting tools, dies, drills, and other tribological applications. All of these
applications rely on the fact that the coatings are extremely hard, abrasion-resistant, and/or provide
low-friction surfaces. Most hard coatings are ceramic compounds such as carbides, nitrides, ceramic
alloys, cermets, and metastable materials such as diamond and cubic boron nitride. Their properties and
environmental resistance depend on composition, stoichiometry, impurities, microstructure, and texture.
To effectively design coating systems for specific applications, it is necessary to know the chemical,
mechanical, and tribological properties of the coatings.

To a large extent, adhesion at the coating-substrate interface and toughness of the coating itself deter-
mines the durability of hard coating systems. Loss of adhesion at the coating-substrate interface leads
to premature failure of otherwise wear resistant and tough coatings. There have been many investi-
gations of failure properties of coatings using indentation [Begley and Hutchinson 1998; Rabiei et al.
1999]. Investigations have measured the adhesion of brittle films on a ductile substrate [Li and Bhushan
1998] and have observed preferred pathways for local cracking and separation in thermal spray coatings
[Nekkanty and Walter 2004]. Li and Bhushan [1998] have used indentation techniques to measure the
fracture toughness of thin, amorphous carbon films. Previous work by the authors presented the results of
Vickers indentation experiments carried out on four different boron carbide/diamond-like carbon (DLC)
composition coatings that were sputter deposited onto 52100 steel disks [Nekkanty and Walter 2004].
Although the indentation depths for these experiments ranged from less than 10% of the coating thickness
to many times more than the coating thickness, qualitative comparisons of coating toughness were made.

Keywords: thin film coatings, cohesive zone finite element modeling, tensile cracking, intercrack spacing.
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There have been numerous investigations to explore indentation coating failure using numerical methods.
Begley et al. [2000] analyzed a wedge impression test for measuring interface toughness between films
and substrates using numerical methods. Chen et al. [2005] recently developed numerical methods to
explore the mechanics of indentation-induced lateral cracking. Based on finite element analysis (FEA)
of spherical indentation of a thin hard film deposited on a soft substrate, Sriram et al. [2003] have carried
out studies to understand the mechanics of film fracture. Theoretical issues surrounding the extraction of
elastic and plastic properties from indentation load versus displacement data have also advanced; however,
there are still a number of ambiguities surrounding actual physical processes involving indentation of
such small volumes (for example, [Brotzen 1994; VanLandingham 2003]). Equipment calibration also
becomes critical at such small displacements and loads.

Scratch testing is a widely used technique for evaluating the adhesion of thin, hard coatings. Scratch
testing is useful to compare the adherence of similar coating-substrate systems; however, it fails to
quantify parameters such as interfacial strength between the coating and the substrate and cohesive
strength of the coating. A novel method for evaluating adhesion strength was proposed by Agrawal
and Raj [1989]. This tensile cracking approach evaluates both the cohesive strength of the coating
and the interfacial adhesion strength between the coating and the substrate. The approach is based on
subjecting a brittle coating on a ductile substrate to tension and thereby propagating coating cracks that
are oriented transverse to the tensile direction. A micrograph showing transverse cracks in a tungsten
carbide/DLC (WC-DLC) coating on a stainless steel tensile specimen is shown in Figure 1. The crack
density increases with substrate tension until the crack spacing reaches a saturation value when it is no
longer influenced by the increase in substrate tension. The model relates τ̂ , the interfacial shear strength
between the coating and the substrate to σ̂ , the tensile fracture strength of the film, λ̂, the characteristic
saturation crack spacing, and δ, the coating thickness [Agrawal and Raj 1989] as

τ̂ =
πδσ̂

λ̂
. (1)

For a highly elastic coating, the tensile strength of the coating, σ̂ can be written as

σ̂ = Eε f , (2)

where E is the modulus of elasticity of the coating and ε f is the strain corresponding to the onset of
cracking in the coating.

Agrawal and Raj [1989] proposed the full sine wave function shown in Figure 2a for approximating
the interfacial shear stress. This approximation results in zero interfacial shear stress values at the mid
point and at both ends of the intercrack spacing in the coating. Other research groups have asserted that,
as shown in Figure 2b, the interfacial shear stress should have its maximum value located at each end of
the intercrack spacing and be zero at the midpoint of the intercrack spacing in the coating [Wojciechowski
and Mendolia 1989; Yanaka et al. 1998; Chen et al. 1999; 2000]. The recent analytical work of Yanaka
et al. [1998] and Wojciechowski and Mendolia [1989], and the experiments and FEA of Chen et al. [1999;
2000], indicate that the interfacial shear stress distribution is best approximated by a distribution like the
one shown in Figure 2b. The applicability of these two different shear stress distributions may be related
to how the crack spacing compares to the coating thickness.
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Figure 1. WC-DLC coating pulled to 4% strain resulting in longitudinal cracks. Tensile
direction is perpendicular (horizontal in the figure) to the longitudinal cracks.
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Figure 2. Two different theories predicting the distribution of interfacial shear stresses
along the coating-interlayer interface between two cracks when the coating-interlayer-
substrate system is subject to tensile loads: (a) sinusoidal distribution with zero stress at
the endpoints [Agrawal and Raj 1989], and (b) maximum stress at the endpoints [Chen
et al. 2000; Yanaka et al. 1998; Wojciechowski and Mendolia 1989].
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The previous work with finite element analysis of tensile cracking assumes preexisting cracks by
introducing fine notches in the model [Wojciechowski and Mendolia 1989; Yanaka et al. 1998; Chen
et al. 1999; 2000; Krishnamurthy and Reimanis 2005]. Few researchers have developed finite element
models which can simulate the formation and propagation of tensile cracks and thus predict coating
performance. The present work uses cohesive zone elements to model crack development in the coating.
After calibration with simple tensile cracking experiments, the finite element model could be used to
predict the behavior of the coating-substrate system for the more complex loadings associated with actual
applications. The next section of this paper describes the finite element model and the various physical
and numerical parameters. The model is based on tensile cracking experiments that were carried out
with WC-DLC coatings on 310 stainless steel substrates. The third section presents results for varying
model parameters, and the final section then discusses the resulting simulated tensile cracking behavior.

2. Finite element model description

An idealization of the coating system that was modeled is shown in Figure 3a. Figure 3b shows the
magnified view of the coating showing where cohesive elements were placed. The ABAQUS 6.5.1
commercial FEA package was used for all the modeling. As indicated above, the model was loosely
based on tensile cracking experiments with WC-DLC coatings. The coating was 1.3µm thick and was
assumed to be homogeneous, isotropic, and perfectly elastic. The 310 stainless steel substrate followed
an elastic-plastic material model with linear strain hardening.

The substrate thickness was 230 times the coating thickness. A 1.3µm thick elastic-plastic titanium
interlayer was present between the coating and substrate. Base values for the substrate properties were ob-
tained from in-house experiments. Base values for the coating modulus and interlayer properties, hence-
forth referred to as the reference case, were obtained from [Voevodin et al. 1999] and www.matweb.com,
respectively. The coating is assumed to be homogeneous along the thickness. The material properties for
the substrate, coating, and interlayer are provided in Table 1. Four-node (QUAD4) plane strain elements
were used for the analysis. As shown in Figure 3, symmetry boundary conditions were applied along
the bottom of the model, and displacements were applied at the right and left edges. Displacements
were specified at the edge nodes of the substrate and interlayer but not on the coating. The maximum
displacement values were such that the strain in the direction of the loading was 4%. The final 4% strain
value was chosen to be consistent with experiments.

Cohesive zone finite elements were placed through the thickness of the coating. These bilinear ele-
ments are available in the standard ABAQUS element library. The cohesive behavior assumes a linear
elastic traction separation law prior to damage and a linear damage evolution based on energy dissipated
due to failure, GC . The input parameters for the cohesive elements are further described below. The
layout of these elements is shown in Figure 3b. In the middle of the coating the distance between each
row of cohesive zone elements is 1µm. Away from the middle of the model, the spacing was increased to
10µm. In this way, computational expense was reduced while focusing on a region that is far away from
any edge effects. The interface is assumed to be perfectly bonded, and therefore there are no cohesive
elements along the interface. This assumption is based on industry experience with state of the art PVD
thin film coatings. In addition, Wang et al. [1998] have predicted that the interface toughness is greater
than 150 J/m2, while the film toughness is approximately 30 J/m2 for DLC films on steel substrates.
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Figure 3. (a) Schematic of the FE model (not to scale); (b) illustration of cohesive zones
in the coating (magnified view of (a)).

As shown in Figure 4, the response of the cohesive zone element is determined by specifying K , the
loading slope or cohesive stiffness, σC , the critical normal stress, and GC , the area under the traction
versus displacement curve. The area under the traction versus displacement curve is called GC because
it is a measure of the critical energy release rate. Values for the cohesive zone element parameters
are provided in Table 1. The critical normal stress values were estimated based on experiments with
acoustic emission [Nekkanty and Walter 2006]. From experiments, the strain corresponding to the onset
of cracking was estimated to be 1.2%. The critical normal stress, σC , can then be obtained from Equation
(2). Similar strain values were also observed by Wang et al. [1998]. The baseline GC values used in
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Figure 4. Bilinear law followed by the cohesive elements used in the study. Cohesive
elements have a stiffness K and fail when the critical stresses in the elements reach
beyond the critical stress σC .

this study were consistent with those predicted by Wang et al. [1998]. The cohesive stiffness was held
constant for all cohesive zone elements.

Although at a given location in the coating the cohesive parameters were kept the same for all the
coating through-thickness lines of cohesive zone elements, the σC and GC parameters were allowed to
vary along the x-direction. The different σC values were obtained by using MATLAB’s random number
generator to generate uniformly distributed values in a prescribed range. The range of variation for σC was
±75 MPa. The critical separation (δC , in Figure 4) was held constant, and therefore the range of variation
for GC was 32-37 J/m2. The random assignment of different parameter values to different cohesive zone
elements served the following two purposes: (a) it simulated the natural, statistical variation of the
coating’s cohesive strength, and (b) the different values of critical stresses in different cohesive zones
ensured that not all the cohesive zone elements failed together when the critical tensile load was reached.

The modeling of progressive damage involves softening of the material response, which leads to
convergence difficulties in an implicit solution procedure. To overcome such convergence problems,
ABAQUS/Standard implements a viscous regularization parameter. This parameter regularizes the trac-
tion separation laws by permitting stresses to be just outside the limits set by the traction separation
law. Using a small value for the viscosity regularization parameter improves the rate of convergence of
the model in the softening regime and does not alter the sequence of cracking. Detailed discussion of
this parameter can be found in [ABAQUS 2005; Alfano and Crisfield 2001]. The parameter was kept
the same for all the cohesive zone elements. By trial and error, the smallest value that still produced
converged solutions was used. The solution was carried out using implicit analysis and converged in
approximately 550 total iterations. Up to the point where cohesive elements would start failing, the
stresses in the coating were found to be the same in the models without and with cohesive elements.
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This indicates that the inclusion of the cohesive elements was not altering the stress state before damage
initiation.

The model was also checked for mesh convergence. The original mesh scheme described above (5
elements between two neighboring cohesive elements in the middle of the coating, and 9 elements along
the thickness of the coating) was compared with two other mesh schemes: a coarser mesh containing
3 elements between two neighboring cohesive elements in the middle of the coating and 5 elements
along the thickness of the coating, and a refined mesh containing 8 elements between two neighboring
cohesive elements in the middle of the coating and 13 elements along the thickness of the coating. Figure
5 shows the horizontal-direction normal stress along the surface of the coating, and plotted for a region
with higher cohesive element density. The three different mesh schemes are shown at 2% strain. From
Figure 5, since there is little difference between the original and refined meshes, it is assumed that mesh
convergence was achieved with the original mesh.

3. Results

In order to explore the effect of various parameters on the model response, one set of parameters was
designated as the reference case (see Table 1). The subsequent studies were variations on the reference
case. The next two subsections discuss the stress distributions in the reference case and the effect of
variation of different parameters with respect to the reference case.

Reference case Mod. #1 Mod. #2 Mod. #3 Mod. #4

Coating
Modulus (GPa) 200 300 200 200 200

Poisson ratio 0.3 0.3 0.3 0.3 0.3

Modulus (GPa) 200 200 200 200 200

Substrate
properties

Poisson ratio 0.2 0.2 0.2 0.2 0.2

Yield strength (MPa) 200 200 200 200 200

Tangent modulus of plastic region 2000 2000 2000 2000 2000

Interlayer
properties

Modulus (GPa) 110 110 110 110 110

Poisson Ratio 0.3 0.3 0.3 0.3 0.3

Yield strength (MPa) 140 140 140 140 140

Strain hardening slope (MPa) 720 720 1440 360 720

Cohesive
properties

Critical stress (σC ) 2500–2650 2500–2650 2500–2650 2500–2650 1500-1650

GC (J/m2) 32–37 32–37 32–37 32–37 32–37

Table 1. Coating, interlayer, and substrate properties used for the different simulations.
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Figure 5. Horizontal-direction normal stress profiles at 2% strain along the surface of
the coating for 3 different mesh schemes.

3.1. Stress distributions. For the reference case, when the normal stress in the tensile direction (σxx) in
the coating exceeds the smallest random σC value, the first crack(s) appear. The tractions on the newly
formed crack faces go to zero, and therefore the coating stresses are redistributed. An example of two σxx

surface stress contours between two cracks which are 20µm apart is shown in Figure 6. Since the σxx

surface stress is zero at the cracks, both edges of the plot show zero stress. For the i th load increment,
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Figure 6. Evolution of tensile stresses between two cracks 20 microns apart with the
increase in load.
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Figure 7. Normal stress distribution along paths in the coating between two cracks
10 microns apart.

the stress is still uniform in the middle region between the two cracks. In the i + 1’ increment the
stress in the middle of the region of interest has exceeded the critical value for one of the cohesive zone
elements, a new crack is generated, and the σxx surface stresses go towards zero. This crack progression
is consistent with the shear lag models for tensile cracking [Agrawal and Raj 1989; Wojciechowski and
Mendolia 1989; Yanaka et al. 1998; Chen et al. 1999; 2000].

From shear lag assumptions and from the above description of the contours in Figure 6, one would
expect the cracks always to form at the midpoint between two adjacent cracks. However, this expectation
is based on the assumption that the stress profile in Figure 6 is unchanged through the thickness of the
coating. Uniform stresses along the thickness of the coating are also an underlying assumption in the
analytical models referred to above [Agrawal and Raj 1989; Wojciechowski and Mendolia 1989; Yanaka
et al. 1998; Chen et al. 1999; 2000]. It was found that the stresses are not uniform through the coating
thickness. Since one side of the coating is free and the other side is bound to the interlayer, stresses
should vary through the thickness of the coating. The crack formed at the midpoint in Figure 6 because
of the particular combination of geometric and materials parameters.

In Figure 7, for the region between two cracks that are 10µm apart (there are no cohesive elements
between these cracks) the σxx stress profiles are plotted for paths at different coating depths. The stress
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Figure 8. Crack in the coating originating from the interface.
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Figure 9. Cracks in the coating for reference model: (a) 2.5% strain, and (b) 4% strain.
Notice the crack arrest.

profiles are not at all self-similar, and the location of the maximum σxx is not always at the midpoint
between two adjacent cracks. In particular, the highest σxx stresses are found close to the interface and
close to the existing cracks. Figure 7 also serves to highlight that near-crack stresses along the surface of
the coating are compressive, and near-crack stresses near the interface are tensile. All stresses become
tensile as one approaches the midpoint of the region. A similar stress distribution was observed by
Krishnamurthy and Reimanis [2005].
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As shown in Figure 8, the internal stresses and boundary conditions on an unbroken coating segment
are such that the coating undergoes significant bending. The bending of the coating results in compressive
near-crack stresses close to the surface of the coating. This stress distribution has important implications
for crack propagation, with the high tensile near-crack stresses close to the interface suggesting that
the cracks will originate from the interface. Indeed, the tensile cracking experiments performed by
Krishnamurthy and Reimanis [2005] indicated that cracks may be originating from the interface.

The near-crack compressive stresses that exist closer to the surface of the coating will cause cracks
originating from the interface to be arrested. Figure 9 shows a longer portion of the cracked coating for
2.5% and 4% overall strain, respectively. Figure 9 shows that, although multiple cracks originating from
the interface were present at 2.5% strain, there was little or no continued crack propagation towards the
surface even after 4% strain. If the coating is examined from the top and in the direction of the loading,
the number of cracks reaching the surface becomes constant at higher strain levels. In other words the
inter-crack spacing has saturated.

3.2. Parameter study. As shown in Table 1, the first modification of the reference case was increasing
the modulus of the coating. All other material and cohesive parameters were kept the same. The higher
coating modulus resulted in higher stresses at lower overall strains and, as expected, the fracture strain
(the strain at which the first crack appears) decreased. Furthermore, as a result of the higher stresses in
the coating, it can be seen from Figure 10a that more cracks have progressed from the interface to the
surface of the coating.

The second modification to the reference case model was made by increasing the slope of the tangent
modulus for the plastic region of the interlayer. This essentially increased the strain hardening of the
interlayer. It can be seen in Figure 10b that compared to the reference case, more cracks have progressed
from the interface to the surface of the coating. This results from the higher stresses in the interlayer
for the same amount of strain as compared to the reference case. With a less deformable interlayer, the
unbroken coating segment does not bend as much and therefore the near-crack compressive stresses close
to the surface of the coating are diminished. As a result, cracks can more readily propagate to the surface.

A third modification to the reference model was made by decreasing the slope of the tangent modulus
for the plastic region of the interlayer. This change has the overall effect of making the interlayer more
deformable. The contour plot in Figure 10c shows that there is more curvature of the segments and the
cracks have larger openings. The curvature of the coating increases due to the increase in the softening
of the interlayer. The increase in the curvature results in an increase of the compressive stresses near
the surface of the coating. Consequently, there are fewer cracks progressing to the surface. Also, there
is an increase in the curvature of the interface as well. This leads to the higher tensile stresses near the
interface, and as a result, more cracks originate from the interface compared to the reference case. This
can be seen in Figure 11 where σxx stress profiles between two cracks are plotted at the surface of the
coating and near the interface (paths 3 and 1 of Figure 7) for the two different interlayer cases.

For the last modification of the reference case, the σC values of all the cohesive zone elements were
decreased by 1000 MPa compared to the reference case while keeping GC the same. Decreasing σC

while keeping GC constant essentially decreases the softening slope of the cohesive zone element and,
hence, the critical separation (δC , in Figure 4) increases. These changes result in a decrease in the fracture
strain compared to the reference case. When compared with the reference case, at 2% strain, Figures 12a
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Figure 10. Change in cracks from reference model due to: (a) increase in coating mod-
ulus; (b) increase in tangent modulus slope in interlayer; and (c) decrease in tangent
modulus slope in interlayer. All images correspond to 2.5% strain.

and 12b show that the decreased σC results in more cracks being generated. It could be argued that
if the reference case coating-substrate system were pulled to higher strains, then more cracks would
propagate to the surface. However, as will be discussed in the next section, there are assumptions with
the two-dimensional model that need to be taken into account before making such an argument.

4. Discussion

The above parameter study indicates that cracking in the coating is sensitive to the material properties of
the coating and interlayer and also to the cohesive zone element parameters. The model also demonstrates
surface level crack saturation which means that no new cracks will appear on the surface with increasing
tensile strain. Shear lag analysis of tensile cracking that includes the assumption of uniform through-
thickness stresses predicts that the crack spacing will saturate [Agrawal and Raj 1989; Wojciechowski
and Mendolia 1989; Yanaka et al. 1998; Chen et al. 1999; 2000]. The current simulations indicate that
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Figure 11. Comparison of σxx stresses between two cracks 10µm apart for two inter-
layer cases: (a) stresses at the surface of the coating, and (b) stresses near the coating-
interlayer interface.
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Figure 12. Differences in the formation of cracks for 2% strain: (a) reference case, and
(b) decreased σC .
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Figure 13. Distribution of intercrack spacing for WC/DLC coating pulled to 4% strain.

although the crack saturation can exist at the coating surface level, there may be subsurface cracks that
have not propagated all the way to the surface.

In the current model, further straining of the coating substrate system would eventually cause all cracks
to propagate to the surface. However, this situation is the result of having a two-dimensional model. In
reality, the stress state is no longer uniaxial at very high strains. The triaxial nature of the stress state in
the plastic region causes slant cracks at approximately 45◦ to the existing transverse cracks appear in the
coating [Chen et al. 1999]. The existence of these slant cracks is a fair indication that strains are beyond
the surface saturation strains and that the stress state is no longer uniaxial. Without a three-dimensional
model, slant cracks cannot be modeled. Experimental results for the WC-DLC system indicated that
slant crack began at approximately 4.5% strain. For this reason, the current simulations were run to 4%
strain.

The distribution of the crack spacing for the cracks in Figure 1 is given in Figure 13. The mean value
of the crack spacing is 6.0µm with a standard deviation of 2.4. A normal distribution with the given
mean and standard deviation values is provided in the same plot. The distributions of crack spacing from
the numerical simulations described in Section 3.2 are shown in Figures 14a–d. Only cracks which have
propagated all the way to the surface of the coating are included in the distribution plots. As seen from
Figure 14a, the mean crack spacing for the reference case is less than that from the experiments. Also, as
seen in Figures 14b and 14d, with the increase in coating modulus and the decrease in σC , respectively,
the distribution of crack spacing is unrealistically small since almost every cohesive element has failed.
As expected, Figure 14c shows that the mean crack spacing for the case of increase in tangent modulus
slope of the interlayer is less than that of the reference case. It must be pointed that the distributions in
Figure 14 are based on a coating span of only 40µm as compared to the coating span of 130µm used
for the experimental results shown in Figure 13.
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Figure 14. Distribution of intercrack spacing observed in numerical simulation: (a) ref-
erence case; (b) increase in coating modulus; (c) increase in tangent modulus slope in
interlayer; and (d) decrease in σC of cohesive elements.

In the numerical simulations discussed above, the coatings were assumed to be isotropic, homoge-
neous, and free of defects. However, as seen in Figure 1, pits of various sizes are present on the surface
of the coating. Although many of the cracks go through pits, there are also pits without any cracks.
More detailed investigation is required to confirm whether or not pits are assisting crack propagation.
Microstructural observations would need to be performed in order to determine if there are any additional
microstructural inhomogeneities that affect crack spacing.

Investigation of residual stresses was undertaken with compressive residual stresses of 1 GPa as uni-
form prestresses in the coating. It was observed that inclusion of compressive residual stresses caused
the fracture strain (the strain at which the first crack appears) to increase from 1.2% to 1.7%. At lower
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strain values, for example, 2%, there are fewer cracks compared to same strain value in the reference
case. However at large strain values (> 4%), results look very similar to the reference case results.

5. Summary

A two-dimensional finite element model was created to simulate the response of a coating-interlayer-
substrate system to in-plane uniaxial tension. Coating cracking was simulated with cohesive zone ele-
ments that followed a bilinear cohesive law. Some degree of randomness was introduced into the model
through the assignment of random critical cohesive stresses. Due to the unsymmetrical boundary con-
ditions at the top surface and coating-interlayer interface, bending occurred and introduced nonuniform
stresses through the coating thickness. Thus coating cracks propagated from the interface and were often
arrested near the surface of the coating by the presence of high compressive stresses. The effects of
different coating modulus, tangent modulus for the interlayer hardening, and critical stress values (σC)

of the cohesive zone elements were studied. The distribution of crack spacing for different parameter
changes were quantified and compared to an experimental crack spacing distribution.

Due to the limitations of using a two-dimensional model, crack formation and propagation at high
plastic strain values was not predicted accurately. Incorporating measured residual stresses into the
model is necessary for more realistic simulations. The model has been shown to be sensitive to material
and cohesive parameters and could thus be used to optimize coatings. The described tensile cracking
experiment could be used to calibrate cohesive parameters for subsequent modeling of more complicating
loading schemes.
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OPTIMIZATION OF STIFFENED PANELS CONSIDERING GEOMETRIC
NONLINEARITY

PEYMAN KHOSRAVI, RAMIN SEDAGHATI AND RAJAMOHAN GANESAN

In this study, an optimality criterion is presented for thickness optimization of plate structures with
geometric nonlinearity. The optimization problem considers the thickness of each element of the finite
element mesh as a design variable and aims to maximize the load-carrying capacity of the structure
subject to constant total volume. The result of the thickness optimization of a nonstiffened panel is then
used for locating the potential places to add the stiffeners. It is shown that the load-carrying capacity of
the original panel may be improved significantly while having the same volume of material. Application
of the method is illustrated by numerical examples.

1. Introduction

Structural optimization can be used to improve a design by changing the geometrical properties of the
structure, considering a set of design constraints. In structural optimization, the thickness, shape, or topol-
ogy of the structure is iteratively changed until an optimal design is achieved [Bendsøe 1989; Bendsøe
and Mota Soares 1993; Rozvany 1997; Maute et al. 1998; Bendsøe and Sigmund 1999; 2003; Lógó and
Ghaemi 2002]. Developing design optimization techniques that efficiently combine the iterative optimiza-
tion process and iterative analysis of nonlinear structures is a challenging and complex task which has not
yet received sufficient attention. Optimization based on nonlinear mathematical programming techniques
involves many evaluations of the objective function and constraints at each optimization iteration before
a new search direction and step size can be established. This makes the design optimization of nonlinear
structures computationally very expensive, as nonlinear analysis by itself is a highly iterative process.

Optimality criterion methods may significantly reduce the time and cost of the optimization process in
nonlinear structures. Optimality criteria could be in the form of intuitive criteria, such as fully stressed
design (FS), simultaneous failure mode design (SFM), uniform strain energy density design (USED),
constant internal force distribution design (CIFD), or mathematically defined equations, such as classical
optimality criteria method (COC), dual optimality criteria method (DOC), and general optimality criteria
method (GOC) [Lógó 2005].

Gallagher [1973] pointed out that the fully stressed design (FS) criterion is inadequate for minimum
weight design of structures. Prager and Taylor [1968] showed that the optimum structure with uniform
material properties and linear relation between the stiffness and volume has a uniform energy density
distribution. A similar criterion was proposed by Venkayya et al. [1968; 1969] for discretized structures,
stating that the average strain energy density is the same for all elements of the optimum structure. Later,
Venkayya [1971] developed a more general form for the optimality criteria stating that the ratio of strain
energy to strain energy capacity is constant for every member in the optimum structure.

Keywords: thickness optimization, optimality criterion, stiffened plates, geometric nonlinearity.
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Berke [1971] proposed an algorithm to satisfy the optimality criteria, considering that if a criterion
works for statically determinate structures, then it would converge in a few iterations for most indeter-
minate structures (in the same manner as the FSD criterion). Berke’s work was extended to multiple
constraints by Gellatly and Berke [1971; 1973] who proposed the envelope method for multiple dis-
placement constraint structures. Nagtegaal [1973] directly used the displacement constraint equations to
formulate an iteration scheme using the Lagrange multiplier. Berke and Khot [1974] proposed an intuitive
iteration scheme for Lagrange multipliers. Khot et al. [1979] applied classical optimality criteria method
for both stress and displacement constraints. For a more detailed literature survey on optimality criteria
methods, the reader is referred to a recent paper by Lógó [2005].

The main focus of the present study is to find the optimum location of the ribs in stiffened panels.
Layout optimization problems for rib reinforcement were considered almost two decades ago by Bendsøe
and Kikuchi [1988]. An overview of the research in layout and topology optimization is given in the paper
by Rozvany et al. [1995]. Stok and Mihelic [1996] presented a method to identify the rib location by
performing thickness distribution. Chung and Lee [1997] employed a topology optimization technique
to identify the size of the ribs for a predetermined rib layout. Lee et al. [2000] have used modal design
sensitivity analysis for topology optimization of an automobile hood. Lam and Santhikumar [2003]
developed a method to find the optimum locations of the ribs subject to design constraints using thickness
optimization with the uniform strain energy density criterion. All of the above mentioned studies on
the stiffened panels are based on linear analysis, whereas many plate and shell structures may display
nonlinear behavior under applied loads.

In this study, first an optimality criterion, called uniform average of strain energy variation (UASEV),
is developed for thickness optimization in the general case of the combination of membrane and bending
deformations. It will be shown that the USED criterion (with strain energy density defined as the strain
energy stored in unit volume) cannot be used for thickness optimization, unless the structure is in pure
membrane or in pure bending mode. Subsequently, the result of the thickness optimization with the
proposed criterion is used for locating the ribs on the original panel. It is shown that the load-carrying
capacity of the original panel subject to design constraints may significantly be improved with the same
volume of the material. Illustrated applications are also presented.

2. Optimality criterion for thickness optimization

In this section, an optimality criterion is developed for thickness optimization of plates and shells modeled
by finite elements. In our study, the thickness of each element in the finite element mesh is considered
as a design variable, and an optimization criterion is found subject to constant total volume (Figure 1).

We assume that a plate or shell structure with uniform material properties is modeled by N facet
elements. This structure is analyzed under the conservative and proportional nodal force vector λR in
which R is a constant reference nodal force vector, and λ is a load level factor which can be gradually
increased until a design constraint (displacement, stress, or stability constraint) is violated. At this instant,
λR is called the load capacity of this structure with respect to design constraints. The optimization
problem is to find the optimum thickness ti (i = 1, . . . , N ) for each element in order to maximize λ
subject to constant total volume of the material (that is, V = V0, where V is the total volume of the
material.)
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Figure 1. Concept of thickness optimization subject to constant volume.

The Lagrangian for this optimization problem is

L = −λ+µ(V − V0), (1)

where µ is the Lagrange multiplier. The Karush–Kuhn–Tucker (KKT) conditions [Arora 1989] for min-
imization of L with respect to each design variable ti results in

∂L
∂ti

= 0; (i = 1, . . . , N ). (2)

Thus

−
∂λ

∂ti
+µ

∂V
∂ti

= 0; (i = 1, . . . , N ) (3)

or

−
∂λ

∂ti
+µAi = 0; (i = 1, . . . , N ), (4)

where Ai is the area of the i th element. Now we write the total potential energy of the structure, assuming
that the load is conservative and proportional as

5=

N∑
i=1

ei − λuT R, (5)

where u and λR are the nodal displacement vector in the global coordinate system and the vector of the
applied loads, respectively, and ei is the strain energy of the i th element. Considering 5opt as the total
potential energy associated with the optimum design, the equation 5=5opt should also be satisfied for
the optimum design. Taking the derivative from both sides of this equation with respect to each design
variable ti (noticing that u and λ are also functions of the design variable ti ) we have

∂ei

∂ti
+

m∑
j=1

∂5

∂u j

∂u j

∂ti
+
∂5

∂λ

∂λ

∂ti
= 0; (i = 1, . . . , N ), (6)



1252 PEYMAN KHOSRAVI, RAMIN SEDAGHATI AND RAJAMOHAN GANESAN

where m is the number of the nodal displacement components. From the principle of stationary total
potential energy we have ∂5

∂u = 0, thus Equation (6) changes to

∂ei

∂ti
+ 0 − uT R

∂λ

∂ti
= 0, (7)

in which ∂5
∂λ

has been substituted by −uT R. Substituting for ∂λ
∂ti

from Equation (7) into Equation (4)
results in

−1
uT R

∂ei

∂ti
+µAi = 0 (8)

or
1
Ai

∂ei

∂ti
= µuT R. (9)

This equation (hereinafter called the uniform average of strain energy variation (UASEV) criterion),
states that a design in which the value of ẽi =

1
Ai

∂ei
∂ti

is the same for all elements is a candidate for
optimality. It should be noted that since the second variation of the Lagrangian is not examined in this
study, this optimality criterion is only an empirical local-optimality condition. Also, since this criterion
is satisfied only at the final load (load capacity), it assumes monotonic structural behavior and excludes
path dependency.

In the case that the structure is made of an isotropic material with the Poisson’s ratio ν and the Young’s
modulus E◦, the strain energy of the i th element is computed as

ei =
1
2

∫
Ai

(
{ε◦

m}
T D(1)

i {ε◦

m} + {ε◦

b}
T D(2)

i {ε◦

b}

)
d Ai , (10)

where D(1)
i and D(2)

i are the membrane and flexural stiffness matrices at the location of the i th element
with thickness ti

D(1)
i =

E◦ti
1 − ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 , D(2)
i =

E◦t3
i

12(1 − ν2)

 1 ν 0
ν 1 0
0 0 1−ν

2

 , (11)

and {ε◦
m} = {ε◦

xε
◦
yγ

◦
xy}

T and {ε◦

b} = {κ◦
xκ

◦
yκ

◦
xy}

T are the membrane and flexural strains in the mid-surface
of the i th element, respectively.

Now the average strain energy variation can be described as

ẽi =
1
Ai

∂ei
∂ti

=
1

2Ai

∫
Ai

(
{ε◦

m}
T D(1)

i

ti
{ε◦

m} + {ε◦

b}
T 3D(2)

i

ti
{ε◦

b}

)
d Ai . (12)

One can easily see that ẽi computed by Equation (12) in the general case of combination of membrane
and bending deformations is different from the strain energy density, which is usually defined as ei/(ti Ai ):

ēi =
ei

ti Ai
=

1
2Ai

∫
Ai

(
{ε◦

m}
T D(1)

i

ti
{ε◦

m} + {ε◦

b}
T D(2)

i

ti
{ε◦

b}

)
d Ai (13)

As a result, thickness optimization of plates and shells using a uniform strain energy density criterion
with the values computed by Equation (13) in the general case of the combination of membrane and
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bending deformations is unjustified. However in case of pure membrane strain energy (that is, {ε◦

b} = 0),
using USED criteria instead of UASEV leads to the same result (because in this case Equations (12) and
(13) are equivalent). Also, in the case of the pure bending strain energy (that is, {ε◦

m} = 0) results are again
the same, since based on Equations (12) and (13), uniform distribution of ēi and uniform distribution of
ẽi in the case of {ε◦

m} = 0 are equivalent by a scale factor of 3.
Considering element thicknesses as the design variables is not the only possible approach in thick-

ness optimization. One may instead consider nodal thicknesses as the design variables, which has the
advantage of leading to a smooth thickness profile. However in that case, the related equations are more
complicated, since each design variable is connected to more than one element. For example, ∂V/∂ti
is no longer equal to Ai when passing from Equation (3) to Equation (4) , or ∂ei/∂ti in Equation (6)
changes to the summation of the same term for all elements sharing the nodal thickness ti . In Section 4
it is explained how using the proposed method with linear interpolation can lead to a smooth thickness
profile as well.

3. Recurrence relation

In order to satisfy the UASEV criterion, a resizing algorithm has to be employed in the optimization
process. First, we rewrite Equation (9) assuming that at the optimum design µuT R = 1/3,

ẽi =
1
Ai

∂ei

∂ti
=

1
3
. (14)

Thus
1 =3ẽi . (15)

A recurrence relation for resizing the thickness of each element may be written by multiplying both
sides of Equation (15) by ti and taking the r th root as

(ti )υ+1 = (ti )υ(3ẽi )
1/r
υ , (16)

where υ+ 1 and υ are the iteration numbers, and r is the step size parameter which can be changed by
assigning appropriate value [Stok and Mihelic 1996; Lam and Santhikumar 2003]. The value of 3 at the
optimal design may be found from Equation (15) by minimizing the sum of the squares of the residuals
at iteration υ as

Resυ =

N∑
i=1

(1 −3ẽi )
2. (17)

Thus
d Resυ

d3
= 0 ⇒3=

( N∑
i=1

ẽi

)
/
( N∑

i=1

ẽi
2
)
. (18)

Substituting Equation (18) into Equation (16) we finally obtain the recurrence relation

(ti )υ+1 = (ti )υ

(( N∑
i=1

ẽi

)
/
( N∑

i=1

ẽi
2
)

ẽi

)1/r

υ

, (19)
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which is used to optimize the thickness of each element iteratively. In order to keep the total volume
equal to constant V0, after each iteration, all ti are scaled by a scale factor β:

β =
V0

V
=

V0∑N
i=1 ti Ai

. (20)

The iterative process of thickness optimization may be stopped when the following condition is satisfied:

1(λR)υ ≤ (tol)1(λR)1, (21)

where 1(λR)1 and 1(λR)υ are the changes in the load capacity of the structure in the first and υth
iterations respectively, and tol is usually chosen in the range of tol ≤ 10−2, depending on the accuracy
required.

4. Methodology

After performing the thickness optimization, the optimal shape is still rough and should be smoothed by
passing to nodal thicknesses. The thickness of the plate at each node is found by taking the average of
the thicknesses of all elements connected to that node. Then, a smooth thickness profile may be created
by linear interpolation using nodal thicknesses. Finally the regions where elements have higher thickness
values are identified as potential rib locations.

In the next step, stiffeners with variable height according to the results found in the first step are
added to the plate with constant thickness. The height of the ribs varies proportionally to the obtained
thickness distribution, but not more than a maximum value considered in the design constraint. Finally,
thicknesses of the plate and stiffeners are found such that the constant volume constraint is satisfied. The
whole process may be repeated to find additional stiffeners.

As an example, Figure 2 shows how the potential locations for adding the stiffeners are found for a
simple plate. Variation of the thickness after performing the thickness optimization is shown by thickness
contours. Considering the cross sections of the plate at different locations, one can identify the locations
of the local maximum thickness at each section. The lines which connect these points of local maximum
thickness are called the lines of maximum thickness, and are selected as the potential locations for
stiffeners. Any design constraint or limitation is also considered in locating the stiffeners. The locations
and the directions of the sections are arbitrary, and usually they are selected by the designer in a way to
perform the design with the least number of sections. Obviously, the final design may not be completely
unique, and will somehow depend on the designer’s point of view.

This method is similar to the one used by Stok and Mihelic [1996] and Lam and Santhikumar [2003],
except that in their studies, the USED criterion was used instead of UASEV. As mentioned before, it is
important to note that in the general case of the combination of membrane and bending deformations,
using the USED criterion instead of UASEV is unjustified, and only in the case of pure membrane or
pure bending behavior are the results the same.

In topology optimization a checkerboard pattern, which is an unnatural result with artificially high
stiffness, may frequently occur [Dı́az and Sigmund 1995; Jog and Haber 1996]. Several techniques have
been proposed to avoid such a checkerboard pattern as an optimal solution [Poulsen 2002; Sigmund
and Petersson 1998; Zhou et al. 2001]. In this study we use a simple procedure similar to the one used
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Figure 2. Identifying potential locations for stiffeners using thickness optimization.

by Gáspár et al. [2001], in which a primary meshing is subdivided into further finite elements called
secondary elements. In this study, first a primary mesh is considered with square elements, and then
each square in the primary mesh is divided into two triangular elements. The new thickness of each
square in the primary mesh (after each iteration) is found by taking the average of the new thicknesses
of its two triangular elements.

Strain energy for most of the elements available in literature is not accurate when used in coarse
meshes [Felippa 2003]. This makes the problem of thickness optimization very expensive, since a large
number of elements is needed in nonlinear analysis to get a desirable accuracy. On the other hand,
when modeling the ribs in stiffened plates (after performing the thickness optimization and selecting the
potential places to add the ribs), it frequently happens that some elements have very high or very low
geometrical aspect ratios in the stiffener parts. Response of these elements can affect the response of
the whole structure, leading to erroneous results about the behavior of the stiffened plate [Felippa 2003].
Thus, it is preferable to model the structure with an element which has the least aspect ratio sensitivity
and highest accuracy for strain energy.

The element in this study is a facet triangular shell element with 3 nodes and 6 degrees of freedom
per node (3 translations and 3 rotations) [Khosravi et al. 2007]. This element is a combination of the
discrete Kirchhoff triangular plate bending element (DKT) [Batoz et al. 1980], and the optimal triangular
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membrane element (OPT) [Felippa 2003]. The OPT membrane element has been formulated based on the
ANDES (assumed natural deviatoric strain) template, and for any arbitrary aspect ratio its strain energy
is accurate. In a recent paper [Khosravi et al. 2007], it has been shown that using this element leads to
acceptable results even in case of relatively coarse meshes. As a result, the cost of the optimization in a
nonlinear regime may be extensively reduced using this element.

In this study, a corotational approach is used to analyze the structure with geometric nonlinearity. In
this approach the contribution of the rigid body motion to the total deformation of the element is removed
before performing the element computations. This enables one to upgrade the structural elements so as
to treat problems with large rotations but small strains. For a detailed explanation of the shell element
used in this study and the corotational nonlinear analysis using triangular facet elements, the reader is
referred to [Khosravi et al. 2007]. In order to follow the nonlinear load deflection path, the arc length
method [Crisfield 1981] is used.

It should be mentioned that recently some doubts have been raised about the mathematical conver-
gence of facet elements [Chapelle and Bathe 2003]. In particular, when refining the mesh, finite element
solutions are expected to converge to the exact solution of a well-defined mathematical model. However,
some numerical experiments have shown that facet shell elements may not exactly converge when the
mesh is refined, although their results lie within a few percent of the reference values [Chapelle and
Bathe 2003]. It is believed that the best shell elements are formulated using 3D continuum mechanics
incorporating shell theory assumptions. However facet elements are used in this study since the formu-
lation of a corotational approach using curved elements is extremely difficult to perform and is not even
well developed.

5. Numerical results

In this section, four examples are presented. In the first and second examples, the proposed UASEV
criterion is used for thickness optimization of plate structures, and results are compared with those
found by using the USED criterion, that is, Equation (13) instead of Equation (12). The third and
fourth examples show the application of thickness optimization in stiffener location and load capacity
maximization of plates subject to constant volume. In all examples, Equations (19)–(21) with tol = 10−2

are used for thickness optimization.

Example 1. Figure 3 shows a cantilever plate subject to the shear load F and axial force P = 20 F at
the tip. The dimensions of the plate are 40 cm × 4 cm with overall thickness t = 0.4 cm, and the plate is
made of isotropic material (steel) with the following mechanical properties: E = 200 GPa, G = 77 GPa,
ν = 0.3.

The objective is to perform the thickness optimization in order to maximize the load capacity F subject
to constant volume. It is assumed that the load capacity F is found based on the displacement W = 1 cm,
where W is the vertical deflection at the tip of the plate. The plate is modeled by 40 triangular elements,
and due to symmetry, only half of the plate is analyzed.

Nonlinear analysis results in F = 49.81 N as the initial load capacity of the plate. Figure 4 shows
the results of thickness optimization subject to constant volume, using UASEV and also USED criteria.
In both cases, convergence is achieved in 5 iterations, with r = 2 as the step size parameter. Nonlinear
behavior of the plate optimized by UASEV and USED criteria is also shown in Figure 5.
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Figure 3. Cantilever plate subject to axial and shear forces at the tip.

Figure 4. Variation of the thickness over the length of the cantilever plate after optimization.

It is observed that optimization using the UASEV criterion increases the load capacity of the plate to
F = 150.36 N , compared to F = 131.16 N obtained by using USED criterion. In Figure 5, it is interesting
to note that in the range of W ≤ 0.75 cm, the load capacity of the plate optimized by UASEV criterion is
slightly less than that of the one optimized by USED; however since the optimality criteria are applied at
the limit point (that is, W = 1 cm), UASEV finally overcomes USED and leads to a higher load capacity.

Example 2. Figure 6 shows a simply supported square plate under the biaxial compressive edge forces
Nx = Ny . The dimensions of the plate are 80 cm × 80 cm with overall thickness t = 0.4 cm, and the plate
is made of isotropic material (steel) with the following mechanical properties: E = 200 GPa, G = 77 GPa,
ν = 0.3.

In order to initiate the lateral deflection, an imperfection in the form of a half sine wave with the
maximum value 1 mm at the center of the plate is considered. The objective is to optimize the thickness
of the plate, while having the same total volume, in order to maximize the load capacity for W = 0.4 cm,
where W is the vertical deflection at the center of the plate. The plate is modeled by 800 triangular
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elements, and due to symmetry only a quarter of the plate is analyzed. Performing the nonlinear analysis
results in Nx = Ny = 369.5 N/cm as the initial load capacity of this plate.

Figures 7a and 7b show the results of thickness optimization subject to constant volume for a quarter
of the plate using Equations (19)–(21) in 8 iterations, and UASEV and USED criteria, respectively. In
both cases r = 4 has been considered as the step size parameter. It is observed that optimization based
on USED criteria tends to reduce the thickness in the middle of the plate, and to increase it on the
corners and mid-sides. Instead, UASEV criterion tends to reduce the thickness on the mid-sides and
to increase it on the corners and somewhat in the middle. Figure 8 shows the change of load-carrying
capacity of the plate during the thickness optimization. Nonlinear analysis of an optimal plate under the
applied loads shows that the load capacity of this plate has been increased to Nx = Ny = 584.3 N/cm,
and Nx = Ny = 509.2 N/cm for UASEV and USED criteria, respectively, while having the same total

Figure 5. Nonlinear behavior of the cantilever plate before and after optimization.

Figure 6. Square plate with simple supports subjected to biaxial compressive forces.



OPTIMIZATION OF STIFFENED PANELS 1259

Figure 7. Results of thickness optimization (cm) for a quarter of the plate shown in
Figure 6: (a) UASEV criterion; (b) USED criterion.

volume. Although using any one of these two criteria increases the strength (or load capacity) of the
plate, it is obvious that the UASEV criterion is more efficient than that of USED.

Example 3. In this example the application of the UASEV criterion is shown for thickness optimization,
and subsequently stiffener location in a stiffened plate. Figure 9 shows an 80 × 80 cm simply-supported
square plate with overall thickness t = 0.4 cm and a 24 cm × 24 cm square hole in the center. Loading
and material properties are similar to those in the previous example. Also, an imperfection in the form
of a half sine wave with the value of 1 mm around the central hole is considered to initiate the lateral
deflection. The objective is to optimize the thickness and find the potential stiffener locations subject to
constant volume, in order to maximize the load capacity for W = 0.4 cm, where W is the deflection at

Figure 8. Change of load-carrying capacity of the plate shown in Figure 6 during the
thickness optimization using USED and UASEV criteria.
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Figure 9. Square plate with a square hole in the center and simple supports, subjected
to biaxial compressive forces.

the midpoint of the hole edges. In this example, the following design constraints should also be satisfied
for the final design:

• The maximum height of the stiffeners is 5 cm.

• The stiffeners and the plate have the same thickness in the final design.

Similar to the previous example, a quarter of the plate is modeled by 182 triangular elements. Performing
the nonlinear analysis results in Nx = Ny = 290.8 N/cm as the load capacity of this plate for W =

0.4 cm. Thickness optimization is performed using the UASEV criterion with r = 4 as the step size
parameter. The iterative process converged after 9 iterations. Variation of the thickness for a quarter
of the plate, based on the results of thickness optimization subject to constant total volume is shown in
Figure 10. Load carrying capacity of this plate after performing the thickness optimization, has increased
to Nx = Ny = 654.3 N/cm.

Based on this shape, and predefined design constraints mentioned above, stiffeners are located on the
lines of maximum thicknesses (as shown in Figure 11) on a plate with constant thickness. Height of the
stiffeners are proportional to the thickness of the elements, with the maximum value of 5 cm according to
the first design constraint. Keeping the total volume equal to the initial volume 2329.6 cm3, and consider-
ing the same thickness for stiffeners and plate (per the second design constraint) a new overall thickness
of t = 0.36 cm is found for the plate and the stiffeners. A nonlinear analysis of this stiffened plate shows
that the load capacity has increased to Nx = Ny = 560.4 N/cm compared to Nx = Ny = 290.8 N/cm for
the initial plate, however it has been reduced compared to Nx = Ny = 654.3 N/cm for the plate with
optimized thickness.

Example 4. A plate similar to the one in Example 3 is considered under the downward surface load q.
Boundary conditions are similar to those in Example 3 except that in-plane deflections are not allowed for
all four edges. As a result, membrane forces arise during the deflections due to bending. The objective is
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Figure 10. Result of thickness optimization (cm) for a quarter of the plate shown in
Figure 9. Thicknesses of the sections have been exaggerated for better view.

to maximize the load capacity for W = 0.3 cm using UASEV criterion, subject to constant total volume.
The following design constraints should also be satisfied in this problem:

• The maximum height of the stiffeners is 10 cm.

• The thickness of the stiffeners is 0.4 cm.

A quarter of the plate is modeled by 182 triangular elements. Also, we can see that a nonlinear analysis
results in q = 0.318 N/cm2 as the load capacity of this plate. In the next step, UASEV criterion with
r = 4 is employed for thickness optimization. The new thickness distribution and potential locations for
stiffeners are shown in Figure 12, and are found after 9 iterations. The load-carrying capacity of this
plate after performing the thickness optimization has increased to q = 0.865 N/cm2.

Figure 11. A quarter of the plate shown in Figure 9 (Example 3) with stiffeners at
potential locations. Numbers show the height of the stiffeners (cm).
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Figure 12. Result of thickness optimization (cm) for a quarter of the plate shown in
Figure 9 with hinged supports (u = v = w = 0 at the edges) under the downward surface
pressure load. Thicknesses of the sections have been exaggerated for a better view.

Figure 13 shows the stiffeners located on the lines of maximum thickness, with their height propor-
tional to the new thickness of the elements, but not more than 10 cm, and their thickness equal to 0.4 cm
according to the design constraint. Keeping the total volume equal to the initial volume, a new thickness
t = 0.339 ≈ 0.34 cm is found for the plate. Nonlinear analysis shows that the load capacity for W = 0.3 cm
has increased to q = 1.26 N/cm2 compared to q = 0.318 N/cm2 for the initial plate, and compared to
q = 0.865 N/cm2 for the plate with optimized thickness.

Figure 13. A quarter of the plate in Example 4 with stiffeners at potential locations.
Numbers show the height of the stiffeners (cm).
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Figure 14. A quarter of the plate in Example 4 with stiffeners at potential locations after
two rounds of optimization. Numbers show the height of the stiffeners (cm).

It should be mentioned that once the ribs are placed on a plate, structural behavior of the plate changes
considerably. Thus, as mentioned before, it seems appropriate to repeat the optimization process for the
stiffened plate, to obtain any further possible stiffener locations, and also modify the heights of the
previously located stiffeners. Figure 14 shows the result of the optimized plate in Example 4 after the
second round of optimization. It may be seen that a new series of stiffeners are found and the heights
of the previous stiffeners have also been modified. Performing nonlinear analysis, the load capacity of
the stiffened plate after the second round of optimization is found to be q = 1.57 N/cm2 compared to
q = 1.26 N/cm2 after the first round.

6. Conclusion

In this study a methodology for rib location and design optimization of stiffened plates based on an
optimality criterion for thickness optimization is presented. The optimality criterion for thickness op-
timization (called UASEV in this study) states that in an optimum design, the derivative of the strain
energy with respect to the thickness, over the area of element, is the same for all elements. It was shown
that in the general case of the combination of membrane and bending deformations, using the USED
criterion instead of UASEV is unjustified. Only in case of pure membrane or pure bending behavior are
their results the same. Applying the proposed criterion through an iterative process, it is possible to find
the potential locations to add stiffeners and increase the strength of the plate while consuming the same
amount of material.

References

[Arora 1989] J. S. Arora, Introduction to optimum design, McGraw-Hill, New York, 1989.

[Batoz et al. 1980] J. L. Batoz, K. J. Bathe, and L. W. Ho, “A study of three-node triangular plate bending elements”, Int. J.
Numer. Methods Eng. 15:12 (1980), 1771–1812.

[Bendsøe 1989] M. P. Bendsøe, “Optimal shape design as a material distribution problem”, Struct. Multidiscip. O. 1:4 (1989),
193–202.

[Bendsøe and Kikuchi 1988] M. P. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a
homogenization method”, Comput. Methods Appl. Mech. Eng. 71:2 (1988), 197–224.

[Bendsøe and Mota Soares 1993] M. P. Bendsøe and C. A. Mota Soares, “Topology design of structures”, pp. xvi+569 in
Proceedings of the NATO Advanced Research Workshop held in Sesimbra, June 20–26, 1992 (Sesimbra, Portugal), edited by



1264 PEYMAN KHOSRAVI, RAMIN SEDAGHATI AND RAJAMOHAN GANESAN

M. P. Bendsøe and C. A. M. Soares, NATO Advanced Science Institutes Series E: Applied Sciences 227, Kluwer, Dordrecht,
1993.

[Bendsøe and Sigmund 1999] M. P. Bendsøe and O. Sigmund, “Material interpolation schemes in topology optimization”,
Arch. Appl. Mech. 69:9-10 (1999), 635–654.

[Bendsøe and Sigmund 2003] M. P. Bendsøe and O. Sigmund, Topology optimization: theory, methods and applications,
Springer, Berlin, 2003.

[Berke 1971] L. Berke, “An efficient approach to the minimum weight design of deflection limited design”, technical report
AFFDL-TR-70-4-FDTR, Air Force Flight Dynamics Laboratory, 1971.

[Berke and Khot 1974] L. Berke and N. S. Khot, “Use of optimality criteria methods for large scale systems”, AGARD Lect.
Ser. 70 (1974), 1–29.

[Chapelle and Bathe 2003] D. Chapelle and K. J. Bathe, The finite element analysis of shells—fundamentals, Computational
fluid and solid mechanics, Springer, Berlin, 2003.

[Chung and Lee 1997] J. Chung and K. Lee, “Optimal design of rib structures using the topology optimization technique”,
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 211:6 (1997), 425–437.

[Crisfield 1981] M. A. Crisfield, “A fast incremental-iterative solution procedure that handles ‘snap-through’”, Comput. Struct.
13:1-3 (1981), 55–62.

[Díaz and Sigmund 1995] A. R. Díaz and O. Sigmund, “Checkerboard patterns in layout optimization”, Struct. Multidiscip. O.
10:1 (1995), 40–45.

[Felippa 2003] C. A. Felippa, “A study of optimal membrane triangles with drilling freedoms”, Comput. Methods Appl. Mech.
Eng. 192:16-18 (2003), 2125–2168.

[Gallagher 1973] R. H. Gallagher, “Fully stressed design”, pp. 19–32 in Optimum structural design: theory and applications,
edited by R. H. Gallagher and O. C. Zienkiewicz, Wiley, London, 1973.

[Gáspár et al. 2001] Z. S. Gáspár, J. Lógó, and G. I. N. Rozvany, “On design-dependent constraints and singular topologies”,
Struct. Multidiscip. O. 21:2 (2001), 164–172. Addenda in 24:2 (2002), 338–342.

[Gellatly and Berke 1971] R. A. Gellatly and L. Berke, “Optimal structural design”, technical report, Air Force Flight Dynamics
Laboratory, 1971. AFFDL-TR-70-165.

[Gellatly and Berke 1973] R. A. Gellatly and L. Berke, “Optimality criterion based algorithms”, pp. 33–49 in Optimum struc-
tural design: theory and applications, edited by R. H. Gallagher and O. C. Zienkiewicz, Wiley, London, 1973.

[Jog and Haber 1996] C. S. Jog and R. B. Haber, “Stability of finite element models for distributed-parameter optimization and
topology design”, Comput. Methods Appl. Mech. Eng. 130:3-4 (1996), 203–226.

[Khosravi et al. 2007] P. Khosravi, R. Ganesan, and R. Sedaghati, “Corotational nonlinear analysis of thin plates and shells
using a new shell element”, Int. J. Numer. Methods Eng. 69:4 (2007), 859–885.

[Khot et al. 1979] N. S. Khot, L. Berke, and V. B. Venkayya, “Comparison of optimality criteria algorithms for minimum
weight design of structures”, AIAA J. 17:2 (1979), 182–190.

[Lam and Santhikumar 2003] Y. C. Lam and S. Santhikumar, “Automated rib location and optimization for plate structures”,
Struct. Multidiscip. O. 25:1 (2003), 35–45.

[Lee et al. 2000] T. H. Lee, S. Y. Han, and J. K. Lim, “Topology optimization of the inner reinforcement for an automobile
hood using modal design sensitivity analysis”, Key Eng. Mater. 183–187 (2000), 439–444.

[Lógó 2005] J. Lógó, “New type of optimal topologies by iterative method”, Mech. Based Des. Struct. Mach. 33:2 (2005),
149–171.

[Lógó and Ghaemi 2002] J. Lógó and M. Ghaemi, “Topology optimization by SIMP method”, in Proceedings of the 9th
International Conference on Numerical Methods and Computational Mechanics (Miskolc, Hungary), edited by A. Galántay
and G. Szeidl, 2002.

[Maute et al. 1998] K. Maute, S. Schwarz, and E. Ramm, “Adaptive topology optimization of elastoplastic structures”, Struct.
Multidiscip. O. 15:2 (1998), 81–91.

[Nagtegaal 1973] J. C. Nagtegaal, “A new approach to optimal design of elastic structures”, Comput. Methods Appl. Mech. Eng.
2:3 (1973), 255–264.



OPTIMIZATION OF STIFFENED PANELS 1265

[Poulsen 2002] T. A. Poulsen, “A simple scheme to prevent checkerboard patterns and one node connected hinges in topology
optimization”, Struct. Multidiscip. O. 24:5 (2002), 396–399.

[Prager and Taylor 1968] W. Prager and J. E. Taylor, “Problems of optimal structural design”, J. Appl. Mech. (Trans. ASME)
35 (1968), 102–106.

[Rozvany 1997] G. I. N. Rozvany, “Aims, scope, basic concepts and methods of topology optimization”, pp. 1–55 in Topology
optimization in structural mechanics, CISM Courses and Lectures 374, Springer, Vienna, 1997.

[Rozvany et al. 1995] G. I. N. Rozvany, M. P. Bendsøe, and U. Kirsch, “Layout optimization of structures”, Appl. Mech. Rev.
48 (1995), 41–111.

[Sigmund and Petersson 1998] O. Sigmund and J. Petersson, “Numerical instabilities in topology optimization—a survey on
procedures dealing with checkerboards, mesh-dependencies and local minima”, Struct. Multidiscip. O. 16:1 (1998), 68–75.

[Stok and Mihelic 1996] B. Stok and A. Mihelic, “Two-stage design optimization of shell structures”, Struct. Eng. Rev. 8:2-3
(1996), 91–97.

[Venkayya 1971] V. B. Venkayya, “Design of optimum structures”, Comput. Struct. 1:1-2 (1971), 265–309.

[Venkayya et al. 1968] V. B. Venkayya, N. S. Khot, and V. S. Reddy, “Optimization of structures based on the study of
energy distribution”, technical report AFFDL-TR-68-150, Air Force Flight Dynamics Laboratory, 1968, Available at http://
handle.dtic.mil/100.2/ADA447802.

[Venkayya et al. 1969] V. B. Venkayya, N. S. Khot, and V. S. Reddy, “Energy distribution in an optimum structural design”,
technical report AFFDL-TR-68-156, Air Force Flight Dynamics Laboratory, 1969.

[Zhou et al. 2001] M. Zhou, Y. K. Shyy, and H. L. Thomas, “Checkerboard and minimum member size control in topology
optimization”, Struct. Multidiscip. O. 21:2 (2001), 152–158.

Received 7 Sep 2006. Accepted 15 Feb 2007.

PEYMAN KHOSRAVI: peyma kh@encs.concordia.ca
Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada

RAMIN SEDAGHATI: sedagha@encs.concordia.ca
Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada

RAJAMOHAN GANESAN: ganesan@vax2.concordia.ca
Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 2, No. 7, 2007

UNIFIED EFFICIENT LAYERWISE THEORY FOR SMART BEAMS
WITH SEGMENTED EXTENSION/SHEAR MODE,

PIEZOELECTRIC ACTUATORS AND SENSORS

SANTOSH KAPURIA AND PETER HAGEDORN

A unified coupled efficient layerwise theory is presented for the dynamics of smart laminated beams
with surface-mounted and embedded piezoelectric actuators and sensors with arbitrary poling direc-
tions, acting in extension or shear mode. The theory considers a global third-order variation across
the thickness combined with a layerwise linear variation for the axial displacement, expressed in terms
of only three primary variables, and accounts for the transverse normal strain due to the electric field in
the approximation for the transverse displacement. The electric potential is approximated as piecewise
quadratic across sublayers. A finite element is developed which has two physical nodes with mechanical
and some electric potential degrees of freedom (DOF), and an electric node for the electric potentials of
the electroded surfaces of the piezoelectric patches. The electric nodes eliminate the need for imposition
of equality constraints of the electric DOF on the equipotential electroded surfaces of the segmented
piezoelectric elements and result in significant reduction in the number of electric DOF. The electric
DOF associated with the physical nodes allow for the inplane electric field that is induced via a direct
piezoelectric effect. The accuracy of the formulation is established by comparing the results with those
available in literature and the 2D piezoelasticity solutions for extension and shear mode actuators, sensors
and adaptive beams. The effect of segmentation of the electroded surface on the deflection, sensory
potential and natural frequencies is illustrated for both extension and shear mode cases. The influence
of the location of extension and shear mode actuators and sensors on the response is investigated for a
hybrid mode composite beam. The effect of actuator thickness on the actuation authority is studied.

1. Introduction

Adaptive laminated structures, incorporating some surface-mounted and embedded piezoelectric patches
for sensing and actuation, are now widely used in noise, vibration, acoustic, shape and position control
applications. Even though the orthorhombic piezoelectric materials of symmetry class mm2 [Auld 1973]
have five piezoelectric constants, namely, d31, d32 d33, d15, d24, most research and development efforts
in this technology have generally been focused on the piezoelectric elements that are poled parallel to
the applied electric field (in the thickness direction) and use only the d31, d32 constants to use membrane
strains. This is known as the extension actuation mechanism (EAM). Consequently, most of the existing
refined models incorporating advanced kinematics and two-way electromechanical coupling also con-
sider the extension mode piezoelectric elements; see, for example, the review articles of Saravanos and
Heyliger [1999], Gopinathan et al. [2000] and Benjeddou [2000]. Coupled discrete layer theories (DLT)

Keywords: extension mode, shear mode, zigzag theory, finite element, hybrid beam, dynamics, piezoelectricity, electric node.
Kapuria is grateful to Alexander von Humboldt Foundation, Germany, for supporting this work through a Humboldt Research
Fellowship.
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with layerwise linear description of inplane displacements and electric potential have been presented for
hybrid beams [Lee and Saravanos 1996] and plates [Saravanos et al. 1997; Lage et al. 2004]. Plagianakos
and Saravanos [2005] presented a higher-order DLT for hybrid beams using layerwise quadratic and
cubic variations for the inplane displacements and electric potential, respectively. These theories yield
excellent accuracy, but the computational effort increases in proportion to the number of layers, which
restricts their application for practical dynamics and control problems. Mixed coupled equivalent single
layer (ESL) theories such as the first-order shear deformation theory (FSDT) [Saravanos 1999; Wang
2004] and refined third-order theory (TOT) [Correia et al. 2000], considering a global variation for the
displacements across the entire thickness and a layerwise distribution for the electric potential, have been
employed for the dynamic analysis of hybrid plates. It is now well known that since these theories do not
account for the layerwise (zigzag) nature of distributions of the inplane displacements, they yield inac-
curate results for moderately thick laminates and even thin laminates with strong inhomogeneity across
the thickness. Vasques and Rodrigues [2005] presented a finite element formulation based on a coupled
partial layerwise theory for three layer piezoelectric beams. Kapuria [2001] and Kapuria and Alam
[2006] presented a coupled zigzag theory for hybrid beams, which considers a layerwise approximation
for the inplane displacement, like the DLT, but the number of primary displacement variables is reduced
to only three as in the ESL theories, FSDT and TOT, by enforcing the conditions on the transverse shear
stresses at the top and bottom surfaces and the layer interfaces. Comparison with the two-dimensional
(2D) piezoelasticity solutions have established the excellent accuracy of this theory for active and sensory
dynamic response of moderately thick hybrid beams for various inhomogeneous lay-ups and boundary
conditions.

The piezoelectric materials, when constrained and poled perpendicularly to the applied electric field,
undergo transverse shear deformation through the d15, d24 constants, which is known as the shear actu-
ation mechanism (SAM). The use of shear mode actuators for adaptive structures was first investigated
by Sun and Zhang [1995] who carried out a 2D finite element analysis of a plane strain adaptive beam
consisting of an axially poled piezoelectric core embedded between two elastic face sheets. The results
showed that the shear actuators are subjected to much lower stresses compared to the extension actuators
under the same electric field. Zhang and Sun [1996] presented a three layer sandwich beam theory
for the shear actuated laminate by modeling the face layers as classical Euler–Bernoulli beams and
the central core as a Timoshenko beam, without considering the two-way electromechanical coupling.
Benjeddou et al. [1997] presented a finite element (FE) formulation based on this uncoupled three-layer
beam model for analysis of adaptive sandwich beams with elastic/EAM piezoelectric faces and SAM
piezoelectric/elastic core. An improved FE model [Benjeddou et al. 1999] eliminating the shear locking
problem was used for comparing SAM and EAM actuators for static and free vibration response [Ben-
jeddou et al. 2000]. Raja et al. [2002; 2004] generalized the sandwich model by considering laminates
(instead of single layers) for the faces and the core and by incorporating the electric DOF. The electric
potential was assumed to be linear across a sublaminate (core/face). Trindade and Benjeddou [2005]
extended their previous model by modeling the core with the TOT and considering the variation of the
electric potential to be cubic across the core thickness and linear across the faces. It was shown that this
led to a significantly stiffer response, but the results did not match with the 2D FE results. It is important
to note that all the publications reported above use a three layer beam model, which is rather restrictive
for modeling general laminates with EAM and SAM actuators to be placed at any arbitrary location
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across the thickness. It has been observed from 2D piezoelasticity solutions that the electric potential
follows a nearly quadratic variation across the thickness in extension mode piezoelectric elements [Dube
et al. 1996] and a nearly cubic variation in shear mode elements [Parashar et al. 2005]. It is also well
established that the assumption of a linear electric potential along the thickness can cause a significant
error in the computed response [Bisegna and Caruso 2001; Sze et al. 2004; Parashar et al. 2005]. Khdeir
and Aldraihem [2001; 2003] presented a closed form solution for deflection analysis of beams with shear
and extension actuators employing the uncoupled FSDT and an uncoupled higher-order theory. Parashar
et al. [2004] presented a coupled FSDT for the nonlinear vibration of shear actuators considering material
nonlinearities.

Conventionally, the finite element models based on coupled theories consider electric DOF at the
nodes. However, the piezoelectric sensing and actuating patches are always electroded with metallic
coating, which makes their surfaces equipotential. To model this condition, particularly for sensing, it
would be necessary to impose the constraint of equality on the electric DOF of the nodes on the same
electroded surface. To avoid this tedious task, the concept of electric nodes has been used by Sze and
Yao [2000], wherein the electric DOF are separated from the kinetic (physical) nodes with which only
mechanical DOF are associated. It results in significant reduction in the number of electric DOF. But in
this approach, as all the electric DOF are associated with electric nodes, the inplane electric fields which
may be induced due to direct piezoelectric effect cannot be accounted for.

In this work, a new unified coupled efficient layerwise formulation is presented for hybrid laminated
beams with surface-bonded or embedded piezoelectric actuators and sensors with arbitrary poling direc-
tions, which act in extension or shear mode. The constitutive equations of piezoelectric plane stress beams
and plane strain panels with arbitrary poling direction are derived using transformation rules. The axial
displacement is approximated as a third-order zigzag variation across the thickness, which is expressed
in terms of only three primary displacement variables. The transverse displacement is approximated to
account for the transverse normal strain due to the electric field, and the electric potential is assumed
to follow a quadratic variation across sublayers, which can effectively model the observed quadratic
and cubic variations in, respectively, the extension and shear mode piezoelectric elements. A novel finite
element is developed consisting of two physical nodes with kinetic and some electric DOF, and an electric
node with the electric DOF for the equipotential surfaces of the electroded piezoelectric patches. The
electric nodes conveniently model the equipotential condition of electroded surfaces with significantly
reduced number of electric DOF. The quadratic component of electric DOF associated with the physical
nodes enable modeling the inplane electric field induced due to the direct piezoelectric effect.

2. Constitutive equations for piezoelectric beams/panels with arbitrary poling direction

The 3D linear constitutive equations of a piezoelectric orthorhombic material of class mm2 symmetry
(commonly used materials PZT and PVDF belong to this class or its subset), with principal material axes
x1, x2, x3 and polarized along axis x3, are given by [Auld 1973]

ε′
= S σ ′

+ dT E ′, D′
= d σ ′

+ ε E ′
; σ ′

= Cε′
− eT E ′, D′

= e ε′
+ η E ′. (1)
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Reference axes (x, y, z) and material principal axes (x1, x2, x3) for piezoelectric material 
with arbitrary poling direction
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Figure 1. Reference axes (x, y, z) and material principal axes (x1, x2, x3) of piezoelec-
tric material with arbitrary poling direction.

The superscript ( )T denotes matrix transpose. The components of stress σ ′, engineering strain ε′, electric
field E ′ and electric displacement D′ are given with respect to the principal material axes by

σ ′
=
[
σ1 σ2 σ3 τ23 τ31 τ12

]T
, ε′

=
[
ε1 ε2 ε3 γ23 γ31 γ12

]T
, E ′

=
[
E1 E2 E3

]T
, D′

=
[
D1 D2 D3

]T
.

S, d, η are the matrices of elastic compliance, piezoelectric strain constants and electric permittivities,
with C = S−1, e = d S−1, ε = η+ edT, where

S =



s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66


, dT

=



0 0 d31

0 0 d32

0 0 d33

0 d24 0
d15 0 0
0 0 0


, η =

η11 0 0
0 η22 0
0 0 η33

 .

Consider that the material axis x1 is spatially oriented at angles α with the reference axis x and β
with the xy-plane (Figure 1). The axis x2 is assumed to lie on the xy-plane. Thus the poling direction
x3 is at angle β with the reference axis z which is along the thickness direction. Using transformation
rules, σ, ε, E and D in the reference coordinate system (x, y, z) can be related to those in the material
coordinate system (x1, x2, x3) by

σ ′
= Tσ, ε′

= RT R−1ε, D′
= aD, E ′

= aE, (2)

where

σ=
[
σx σy σz τyz τzx τxy

]T
, ε=

[
εx εy εz γyz γzx γxy

]T
, E=

[
Ex Ey Ez

]T
, D=

[
Dx Dy Dz

]T
,

and the transformation matrices a, T and R are defined in the Appendix in terms of direction parameters
c = cosα, s = sinα, p = cosβ, and q = sinβ. Using the transformation rules in Equation (1), the
constitutive equations of a piezoelectric medium with arbitrary poling direction, with respect to reference
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axes x, y, z, are obtained as

ε = S̄ σ + d̄T E, D = d̄ σ + ε̄ E; σ = C̄ε− ēT E, D = ē ε+ η̄ E, (3)

where

S̄ = T TS T, d̄ = aTd T, ε̄ = aTε a, C̄ = T −1C (T −1)T, ē = aTe (T −1)T, η̄ = aTη a.

For structural applications as sensors and actuators, the electric field is generally applied in the thickness
direction z. Thus, for extension mode sensing/actuation mechanism, the poling direction x3 will be
along the z-axis, that is, β = 0 ⇒ p = 1, q = 0. For the shear mode case, the poling direction will be
perpendicular to the z-axis so that β = ±90◦

⇒ p = 0, q = ±1. Thus for extension and shear mode
actuation/sensing, pq = 0. For this case, Equation (3) assumes the following form

εx

εy

εz

γyz

γzx

γxy


=



s̄11 s̄12 s̄13 0 0 s̄16

s̄12 s̄22 s̄23 0 0 s̄26

s̄13 s̄23 s̄33 0 0 s̄36

0 0 0 s̄44 s̄45 0
0 0 0 s̄45 s̄55 0

s̄16 s̄26 s̄36 0 0 s̄66





σx

σy

σz

τyz

τzx

τxy


+



d̄11 d̄21 d̄31

d̄12 d̄22 d̄32

d̄13 d̄23 d̄33

d̄14 d̄24 d̄34

d̄15 d̄25 d̄35

d̄16 d̄26 d̄36


Ex

Ey

Ez

 ,

Dx

Dy

Dz

=

d̄11 d̄12 d̄13 d̄14 d̄15 d̄16

d̄21 d̄22 d̄23 d̄24 d̄25 d̄26

d̄31 d̄32 d̄33 d̄34 d̄35 d̄36




σx

σy

σz

τyz

τzx

τxy


+

ε̄11 ε̄12 0
ε̄12 ε̄22 0
0 0 ε̄33

Ex

Ey

Ez

 .
(4)

For a beam of small width along the direction y, a state of plane stress (σy = τyz = τxy = 0) is assumed
as in [Robbins and Reddy 1991; Lee and Saravanos 1996; Plagianakos and Saravanos 2005]. We neglect
transverse normal stress σz , that is, σz ' 0. The axial and transverse displacements u, w and electric
potential φ are assumed to be independent of y. With these assumptions, Equation (4) reduces to

εx

γzx

Dx

Dz

=


s̄11 0 d̄11 d̄31

0 s̄55 d̄15 d̄35

d̄11 d̄15 ε̄11 0
d̄31 d̄35 0 ε̄33



σx

τzx

Ex

Ez

 . (5)

The explicit expressions of s̄i j , d̄i j and ε̄i j in terms their values in the material coordinate system are
given in the Appendix. Inversely, Equation (5) can be written as

σx

τzx

Dx

Dz

=


Q̂11 0 ē11 ê31

0 Q̂55 ê15 ê35

ê11 ê15 −η̂11 −η̂13

ê31 ê35 −η̂13 −η̂33



εx

γzx

−Ex

−Ez

 (6)
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with

η̂11 = ε̄11 − ê11d̄11 − ê15d̄15, η̂33 = ε̄33 − ê31d̄31 − ê35d̄35, η̂13 = −(ê31d̄11 + ê35d̄15),

Q̂11 = 1/s̄11, Q̂55 = 1/s̄55, ê11 = d̄11/s̄11, ê31 = d̄31/s̄11, ê15 = d̄15/s̄55, ê35 = d̄35/s̄55.
(7)

For infinite panels (infinite dimension along y direction), a state of plane strain exist, that is, εy =

γyz = γxy = 0. For this case, with the assumption of σz ' 0, the other components of Equation (3) can
be reduced to the same form as Equation (6) with the associated material constants defined as

η̂11 = η̄11 + ē2
13/c̄33, η̂33 = η̄33 + ē2

33/c̄33, η̂13 = ē13ē33/c̄33, Q̂11 = c̄11 − c̄2
13/c̄33,

Q̂55 = c̄55, ê11 = ē11 − c̄13ē13/c̄33, ê31 = ē31 − c̄13ē33/c̄33, ê15 = ē15, ê35 = ē35.
(8)

The expressions of c̄i j , ēi j and η̄i j are given in the Appendix. Thus, Equation (6) and the subsequent
development are valid for both plane stress (thin width) and plane strain (infinite panel) beams, with the
material constants to be calculated using Equations (7) and (8), respectively.

3. Potential and displacement field approximations

Consider a hybrid beam having any lay-up, whose thickness h and the number of layers L may vary
segment-wise due to the presence of piezoelectric patches, which can be either surface-bonded or em-
bedded; see Figure 2. The piezoelectric patches can have the poling direction parallel or normal to the
z-axis, depending on their use in extension or shear mode. The longitudinal and thickness axes are along
the x and z directions. The xy-plane is chosen to be the plane which is the midplane for most of the
length of the beam. Let the planes z = z0 and z = zL be the bottom and top surfaces of the beam, which

2
zp

    layer L Lzz       

                    

            

                 layer k0                         

          

                

 layer k

0 x         

       

                       

         
1
zp

                       0zz  

Segments:    

1

EAM piezoelectric patches 

�
 kz z

z

SAM piezoelectric patches 

lx  

h

x

Figure 2. Geometry of hybrid beam with EAM and SAM piezoelectric patches.
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may vary segment-wise. The z-coordinate of the bottom surface of the kth layer numbered from the
bottom is denoted as zk−1 and its material axis x1 has orientation angles αk and βk . The reference plane
z = 0 either passes through or is the bottom surface of the k0th layer. All the elastic and piezoelectric
layers are perfectly bonded. The beam is loaded transversely on the bottom and top with no variation
along the width b.

Two-dimensional coupled piezoelasticity solutions for piezoelectric beams/panels have revealed (see
Section 6) that the electric potential φ follows a nearly quadratic distribution across the thickness for the
extension mode [Dube et al. 1996] and a nearly cubic distribution with zero quadratic contribution for
the shear mode [Parashar et al. 2005]. To model according to these observations, the potential field at
time t is assumed as piecewise quadratic between nφ points at z = z j

φ across the thickness (Figure 3):

φ(x, z, t)=9
j
φ(z)φ

j (x, t)+9l
c(z)φ

l
c(x, t), (9)

where φ j (x, t) is the electric potential at z = z j
φ , φl

c(x, t) denotes the quadratic component of electric
potential at z = (zl

φ + zl+1
φ )/2, and the summation convention is used with the indices j and l taking

values j = 1, 2, . . . , nφ and l = 1, 2, . . . , nφ − 1. 9 j
φ(z) and 9l

c(z) are the piecewise linear and quadratic
functions, respectively, given by

9
j
φ(z)=


0, if z ≤ z j−1

φ or z ≥ z j+1
φ ,

(z − z j−1
φ )/(z j

φ − z j−1
φ ), if z j−1

φ < z < z j
φ,

(z j+1
φ − z)/(z j+1

φ − z j
φ), if z j

φ < z < z j+1
φ ,

9l
c(z)=

{
4(zl+1

φ − z)(z − zl
φ)/(z

l+1
φ − zl

φ)
2, if zl

φ ≤ z ≤ zl+1
φ ,

0, otherwise.

The surfaces of the piezoelectric sensor and actuator patches are always electroded with metallic coating,
which makes the surfaces equipotential. Thus, φ j should be taken as independent of x in a finite element

Figure 3. Approximation of φ along z-direction.
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covering the electroded patch. With this description, φ in the piezoelectric layer can be modeled by a
single layer discretization (nφ = 2) for the extension mode case and by a two-sublayer discretization
(nφ = 3) for the shear mode case. In the latter case, since the quadratic contribution in the variation of
φ is zero [Parashar et al. 2005], the mid-surface between the equipotential top and bottom surfaces will
also be equipotential and, hence the above discretization holds well.

Exact 2D piezoelasticity solutions for hybrid beams and panels [Kapuria et al. 1997] have revealed
that for moderately thick beams under electric field Ez the deflection w has significant variation across
the thickness of the piezoelectric layers due to the significant contribution of Ez (d̄33 effect) to εz , which
is much greater than the negligible contributions of the inplane electric field Ex and the stresses. Hence,
w is approximated by integrating the constitutive Equation (4) for εz by neglecting the contributions of
Ex and the stresses. It may be noted that the contribution of the inplane stresses to εz via Poisson’s effect
is neglected in most one-dimensional theories for elastic laminated beams, wherein w is approximated to
be constant across the thickness. Thus, integrating εz =w,z = s̄13σx + s̄23σy + d̄13 Ex + d̄33 Ez ' −d̄33φ,z

yields
w(x, z, t)= w0(x, t)− δ1

{
9̄

j
φ(z)φ

j (t)+ 9̄l
c(z)φ

l
c(t)

}
, (10)

where δ = 1 or 0 depending upon whether or not the nonuniformity terms are considered, and

9̄
j
φ(z)=

∫ z

0
d̄339

j
φ,z(z) dz, 9̄l

c =

∫ z

0
d̄339

l
c,z(z) dz.

A subscript comma denotes differentiation. The axial displacement u is assumed to follow a global third-
order variation with a layerwise linear variation across the thickness [Shu and Sun 1994; Kapuria et al.
2003]:

u(x, z, t)= uk(x, t)− zw0,x(x, t)+ zψk(x, t)+ z2ξ(x, t)+ z3η(x, t),

where uk and ψk denote the translation and shear rotation variables of the kth layer, representing the
layerwise linear variation, and ξ and η are the quadratic and cubic terms in z, representing the global
cubic variation across the entire laminate thickness. The 2L + 3 displacement variables uk , ψk , ξ , η and
w0 are expressed in terms of only three variables by imposing the 2(L − 1) conditions of continuity of
transverse shear stress τzx and u at the layer interfaces, and the two conditions of zero transverse shear
at the top and bottom surfaces. This gives

u(x, z, t)= u0(x, t)− zw0,x(x, t)+ Rk(z)ψ0(x, t), (11)

where u0 denotes the axial displacement of the reference (z = 0) plane and ψ0 is related to the shear
strain of the reference plane. Rk(z) is a layer-wise function of z for the kth layer given by

Rk(z)= R̂k
1 + z R̂k

2 + z2 R̂3 + z3 R̂4, (12)

where the coefficients R̂k
1 , R̂k

2 , R̂3 and R̂4 are dependent on the lay-up and the material properties of the
layers and are defined in the Appendix. Equation (11) for u can expressed as

u = f1(z)ū1, (13)

where
ū1 =

[
u0 −w0,x ψ0

]T
, f1(z)=

[
1 z Rk(z)

]
.
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Using Equations (9), (10) and (13), the strains and the electric fields can be expressed as

εx = u,x = f1(z)ε̄1, Ex = −φ,x = − f3(z)ε̄3,

γzx = u,z +w,x = f2(z)ε̄2, Ez = −φ,z = − f4(z)ε̄4,
(14)

with

ε̄1 = ū1,x =
[
u0,x −w0,xx ψ0,x

]T
, ε̄2 =

[
ψ0 −φl

c,x
]T
, ε̄3 = φl

c,x , ε̄4 =
[
φl

c φ j
]T
,

f2(z)=
[
Rk
,z(z) δ19̄

l
c(z)

]
, f3(z)=9l

c(z), f4(z)=

[
9l

c,z(z) 9
j
φ,z(z)

]
.

(15)

4. Variational principle for the coupled one-dimensional theory

Let p1
z , p2

z be the normal forces per unit area on the bottom and top surfaces of the beam in direction z.
Let there be distributed viscous resistance force with the distributed viscous damping coefficient c1 per
unit area per unit transverse velocity of the top surface of the beam. Using the notation

〈. . .〉 =

L∑
k=1

∫ z−

k

z+

k−1

(. . .)b dz

for integration across the thickness, the extended Hamilton’s principle [Tiersten 1969] for the beam
reduces to∫

x

[
〈ρk üδu + ρkẅδw+ σxδεx + τzxδγzx − DxδEx − DzδEz〉 − bp1

z δw(x, z0, t)

− b
{

p2
z − c1ẇ(x, zL , t)

}
δw(x, zL , t)+ bDz(x, z0, t)δφ1

− bDz(x, zL , t)δφnφ
]

dx

− 〈σxδu + τzxδw+ Dxδφ〉
∣∣
x = 0, (16)

for all δu0, δw0, δψ0, δφ
l
c, δφ

j , where ρk is the material mass density of the kth layer. It has been
observed elsewhere [Kapuria and Alam 2006] that the explicit contribution of electric potential terms
in w (see Equation (10)) to inertia and damping can be neglected to achieve computational efficiency
without sacrificing virtually any accuracy. Considering this, substituting the expressions (9), (10) and
(13) for φ,w and u and (14) for εx , γzx , Ex , Ez into Equation (16) yields∫

x

[
δūT

1 I ¨̄u1 + δw0 Î ẅ0 + δε̄T
1 F1 + δε̄T

2 F2 + δε̄T
3 F3 + δε̄T

4 F4 − (P2 + P̂2)δw0 − P j
φ δφ

j] dx

−
[
N̄xδū0 + V̄xδw̄0 − M̄xδw̄0,x + P̄xδψ̄0 + (H̄ j

− δ1V̄ j
φ )δφ̄

j
+ (H̄ l

c − δ1V̄ l
c )δφ̄

l
c
]∣∣

x = 0, (17)

where an over-bar on the stress and electric resultants and on u0, w0, ψ0, φ
j , φl

c means values at the ends.
In this equation, I and Î are the inertia terms defined by

I = 〈ρk f T
1 (z) f1(z)〉 =

I11 I12 I13

I12 I22 I23

I13 I23 I33

 , Î = 〈ρk
〉 = I11. (18)
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The stress resultants F1 of σx , F2, Vx , V j
φ , V l

c of τzx , and the electric displacement resultants F3, H j of
Dx and F4 of Dz are defined by

F1 =

Nx

Mx

Px

= 〈 f T
1 (z)σx 〉, F2 =

[
Qx

Q̄l
x

]
= 〈 f T

2 (z)τzx 〉, F3 = H l
c = 〈 f3(z)Dx 〉, (19)

F4 =

[
Gl

c
G j

]
= 〈 f T

4 (z)Dz〉, H j
= 〈9

j
φ(z)Dx 〉, Vx = 〈τzx 〉, V j

φ = 〈9̄
j
φ(z)τzx 〉, V l

c = 〈9̄l
c(z)τzx 〉. (20)

The mechanical load P2, electrical loads P j
φ and damping load P̂2 are defined as

P2 = b(p1
z + p2

z ), P j
φ = b

[
− p1

z 9̄
j
φ(z0)− p2

z 9̄
j
φ(zL)+ DzL δ jnφ − Dz0δ j1

]
, P̂2 = −ĉ1ẇ0,

where δi j is Kronecker’s delta, Dz0 = Dz(x, z0, t), DzL = Dz(x, zL , t) and ĉ1 = bc1.
Define generalized strains ε̄ and generalized stress resultants F̄ as

ε̄ =
[
ε̄T

1 ε̄T
2 ε̄T

3 ε̄T
4

]T
, F̄ =

[
FT

1 FT
2 FT

3 FT
4

]T
. (21)

Substituting the constitutive Equation (6) into Equation (19), the beam constitutive equation relating the
generalized beam stress resultants F̄ with the generalized strains ε̄ can be obtained as

F̄ = D̄ε̄, (22)

where

D̄ =


A 0 eT

1 eT
2

0 Ā eT
3 eT

4

e1 e3 −η1 −ηT
2

e2 e4 −η2 −η3

 , (23)

with

A = 〈Q̂11 f T
1 (z) f1(z)〉 =

A11 A12 A13

A12 A22 A23

A13 A32 A33

 , Ā = 〈Q̂55 f T
2 (z) f2(z)〉 =

[
Ā11 Āl ′

12

Āl
12 Āll ′

22

]
nφ×3

,

e1 = 〈ê11 f T
3 (z) f1(z)〉 =

[
e1l

1 e1l
2 e1l

3

]
(nφ−1)×3 , e2 = 〈ê31 f T

4 (z) f1(z)〉 =

[
e2l

11 e2l
12 e2l

13

e2 j
21 e2 j

22 e2 j
23

]
(2nφ−1)×3

,

e3 = 〈ê15 f T
3 (z) f2(z)〉 =

[
e3l

1 δ1e3ll ′
2

]
(nφ−1)×nφ

, e4 = 〈ê35 f T
4 (z) f2(z)〉 =

[
e4l

11 δ1e4ll ′
12

e4 j
21 δ1e4 jl ′

22

]
(2nφ−1)×nφ

,

η1 = 〈η̂11 f T
3 (z) f3(z)〉 =

[
ηll ′

1

]
(nφ−1)×(nφ−1)

, η2 = 〈η̂13 f T
4 (z) f3(z)〉 =

[
η2ll ′

1

η
2 jl ′

2

]
(2nφ−1)×(nφ−1)

,

η3 = 〈η̂33 f T
4 (z) f4(z)〉 =

[
η3ll ′

11 η
3l j ′

12

η
3 jl ′

12 η
3 j j ′

22

]
(2nφ−1)×(2nφ−1)

. (24)
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The indices l ′ and j ′ take values l ′ = 1, 2, . . . , nφ − 1 and j ′
= 1, 2, . . . , nφ like l and j , respectively.

Using Equations (21) and (22), the contribution T e of an element of length a to the integral in Equation
(17) can be expressed as

T e
=

∫ a

0

[
δūT Ī ¨̄u + δε̄T D̄ε̄− δūT fuφ + δūTC̄ ˙̄u

]
dx, (25)

where

ū =
[
ūT

1 w0 φ
j
]T

=
[
u0 −w0,x ψ0 w0 φ

j
]T
, (26)

Ī =

I 0 0
0 Î 0
0 0 0

 , C̄ =

0 0 0
0 ĉ1 0
0 0 0

 , fuφ =

[
0 P2 P j

φ

]T
. (27)

5. Finite element model

The highest derivatives of u0, ψ0, w0, φ
l
c and φ j appearing in the variational Equation (17) are u0,x , w0,xx ,

ψ0,x , φl
c,x and φ j . Accordingly, to meet the convergence requirement, the interpolation functions for

u0, w0,x , ψ0 and φl
c must be continuous at the element boundaries. These variables are interpolated

using two physical nodes as shown in Figure 4. The variable w0 is interpolated using the C1-continuous
cubic Hermitian function in terms of the nodal values of w0, w0,x , and u0, ψ0, φ

l
c are interpolated using

a C0-continuous linear Lagrangian function. Since ψ0 is a measure of shear strain at the reference plane
and not the rotation of the normal, a linear interpolation for ψ0 does not cause shear locking [Kapuria
and Alam 2006]. Thus, at the element level, each physical node will have four degrees of freedom,
u0, w0, w0,x , ψ0, for the displacements and (nφ − 1) degrees of freedom of φl

c for the electric potential.
As stated in Section 3, φ j is constant in an element. However, if a number of elements fall in the

same electroded surface, it would be necessary to impose the constraint of equality on the electric DOF
φ j of the elements on the same electroded surface. To avoid this task, the set of φ j of the equipotential
surfaces of piezoelectric patches in a beam section are associated with a separate electric node p, see
Figure 4, which can be connected to several elements. The electric node does not have any x-coordinate
unlike the physical nodes, and has nφ degrees of freedom. This concept not only eliminates the need
of imposing equality constraints on the electric DOF for equipotential condition, but also results in

l
c

x
w
w
u

1

1

1

1

1

0

,0

0

0

2

l
c

x
w
w
u

2

2

2

2

2

0

,0

0

0

a1 2

p j

- Physical nodes 
- Electric node 

              Degrees of freedom for the beam element    

Figure 4. Degrees of freedom for the beam element.
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significant reduction in the number electric DOF. Thus, denoting the values of an entity ( . ) at the physical
node i by ( . )i , the variables u0, ψ0, w0, φ

l
c are interpolated in an element of length a as

u0 = Nue
0, w0 = N̄we

0, ψ0 = Nψe
0 , φl

c = Nφl
c

e
, (28)

with

ue
0 =

[
u01 u02

]T
, we

0 =
[
w01 w0,x1 w02 w0,x2

]T
, ψe

0 =
[
ψ01 ψ02

]T
, φl

c
e
=

[
φl

c1
φl

c2

]T
,

N =
[
N1 N2

]
, N̄ =

[
N̄1 N̄2 N̄3 N̄4

]
, N1 = 1 − (x/a), N2 =

x
a
,

N̄1 = 1 −
3x2

a2 +
2x3

a3 , N̄2 = x −
2x2

a
+

x3

a2 , N̄3 =
3x2

a2 −
2x3

a3 , N̄4 = −
x2

a
+

x3

a2 .

Defining the element generalized displacement vector U e as U eT
= [ueT

0 weT
0 ψeT

0 φle
c

T
φ j

] and using
Equation (28), the generalized displacements ū and strains ε̄ defined in Equations (15), (21) and (26) can
be related to U e as

ū = N̂U e, ε̄ = B̂U e, (29)

where

N̂ =


N 0 0 0 0
0 −N̄,x 0 0 0
0 0 N 0 0
0 N̄ 0 0 0
0 0 0 0 1

 , B̂ =



N,x 0 0 0 0
0 −N̄,xx 0 0 0
0 0 N,x 0 0
0 0 N 0 0
0 0 0 −N,x 0
0 0 0 N,x 0
0 0 0 N 0
0 0 0 0 1


. (30)

Substituting the expressions for û and ε̂ from Equation (29) into Equation (25), T e can be expressed as

T e
=

∫ a

0
δU eT[

N̂ T Ī N̂ Ü e
+ N̂ TC̄ N̂U̇ e

+ B̂T D̄ B̂U e
− N̂ T fuφ

]
dx

= δU eT[
MeÜ e

+ CeU̇ e
+ K eU e

− Pe],
where Me,Ce and K e are the generalized element inertia, damping and stiffness matrices, and Pe is the
element load vector defined as

Me
=

∫ a

0
N̂ T Ī N̂ dx =

Me
uu 0 0

0 0 0
0 0 0

 , Ce
=

∫ a

0
N̂ TC̄ N̂ dx =

Ce
uu 0 0
0 0 0
0 0 0

 ,
K e

=

∫ a

0
B̂T D̄ B̂ dx =

K e
uu K e

ul K e
u j

K e
lu K e

ll K e
l j

K e
ju K e

jl K e
j j

 , Pe
=

∫ a

0
N̂ T fuφ dx =

Pe
u

0
Pe

j

 . (31)

The subscripts u, l and j correspond to the mechanical displacement variables, φl
c and φ j , respectively.

The elements of the submatrices in Equation (31) are listed in the Appendix. The elements of the same
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electroded surface are connected to one electric node having a global degree of freedom number for the
potential φ j of the equipotential surface at z = z j

φ . The node numbers of the two physical nodes and the
electric node of each element are stored in the element connectivity matrix. The element matrices are
then assembled using the standard assembly procedure, by storing the global DOF numbers of all element
DOF in an index matrix, and placing the elements of the element matrix in the appropriate locations of
the global matrix, according to the global DOF numbers [Chandrupatla and Belegundu 2002]. Summing
up contributions of all elements to the integral in Equation (17), the system equation can be obtained as

MÜ + CU̇ + KU = P, (32)

in which M,C, K are assembled from the element matrices Me,Ce, K e and U, P are the assembled
counterparts of U e, Pe.

At the actuated surfaces (closed circuit condition), electric potentials have known prescribed values.
At the sensory surfaces under open circuit condition, the electric loads are known (zero electric charge,
that is,

∫ ae
0 bDz dx = 0, ae being the length of the electrode), but the electric potentials are unknown.

The system vector U is partitioned into vectors of mechanical displacements Ū , unknown output voltages
8s and known input actuation voltages 8a . Thus, Equation (32) can be partitioned and arranged as

Muu 0 0
0 0 0
0 0 0


 ¨̄U
8̈s

8̈a

+

Cuu 0 0
0 0 0
0 0 0


 ˙̄U
8̇s

8̇a

+

K uu K us K ua

K su K ss K sa

K au K as K aa

 Ū
8s

8a

=

 P̄
Qs

Qa

 . (33)

Equation (33) yields the output potentials as

8s = −(K ss)−1[K suŪ + K sa8a − Qs
]
. (34)

Substitution of Equation (34) into Equation (33) yields

Muu ¨̄U +Cuu ˙̄U +
[
K uu

−K us(K ss)−1K su]Ū = P̄−K us(K ss)−1 Qs −
[
K ua

−K us(K ss)−1K sa]8a. (35)

For undamped free vibration, the damping matrix Cuu and the right-hand side vector of the above equation
are set to zero. The resulting generalized eigenvalue problem is solved using subspace iteration method
[Petyt 1990] to obtain the undamped natural frequencies ω and the mode shapes. For transient response,
Equation (35) can be solved using Newmark direct time integration method [Petyt 1990]. The advantage
of first partitioning the electric potential vector 8 into 8s and 8a , and then carrying out the condensation
as per Equations (34) and (35) is that it can model the response of the structure under any electric boundary
conditions, namely, in the active mode (closed circuit), the sensory mode (open circuit) and the combined
active-sensory mode (some electrodes in open circuit and some in closed circuit). In contrast, if the entire
electric potential vector 8 is condensed out as in [Tzou and Tseng 1990], the resulting free vibration
problem would give only the open circuit frequencies.
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Equation (17) indicates that the mechanical boundary conditions for simply-supported, clamped and
free ends are:

simply-supported Nx = 0, w0 = 0, Mx = 0, Px = 0,

clamped u0 = 0, w0 = 0, w0,x = 0, ψ0 = 0,

free Nx = 0, Vx = 0, Mx = 0, Px = 0.

6. Results and discussion

6.1. Validation. In order to validate the new FE formulation and the computer program developed, can-
tilever plane strain beams (a) and (b) made of aluminum substrate with surface-bonded and embedded
PZT-5H layers, respectively, are considered, which have been analyzed in [Zhang and Sun 1996; Ben-
jeddou et al. 1999]. The configurations and the dimensions of the beams are shown in Figure 5 and the
material properties are selected as in the references mentioned above:

(i) PZT-5H:

{c11, c22, c33, c12, c23, c31, c44, c55, c66} = {126, 126, 117, 79.5, 84.1, 84.1, 23, 23, 23.25} GPa,

{e31, e32, e33, e15, e24} = {−6.5,−6.5, 23.3, 17.0, 17.0} C/m2,

{η11, η22, η33} = {1.503, 1.503, 1.3} × 10−8 F/m, ρ = 7500 kg/m3
;
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Figure 5. Configurations of SAM and EAM beams.
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(ii) Al:

Y1 = Y2 = Y3 = Y = 70.3GPa, ν12 = ν23 = ν31 = ν = 0.345, ρ = 2710 kg/m3,

where Yi and νi j denote the Young’s moduli and Poisson’s ratios.

In beam (a) the piezoelectric layer embedded between the two aluminum layers is polarized along the
axial direction x (α = 0, β = −90◦), and hence an applied electric potential across its thickness gives rise
to shear mode actuation. For actuation, a voltage of 20 V is applied at the bottom surface of the actuator,
while its top surface is grounded. In beam (b) the surface-mounted PZT layers at the top and bottom
of the aluminum substrate are polarized along the thickness direction z, and hence an applied electric
potential across its thickness causes extension mode actuation. In this case a potential of -10 V is applied
at the top and bottom surfaces of the beam for actuation. Both the beams are modeled with 20 equal-size
elements to obtain converged results. The shear mode piezoelectric layer in beam (a) is divided into
two sublayers and those in beam (b) are modeled as one sublayer for the discretization of potential φ.
The present results for the deflection profile of the centerline (z = 0) are compared in Figure 6 with
the FE FSDT results of Benjeddou et al. [1999] for beam (a) and with the analytical FSDT solution of
Zhang and Sun [1996] for beam (b). It is found that the present results are in excellent agreement with the
reference results in both cases. The beams are also analyzed using the commercial FE software ABAQUS
employing eight-node plane strain element, CPE8RE, with a mesh of 20 (thickness)×50 (length). The
2D FE results are also plotted in Figure 6, which compare very well with the present results.

The present result for the tip deflection of the shear actuated beam (a) is compared in Table 1 with
other available results. While the present result and those obtained using a sandwich model using FSDT
for the core [Zhang and Sun 1996; Benjeddou et al. 1999] match closely with the 2D FE results of
ABAQUS, while those reported by Trindade and Benjeddou [2005] considering an improved sandwich
model with the core modeled with the TOT have considerable difference from the 2D results. This
difference between the FSDT and the TOT modeling of the core predicted by Trindade and Benjeddou
[2005] appears to be inconsistent, since the 2D FE solution does not involve any approximation on the
through-the-thickness variations of field variables and hence are accurate. The electric field Ez in the

x (m) x (m)

Figure 6. Central deflection of beams with shear and extension mode actuators under
potential load.
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Model w(l, 0) (µm) Ez (V/mm)

Present 0.1203 10
FSDT analytic [Zhang and Sun 1996] 0.1196 10
FSDT FE [Benjeddou et al. 1999] 0.1196 10
TSDT FE, φ linear [Trindade and Benjeddou 2005] 0.0999 –
TSDT FE, φ cubic [Trindade and Benjeddou 2005] 0.0879 6.94–16.11
ABAQUS 0.1180 10

Table 1. Tip deflection of SAM beam (a) under actuation potential of 20 V.

piezoelectric layer obtained from different models are also compared in Table 1. It is seen from the 2D
FE results that Ez is almost uniform across the thickness of the PZT layer and the same is predicted
by the present model. Trindade and Benjeddou [2005] have, however, reported a quadratic variation of
Ez across the thickness, which is attributed to the induced potential due to the direct piezoelectric effect.
This also seems incorrect, since the 2D results show no such trend. It may also be noted that while Zhang
and Sun [1996] and Benjeddou et al. [1999] have assumed a linear variation for the electric potential φ,
the present model with 2 sublayers in the PZT layer can capture the cubic variation of φ, and has still
predicted a practically linear variation of φ as in the 2D solution. The cubic component of φ induced to
the direct piezoelectric effect is predicted as 0.010 V only, which is very small compared to the applied
electric potential of 20 V.

Beams (a) and (b) are also analyzed for a uniform pressure load of p2
z = 1000 N/m2 with the surfaces

of the PZT layers kept at zero potential (closed circuit condition). The midsurface deflection obtained
from the present one-dimensional model is compared with 2D FE result of ABAQUS in Figure 7. The
two results are found to be in excellent agreement for both SAM and EAM beams.

No results for the free vibration response of the above beams have been reported in literature. To
validate the present model for the free vibration response, the present results for natural frequencies of
the first 7 modes (of which five are flexural modes and two are extension modes) are compared in Table 2

x (m) x (m)

Figure 7. Central deflection of beams with shear and extension mode actuators under
pressure load.
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Frequency, fn (Hz)

Beam Mode, n Type ABAQUS Present model (# of elts.)
(2D FE) 10 20 30

1 flexural 1414.6 1404.2 1403.6 1403.4
2 flexural 7796.2 7728.6 7693.5 7684.0
3 extension 12799 12251 12242 12240

(a) 4 flexural 18876 18757 18582 18537
5 flexural 31767 31693 31234 31125
6 extension 38057 37056 36801 36754
7 flexural 45598 45764 44815 44622

1 flexural 1370.8 1365.1 1364.5 1364.4
2 flexural 7475.6 7471.5 7439.6 7430.9
3 extension 12345 12292 12282 12280

(b) 4 flexural 17996 18053 17897 17855
5 flexural 30172 30381 29969 29868
6 extension 36752 37179 36922 36875
7 flexural 43207 43715 42870 42691

Table 2. Closed circuit natural frequencies of SAM beam (a) and EAM beam (b).

with the 2D FE results obtained using ABAQUS. The present results are obtained with 10, 20 and 30
equal-size elements to study the convergence. It is observed that very good convergence is achieved with
20 elements, and the present results are in excellent agreement with the 2D FE results with a maximum
error of 0.8% for the fundamental frequency and 2% for the higher mode frequencies up to the 7th mode
(5th flexural mode).

6.2. Bimorph EAM beam. A simply-supported plane-stress (thin width) bimorph extension mode actu-
ator beam (c) made of two layers of PZT-5H polarized along opposite transverse directions, see Figure
5, is analyzed for the following two load cases:

(1) Uniform potential φnφ = φ0 applied on the top surface with the bottom being grounded (φ1
= 0).

(2) Uniform pressure p2
z = −p0 applied on the top surface with φnφ = φ1

= 0 (closed circuit condition).

These results and all subsequent ones for beams (c) and (d) for the potential and pressure load cases are
nondimensionalized as:

1. w̄ = 10w/S2d0φ0, σ̄x = σx h/10Y0d0φ0, φ̄ = φ/φ0,

2. w̄ = wY0/ l S3 p0, σ̄x = σx/S2 p0, φ̄ = 100φY0d0/hS2 p0,

with Y0 = 60 GPa and d0 = 274.8 × 10−12 CN−1. S is the span-to-thickness ratio (l/h). Using symmetry
the half length of the beam is discretized with 20 equal-size elements and only one electric node is used
to model the closed circuit equipotential surfaces at the top and bottom. Each PZT layer is considered as
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Figure 8. Through-the-thickness distributions of w̄, σ̄x , φ̄ for bimorph EAM beam (c)
under potential load 1.

one sublayer for φ-discretization. It is pertinent to note here that the number of electric potential DOF
for the piezoelectric surfaces is only 3 in the present model using the electric node, which would have
been 63 if the traditional concept of nodal electric variables were used. For a 2D plate or shell problem
this reduction will be even more significant.

The present through-the-thickness distributions of deflection w̄, axial stress σ̄x and potential φ̄ are
compared in Figure 8 with the exact 2D solution of Kapuria et al. [1997] for the potential load of case (1).
In order to illustrate the effect of exclusion of the layerwise term in w in Equation (10), the present results
with δ1 = 0 are also presented in Figure 8. It is observed that under the potential load, the top and bottom
layers of the bimorph actuator undergo, respectively, expansion and contraction of their thickness, and
the resulting variation of w across the thickness is accurately predicted by the present model with δ1 = 1.
As expected, the model with δ1 = 0 is unable to predict this variation. The nonuniform variation of w is
more significant for the thick beam with S = 5 than the thinner one with S = 10. The present results for the
variations of σ̄x and φ̄ are indistinguishable from the 2D results. The deflection profile of the centerline
and the through-the-thickness distributions of σ̄x and φ̄ for the beam (c) under pressure load case (2)
are presented in Figure 9. The results are in excellent agreement with the exact 2D results. The present
model is able to accurately predict the quadratic variation of φ induced due to the direct piezoelectric
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Figure 9. Deflection profile and distributions of σ̄x and φ̄ for bimorph EAM beam (c)
under pressure load 2.

effect across the thickness. In earlier publications of Kapuria et al. [2003] it has been observed that, with
a sublayerwise linear approximation for the electric potential, a piezoelectric layer needs to be divided
into 4 sublayers to capture the quadratic variation of the induced potential accurately, and also to achieve
convergence in results. Thus, the number of electric variables with such an approximation would be 189
(= 9 × 21), which is reduced to 45 (= 2 × 21 + 3) in the present model.

6.3. Shear mode pointer. A cantilever plane-stress shear mode pointer beam (d), see Figure 5, of PZT-
5H with span-to-thickness ratio S = 10 is analyzed for an uniform pressure load of case (2), using the

Entity 2D FE
Present model

nφ = 3 nφ = 2

w̄(l, 0) −1.839 −1.833 −1.884
φ̄(0, z)|max 11.048 11.927 0.0
σ̄x(0, 0.5h) 2.772 2.618 3.049

Table 3. Effect of φ-discretization in shear pointer beam (d) under pressure load (S = 10).
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Figure 10. Deflection profile and distribution of φ̄ for shear pointer beam (d) under
pressure load 2.

present model and the 2D FE model with eight-node plane stress element, CPS8RE, in ABAQUS. For
the present model results are obtained considering 1 (nφ = 2) and 2 (nφ = 3) sublayers in the single-
layer beam for discretization of φ across the thickness. For the 2D FE model the beam is modeled with
1600 [100 (length) × 16 (thickness)] elements to obtain converged results. The deflection profile of the
centerline and the distributions of φ across the thickness at two locations at and near the clamped end
are plotted in Figure 10. The tip deflection and the maximum values of σ̄x and φ̄ are listed in Table 3. It
is revealed from the 2D FE results that the electric potential induced in the shear actuator due to direct
piezoelectric effect follows a cubic variation across the thickness, which is quite accurately predicted by
the present model with nφ = 3. It is also revealed that the quadratic component in the third-order variation
of φ is zero yielding zero potential at the midsurface. This fact justifies the use of two sublayers having
quadratic variation of φ across each sublayer and an equipotential surface at the midsurface to model
the cubic distribution of φ. With one sublayer (nφ = 2), however, the estimated induced potential is zero
as expected. Consequently, the deflection profile predicted by the present model with nφ = 3 matches
closely with the 2D FE results, whereas that with one sublayer (nφ = 2) is not as accurate. It can be seen
from Table 3 that σ̄x predicted with nφ = 2 is also less accurate than that with nφ = 3. The variation
φ across the thickness of the beam under the same pressure load, but with the top surface having 5
electrode segments under open circuit condition, is shown in Figure 11 for two locations, x = 0, l/2. The
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Figure 11. Distribution of φ̄ for shear pointer beam (d) under pressure load with open
circuit condition at top.

distribution is again cubic, the cubic component being larger than the linear component at the clamped
end. However, at the midspan the cubic component is much smaller than the linear one. It has been
observed that the distribution becomes almost linear near the free end. With nφ = 2, even though the
cubic variation is completely missed, the open circuit potential at the top surface is accurately predicted
at x = 0. However, it is not as accurately predicted at x = l/2.

6.4. Extension and shear mode sensors. The sensory response of an extension mode bimorph beam
(c) and a shear mode beam (d), both under cantilever boundary condition, is obtained for (i) an uniform
pressure load (UDL) p0 on the top and (ii) a concentrated load P = p0l/2 at the free end (tip load) for
thickness ratio S = 10. The top surface is in open circuit condition while the bottom surface is grounded.
Both beams are modeled with 20 equal-size elements. In order to illustrate the effect of segmentation
of the electroded sensor surface, results are obtained with the beam surfaces divided into 1, 2, 5, 10 and
20 electroded patches. This is modeled by assigning an electric node to each electroded patch pair. The
variation of the sensory potential induced at the top surface for the two load cases is plotted in Figures 12

x/ l x/ l

Figure 12. Sensory potential for varying number of electrodes for cantilever EAM beam (c).
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x/ l x/ l

Figure 13. Sensory potential for varying number of electrodes for cantilever SAM beam (d).

and 13, respectively. It is observed that for the extension mode sensor (c), the sensory potential of the
electrodes follows a step-wise quadratic variation for the UDL and a step-wise linear variation for the
tip load, since it is related to the induced bending moment (axial stress). For the shear mode sensor (d),
however, the sensory potential of the electrodes follows a stepwise linear variation for the UDL and an
uniform variation for the tip load (except near the clamped end, which is believed to be due to boundary
effect). This is because the sensory potential in shear mode is proportional to the induced shear. Thus,
the sensory potential is independent of the electrode location, as long as the applied load causes constant
transverse shear (as for tip load), but varies with the electrode location if the transverse shear changes
(as for the UDL).

It is apparent from Figures 12 and 13 that the potential induced in a larger electrode is approximately
equal to the area average of the potentials induced when it is divided into smaller segments. The tip de-
flection w and the maximum sensory potential φ induced for varying number of electrodes are presented
in Tables 4 and 5 for beams (c) and (d), respectively. For comparison, the deflection for the closed circuit
condition of the top surface (with zero potential) is also listed in these tables. It is revealed that the tip
deflections of beam (c) with 1 and 20 electrodes differ by 4% and 3% for the UDL and the tip load,
respectively. For the shear mode beam (d), however, the tip deflection is independent of the number of
electrodes. It is also observed that, for the extension mode beam, the closed circuit deflection differs
from the open circuit deflection with 20 electrodes by about 12.5% for both the load cases. For the shear

Number of electrodes
Load case Entity

1 2 5 10 20
Closed circuit

UDL
w̄(l, 0) −1.3422 −1.3021 −1.2910 −1.2894 −1.2890 −1.4516
φ̄(0.5h)|max 7.6158 13.195 18.315 20.297 21.277 0

Tip load
w̄(l, 0) −1.7703 −1.7302 −1.7192 −1.7174 −1.7170 −1.9308
φ̄(0.5h)|max 11.169 16.750 20.093 21.196 21.714 0

Table 4. Effect of number of electrodes on w̄ and φ̄ for cantilever EAM sensory beam
(c) (S = 10).
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Number of electrodes
Load case Entity

1 2 5 10 20
Closed circuit

UDL
w̄(l, 0) −1.8271 −1.8272 −1.8272 −1.8272 −1.8271 −1.8330
φ̄(0.5h)|max −2.3296 −3.4588 −3.8508 −4.2304 −4.5151 0

Tip load
w̄(l, 0) −2.4492 −2.4492 −2.4492 −2.4491 −2.4491 −2.4552
φ̄(0.5h)|max −2.3667 −2.4526 −2.4517 −2.4517 −2.4511 0

Table 5. Effect of number of electrodes on w̄ and φ̄ for cantilever SAM sensory beam
(d) (S = 10).

mode beam, this difference is negligible (0.25–0.3%). The induced sensory potential in the shear mode
case is 21 and 11% of the extension mode sensory potential for the UDL and the tip load, respectively.

The undamped natural frequencies of the cantilever sensory EAM beam (c) and SAM beam (d) when
the beam surfaces are segmented in to 1, 2, 5, 10 and 20 electroded patches are presented in Table 6 for
five modes. All the electrode segments are in open circuit condition. The frequency of the nth mode
is nondimensionalized as ω̄n = ωnl S(ρ0/Y0)

1/2 where ρ0 = 7500 kg/m3. For comparison, ω̄n of the
beams with their top surface being under closed circuit condition is also listed in Table 6. It can be seen
from Equation (35) that the effective stiffness matrix gets modified by the electromechanical stiffness
corresponding to the open circuit potentials 8s . Physically, it occurs since a part of the mechanical
energy is converted into electric energy through the induced electric potential and results in an increase
in the effective stiffness. Thus, the open circuit frequencies are higher than the closed circuit ones, as
can be seen from Table 6. Since the degree of constraint of equipotential condition over the electroded
surface changes with the number electrode segments, the latter modifies the electromechanical stiffness
and consequently the natural frequencies. It is observed that the natural frequencies of the bimorph EAM

Open circuit (# of electrodes) Closed Combined
Beam Entity 1 2 5 10 20 circuit open-closed

ω̄1 5.3281 5.4224 5.4489 5.4529 5.4538 5.1446 5.4367
ω̄2 31.209 31.383 32.372 32.527 32.562 30.858 31.761

(c) ω̄3 81.605 83.243 84.478 85.103 85.169 81.292 83.093
ω̄4 83.781 84.799 85.103 85.158 85.297 83.781 85.169
ω̄5 148.09 148.41 150.81 153.59 154.14 147.80 150.63

ω̄1 4.5865 4.5871 4.5875 4.5876 4.5877 4.5792 4.5855
ω̄2 27.633 27.882 27.913 27.924 27.930 27.593 27.873

(d) ω̄3 71.055 71.055 71.055 71.055 71.055 71.055 71.055
ω̄4 73.214 73.298 74.697 74.967 75.033 73.137 74.446
ω̄5 134.03 134.09 138.51 139.11 139.43 133.88 137.34

Table 6. Effect of number of electrodes on ω̄n for cantilever EAM and SAM beams (S = 10).
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beam with 1 and 20 electrodes differ by 2 and 4% for the first and the fifth modes, respectively. For the
SAM beam, the open circuit natural frequencies are little sensitive to the number of electrodes for the
first four modes. For the fifth mode, however, the difference between the frequencies of the beam with
1 and 20 electrodes is 4%, similar to the EAM beam. The open circuit frequencies with 20 electrodes
differ from the respective closed circuit frequencies by 6 and 4% for the first and fifth modes, for the
EAM beam. The corresponding differences for the SAM beam are 0.3 and 4%. For the EAM beam, the
lower mode frequencies are generally more sensitive to the electric boundary conditions than the higher
mode ones. The reverse is true for the SAM beam. The case of combined open-closed condition with 10
electrodes from the clamped end being under open circuit condition and the remaining 10 under closed
circuit condition is also analyzed and the corresponding natural frequencies are presented in the above
table. It is observed that the frequencies for this combined case lie in between the corresponding closed
circuit and open circuit frequencies (with 20 electrodes).

6.5. Hybrid SAM-EAM composite beam. A thin width (plane stress) composite beam (e) with an EAM
piezoelectric patch of PZT-5H bonded at the top surface and a SAM patch embedded between two
graphite-epoxy composite faces, see Figure 5, is considered next. The beam has a foam core of the same
thickness as the SAM patch at the portion where the patch is not present. The material properties of the
graphite epoxy and the foam are selected as [Benjeddou et al. 2000; Kapuria and Alam 2006]:

(i) Graphite epoxy:

{Y1, Y2, Y3,G12,G23,G31} = {181, 10.3, 10.3, 7.17, 2.87, 7.17} GPa,

{ν12, ν13, ν23} = {0.28, 0.28, 0.33}, ρ = 1578 kg/m3

(ii) Foam:
{Y,G} = {35.3, 12.76} GPa, ρ = 32 kg/m3.

The length of both the PZT patches is taken as lp = 0.2l. The beam is modeled with 50 equal-size
elements to obtain converged results. The surfaces of the piezoelectric patches are electroded. Thus all
the elements under a patch are connected to one electric node. The beam is analyzed for the following
two load cases:

(1) Actuation potential φ0 on the top surface of the EAM or SAM patch with the other piezoelectric
surfaces grounded.

(2) Uniform pressure p0 applied on the top surface over a length of l/25 from the free end. For this
load case, the top surface of either EAM or SAM patch is under open circuit condition, while the
other piezoelectric surfaces are grounded.

The static results for the two load cases and the natural frequencies are nondimensionalized as

(1) w̄ = 10w/S2d0φ0, σ̄x = σx h/10Y0d0φ0,

(2) φ̄ = 104φY0d0/hS2 p0, ω̄n = ωnl S(ρ0/Y0)
1/2,

with Y0 = 6.9 GPa, d0 = 274.8 × 10−12 CN−1 and ρ0 = 1000 kg/m3.
In order to illustrate the effect of location x p of the EAM and SAM actuators on their actuation

capability, one of the actuators (EAM or SAM) is actuated with electric potential of load case 1 and its
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Potential load Pressure load
EAM SAM EAM SAM

x p/ l w̄(l, 0) σ̄
p
x (x p, 0.5h+) σ̄ e

x (x p, 0.5h−) w̄(l, 0) σ̄
p
x (x ′

p, 0.05h−) σ̄ e
x (x

′
p,−0.5h) φ̄(0.6h) φ̄(0.05h)

0.1 −5.012 −6.881 3.970 −1.358 0.6902 −1.167 −1.899 −0.1381
0.3 −3.982 −6.864 4.053 −1.496 0.2748 −1.303 −1.496 −0.1953
0.5 −2.821 −6.863 4.055 −1.122 0.2748 −1.303 −1.046 −0.1953
0.7 −1.693 −6.863 4.055 −0.7474 0.2748 −1.303 −0.6101 −0.1953
0.9 −0.5598 −6.863 4.057 −0.3718 0.2748 −1.303 −0.1802 −0.1851

Table 7. Effect of actuator/sensor location on the response of hybrid beam (e) (S = 20).
Here, x ′

p = x p − 0.5lp, x p denotes xe for EAM and xs for SAM.

location is varied from the clamped end (x p = 0.1l) to the free end (x p = 0.9l), while the unactuated
patch is kept fixed at the clamped end. x p refers to xe for the EAM and xs for the SAM, see Figure 5.
The tip deflection w̄, axial stress σ̄ e

x in the elastic substrate and σ̄ p
x in the actuated piezoelectric patch

are presented in Table 7 for the beam with S = 20 for both EAM and SAM actuation cases for five
different actuator locations. The tip deflection is also plotted against the actuator location in Figure 14.
It is observed that the EAM actuator is most effective inducing the maximum deflection, when placed at
the clamped end. The SAM actuator develops the maximum tip deflection when it is placed at a clear
distance of 0.1l from the clamped end (x p = 0.2l).

This observation is in line with the results of Sun and Zhang [1995] obtained for Al/PZT-5H beams,
through 2D FE analysis. It, however, does not support the conclusion made by Raja et al. [2004] based
on the three-layer sandwich model that the shear actuator for a cantilever beam is most effective if it is
placed at the center of the beam. It is revealed from Table 7 that even though the maximum tip deflection
developed by shear actuator is 36% of that produced by the extension mode actuator, the maximum stress
σ̄

p
x induced in the actuator for the SAM is only 10% of that for the EAM. Also, the maximum value of
σ̄ e

x induced in the elastic substrate for SAM is 29% of that for EAM. Thus, for the same stress level in

Figure 14. Variation of tip deflection and natural frequency of hybrid beam (e) with
actuator/sensor location.
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Figure 15. Variation of tip deflection with actuator thickness for actuation with constant
energy for hybrid beam (e).

the actuator (which is often the governing criteria), the SAM actuator can develop more tip deflection
than the EAM actuator. This is an attractive feature of the SAM actuators, which can be useful in many
control applications.

The sensory potential developed when the beam is subjected to mechanical load of case (2) is also
presented in Table 7 for different locations of the SAM and EAM sensors. It is revealed that for the
extension mode, the sensor is most effective when placed at the clamped end like the actuator. For the
shear mode, however, the sensory potential for this tip loading case is independent of the location beyond
a small distance from the the clamped end. As explained earlier, this is because the sensory potential is
related to the induced shear which is constant in the region 0 ≤ x ≤ 0.96l, for the present loading.

The variation of the fundamental frequency ω̄1 of the hybrid beam (e) with the location of the EAM
and SAM sensors is plotted in Figure 14. As expected, the frequency of the beam reduces as the sensor
is moved from the clamped to the free end. This reduction is more for the surface mounted patch than
the embedded one.

6.6. Effect of actuator thickness on actuation capability. Here the entities are nondimensionalized as
w∗

= 1000w/h, φ∗
= φd0/h. The energy required to develop a potential difference φ∗

0 across an actuator
of thickness ha for the beam (e) with thickness of the composite substrate being hs is proportional to
Ev = φ∗

0
2/(ha/hs). To illustrate the effect of actuator thickness on its effectiveness, the actuator potential

is varied for varying ha such that Ev is constant (= 10−11). The induced deflection w∗ is plotted as a
function ha/hs in Figure 15 for both SAM and EAM actuators. It is observed that in both cases, the
actuation authority increases with the increase in ha/hs . However, the rate of increase in w∗ reduces
with the increase in ha/hs .

7. Conclusions

The new unified formulation based on the efficient layerwise approximations for the displacement field
and sublayerwise quadratic approximation for the electric potential can model actuators, sensors and
hybrid adaptive beams with surface-mounted and embedded actuator/sensor patches in extension or shear
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mode. The numerical results show that the model accurately predicts the nonuniform variation of w
across the thickness in presence of electric field, and also the quadratic and cubic variations of electric
potential in the extension and shear modes, respectively, as observed from 2D piezoelasticity solutions.
The concept of electric node results in significant reduction in the number of electric DOF.

It is revealed that while for the extension mode sensor, the sensory potential is dependent on the sensor
location unless the loading causes a constant bending moment, the sensory potential in shear mode does
not change with the location, if the loading causes constant shear. For extension mode sensors, the
number of segments in the electroded surface can have appreciable effect on the deflection and natural
frequencies. However, for the shear mode sensors, the deflection and lower mode natural frequencies are
independent of the segmentation of the electrode. An extension actuator yields maximum tip deflection
in a cantilever adaptive beam when it is placed at the clamped end, whereas a shear actuator should be
placed at a distance of l/10 from the clamped end to develop the maximum tip deflection. The ability of
an actuator in inducing deflection for a given energy increases with its thickness for both extension and
shear mode actuation.

Appendix

The transformation matrices a, T and R in Equation (2) are given by

R =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


, T =



c2 p2 s2 p2 q2 2spq 2cpq 2csp2

s2 c2 0 0 0 −2cs
c2q2 s2q2 p2

−2spq −2cpq 2csq2

csq −csq 0 cp −sp −(c2
− s2)q

−c2 pq −s2 pq pq s(p2
− q2) c(p2

− q2) −2cspq
−csp csp 0 cq −sq (c2

− s2)p


,

a =

 cq sp q
−s c 0
−cp −sq p

 ,
where c = cosα, s = sinα, p = cosβ, and q = sinβ. The expressions of s̄i j , d̄i j and ε̄i j in Equation (5)
are given, for the case pq = 0, by

s̄11 = c4 p4s11 + c2s2 p2(2s12 + s66)+ s4s22 + c2s2q2(2s23 + s44)+ c4q4s33,

s̄55 = s2 p2s44 + c2(p4
+ q4)s55 + s2q2s66,

d̄11 = −cq[s2(d32 + d24)+ c2q2d33], d̄35 = −cq3d15,

d̄31 = p(c2 p2d31 + s2d32), d̄15 = p(c2 p2d15 + s2d24),

ε̄11 = c2 p2ε11 + s2ε22 + c2q2ε33, ε̄33 = q2ε11 + p2ε33.
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The expressions of c̄i j , ēi j and η̄i j in Equation (8) are given, for the case pq = 0, by

c̄11 = c4 p4c11 + 2c2s2 p2(c12 + 2c66)+ s4c22 + 2c2s2q2(c23 + 2c44)+ c4q4c33,

c̄13 = s2 p2c23 + c2(p4
+ q4)c13 + s2q2c12, c̄33 = q4c11 + p4c33,

c̄55 = s2 p2c44 + c2(p4
+ q4)c55 + s2q2c66,

ē11 = −cq[s2(e32 + 2e24)+ c2q2e33], ē35 = −cq3e15,

ē31 = p(c2 p2e31 + s2e32), ē15 = p(c2 p2e15 + s2e24),

η̄11 = c2 p2η11 + s2η22 + c2q2η33, η̄33 = q2η11 + p2η33.

The hatted R-coefficients in Equation (12) are defined as {R̂k
1, R̂k

2, R̂3, R̂4} = {Rk
1, Rk

2, R3, R4}/Rk0
2 with

Rk
1 = R̄k

2 − R̄k0
2 , Rk

2 = ak
1 R3 + ak

2 R4, R3 =
4C L

2

1
, R4 = −

4C L
1

31
, R̄k

2 =

k∑
i=2

zi−1(Ri−1
2 − Ri

2),

ak
1 = 2

(
Ck

1/Q̂k
55 − zk

)
, ak

2 = 3
(
2Ck

2/Q̂k
55 − z2

k
)
, 1= 4z2

0C L
1 − 8z0C L

2 ,

Ck
1 =

k∑
i=1

Q̂i
55(zi − zi−1), Ck

2 =
1
2

k∑
i=1

Q̂i
55
(
z2

i − z2
i−1
)
.

Using Equations (18), (23), (24), (27), (29) and (30), the elements of the submatrices of Me, Ce and K e

defined in Equation (31) are obtained by exact integration as

Me
uu =

 I11c1 −I12c2 I13c1

I22c3 + I11c4 −I23cT
2

symm. I33c1

 , Ce
uu =

 0 0 0
ĉ1c4 0

symm. 0

 ,

K e
uu =

 A11c5 −A12c6 A13c5

A22c7 −A23cT
6

symm. A33c5 + Ā11c1

 , K e
ul =

 e1l ′
1 c5 + e2l ′

11 c8

−
(
e1l ′

2 cT
6 + e2l ′

12 c10
)

e1l ′
3 c5 + e2l ′

13 c8 +
(
e3l ′

1 − Āl ′
12

)
cT

8 + e4l ′
11 c1

 ,

K e
u j =


e2 j ′

21 c9

−e2 j ′

22 c11

e2 j ′

23 c9 + e4 j ′

21 c12

 , K e
l j =

[
−
(
δ1e4l j ′

22 + η
2l j ′

2

)
c9 − η

3l j ′

12 c12

]
,

K e
ll =

[(
Āll ′

22 − 2δ1e3ll ′
2 − ηll ′

1

)
c5 −

(
δ1e4ll ′

12 + η2ll ′
1

)(
c8 + cT

8

)
− η3ll ′

11 c1
]
,

K e
j j =

[
−η

3 j j ′

22 a
]
,
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where ci are given by

c1 =

∫ a

0
N T N dx =

a
3

[
1 1/2

1/2 1

]
,

c2 =

∫ a

0
N T N̄,x dx =

1
2

[
−1 a/6 1 −a/6
−1 −a/6 1 a/6

]
,

c3 =

∫ a

0
N̄ T
,x N̄,x dx =


6/5a 1/10 −6/5a 1/10
1/10 2a/15 −1/10 −a/30

−6/5a −1/10 6/5a −1/10
1/10 −a/30 −1/10 2a/15

 ,

c4 =

∫ a

0
N̄ T N̄ dx =


13a/35 11a2/210 9a/70 −13a2/420

11a2/210 a3/105 13a2/420 −a3/140
9a/70 13a2/420 13a/35 −11a2/210

−13a2/420 −a3/140 −11a2/210 a3/105

 ,

c5 =

∫ a

0
N T
,x N,x dx =

1
a

[
1 −1

−1 1

]
,

c6 =

∫ a

0
N T
,x N̄,xx dx =

1
a

[
0 1 0 −1
0 −1 0 1

]
,

c7 =

∫ a

0
N̄ T
,xx N̄,xx dx =


12/a3 6/a2

−12/a3 6/a2

6/a2 4/a −6/a2 2/a
−12/a3

−6/a2 12/a3
−6/a2

6/a2 2/a −6/a2 4/a

 ,

c8 =

∫ a

0
N T
,x N dx =

1
2

[
−1 −1

1 1

]
,

c9 =

∫ a

0
N T
,x dx =

[
−1

1

]
,

c10 =

∫ a

0
N̄ T
,xx N dx =


−1/a 1/a
−1 0
1/a −1/a

0 1

 ,
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c11 =

∫ a

0
N̄ T
,xx dx =


0

−1
0
1

 ,

c12 =

∫ a

0
N T dx =

a
2

[
1
1

]
.

Considering that the loading terms p1
z , p2

z , Dz0, DzL vary linearly over the length of the element with
nodal values

p1e
z , p2e

z , De
z0
, De

zL

via the relation pi
z = N pie

z , Dzi = N De
zi

, the elements of Pe
u and Pe

j in Equation (31) are obtained as

Pe
u =

 0
c13 pe

z
0

 , Pe
j =

[
bcT

12 p je
φ

]
,

where

c13 = b
∫ a

0
N̄ T N dx =

b
10


7a/2 3a/2
a2/2 a2/3
3a/2 7a/2

−a2/3 −a2/2

 ,
pe

z = p1e
z + p2e

z ,

p je
φ = −δ1

[
p1e

z 9̄
j
φ(z0)+ p2e

z 9̄
j
φ(zL)

]
− De

z0
δ j1 + De

zL
δ jnφ .
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A COMPARISON OF OPEN CELL AND CLOSED CELL PROPERTIES FOR
LOW-DENSITY MATERIALS

RICHARD M. CHRISTENSEN

The stiffness and strength properties for open cell and closed cell low-density materials are collected
and compared. These are the theoretical predictions for the Kelvin cell type and the oct-tet cell type of
open cell forms and of the closed cell form from the generalized self-consistent method. The strength
properties considered are those for plastic collapse and elastic instability, under both uniaxial stress and
dilatational stress conditions.

1. Introduction and conditions of comparison

Low-density materials (LDM) have come into widespread usage. The properties and practice for mate-
rials with two-dimensional microstructures such as honeycomb forms, and other forms are well covered
and well understood. [Gibson and Ashby 1997] is standard reading on the topic and there have been
many review articles, such as that by Christensen [2000]. The situation with low-density materials
having three-dimensional microstructures is more complex. They are widely used, but they are less
well understood than the two-dimensional cases, partly because of the much more complex microscale
geometry. The complications that arise in the three-dimensional case are immediately apparent when
one considers whether to focus upon closed cell or open cell forms. This divergence does not even arise
in the two-dimensional case. For this reason two-dimensional results are almost useless in projecting
what three-dimensional behaviors may involve.

Until rather recently there did not appear to be enough information available to conduct an in-depth
comparison of open cell and closed cell forms. Essentially the missing piece was that of the work of
Deshpande et al. [2001] on a particular type of open cell form. To describe this further requires an
understanding of the two basic types of microstructures for the various open cell forms. These are most
easily illustrated by the corresponding two-dimensional cases. If a honeycomb form is deformed in any
state except dilatation, its material members resist the deformation by means of a bending mechanism.
Alternatively, if a two-dimensional LDM is composed of equilateral triangular cells its material members
resist deformation by an axial or direct or stretching mechanism. The same situation exists in three dimen-
sions, different microstructures resist deformation by either a direct or a bending mechanism. However,
nearly all of the attention has been focused upon three-dimensional LDM’s having only the bending
mechanism. The work of Deshpande et al. [2001] convincingly detailed a microstructure which involves
only the direct mechanism. In the work to be given here, two fundamental microstructures will be taken

Keywords: low density materials, open cell, closed cell.
This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-Eng-48. This work was partially sponsored by the Office of Naval
Research (Dr. Y. D. S. Rajapakse, Program Director).
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for the open cell case, one involving the bending mechanism and one involving the direct mechanism.
These will be compared with each other as well as with a closed cell type microstructure.

Although one could in principle compare experimental data for open cell and closed cell forms, in
practice this is difficult to do. Rarely are open cell and closed cell samples available at exactly the same
volume fraction of voids and for the exact same constituent materials. Furthermore even when they are
at least approximately the same, the experimental scatter and uncertainty renders comparisons difficult.
Instead, theoretical predictions of properties will be given here for the three idealized microstructures,
thus precise control will be exercised over the morphological forms being compared. It is well understood
that imperfections are very important as they can reduce performance levels significantly. Nevertheless
the ideal forms considered here will bring out strong differences in a relative sense between the mi-
crostructures.

The present considerations will be restricted to the very low-density range. The volume fraction of
material will be taken to be much less than 0.1. In effect, this will involve retaining the first term in
an expansion in terms of powers of the volume fraction of the material. For larger volume fractions,
the differences between open cell and closed cell forms become blurred and they merely become ones
of many different possible forms for porous materials wherein rather convoluted surface morphologies
become possible.

2. Stiffness and strength properties

The three LDM cellular microstructures to be studied here are now prescribed. The two open cell forms
are the Kelvin cell and the oct-tet cell. The closed cell form is that from the generalized self-consistent
method (GSCM).

The Kelvin cell is obtained by starting with an octahedron, then cutting off the six corners such that
the truncated octahedron is composed of six squares and eight hexagons. The resulting forms can then
be perfectly packed into a space filling periodic structure having cubic symmetry. It was Kelvin who first
understood the space-filling attribute of this simple cell. The resulting Kelvin cell is shown in Figure 1.
For application to LDM’s the edges of the cells are taken to be material members.

The oct-tet form was patented by Fuller [1961] and was extensively studied by Deshpande et al. [2001]
as an LDM. The cellular form can be thought of as due to the three-dimensional packing of tetrahedrons
with the octahedrons existing as the spaces left over from the necessarily imperfect packing of the tetra-
hedrons. The resulting microstructure is interpreted as an LDM by taking the edges of the tetrahedrons
(and octahedrons) as material members. The resulting form has face centered cubic symmetry and is
as shown in Figure 2. Material members connect the corners and face centers in the manner shown for
the three front faces. Christensen [2004] described this three-dimensional cellular form as being the
three-dimensional analog of the classical two-dimensional truss system.

For application to closed cell forms, the GSCM model is as shown in Figure 3. A thin spherical
shell of the material is embedded in a continuous medium having the as yet unknown properties of the
composite form. This model was developed by Christensen and Lo [1979] for applications to general
composite material systems. The specialization of the general model to the case of the inclusion phase
as voids and the material in the low volume fraction range gives the LDM model of interest here, for the
effective stiffness properties.
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Figure 1. Open cell, Kelvin form, truncated octahedron.

The Kelvin cell has four material members meeting at a node, whereas the oct-tet cell has twelve
material members meeting at a node. For the oct-tet cell the resistance to deformation is supplied by
the direct mechanism in all possible deformation states. In the Kelvin cell a dilatational deformation is
resisted by the direct mechanism of the material members, but all other deformation modes are resisted
by the bending mechanism. In these cases of the bending mechanism being operative, the torsion of
the material members also must be included. The two open cell forms thus employ fundamentally
different mechanisms of material resistance. Also, these two cellular forms are of cubic symmetry and
the properties will be stated in cubic symmetry form. The GSCM closed cell form is isotropic. Many

Figure 2. Open cell, oct-tet form.
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Spherical cell

Effective medium

Figure 3. Closed cell, GSCM model.

other cellular forms have been studied (see [Wicks and Hutchinson 2001; Gong et al. 2005; Gong and
Kyriakides 2005; Roberts and Garboczi 2001]) but the three forms considered here suffice to cover most
of the basic effects needed to compare open cell and closed cell forms.

For the two open cell forms the properties are sometimes stated in terms of (r/`) where r is the radius
of a circular material member and ` is its length. However, for present purposes of comparing different
microstructures it is necessary to use the volume fraction of material, cm , as the basis of comparison.
Various powers of cm will be found to enter the properties, such as cm , c2

m , etc. Since cm � 0.1 in
the LDM range the different powers of cm will project very different properties, sometimes different by
orders of magnitude. All results to be given here will be for material members having cross sections of
solid, circular form in the open cell cases.

A table has been constructed of all the major stiffness and strength properties for all three forms of
LDM’s. The properties information is in Table 1, and is obtained directly from the references as noted.
It should be recognized that many of these results required major expenditures of effort in their original
derivations, and as such represent a considerable resource. The first four entries in Table 1 are for the
usual stiffness properties and Poisson’s ratio of the effective medium. Em and υm are the properties
of the composing material. The two plastic collapse entries are for yielding where the material has a
uniaxial stress at yield of σy . Plastic collapse dilatational refers to the imposition of a hydrostatic stress
state which in the open cell cases imposes compressive stress states in the material members. Collapse
occurs when this stress reaches the yield value. In the closed cell case, the biaxial stress state reaches its
yield value. In Table 1, the term plastic collapse uniaxial stress is similarly defined. In the oct-tet cell
and the closed cell cases, these results follow from simple geometry and equilibrium. It is only in the
case of the Kelvin cell that the plastic collapse under uniaxial stress is far from obvious and requires a
somewhat lengthy derivation. This derivation is given in Appendix A. All of these results will be further
described below.

The last two entries in Table 1 are for the elastic stability under compressive dilatational and uniaxial
stress. The elastic stability dilatational refers to stress levels in the open cell material members that
buckle under the imposition of hydrostatic stress to the cell. In the closed cell case, the result arises
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Property Open cell
(bending/Kelvin)

Open cell
(direct/oct-tet)

Closed cell GSCM

E11

Em

4
√

2
3π

c2
m

1
9

cm
2

5 + 3υm
cm

υ12
1
2

1
3

1 + 3υm

5 + 3υm

µ12/Em
2
√

2
3π

(
6 + 5υm

9 + 8υm

)
c2

m
1

12
cm

1
6(1 + υm)

cm

k/Em
1
9

cm
1
9

cm
2

9(1 − υm)
cm

Plastic collapse
dilatational σ

σ y

3
cm

σ y

3
cm

2
3
σ ycm

Plastic collapse
uniaxial σ11

8(2)3/4

9
√

3π3/2
σ yc3/2

m
σ y

3
cm

2
3
σ ycm

Elastic stability
dilatational σ

πEm

4
√

2
c2

m
πEm

72
√

2
c2

m

[
2
9

Em√
3(1 − υm

2)

]
c2

m

Elastic stability
uniaxial σ11

not applicable
πEm

72
√

2
c2

m unknown

Table 1. LDM properties.

directly from the buckling of a thin spherical shell. For the Kelvin cell case, the stiffness properties
are from [Warren and Kraynik 1997] and [Zhu et al. 1997]. The strength properties for the Kelvin cell
were constructed for this work. For the oct-tet cell the stiffness and strength properties were given by
Deshpande et al. [2001]. Some of the properties were put into slightly different forms for the present
purposes. The closed-cell stiffness properties were given by Christensen [1998]. The closed cell strength
properties were worked out here and are extremely simple to derive.

The method of deducing the strength properties for the oct-tet cell case, given by Deshpande et al.
[2001], also forms the basis for deducing the strength properties for the other two cell types. For plastic
collapse, plastic hinges form in the Kelvin cell material members, see Appendix A, and plastic yield stress
is reached in the closed cell case. The 3/2 power in the Kelvin cell, uniaxial stress plastic collapse term
of Table 1 is due to the formation of the plastic hinges in the collapse mechanism. Similarly for elastic
stability under compressive stress, the open cell material members reach the limits of elastic stability.
These limiting stresses are found under both hydrostatic stress and uniaxial stress states.

In the closed cell case it was necessary to construct the elastic stability under dilatational and uniaxial
stress. The dilatational case was taken as that for a free spherical shell under uniform pressure. The
effect of the constraining effective medium attached to the spherical shell, Figure 3, was not included.
Thus the constraint of the effective medium would increase somewhat the result shown in Table 1. This
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Property Open cell
(bending/Kelvin)

Open cell
(direct/oct-tet)

Closed cell GSCM

E11

Em
0.600c2

m
1
9

cm
1
3

cm

υ12
1
2

1
3

1
3

µ12/Em 0.197c2
m

1
12

cm
1
8

cm

k/Em
1
9

cm
1
9

cm
1
3

cm

Plastic collapse
dilatational σ

1
3
σ ycm

1
3
σ ycm

2
3
σ ycm

Plastic collapse
uniaxial σ11

0.155σ yc3/2
m

1
3
σ ycm

2
3
σ ycm

Elastic stability
dilatational σ 0.555Emc2

m 0.03Emc2
m 0.136Emc2

m

Elastic stability
uniaxial σ11

not applicable 0.03Emc2
m unknown

Table 2. Properties for υm = 1/3.

result in the hydrostatic case follows directly from [Timoshenko 1961]. The case of the elastic stability
under uniaxial stress is expected to have a critical value larger than that in the dilational case, but an
exact result is unknown.

3. Discussion

The results shown in Table 1 are specialized to the case of Poisson’s ratio υm = 1/3 for ease of interpre-
tation, Table 2. Some particular comparisons between the three cellular forms will be noted here but the
main purpose is to collect and codify the significant results shown in Tables 1 and 2. There could be a
huge variety of possible applications, most of which cannot even be anticipated here.

In the case of the two open cell forms, the two forms are both cubic and the properties are stated
relative to the symmetry axes designated in the references. It is interesting however to note that in the
case of the Kelvin cell and for the members of solid circular cross section, the cubic stiffness properties
are very nearly isotropic. The properties are within 1.5% of being isotropic at υm = 1/2 and they are
exactly isotropic at υm = 0. The oct-tet cell form is cubic with the maximum to minimum value of
modulus E being in the ratio of 9/5 [Christensen 2004].
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It is also interesting to note that the dilatational strength properties are not significantly larger than
the uniaxial ones, for two of the three cellular forms. This contrasts somewhat with the behavior of
homogeneous materials.

Observe again that properties dependent on c2
m are at least an order of magnitude less than those

dependent on cm . Thus the Kelvin cell case has elastic moduli properties as much less than those of
the oct-tet cell. On the other hand, it is seen that the oct-tet form has serious shortcomings because of
the extremely low value of the elastic stability tolerance due to the relatively large number of material
members in the oct-tet cell. However, this result is for solid material members; for applications where
hollow members could be used, this deficiency perhaps could be overcome.

In the elastic stability results, the material members in the open cell case could be taken either with
pinned or fixed-end conditions. The results shown are for the pinned case. The other case would be a
factor of four times larger.

As an overall observation, it can be noted that except for the dilatational elastic stability case, the closed
cell properties are always greater, sometimes much greater, than are the open cell properties. The closed
cell geometry is simply a more efficient use of the material. However, in particular applications, other
requirements could supercede the properties considerations shown here. Finally, it is again cautioned that
these results are for the corresponding idealized (perfect) morphologies of microstructure. Imperfections
always have a strongly degrading effect.

Appendix A

The uniaxial stress σ11 for plastic collapse in the Kelvin cell form is derived here. Referring to Figure 1,
take the stress σ11 to be in the horizontal direction, normal to the square face on the right hand side of
the cell. The material member connecting this face and the top square face in Figure 1 has the horizontal
component of force P at its ends given

P =
2M
` sinφ

, (A.1)

where M is the maximum moment in the member, ` is the members length, and φ = 45◦. Then

P =
2
√

2M
`

. (A.2)

Take the Kelvin cell in Figure 1 as being inside a cube of length a with the square faces in the Kelvin
cell being on the faces of the cube. Dimension a is related to ` through

a = 2
√

2`. (A.3)

The uniaxial stress σ11 is related to P through

σ11 =
4P
a2 . (A.4)

Combining (A.2), (A.3) and (A.4) gives

σ11 =
√

2
M
`3 . (A.5)
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For a plastic hinge to form in a fully plastic, circular member the bending moment must attain the
value

M =
2
3
σ yr3, (A.6)

where the yield stress is σ y and r is the radius of the cross section. Combining (A.5) and (A.6) gives

σ11 =
2
√

2
3
σ y
(r
`

)3
. (A.7)

The volume fraction cm of the material members is given by

cm =
3π

2
√

2

(r
`

)2
. (A.8)

Combining (A.7) and (A.8) gives the final result

σ11 =

(
8(2)3/4

9
√

3π3/2

)
σ yc3/2

m . (A.9)
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PROTECTION PERFORMANCE OF DOUBLE-LAYERED METAL SHIELDS
AGAINST PROJECTILE IMPACT

XIAOQING TENG, SUMITA DEY, TORE BØRVIK AND TOMASZ WIERZBICKI

This paper critically evaluates the protection performance of double-layered shields against projectile
impact at the subordnance velocity using finite element methods. Four types of projectiles of different
weight and nose shape are considered, representing various fragments generated from Improvised Ex-
plosive Devices (IEDs). It is found that the double-layer configuration is able to improve the ballistic
resistance by 8.0%–25.0% for the flat-nose projectile, compared to the monolithic plate of the same
weight. The upgrade is due to the transition of the failure mode from less energy dissipating shear
plugging to more energy dissipating tensile tearing. Under impact by the conical-nose projectile, the
double-layered target is almost as capable as the monolithic plate. The present research helps resolve the
long outstanding issue of the protection effectiveness of the double-layer configuration.

1. Introduction

Optimization design of metal shields for protection against projectile impact has long been of interest in
military and civilian applications. As a potential improvement over monolithic plates, a multiple layer
configuration that consists of several parallel plates has been proposed. Compared with numerous experi-
mental, numerical, and theoretical investigations on the impact failure response of single-layered shields,
only limited studies on the performance of multilayered targets were reported in the open literature.

Marom and Bodner [1979] investigated experimentally and theoretically the perforation behavior of
multilayered beams under impact by a spherical-nose bullet projectile. They concluded that the multi-
layered structures were more effective than the uniform beams of the same weight. Corran et al. [1983b;
1983a] found from a series of impact tests that a double-, triple-layered target would be superior in the
ballistic resistance than a monolithic shield if the total thickness exceeded a critical value. An opposite
conclusion was obtained by Radin and Goldsmith [1988]. They performed normal impact tests of a blunt-
nose and a conical-nose projectile on multilayered plates. The ballistic limits of the single-layered plates
were always higher than those of the multiple-layered targets for both types of projectiles. Note that the
thickness of the targets tested by Radin and Goldsmith ranges from 1.6 mm to 6.4 mm. Almohandes
et al. [1996] confirmed this finding by conducting an extensive experimental study on steel shields of
various configurations struck by standard 7.62 mm bullet projectiles. An experimental and numerical
study on the protection effectiveness of double-layered steel shields was recently executed by Dey et al.
[2007] and Børvik et al. [2006]. It was found that in the case of the blunt-nose projectile the ballistic
limits can be improved by more than 30% by adopting the double layer configuration.

Keywords: double layer, projectile, perforation, fragments.
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Besides experimental and numerical studies, several analytical models were also developed for the
estimation of the ballistic resistance of multilayered shields. For example, Ben-Dor et al. [1998; 2006]
studied effects of the spacing between plates on the ballistic limits. They concluded that increasing the
spacing produced no significant change. Elek et al. [2005] extended the penetration model developed by
Liss et al. [1983] to the case with multilayered targets. The theoretical solutions indicate that a monolithic
target has greater ballistic resistance than a multilayered shield of the same thickness. Liang et al. [2005]
proposed a simple theoretical model for the shear plugging process of multilayered shields.

It appears from the above literature review that the protection effectiveness of multilayered shields
remains a subject of controversy. This inconsistency poses an interesting question: Under what kind of
projectile impact would a double-layered shield be superior in the ballistic limit than a monolithic plate
of the same weight?

Different failure modes may develop in a single target due to changing impact conditions [Børvik
et al. 2002a; 2002b; Teng and Wierzbicki 2005a; 2005b]. If we could promote a failure mode with
higher energy absorption, the ballistic resistance of a shield can be significantly improved. By replacing
a monolithic plate with a double-, multilayered shield, the bending flexibility can be increased allowing
a target to undergo considerable deformation before fracture. The objective of the present paper is to
evaluate the performance of the double layer configuration against projectile impact.

A variety of projectiles including heavy fragments generated from IEDs and light bullet hard-core
projectiles may be encountered in practical applications. An armor shield would behave differently under
the impact of different projectiles. To thoroughly investigate the protection effectiveness of a target four
types of projectiles of different weight and nose shape are considered in this study.

The introduction of the double layer configuration brings into the analysis three additional important
parameters: spacing, material combination, and thickness ratio between two plates. For simplicity, the
present paper assumes that the two plates are identical to each other, that is, the two plates are made of
the same metal and are of the same thickness. We focus on effects of the spacing between the two plates.
The advantage of using two different grades of steels for the two layers is a subject of a separate study.

Even with this simplification, an extensive parametric study has to be conducted to determine the
ballistic limit of each projectile-target system. Such an approach would not be affordable by means
of tests alone. As an alternative to determine experimentally the V50, leading commercial finite ele-
ment codes such as ABAQUS/Explicit and LS-DYNA are able to fulfill this task provided that they
are equipped with a suitable fracture model. In this study, ABAQUS/Explicit is used to simulate all
perforation processes. Numerical modeling provides an insight into failure mechanisms and may help
reduce the number of necessary tests. Finally, the paper concludes by pointing out the advantages of the
double layer configuration over the monolithic plate.

2. Problem description

2.1. Computational models. We consider three types of metal shields including a monolithic plate, a
double-layered shield with the plates initially in contact, and a double-layered shield with the plates
spaced, as shown in Figure 1. Monolithic plates are commonly used in practice for armor protection,
and this case will be taken as a reference in the present study. Two identical plates are defined in the
double layer configuration. The plates interact with each other through compression but not tension.
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Figure 1. Three types of shields considered in this work.

Limited shear stress due to friction can also be transmitted between the two plates. The shields are
of circular shape with the same diameter of 500 mm and the same total thickness of 12 mm. These
geometrical dimensions were taken from the impact tests on the monolithic plates conducted by Børvik
et al. [2002b]. In the third type of shields the spacing between the two plates is 3 mm, which is 25% of
the total thickness still allowing the two plates to interact with each other.

Two major types of armor-piercing projectiles are often encountered in battles: 7.62 mm armor-
piercing (AP) bullets from rifles or machine guns and fragments generated from IEDs. The ball rounds
have mass usually of the order of 10 g and are of ogival-nose shape. By contrast, fragments may come
in a variety of weight and configurations. To design light armor shields for protection against fragments,
U.S. military standard MIL-P-46593A prescribes three types of Fragment Simulating Projectiles (FSPs)
with mass of 44 g, 207 g, and 830 g, respectively [DoD 1962]. All these FSPs are of cylindrical shape
and chisel-nose. In this paper four types of cylindrical projectiles are considered; see Figure 2. We have
defined for them two masses of different orders of magnitude: 200 g and 10 g. The heavy projectiles
describe typical IED fragments. At the same time, two types of impactor noses were introduced: flat-nose
and conical-nose, which denote two limiting cases. The light, conical-nose projectile coarsely represents
a 7.62 mm AP round.

With different combinations of the three metal shields and the four projectiles, there are a total of
twelve impact cases in this research. For each case, the initial impact velocity of the projectiles varies
in a wide range and the ballistic limit is found when the exit (residual) velocity becomes zero. The
protection performance of the three metal shields is evaluated by comparing their ballistic limits.

A two-dimensional finite element model was generated for each projectile-target plate system. The
target plates were modeled using four-noded axisymmetric elements with reduced integration (CAX4R).
The relax stiffness option of the integral viscoelastic form was defined to control possible hourglass
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Figure 2. Dimensions of four cylindrical projectiles considered in this work (unit: mm).

deformation for this type of elements. Figure 3 shows a finite element model for the double-layered
shield with the plates spaced. The impacted zone below the projectile was discretized with 120 square
elements through the thickness, that is, the minimum element size is 0.1 × 0.1 mm. An early study on
mesh size effects indicates that numerical simulations based on such an element size correlate well with
experimental results [Teng and Wierzbicki 2005a]. The projectiles were assumed to be undeformable
and were simply represented by rigid surfaces in the simulations. The introduction of this assumption
may underestimate the ballistic limits of the targets. In reality, projectiles would absorb a certain amount
of the kinetic energy and may break into several pieces under shock wave loading [Børvik et al. 2003].
Such complex projectile behaviors are not taken into account in this numerical investigation.

To correctly simulate a whole perforation process, one has to carefully define contact conditions
between any two bodies that may interact with each other. For the monolithic shield, the kinematic
contact constraint was prescribed between the projectile and the impacted zone of the target. The problem
becomes much more complex for the case with the double-layered shield. The projectile may sequentially

Figure 3. Finite element model of the impacted zone of a double-layered shield with
plates spaced, impacted by a conical-nose projectile.
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get into contact with the two plates and at the same time the two plates will act on each other. Three
contact constraints need to be specified. Two kinematic contact constraints were defined between the
projectile and the two target plates, respectively. The penalty contact constraint was prescribed between
the two plates. A constant frictional coefficient of 0.1 was defined on all the possible contact interfaces.

2.2. Plasticity and fracture models for Weldox 460 E steel. The target plates were assumed to be made
of Weldox 460 E steel. Weldox is the brand name of a class of rolled steels manufactured by SSAB,
Sweden. This class of steel is of high strength and at the same time of outstanding ductility. Børvik et al.
[2001; 2005] conducted a series of tensile tests on round bars to characterize mechanical properties of
Weldox 460 E steel. The material constitutive model proposed by [Johnson and Cook 1983] was selected
to describe the plastic behaviors of the steel under dynamic loading. The hardening rule including effects
of strain rates and elevated temperature is defined by

σ̄ =
[
A + Bε̄n

pl
][

1 + C ln
( ˙̄εpl

˙̄ε0

)][
1 −

( T − T0

Tm − T0

)m]
,

where σ̄ is the von Mises stress, ε̄pl is the effective plastic strain, A, B, n, C , and m are five material
constants to be calibrated from tests, ˙̄εpl and ˙̄ε0 are the current and reference strain rate, Tm and T0 are
the melting and room temperature. Below we list relevant material constants for Weldox 460 E steel:

E = 200 GPa, ν = 0.33, ρ = 7850 kg/m3, ˙̄ε0 = 5.00 × 10−4 s−1, C = 0.0123,

cv = 452 J/kg K, Tm = 1800 K, T0 = 293 K, m = 0.94, A = 490 MPa,

B = 383 MPa, n = 0.45, D1 = 0.0705, D2 = 1.732, D3 = −0.54.

A ductile fracture model formulated in the space of the stress triaxiality and the effective plastic strain
was adopted to predict the material failure. Such a fracture criterion can be written most generally as

D =

∫ ε̄pl

0

1
ε̄f (η)

dε̄pl,

where D is the damage indicator, ε̄f is the effective plastic strain to fracture, and η is the stress triaxiality
defined by the ratio of the mean stress σm to the equivalent stress. A material point is said to fail when D
reaches or exceeds the unity, that is, D ≥ 1.0. This type of fracture model was first suggested by Johnson
and Cook [1985], and has been incorporated into many leading commercial finite element codes. The
effective fracture strain as a function of the stress triaxiality has to be determined from tests. Johnson
and Cook [1985] suggested an exponential relationship ε̄f = D1 + D2 exp (D3η), where D1, D2, and
D3 are three material coefficients. Based on a series of tensile tests on notched and unnotched round
bars, Børvik et al. [2001; 2005] obtained the following data for Weldox 460 E steel: D1 = 0.0705,
D2 = 1.732, and D3 = −0.54. In many practical applications Johnson–Cook fracture loci calibrated
from tensile tests were often extrapolated to the range of negative stress triaxialities. In such a way, the
ductility of materials under compression may be underestimated. Here, the Johnson–Cook fracture locus
was modified by incorporating a cut-off value for the negative stress triaxiality at −1/3; see Figure 4.
The concept of the cut-off value was first introduced by Bao and Wierzbicki [2005] to account for the
sharp increase of the ductility of materials under compression. The cut-off value has a critical effect on
the reconstruction of various fracture patterns encountered in high velocity impact tests. This has been
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Figure 4. Fracture loci for Weldox 460 E steel.

successfully demonstrated in [Teng and Wierzbicki 2005b; Teng et al. 2005] for a number of impact
problems.

Note, that the present fracture criterion is uncoupled with the material plasticity model. An element
fails as soon as its damage indicator reaches the critical value. Failed elements completely lose their
load-carrying capability and are removed from the rest of the calculation.

3. Perforation response of three types of shields

3.1. Heavy flat-nose projectile. The first striker considered is the heavy, flat-nose projectile, which
represents a fragment generated from IEDs. Shear plugging is the predominant failure mode for the
monolithic target under normal impact by this projectile. Its sharp corner often induces crack formation
on the proximal surface. As the crack propagates through the plate thickness, the whole impacted zone
beneath the projectile is ejected as a plug. Figure 5 shows a typical fracture process of the monolithic
shield captured by the present numerical simulation at V0 = 285.4 m/s. It can be observed that the target

(a) t = 36 µs (b) t = 84 µs

Figure 5. Shear plugging process of monolithic plate impacted by a heavy, flat-nose
projectile at V0 = 285.4 m/s.
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(a) t = 20 µs (b) t = 40 µs

(c) t = 80 µs (d) t = 90 µs

Figure 6. Perforation of double-layered shield with plates in contact impacted by a
heavy, flat-nose projectile at V0 = 285.4 m/s.

plate undergoes insignificant global deformation even at the impact velocity near the ballistic limit. Some
of the impact velocities in the numerical simulations were selected to be identical to those in the impact
tests performed by Børvik et al. [2002b]. In this way, one would be able to directly verify the correctness
of the numerical results.

For the double-layered shield with the plates in contact, the upper plate tends to fail by shear plugging
and the plastic deformation is localized in the impacted zone. This is similar to the monolithic target.
However, the deformation region of the lower plate extends well beyond the impacted zone. Thinning
before fracture can be clearly observed in the lower plate; see Figure 6. Unlike the monolithic plate in
which one single crack continuously grows through the whole thickness, two separate cracks have to
be formed, one for each plate in the double-layered shields. In general, crack initiation requires more
energy dissipation than crack propagation.

The failure process of the double-layered shield with the plates spaced is illustrated in Figure 7. It
appears that the upper plate suffers considerable bending deformation before contacting with the lower
one. At the same time, one can see that the lower plate experiences deep necking and fails mainly by
tensile tearing.

The transition of the failure mode from shear plugging in the monolithic plate to tensile tearing in
the double-layered shield is accompanied with a large increase in plastic energy dissipation, particularly
in the lower plate. Under the same impact condition, tensile tearing usually involves a larger plastically
deformed area than shear plugging. Figure 8 shows the time evolution of the plastic energy dissipation
of the upper and lower plates among the three types of shields. For comparison, for the monolithic plate,
the plastic energy for the upper and lower half was output separately. The plastic energy absorbed by the
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(a) t = 24 µs (b) t = 48 µs

(c) t = 120 µs (d) t = 132 µs

Figure 7. Perforation of double-layered shield with plates spaced impacted by a heavy,
flat-nose projectile at V0 = 285.4 m/s.

lower plate of the double-layered shield with the plates spaced is almost twice as large as that absorbed
by the lower part of the monolithic target.

Large energy dissipation leads to low residual velocities of the projectile in the case of double-layered
shields. Figure 9 shows plots of the residual velocity of the projectile versus the initial impact velocity
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Figure 8. Time history of plastic energy dissipation of three shields at V0 = 285.4 m/s.
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Figure 9. Initial impact velocity vs. residual velocity for three shields impacted by a
heavy, flat-nose projectile.

among the three cases. As the impact velocity approaches the ballistic limit, the double-layered shields
become superior in resisting perforation to the monolithic plate. Table 1 lists the ballistic limits of the
three types of metal shields under impact by the heavy, flat-nose projectile. The ballistic limit of the
metal shield is improved by about 25% by replacing the monolithic plate with the double-layered shields
of the same total thickness. This finding is confirmed by the impact tests recently conducted by Dey et al.
[2007]. They observed that the double layer configuration was able to increase the ballistic resistance
by about 30%. The present numerical prediction is also consistent qualitatively with Corran et al.’s
experimental results [1983b; 1983a], but contradicts test outcomes of Radin and Goldsmith [1988]. As
Corran et al. [1983b; 1983a] pointed out, the double layer configuration would become more effective
than the monolithic one as the total thickness exceeded a critical value. Note that the thickness of the
targets studied by Radin and Goldsmith ranges from 1.6 mm to 6.4 mm, which is much smaller than in
the current study.

It can be seen from Figure 9 that for the double-layered shields an increase in the spacing between
the two plates slightly improves the ballistic resistance. This conclusion is contrary to the experimental
results obtained by Marom and Bodner [1979], who found that the beams in contact always have higher
ballistic limits than the beams spaced. It should be noted, however, that in their study the beams were
so widely separated that there was essentially no interaction between them during the whole perforation
process. In the present case, the two plates in the double-layered shields strongly interact with one
another. This inconsistency indicates that there may exist an optimal spacing for the double-layered
shield.

Monolithic plate
Double-layered shield

plates in contact plates spaced

186.1 (1.00) 232.0 (1.25) 236.0 (1.27)

Table 1. Ballistic limits under the impact of a heavy, flat-nose projectile (unit: m/s).
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(a) t = 105.0 µs (b) t = 175.0 µs

(c) t = 280.0 µs

Figure 10. Perforation of monolithic shield impacted by a heavy, conical-nose projectile
at V0 = 317.9 m/s.

3.2. Heavy conical-nose projectile. In the preceding section the surface contact between the fragment
projectile and the target was assumed. It is more likely that the sharp corner of a fragment would first
pierce a metal shield in real situations. This type of perforation scenario is considered here by introducing
the heavy, conical-nose projectile. Figures 10–12 illustrate the failure processes of the three types of
shields under normal impact by the conical-nose projectile. In the second case the lower plate undergoes
larger bending deformation than the upper plate. This leads to a clear separation between the two plates,
which are initially in close contact. It can also be seen that in the three cases the materials in the impacted
zone are pushed aside as the projectile penetrates through the thickness. There is no clear sign of crack
formation and propagation. All the target plates fail by ductile hole enlargement, independent of the
configuration and the impact velocity. Hence, the introduction of the double-layered configuration does
not induce the transition of the failure mode for the conical-nose projectile. This is in contrast to the
preceding case with the flat-nose projectile.

Plots of the initial impact velocity versus the residual velocity for the three types of metal shields are
shown in Figure 13. The predicted residual velocities for the double-layered shields are always higher
than those for the monolithic plate. Since neither large shear nor tensile stresses can be transferred
between the two plates, the shear resistance of the double-layered shields is weakened. This leads to
an 8% decrease in the ballistic limits compared to the monolithic plate; see Table 2. This conclusion
is qualitatively in agreement with the experimental results obtained by Radin and Goldsmith [1988],
Almohandes et al. [1996], and Dey et al. [2007].
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(a) t = 105.0 µs (b) t = 157.5 µs

(c) t = 245.0 µs

Figure 11. Perforation of double-layered shield with plates in contact impacted by a
heavy, conical-nose projectile at V0 = 317.9 m/s.

(a) t = 40.0 µs (b) t = 140.0 µs

(c) t = 240.0 µs

Figure 12. Perforation of double-layered shield with plates spaced impacted by a heavy,
conical-nose projectile at V0 = 317.9 m/s.
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Monolithic plate
Double-layered shield

plates in contact plates spaced

305.9 (1.00) 282.0 (0.922) 280.0 (0.915)

Table 2. Ballistic limits under the impact of a heavy, conical-nose projectile (unit: m/s).

The calculated residual velocities for the double-layered shield with the plates in contact are a little
higher than those with the plates spaced. However, the difference is so small as to be indiscernible in
Figure 13. The results are again consistent with the experimental observations by Almohandes et al.
[1996] and Dey et al. [2007]. It may be concluded, therefore, that an increase in the spacing between the
two plates would not considerably improve the protection ability of double-layered shields.

3.3. Light flat-nose projectile. IEDs generate fragments of various configuration and masses. Therefore,
in addition to the preceding heavy ones, we use a flat-nose projectile of 10 g mass and diameter d =

7.6 mm to represent a light fragment. This striker is close in size to the smallest FSP of 0.30 ′′ caliber
specified in Military Standard MIL-P-46593A [DoD 1962]. Since the projectile is relatively light, a high
impact velocity is required to completely perforate the target. This leads to a different failure mode from
shear plugging or tensile tearing.

Figure 14 displays the failure process of the monolithic plate at V0 = 600 m/s. It appears that the
materials in the impacted zone beneath the projectile are pushed aside as the projectile moves down. The
generated cavity is of a larger diameter on the proximal surface than the projectile. By contrast, at a
low impact velocity the cavity is of almost the same diameter through the target thickness, as can be
seen, for example, in Figure 5. As the projectile approaches the rear surface of the target, shear plugging
becomes the dominating failure mode and a plug of reduced thickness is ejected. It should be pointed out
that the reduction in the thickness of the plug does not result from artificial element erosion. Although
the remainder of the ligament is broken due to the combined action of tension and shear, ductile hole
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Figure 13. Initial impact velocity vs. residual velocity for three shields impacted by a
heavy, conical-nose projectile.



PROTECTION PERFORMANCE OF DOUBLE-LAYERED METAL SHIELDS AGAINST PROJECTILE IMPACT 1321

(a) t = 15.0 µs (b) t = 35.0 µs

(c) t = 45.0 µs

Figure 14. Perforation of monolithic shield impacted by a light, flat-nose projectile at
V0 = 600.0 m/s.

(a) t = 5.0 µs (b) t = 20.0 µs

(c) t = 40.0 µs (d) t = 55.0 µs

Figure 15. Perforation of double-layered shield with plates in contact impacted by a
light, flat-nose projectile at V0 = 600.0 m/s.
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(a) t = 15.0 µs (b) t = 20.0 µs

(c) t = 40.0 µs (d) t = 50.0 µs

Figure 16. Perforation of double-layered shield with plates spaced impacted by a light,
flat-nose projectile at V0 = 600.0 m/s.

enlargement is the predominant failure mechanism. A large part of plastic energy dissipation can be
attributed to cavity formation. By contrast, shear plugging is always observed in the monolithic plate
under impact by the heavy, flat-nose projectile and the ejected plug is of almost the same thickness as
the pretest plate.

A typical fracture process of the double-layered shield with the plates adjacent is given in Figure
15. It can be seen that the upper plate fails mainly by ductile hole enlargement, which is similar to
the monolithic shield. The lower plate undergoes a little bending deformation, and necking preceding
fracture can be clearly observed. The case with the plates spaced exhibits a similar failure process and
pattern; see Figure 16.

Plots of the initial impact velocity versus the residual velocity for the three types of shields are pre-
sented in Figure 17. As the impact velocity approaches the ballistic limit, a small advantage of the
double-layered shields over the monolithic one becomes clear. The ballistic limit of the double-layered
shields is higher by about 7% than that of the monolithic plate; see Table 3 for the detailed information.
The increase in the ballistic limit of the double-layer shields can be attributed to the increase in the
bending deformation of the lower plate. While the double-layered shield is of the same total thickness
as the monolithic one, the elastic bending stiffness of the former is only one quarter of that of the latter.

The predicted ballistic limit of the double-layered shield with the plates spaced is slightly higher than
that with the plates in contact. However, the variation in the spacing between the two plates would
not be able to considerably improve the protection performance since the failure mode is kept virtually
unchanged.
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Monolithic plate
Double-layered shield

plates in contact plates spaced

487.4 (1.00) 520.0 4(1.07) 523.0 (1.07)

Table 3. Ballistic limits under the impact of a light, flat-nose projectile (unit: m/s).
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Figure 17. Initial impact velocity vs. residual velocity for three shields impacted by a
light, flat-nose projectile.

3.4. Light conical-nose projectile. The 10.0 g projectile can be thought of as a simplification of a stan-
dard 7.62 mm hard-core bullet. A real bullet projectile consists of a hard core, a actuator, and a jacket and
usually has an ogival nose rather than a conical nose. However, Dey et al. [2004] found from a series of
tests that a conical-nose projectile has a very similar perforation capability as that of ogival-nose shape.

Figures 18–20 display the typical perforation processes of the three types of shields at V0 = 600.0 m/s.
It appears that all the three metal shields simply fail by ductile hole enlargement. The targets are subjected
to little structural deformation, while plastic deformation concentrates in the impacted zone beneath the
projectile. This fracture pattern is also observed at all the other impact velocities. Note that this failure
mechanism is almost identical to the one in the previous case of the heavy projectile. Hence, for the
conical-nose projectile, the implementation of the double layer configuration would not introduce a new
failure mode.

Plots of the initial impact velocity versus the residual velocity for the three types of shields are dis-
played in Figure 21. The corresponding ballistic limits are listed in Table 4. It appears that the double

Monolithic plate
Double-layered shield

plates in contact plates spaced

525.9 (1.000) 524.5 (0.997) 522.54 (0.994)

Table 4. Ballistic limits under impact of a light, conical-nose projectile (unit: m/s).
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(a) t = 18.0 µs (b) t = 30.0 µs

(c) t = 60.0 µs

Figure 18. Perforation of monolithic shield impacted by a light, conical-nose projectile
at V0 = 600.0 m/s.

(a) t = 20.0 µs (b) t = 35.0 µs

(c) t = 50.0 µs

Figure 19. Perforation of double-layered shield with plates in contact impacted by a
light, conical-nose projectile at V0 = 600.0 m/s.
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(a) t = 24.0 µs (b) t = 36.0 µs

(c) t = 78.0 µs

Figure 20. Perforation of double-layered shield with plates spaced impacted by a light,
conical-nose projectile at V0 = 600.0 m/s.

layer configuration slightly weakens the ballistic resistance of the shields. However, the difference be-
tween the monolithic plate and the double-layered shields is so small that it can be neglected. At the
same time, the numerical results indicate that the increase in the spacing between the two plates does not
improve the protection performance of the shield.

A few armor piercing experiments were performed on the double-, multilayered shields under impact
by the standard 7.62 mm caliber bullet balls [Almohandes et al. 1996; Gupta and Madhu 1997]. They
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Figure 21. Initial impact velocity vs. residual velocity for three shields impacted by a
light, conical-nose projectile.
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Figure 22. Comparison of residual velocities between numerical prediction and experi-
mental results for monolithic plate impacted by a heavy, flat-nose projectile.

found a slight degradation in the protection behavior of the double-, multilayered shields, compared to
the monolithic target of the same total weight. The present numerical prediction qualitatively agrees with
those test results.

3.5. Comparison with experimental results. Børvik et al. [2002b; 2002a] performed an extensive ex-
perimental and numerical study on the ballistic resistance of a Weldox 460 E steel plate impacted by
flat-nose, round-nose, and conical-nose projectiles. Strength and fracture properties of Weldox steel were
calibrated by conducting a series of tensile tests on round bars under various strain rates and elevated
temperature [Børvik et al. 2001]. The complete experimental results published in the literature provide
a solid platform to examine numerical procedures.

For this purpose, the geometry configuration of the projectile-target plate system for the monolithic
shield was taken to be identical to the one designed by Børvik et al. [2002b]. This allows the present
numerical predictions to be verified by direct comparison to the experimental results.

Figures 22 and 23 display plots of the initial impact velocity versus the residual velocity for the case
with the monolithic plate under impact by the heavy flat-nose and the conical-nose projectile, respectively.
It appears that the numerical results correlate well with the test data. This validates the correctness of
the present finite element procedure.

A number of perforation tests on double-layered plates were performed recently by Dey et al. [2007].
Targets made of Weldox 700 E steel were impacted by a flat-nose and a ogival-nose projectile, respec-
tively, using a gas-gun at subordnance velocities. It was found that the ballistic resistance could be
increased by about 30% by using the double layer configuration instead of the monolithic plate in the
case with the flat-nose projectile as evidenced in Figure 24. The present numerical finding is closely
consistent with this experimental conclusion. Since plasticity and fracture properties of Weldox 700 E
steel significantly different from those of Weldox 460 E steel, the experimental results cannot be directly
compared with the present numerical work. A detailed description of the experimental procedure and
results is presented in a separate publication by Dey et al. [2007].
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Figure 23. Comparison of residual velocities between numerical prediction and experi-
mental results for monolithic plate impacted by a heavy, conical-nose projectile.

4. Discussion and conclusions

In this work we have examined the effectiveness of the double-layered shield against projectile impact
using numerical methods. Four types of projectiles of different mass and nose shape were considered,
representing various fragments generated from IEDs. It was found that compared to the monolithic plate,
the double layer configuration is able to improve the ballistic limit by 7%–25% for the target under impact
by flat-nose projectiles. For conical-nose projectiles the double layer configuration slightly weakens the
ballistic resistance. The numerical findings are qualitatively consistent with the experimental results in
the open literature. To further verify the findings in the present study, an experimental and numerical
program has been carried out at Norwegian University of Science and Technology [Dey et al. 2007].

With the increase in the ballistic limit for the case of a flat-nose projectile, the double layer configu-
ration is able to upgrade the overall protection performance of a target. An armor shield may encounter
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Figure 24. Comparison of experimentally obtained residual velocities between mono-
lithic and double-layered shield [Dey et al. 2007].
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the impact of various projectiles. Experimental studies reveal that a projectile of flat-nose is much more
detrimental than that of round-nose, conical-nose, or ogival-nose [Børvik et al. 2002b; Dey et al. 2004],
that is, a thin or moderately thick target is of the lowest ballistic limit under impact by a flat-nose
projectile.

The present numerical investigation indicates that it is not necessary to perfectly bond two layers to
enhance the effectiveness of a composite metal shield. The double-layered shield is as effective as, or
more effective than, a monolithic plate of the same weight. At the same time, the double layer metal
shield would be easily maintained. Partially penetrated/damaged plates can be replaced without changing
a whole shield.

This research also indicates that the increase in the spacing between the two plates would not signif-
icantly improve the ballistic resistance of the double-layered shields. Actually, the gap decreases the
ballistic limit for the case with the conical-nose projectile. Note that by increasing the gap, double-
layered shields would occupy more space. However, a systematic parametric study on the effects of the
spacing should be further conducted to verify this observation.

In the present study the two plates in the double-layered shield are assumed to be of the same material
and thickness. Limited studies indicate that the protection performance of double-layered shields can
be further enhanced by placing a thinner plate in front of a thicker plate [Corran et al. 1983b; Corran
et al. 1983a]. This conclusion can also be extended to the case with conical-nose projectiles. The
experiments conducted by Almohandes et al. [1996] suggest that a double-layered shield consisting of
two plates of uneven thickness is of a slightly higher ballistic limit than that of the same thickness.
A related question concerns using two different grades of metals with various strengths and ductilities
to further increase the ballistic limit of the double-layered shield. This problem is the subject of an
ongoing study. The effectiveness of triple-, multilayer configuration also remains to be investigated. For
a specific application, these questions can be clarified by conducting an extensive parametric numerical
study combined with some experimental validation tests.
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A SURFACE CRACK IN A GRADED COATING BONDED TO A HOMOGENEOUS
SUBSTRATE UNDER GENERAL LOADING CONDITIONS

SAMI EL-BORGI, RADHI ABDELMOULA, SERKAN DAG AND NIZAR LAJNEF

The elastostatic problem of a surface crack in a graded coating bonded to a homogeneous substrate
under general loading conditions is considered. The coating is graded along the thickness direction and
modeled as a nonhomogeneous medium with an isotropic stress-strain law. The problem is solved under
the assumption of plane strain or generalized plane stress conditions. The crack surfaces are subjected to
arbitrary loadings which give rise to mixed fracture modes which can be uncoupled due to the fact that
the crack axis is parallel to the material gradient. Therefore, the opening and sliding mode problems may
be formulated separately. For each problem, the solution of the composite medium may be determined
by obtaining the solution of the homogeneous substrate and that of the graded layer. The latter solution
may be expressed as the sum of two solutions, namely an infinite graded medium with a crack and a
graded strip without a crack. The resulting mixed-boundary value problem is reduced to a set of two
uncoupled singular integral equations which are solved numerically using Jacobi polynomials. The main
objective of the paper is to study the effect of the layer thickness and nonhomogeneity parameter on
the crack tip mixed-mode stress intensity factors for the purpose of gaining better understanding on the
behavior of graded coatings.

1. Introduction

In high-temperature applications the potential of using homogeneous materials appears to be limited
and in recent years the new trends in material design seem to be toward coating the main load-bearing
component by a heat-resistive layer, generally a ceramic. Because of the relatively high mismatch in
thermal expansion coefficients, the resulting bonded structure is generally subjected to very high residual
and thermal stresses. As a result, the composite medium becomes vulnerable to cracking, debonding and
spallation [Erdogan 1995].

The materials research community has recently been exploring the possibility of using new concepts
in coating design, such as Functionally Graded Materials (FGMs), as an alternative to the conventional
homogeneous coatings. These can be at least two-phase inhomogeneous particulate composites synthe-
sized in such a way that the volume fractions of the constituent materials, such as ceramic and metal,
vary continuously along a spatial direction to give a predetermined composition profile resulting in a
relatively smooth variation of the mechanical properties. FGMs appear to promise attractive applications
in a wide variety of wear coating and thermal shielding problems such as gears, cams, cutting tools, high
temperature chambers, furnace liners, turbines, microelectronics and space structures [Holt et al. 1992].
FGM structures can also be made through physical vapor deposition techniques such as those described in
[Chen et al. 2002c; 2002b], which produce nanolayers having properties varying with depth. In designing

Keywords: graded coating, stress intensity factor, surface crack, mixed-mode loading, singular integral equations.
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components involving FGMs, an important aspect of the problem is the question of mechanical failure,
specifically the fracture failure [Lanutti 1994]. Fatigue and fracture characterization of materials and
related analysis require the solution of certain standard crack problems.

Most of the crack problems solved over the past two decades on nonhomogeneous materials [Dhali-
wal and Singh 1978; Delale and Erdogan 1983; Erdogan 1985; Ozturk and Erdogan 1993] provide the
basis for the fracture mechanics research on FGMs which are essentially nonhomogeneous materials.
In [Erdogan 1995] a brief discussion is given on the application of elementary concepts of fracture
mechanics in nonhomogeneous materials and a number of typical problem areas are identified which
relate to the fracture of FGMs. An important problem is the nature of stress singularities near the tip of a
crack embedded in a nonhomogeneous medium. Konda and Erdogan [1994] and Jin and Noda [1994a]
showed that such a crack has the standard square-root singularity in addition to others encountered in a
homogeneous medium provided the material property model is continuous and piecewise differentiable.

A number of crack problems in FGMs were solved accounting only for mechanical loading or thermal
loading or a combination of both. The crack can be either an internal crack parallel to the free surface or
perpendicular to it. A particular case of a crack perpendicular to the free surface is the edge crack which
is also called the surface crack. Noda and Jin [1993] studied the internal crack problem for an infinite
FGM medium subjected to a steady-state heat flux over the crack surfaces by assuming continuously
varying thermal properties. The same problem was extended by El-Borgi et al. [2004a] by considering
a steady-state heat flux applied away from the crack region, by modeling the crack faces as partially
insulated and by accounting for crack-closure effects. The case of an internal fully insulated crack
parallel to the boundary of a semi-infinite graded medium subject to a steady-state heat flux applied at
the free surface was studied in [Jin and Noda 1993]. This problem was later extended to the case of
transient heat flux in [Jin and Noda 1994c]. Lee and Erdogan [1998a] studied the problem of interface
cracking in FGM coatings under steady-state heat flow. Chen and Erdogan [1996] studied the problem
of a graded coating on homogeneous substrate with an interface crack subjected to mechanically induced
crack surface tractions. El-Borgi et al. [2003] extended this problem by considering both thermal and
mechanical loads and accounting for crack-closure effects. In [El-Borgi et al. 2004b] we considered the
problem of a graded coating bonded to a substrate subjected to a Hertzian contact pressure and with an
internal crack embedded in the coating, and in [El-Borgi et al. 2000] the mixed-mode crack parallel to
the boundary of an infinite strip, with the elastic modulus varying exponentially in an arbitrary direction.
Long and Delale [2005] solved the more general problem of an arbitrarily oriented crack in a graded
layer bonded to a homogeneous half-plane.

Jin and Noda [1994b] considered the problem of a surface crack in a semi-infinite nonhomogeneous
medium subject to a steady-state heat flux. Erdogan and Wu [1997] considered a graded strip with a
surface crack, perpendicular to the boundaries and parallel to the material gradient, subjected to me-
chanical crack surface tractions. The same problem was also solved in [Erdogan and Wu 1996] by
considering thermal loads. Dag et al. [1999] and Kadioglu et al. [1998] studied a similar problem with
the graded layer attached to an elastic foundation with a crack subjected, respectively, to thermal and
mechanical loads. Yildirim and Erdogan [2004] considered an axisymmetric surface crack problem for
thermal barrier coatings under a uniform temperature change. Guo et al. [2004a] investigated the mode
I surface crack problem for an orthotropic graded strip. A similar problem was also solved in [Chen
et al. 2002a] by considering a transient loading. Guo et al. [2004b] considered the mode I problem of
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a graded coating bonded to homogeneous substrate with a crack perpendicular to the coating’s surface
subjected to a transient load. Dag and Erdogan [2002] solved the problem of a surface crack in a graded
semi-infinite medium under general loading conditions in which they proposed a method to uncouple the
opening and sliding modes.

The practical use of FGMs is in the form of coating applications. On the other hand, the manufacturing
of FGMs may lead to inherent surface flaws which may give rise to surface cracks that can eventually
propagate to the component. Therefore, the present work consists of a surface crack located in an isotropic
graded coating bonded to homogeneous substrate subjected to general loading conditions. This study is
an extension of [Dag and Erdogan 2002] in the sense that problem geometry consists of a graded coating
bonded to a substrate rather than a graded half-plane. The main objective of the paper is to study the
effect of the coating thickness and material nonhomogeneity on the crack tip stress intensity factors for
the purpose of further understanding the behavior and design of graded materials.

2. Problem description and governing equations

As shown in Figure 1, the problem under consideration consists of an infinitely long graded coating
of thickness h, bonded to a homogeneous semi-infinite medium. The graded coating contains an edge
crack of length d along the x-axis. For the graded coating, the material gradient is oriented along the

−p(x)

−q(x)

d

x, u 

0 x< < ∞

FGM coating 

Homogeneous 

substrate

y, v 

µ1(x)

h

y−∞ < < ∞

µ2

Figure 1. Geometry and loading of the composite medium.
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x-direction. The Poisson’s ratio ν is assumed to be a constant because the effect of its variation on the
crack-tip stress intensity factors was shown in [Erdogan and Wu 1996; 1997] to be negligible and is
equal to the same value as that of the homogeneous substrate. On the other hand, the shear modulus
in the FGM layer µ1 depends on the x-coordinate only and is modeled by an exponential function as
expressed by

µ1 = µ0 exp(βx), (1a)

where µ0 is the value of the shear modulus in the coating along the free surface x = 0 and β is the
nonhomogeneity parameter controlling the variation of the shear modulus in the graded coating.

For the homogeneous substrate, the shear modulus µ2 is a constant and is equal to the value of the
FGM coating shear modulus at the interface

µ2 = µ0 exp(βh). (1b)

The loading consists of arbitrary crack surface tractions (ie, normal and shear tractions) which can
be expressed in terms of the external mechanical loads. The problem under consideration is similar to
the graded half-plane surface crack problem studied in [Dag and Erdogan 2002]. In both problems, the
material gradient in the graded medium and the crack orientation are both along the x-direction. As
a result, a normal loading and a shear loading on the crack faces do not induce, respectively, mode II
and mode I stress intensity factors. Therefore, the opening and sliding mode problems turn out to be
uncoupled and may be formulated separately, as indicated in the work just cited.

The equations of the plane problem for nonhomogeneous isotropic elastic solids are the equilibrium
equations

∂σxx

∂x
+
∂σxy

∂y
= 0,

∂σxy

∂x
+
∂σyy

∂y
= 0, (2)

(ignoring body forces), the strain-displacement relationships

εxy =
1
2

(∂u
∂y

+
∂v

∂x

)
, εxx =

∂u
∂x
, εyy =

∂v

∂y
, (3)

and the linear elastic stress-strain law

σxx =
µ j

κ−1

(
(1+κ)εxx + (3−κ)εyy

)
, σxy = 2µ jεxy, σyy =

µ j

κ−1

(
(3−κ)εxx + (1+κ)εyy

)
, (4)

where j = 1, 2 and κ = 3 − 4ν for plane strain, κ = (3−ν)/(1+ν) for generalized plane stress.
Substituting Equations (3) into (4), inserting the resulting expressions into (2) and using (1a) and (1b),

we obtain the equations of plane elasticity

(κ+1)
∂2u
∂x2 + (κ−1)

∂2u
∂y2 + 2

∂2v

∂x∂y
+β(κ+1)

∂u
∂x

+β(3−κ)
∂v

∂y
= 0, 0 ≤ x < h,

(κ−1)
∂2v

∂x2 + (κ+1)
∂2v

∂y2 + 2
∂2u
∂x∂y

+β(κ−1)
∂v

∂x
+β(κ−1)

∂u
∂y

= 0, 0 ≤ x < h,

(5)

together with

(κ+1)
∂2u
∂x2 + (κ−1)

∂2u
∂y2 + 2

∂2v

∂x∂y
= 0 and (κ−1)

∂2v

∂x2 + (κ+1)
∂2v

∂y2 + 2
∂2u
∂x∂y

= 0, x ≥ h.
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For both crack mode problems (I and II), these plane elasticity equations are subject to the appropriate
boundary conditions, detailed in the next two sections. The main unknowns of interest in these mixed-
boundary value problems are the so-called density functions chosen for convenience as the derivatives of
the relative crack opening displacements. Because of symmetry, these density functions can be chosen
as

f1(x)=
4µ0

κ+1
∂

∂x
v(x, 0+), f2(x)=

4µ0

κ+1
∂

∂x
u(x, 0+). (6)

3. Solution of the opening mode problem

For the opening mode problem, the solution of the composite medium may be determined by obtaining
the solution in the graded layer and that in the homogeneous substrate. The graded layer solution may
be expressed as the sum of two solutions, namely an infinite graded medium with a crack along the x-
direction and a graded strip without a crack [Erdogan and Wu 1996; Dag and Erdogan 2002; Bogy 1975].
For the cracked infinite graded medium, the plane elasticity Equations (5) are solved using standard
Fourier transforms with respect to the x-coordinate. Furthermore, taking advantage of the problem
symmetry and considering that the displacements need to be bounded as y goes to ∞, the solution for
the half-plane y ≥ 0 is given by

ui+
1 (x, y)=

1
2π

∫
+∞

−∞

4∑
k=3

Ck(λ)emk yei xλdλ, y ≥ 0,

vi+
1 (x, y)=

1
2π

∫
+∞

−∞

4∑
k=3

Ck(λ)si
k(λ)e

mk yei xλdλ, y ≥ 0,

(7)

where the subscript 1 stands for the opening mode problem, the superscript i indicates the cracked infinite
medium, the superscript + stands for the half-plane y ≥ 0, and Ck(λ), k = 3, 4, are unknown functions.
Moreover, si

k(λ), k = 3, 4 are known functions given by

si
k(λ)= −

(κ−1)m2
k + (κ+1)(iλβ − λ2)

(2iλ+β(3−κ))mk
(k = 3, 4), (8)

and the mk are the roots of the characteristic polynomial

m4
−
(
2(λ2

− iλβ)+ δ2)m2
+ (λ2

− iλβ
)2

= 0, (9)

which are given by

m1,2 =
1
2

(
∓δ+

√
δ2 + 4λ2 − 4iλβ

)
, Re m1,2 ≥ 0, (10a)

m3,4 =
1
2

(
∓ δ−

√
δ2 + 4λ2 − 4iλβ

)
, Re m3,4 ≤ 0, (10b)

where we have set δ =
√
(3−κ)/(κ+1) β.

Substituting (7) into (3) and the result into (4) yields the stress field σ i+
xx1(x, y), σ i+

yy1(x, y) and
σ i+

xy1(x, y) in the infinite graded medium:
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σ i+
xx1(x, y)=

µ1

2π(κ−1)

∫
+∞

−∞

4∑
k=3

pi
xx1,k(λ)Ck(λ)emk yei xλdλ, y ≥ 0, (11a)

σ i+
yy1(x, y)=

µ1

2π(κ−1)

∫
+∞

−∞

4∑
k=3

pi
yy1,k(λ)Ck(λ)emk yei xλdλ, y ≥ 0, (11b)

σ i+
xy1(x, y)=

µ1

2π

∫
+∞

−∞

4∑
k=3

pi
xy1,k(λ)Ck(λ)emk yei xλdλ, y ≥ 0, (11c)

where the Ck(λ) (k = 3, 4) are unknown functions, the roots mk (k = 3, 4) are given by (10b), and

pi
xx1,k(λ)= (iλ)(1+κ)+ (3−κ)mksi

k,

pi
yy1,k(λ)= (iλ)(3−κ)+ (1+κ)mksi

k (k = 3, 4),

pi
xy1,k(λ)= mk + (iλ)si

k (k = 1, . . . , 4).

We now consider the graded strip without a crack. By symmetry, the displacement along the x-axis is
an even function, while the displacement along the y-axis is an odd function. Hence, the displacements
u and v may be expressed using the cosine and sine transforms with respect to y as follows:

us
1(x, y)=

∫
+∞

0

4∑
k=1

Ekenk x cos(yα) dα, vs
1(x, y)=

∫
+∞

0

4∑
k=1

Ekss
k enk x sin(yα) dα, (12)

in which the superscript s indicates the uncracked graded strip, the Ek(λ), k = 1, 2, 3, 4, are unknown
functions, the ss

k(λ) are known functions given by

ss
k(λ)= −

(κ+1)n2
k +β(κ+1)nk − (κ−1)α2

2αnk +β(3−κ)α
k = 1, . . . , 4 (13)

and the nk are the roots of the characteristic polynomial

n4
+ 2βn3

+ (β2
− 2α2)n2

− 2βα2n + (α4
+α2δ2)= 0, (14)

which are given by

n1,2 =
1
2

(
−β −

√
β2 + 4α2 ± 4iαδ

)
, Re n1,2 ≤ 0,

n3,4 =
1
2

(
−β +

√
β2 + 4α2 ± 4iαδ

)
, Re n3,4 ≥ 0.

(15)

Substituting Equations (12) into (3) and the result into (4) yields the stress field in the uncracked
graded strip:

σ s
xx1(x, y)=

µ1

κ−1

∫
+∞

0

4∑
k=1

ps
xx1,k(α)Ekenk x cos(yα) dα, (16a)

σ s
yy1(x, y)=

µ1

κ−1

∫
+∞

0

4∑
k=1

ps
yy1,k(α)Ekenk x cos(yα) dα, (16b)
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σ s
xy1(x, y)= µ1

∫
+∞

0

4∑
k=1

ps
xy1,k(α)Ekenk x sin(yα) dα, (16c)

where Ek(λ) (k = 1, 2, 3, 4) are unknown functions, the roots nk , k = 1, . . . , 4, are given by (15) and

ps
xx1,k(α)= (1+κ)nk + (3−κ)αss

k ,

ps
xy1,k(α)= −α+ ss

k nk, (k = 1, . . . , 4),

ps
yy1,k(α)= (3−κ)nk + (1+κ)αss

k , (k = 1, . . . , 4).

By superposing the two sets of solutions obtained from the cracked infinite graded medium and the
uncracked graded strip, the solution of the cracked graded strip can be established as follows:

u+

1 (x, y)= ui+
1 (x, y)+ us

1(x, y), v+

1 (x, y)= vi+
1 (x, y)+ vs

1(x, y), y ≥ 0,

σ+

kl1(x, y)= σ i+
kl1(x, y)+ σ s

kl1(x, y), k, l = x, y, y ≥ 0,
(17)

where ui+
1 (x, y) and vi+

1 (x, y) are given by (7), us
1(x, y) and vs

1(x, y) are given by (12), σ i+
kl1(x, y) is

given by (11) and σ s
kl1(x, y) is given by (16).

Considering that the displacements need to be bounded as x goes to ∞, the displacement solution of
the homogeneous substrate can be obtained in a similar manner as the uncracked graded strip:

uh
1(x, y)=

∫
+∞

0
(C5 + C7x)e−αx cos(yα) dα, (18a)

vh
1 (x, y)=

∫
+∞

0

((
C5 − C7

κ

α

)
+ C7x

)
e−αx sin(yα) dα, (18b)

where C5 and C7 are unknown functions.
Substituting (18) into (3) and the result into (4) yields the stress field in the uncracked graded strip:

σ h
xx1(x, y)=

µ2

κ−1

∫
+∞

0

(
ph

xx1,1(α)C5 + ph
xx1,2(α)C7 + ph

xx1,1(α)C7x
)
e−αx cos(yα) dα, (19a)

σ h
yy1(x, y)=

µ2

κ−1

∫
+∞

0

(
ph

yy1,1(α)C5 + ph
yy1,2(α)C7 + ph

yy1,1(α)C7x
)
e−αx cos(yα) dα, (19b)

σ h
xy1(x, y)= µ2

∫
+∞

0

(
ph

xy1,1(α)C5 + ph
xy1,2(α)C7 + ph

xy1,1(α)C7x
)
e−αx sin(yα) dα, (19c)

where C5 and C7 are unknown functions and

ph
xx1,1(α)= 2(1 − κ)α, ph

xx1,2(α)= (κ−1)2,

ph
yy1,1(α)= −2(1 − κ)α, ph

yy1,2(α)= 3 − 2κ − κ2,

ph
xy1,1(α)= −2α, ph

xy1,2(α)= 1+κ.

The solution is expressed in terms of the 9 unknown functions C3,C4 from (7), C5,C7 from (18),
E1, . . . , E4 from (12), and the density function f1(x), to be determined from the 9 boundary conditions

σxy1(x, 0+)= 0, x > 0, (20)
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σxx1(x, y)= 0,
σxy1(x, y)= 0,

}
x = 0, y <∞, (21)

σxx1(h+, y)= σxx1(h−, y),
σxy1(h+, y)= σxy1(h−, y),

}
y <∞, (22)

u1(h+, y)= u1(h−, y),
v1(h+, y)= v1(h−, y),

}
y <∞, (23)

v1(x, 0+)= 0, d < x <∞, (24)

σyy1(x, 0+)= −p(x), 0< x < d. (25)

Equation (20) indicates that the shear stress is zero in the plane of symmetry. Equations (21) show that
no tractions are applied at the top surface of the coating. Equations (22) and (23) describe the continuity
conditions of the stress and displacement fields along the interface x = h. Equation (24) indicates the
y-component of the displacement along the plane y = 0 is zero outside the crack because of symmetry.
Equation (25) describes the applied normal crack surface traction which can be expressed in terms of
external general loads. It should be pointed out that the regularity conditions which state that the stresses
and displacements need to be bounded at x → ∞ were already incorporated in the solution given by
Equations (18) and (19a)–(19c).

Applying the boundary conditions (20) and (24) allows expressing the unknown functions C3 and C4

in terms of the density function f1:

C3 =
κ+1
4µ0

i
λ

−pi
xy1,4

si
3 pi

xy1,4 − si
4 pi

xy1,3

∫ d

0
f1(t)e−iλt dt, C4 =

κ+1
4µ0

i
λ

pi
xy1,3

si
3 pi

xy1,4 − si
4 pi

xy1,3

∫ d

0
f1(t)e−iλt dt .

Applying the boundary conditions (21)–(23) yields the linear system of equations

ps
xx1,1 ps

xx1,2 ps
xx1,3 ps

xx1,4 0 0

−ps
xy1,1 −ps

xy1,2 −ps
xy1,3 −ps

xy1,4 0 0

ps
xx1,1en1h ps

xx1,2en2h ps
xx1,3en3h ps

xx1,4en4h
−ph

xx1,1e−αh
−(ph

xx1,2+hph
xx1,1)e

−αh

−ps
xy1,1en1h

−ps
xy1,2en2h

−ps
xy1,3en3h

−ps
xy1,4en4h ph

xy1,1e−αh (ph
xy1,2+hph

xx1,1)e
−αh

en1h en2h en3h en4h
−e−αh

−he−αh

−ss
1en1h

−ss
2en2h

−ss
3en3h

−ss
4en4h e−αh (h−

κ
α
)e−αh





E1

E2

E3

E4

C5

C7



=



F R
1

F R
2

F R
3

F R
4

F R
5

F R
6



,

where we have defined

F R
j =

κ+1
4π2µ0

∫ d

0
f1(t)R j (α, t) dt ( j = 1, . . . , 6),
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the R j (α, t) ( j = 1, . . . , 6) being integrals evaluated using the residue theorem [Kreyszig 1999]; their
values are

R j (α, t)= L j

(
H1 j sin

Bt
2

+ H2 j cos
Bt
2

)
( j = 1, 2),

R j (α, t)= L j

(
H1 j sin

B(h − t)
2

+ H2 j cos
B(h − t)

2

)
( j = 3, . . . , 6),

where L j , Hi j , and B are functions of α, β and κ .
This system of equations can be analytically inverted, leading to the expressions of the unknown

functions C5,C7, E1, E2, E3, E4 in terms of the density function f1:

E1 = Q
∫ d

0
S1(α, t) f1(t) dt,

E2 = Q
∫ d

0
S2(α, t) f1(t) dt,

E3 = Q
∫ d

0
S3(α, t) f1(t) dt,

E4 = Q
∫ d

0
S4(α, t) f1(t) dt,

C5 = Q
∫ d

0
S5(α, t) f1(t) dt,

C7 = Q
∫ d

0
S6(α, t) f1(t) dt,

where Q = (κ+1)/(4π2µ0) and, for j = 1, . . . , 6,

S j (α, t)=
D1 j

D
R1(α, t)−

D2 j

D
R2(α, t)+

D3 j

D
R3(α, t)−

D4 j

D
R4(α, t)+

D5 j

D
R5(α, t)−

D6 j

D
R6(α, t).

4. Solution of the sliding mode problem

Similarly to the opening mode problem, the solution of the composite medium for the sliding mode
problem may be determined by obtaining the solution in the graded layer and that in the homogeneous
substrate with the exception that y = 0 is a plane of antisymmetry. The layer solution may be expressed
as the sum of two solutions, namely an infinite graded medium with a crack and a graded strip without
a crack [Erdogan and Wu 1996; Dag and Erdogan 2002; Bogy 1975]. By superposing the two sets of
solutions, the displacement and stress field solutions of the y ≥ 0 cracked graded strip can be established
as follows:

u+

2 (x, y)= ui+
2 (x, y)+ us

2(x, y), v+

2 (x, y)= vi+
2 (x, y)+ vs

2(x, y), y ≥ 0,

σ+

kl2(x, y)= σ i+
kl2(x, y)+ σ s

kl2(x, y), k, l = x, y, y ≥ 0,
(26)

where the subscript 2 stands for the sliding mode problem, the superscript i and s indicate, respectively,
the cracked infinite medium and the strip, the superscript + stands for the half-plane y ≥ 0, ui+

2 (x, y)
and vi+

2 (x, y) are given by Equations (A-1a), (A-1b) in the Appendix, us
2(x, y) and vs

2(x, y) are given
by (A-2a), (A-2b) and σ i+

kl2(x, y) and σ s
kl2(x, y)(k, l = x, y) are, respectively, given by (A-1c)–(A-1e)

and (A-2c)–(A-2e).
The solution in the homogeneous half-plane can be obtained by considering the plane y = 0 as a plane

of antisymmetry and that it needs to be bounded as x goes to ∞. The solution is given by (A-3). As
in the opening mode problem, the sliding mode problem contains nine unknowns: D3, D4 from (A-1),
D5, D7 from (A-3), F1, . . . , F4 from (A-2), and f2, which can be determined from the nine boundary
conditions

σyy2(x, 0+)= 0, x > 0, (27)
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σxx2(x, y)= 0,
σxy2(x, y)= 0,

}
x = 0, y <∞, (28)

σxx2(h+, y)= σxx2(h−, y),
σxy2(h+, y)= σxy2(h−, y),

}
y <∞, (29)

u2(h+, y)= u2(h−, y),
v2(h+, y)= v2(h−, y),

}
y <∞, (30)

v1(x, 0+)= 0,
u2(x, 0+)= 0,

}
d < x <∞, (31)

σxy2(x, 0+)= −q(x), 0< x < d. (32)

Applying the boundary conditions (27) and (31) allows us to express the unknown functions D3 and
D4 in terms of the density function f2, as shown in Equations (A-4a), (A-4b). Applying the boundary
conditions (28)–(30) yields the linear system in A.5. This system of equations can be analytically inverted,
leading to expressions for the unknown functions D5, D7, F1, F2, F3, F4 in terms of the density function
f2; these are given in A.6.

5. Singular integral equations

Based on the solutions obtained in Sections 3 and 4 for the opening and sliding mode problems, we can
apply the boundary conditions (25) and (32), obtaining the dual uncoupled integral equations∫ d

0
(K11(x, t)+ K12(x, t)) f1(t) dt = −p(x), 0< x < d, (33a)∫ d

0
(K21(x, t)+ K22(x, t)) f2(t) dt = −q(x), 0< x < d, (33b)

where the kernels K11(x, t) and K12(x, t) representing the infinite graded medium and the graded strip
for the opening mode problem are given by

K11(x, t)=
κ+1

4π(κ−1)
eβx lim

y→0+

(∫
+∞

0
M0(λ, y) cos(λ(x − t)) dλ+

∫
+∞

0
N0(λ, y) sin(λ(x − t)) dλ

)
,

K12(x, t)=
κ+1

4π2(κ−1)
eβx lim

y→0+

∫
+∞

0

4∑
k=1

ps
yy1,k(α)Sk(α, t)enk x cos(yα) dα,

where M0(λ, y)= S0(λ, y)+ S0(−λ, y) and N0(λ, y)= i (S0(λ, y)− S0(−λ, y)) with

S0(λ, y)=
i

2λ

( pi
yy1,4 pi

xy1,3em4 y
− pi

yy1,3 pi
xy1,4em3 y

si
3 pi

xy1,4 − si
4 pi

xy1,3

)
,
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and the corresponding kernels K21(x, t) and K22(x, t) for the sliding mode problem are given by

K21(x, t)=
κ+1
4π

eβx lim
y→0+

(∫
+∞

0
M ′

0(λ, y) cos(λ(x − t)) dλ+

∫
+∞

0
N ′

0(λ, y) sin(λ(x − t)) dλ
)

K22(x, t)=
κ+1
4π2 eβx

(
lim

y→0+

∫
+∞

0

4∑
k=1

qs
xy2,k(α)S

′

k(α, t)enk x cos(yα) dα

)
,

where M ′

0(λ, y) and N ′

0(λ, y) are given analogously in terms of

S′

0(λ, y)=
i

2λ

(q i
xy2,4q i

yy2,3em4 y
− q i

xy2,3q i
yy2,4em3 y

q i
yy2,4 − q i

yy2,3

)
.

The singular nature of the integral equations above and that of the solutions f1 and f2 may be de-
termined by studying the asymptotic behavior of the integrands found in the expressions of K11(x, t),
K12(x, t), K21(x, t) and K22(x, t). After a very lengthy analysis, the singular integral equations above
become ∫ d

0

(
1

π(t − x)
+ hs

1(x, t)+ h f
1 (x, t)

)
f1(t) dt = −e−βx p(x), 0< x < d,

∫ d

0

(
1

π(t − x)
+ hs

2(x, t)+ h f
2 (x, t)

)
f2(t) dt = −e−βxq(x), 0< x < d,

(34)

where h f
1 (x, t) and h f

2 (x, t) are bounded Fredholm kernels and hs
1(x, t) and hs

2(x, t) are generalized
Cauchy kernels of order 1/t that become unbounded as the arguments x and t tend to the end point zero
simultaneously. The Cauchy kernels are of the form

hs
1(x, t)=

(κ+1)eβ(t−x)/2

2(κ−1)

(
2h∗

2

(t + x)3
+

h∗

1

(t + x)2
+

h0

(t + x)
+

c∗

1

(2h − t − x)2
+

c0

(2h − t − x)

)
,

hs
2(x, t)=

(κ+1)eβ(t−x)/2

2

(
2m∗

2

(t + x)3
+

m∗

1

(t + x)2
+

m0

(t + x)
+

l∗1
(2h − t − x)2

+
l0

(2h − t − x)

)
,

where each of the coefficients h0, h∗

1, h∗

2, c0, c∗

1 , m0, m∗

1, m∗

2, l0 and l∗1 is a lengthy function of κ , β, x
and t .

From these singular integral equations, we conclude there is no singularity at the crack mouth, while
the standard square-root or Cauchy singularity, 1/(t−x), is retained at the crack tip, in addition to other
singularities contained in the generalized Cauchy kernels. The solution of these equations is expressed
as follows, where f̃1(t) and f̃2(t) are unknown bounded functions (see [Erdogan et al. 1973]):

f1(t)= (d − t)−1/2 f̃1(t), f2(t)= (d − t)−1/2 f̃2(t), 0< t < d, (35)

The limits of the generalized Cauchy kernels are the same as for homogeneous materials [Erdogan
and Wu 1997], namely

lim
β→0

hs
1(x, t)= lim

β→0
hs

2(x, t)=
1
π

(
1

t + x
+

2t
(t + x)2

−
4t2

(t + x)3

)
, 0< (t, x) < d. (36)
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6. Solution of the singular integral equations

We have the following normalizations for the singular integral equations (34):

t =
1
2 d(r + 1), x =

1
2 d(s + 1), 0< (t, x) < d, −1< (r, s) < 1,

f1(t)= f̄1(r), f2(t)= f̄2(r), 0< t < d, −1< r < 1,

hs
1(x, t)= h̄s

1(s, r), hs
2(x, t)= h̄s

2(s, r), 0< (x, t) < d, −1< (s, r) < 1,

h f
1 (x, t)= h̄ f

1 (s, r), h f
2 (x, t)= h̄ f

2 (s, r), 0< (x, t) < d, −1< (s, r) < 1,

p(x)= p̄(s), q(x)= q̄(s), 0< x < d, −1< s < 1.

Hence the equations become∫ 1

−1

(
1

π(r − s)
+ h̄s

1(s, r)+ h̄ f
1 (s, r)

)
f̄1(r) dr = −e−β(d/2)(s+1) p̄(s), −1< s < 1,

∫ 1

−1

(
1

π(r − s)
+ h̄s

2(s, r)+ h̄ f
2 (s, r)

)
f̄2(r) dr = −e−β(d/2)(s+1)q̄(s), −1< s < 1.

(37)

It was shown in [Erdogan et al. 1973] that the solution of these equations may be expressed as f̄i (r)=

w(r)ψi (r), i = 1, 2, where w(r)= 1/
√

1 − r is the weight function associated with the Jacobi polynomial
P (−1/2,0)

n (r) and ψi (r), (i = 1, 2) are continuous and bounded function in the interval [−1, 1] which may
be expressed as convergent series of Jacobi polynomials. Hence the solutions of (37) become

f̄1(r)=
1

√
1 − r

∞∑
n=0

A1n P (−1/2,0)
n (r), f̄2(r)=

1
√

1 − r

∞∑
n=0

A2n P (−1/2,0)
n (r), −1< r < 1. (38)

Substituting this into (37), truncating the series at N and regularizing the singular terms, the above
integral equations reduce to a system of linear algebraic equations in the 2(N+1) unknowns A1n and
A2n:

N∑
n=0

(
−
0(−1/2)0(n + 1)
√

2π0(n + 1/2)
F
(
n + 1,−n + 1/2; 3/2; (1 − s)/2

)
+ M1(s)

)
A1n

= −e(−βd(1+s)/2) p(d(1 + s)/2), −1< s < 1, (36a)
N∑

n=0

(
−
0(−1/2)0(n + 1)
√

2π0(n + 1/2)
F
(
n + 1,−n + 1/2; 3/2; (1 − s)/2

)
+ M2(s)

)
A2n

= −e(−βd(1+s)/2)q(d(1 + s)/2), −1< s < 1, (36b)

where 0 is the gamma function, F is the hypergeometric function and M1, M2 are given by

Mk(s)=

∫ 1

−1
(1 − r)−1/2 Hk(s, r)P (−1/2,0)

n (r) dr (k = 1, 2),

with

Hk(s, r)=
d
2

(
hs

k

(d
2

s +
d
2
,

d
2

r +
d
2

)
+ h f

k

(d
2

s +
d
2
,

d
2

r +
d
2

))
.
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Equations (36) are solved numerically using a suitable collocation technique [Erdogan and Wu 1996].
Once the 2(N + 1) unknowns coefficients A1n and A2n are obtained, the mixed-mode crack tip stress
intensity factors may be estimated as follows:

k1 = lim
x→d+0

√
2(x − d)σyy(x, 0)= −eβd

√
d

N∑
n=0

A1n P (−1/2,0)
n (1),

k2 = lim
x→d+0

√
2(x − d)σxy(x, 0)= −eβd

√
d

N∑
n=0

A2n P (−1/2,0)
n (1).

(40)

7. Results and discussion

Table 1 gives the thermomechanical properties of actual functionally graded materials studied in [Zhao
et al. 2004; Jin and Paulino 2001; Shodja and Ghahremaninejad 2006; Shao 2005; Ma and Wang 2003;
Ching and Yen 2005; Lee and Erdogan 1998b]. The tabulated FGMs are made of two constituents, such
as ceramic Al2O3 and titanium carbide (TiC), or Rene 41 and zirconia. It is clear from this table that the
thermomechanical properties, such as the elastic modulus, the thermal expansion coefficient and the heat
conductivity, can be proportional (decreasing or increasing) or nonproportional from one face to the other
face of the graded layer. For example, for a Rene 41 and zirconia FGM, the ratio of the elastic moduli,

components reference ν E E1/E2 α α1/α2 k k1/k2

ceramic Al2O3 [Zhao et al. 2004]
0.26 380

< 1
8.5

> 1
40.37

> 1
titanium carbide 0.19 450 7.6 24.28
silicon carbide

[Jin and Paulino 2001]
0.20 400

= 1
4.0

< 1
60

> 1
titanium carbide 0.20 400 7.0 20
titanium nickel 0.20 600

> 1
8.08

< 1
22

< 1
aluminum alloy

[Shodja and
Ghahremaninejad 2006] 0.33 70 23.05 190

titanium nickel 0.20 600
> 1

8.08
< 1

22
< 1

carbon steel
[Shodja and
Ghahremaninejad 2006] 0.30 207 12.36 40

mullite
[Shao 2005]

0.27 225
< 1

4.8
≈ 1

5.9
< 1

molybednum 0.30 330 4.9 138
zirconia

[Ma and Wang 2003]
0.3 151

> 1
9.97

< 1
2.09

< 1
aluminum 0.3 70 22.86 204
silicon carbide

[Ching and Yen 2005]
0.17 427

> 1
4.3

< 1
65

< 1
aluminum 0.3 70 23.4 233
Rene 41

[Lee and Erdogan 1998b]
0.3 219.7

> 1
16.7

> 1
25.51

> 1
zirconia 0.3 151 10 2.09

Table 1. Thermomechanical properties of various types of functionally graded materials.
Legend: ν, Poisson’s ratio; E , elastic modulus, in GPa; α, thermal expansion coefficient,
in 10−6K−1, k, thermal conductivity, in 103W@(mK)−1. Subscript 1 corresponds to the
top-row material in each pair and subscript 2 to bottom row.
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k1/(σnd1/2)

p(x)= σ0 p(x)= σ1(x/d) p(x)= σ2(x/d)2 p(x)= σ3(x/d)3

βd lit. cur. lit. cur. lit. cur. lit. cur.

−3.0 4.4345 4.4481 1.9324 1.9375 1.2148 1.2176 0.8897 0.8916
−2.0 3.1238 3.1254 1.4495 1.4501 0.9525 0.9528 0.7209 0.7211
−1.0 1.9846 1.9853 1.0196 1.0199 0.7152 0.7154 0.5663 0.5664
−0.5 1.4988 1.4991 0.8317 0.8318 0.6099 0.6099 0.4970 0.4970
10−4 1.1215 1.1215 0.6828 0.6828 0.5255 0.5255 0.4410 0.4410
0.5 1.0225 1.0225 0.6439 0.6439 0.5035 0.5035 0.4264 0.4264
1.0 0.9930 0.9931 0.6328 0.6328 0.4947 0.4974 0.4225 0.4225
2.0 0.9807 0.9806 0.6289 0.6289 0.4956 0.4956 0.4215 0.4215
3.0 09884 0.9885 0.6329 0.6329 0.4981 0.4982 0.4233 0.4234

k2/(τnd1/2)

p(x)= τ0 p(x)= τ1(x/d) p(x)= τ2(x/d)2 p(x)= τ3(x/d)3

βd lit. cur. lit. cur. lit. cur. lit. cur.

−3.0 1.6704 1.6708 0.9273 0.9276 0.6738 0.6739 0.5437 0.5438
−2.0 1.4765 1.4767 0.8398 0.8399 0.6202 0.6202 0.5063 0.5063
−1.0 1.2825 1.2824 0.7534 0.7534 0.5678 0.5677 0.4700 0.4700
−0.5 1.1940 1.1939 0.7144 0.7144 0.5443 0.5443 0.4539 0.4539
10−4 1.1215 1.1216 0.6829 0.6829 0.5255 0.5255 0.4410 0.4410
0.5 1.0727 1.0727 0.6620 0.6620 0.5132 0.5132 0.4327 0.4327
1.0 1.0429 1.0428 0.6497 0.6497 0.5062 0.5062 0.4280 0.4280
2.0 1.0164 1.0165 0.6397 0.6397 0.5008 0.5008 0.4245 0.4246
3.0 1.0128 1.0127 0.6394 0.6394 0.5011 0.5011 0.4249 0.4250

Table 2. Normalized mode I (top) and mode II (bottom) stress intensity factors for a
graded half-plane: comparison of results from [Dag and Erdogan 2002] (columns labeled
“lit.”) with those obtained in the current study.

the ratio of the thermal expansion coefficients and the ratio of the heat conductivity are all greater than
one. For a titanium nickel (TiNi) and aluminum alloy FGM, the ratio of the elastic moduli is greater
than one while the ratio of the thermal expansion coefficients and the ratio of the heat conductivity are
both less than one. For a ceramic Al2O3 and titanium carbide FGM, the ratio of the elastic moduli is less
than one while the ratio of the thermal expansion coefficients and the ratio of the heat conductivity are
both greater than one. Since this study is limited only to variations of the elastic modulus, we, therefore,
consider two cases of FGM coatings, a stiff graded layer with βd < 0 and a compliant graded layer with
βd > 0, which correspond, respectively, to a ratio of the elastic moduli greater than and less than 1.

Furthermore, for the problem considered, if the coating thickness tends to infinity (h → ∞), the
configuration of the problem tends toward a graded half-plane, with the effect of the homogeneous
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Figure 2. Effect of the nonhomogeneity parameter βd on the normalized mode I (left)
and mode (II) stress intensity factors under plane strain and various distributions of crack
surface tractions σn or τn , n = 0, 1, 2, 3. In each case, ν = 0.25 and h/d = 2.

substrate almost negligible. As mentioned in the introduction, this crack problem was solved in [Dag
and Erdogan 2002]. We see in Table 2 that the results obtained here are in agreement with those published
in that work; the tables give the normalized mode I and II stress intensity factors for an edge crack in a
graded half-plane, assuming different values of the nonhomogeneity parameter βd, various polynomial
forms of crack surface tractions, plane strain conditions, a Poisson’s ratio ν = 0.25 and a large value of
the coating thickness h (h/d = 50).

When |βd| approaches zero, the composite medium becomes a homogeneous elastic half-plane. The
closed-form solution for the stress intensity factor for a surface crack subject to a uniform normal traction
p(x)= σ0 was obtained in [Koiter 1965] in terms of an infinite integral as

k1

σ0
√

d
=

√
2(B + 1)

√
π A

, log A = −
1
π

∫
∞

0

1
1 +α2 log

(
α sinh(πα)

√
B2 +α2 (cosh(πα)− 2α2 − 1)

)
dα, (41)

where B is an arbitrary real constant greater than 1 and the result is independent of the choice of B.
The numerical evaluation of (41), performed in [Kaya and Erdogan 1987], shows that k1/(σ0

√
d)=

1.12152226, which is the result obtained in Table 2 (top) for βd = 0.0001.
Figure 2 illustrates the effect of the nonhomogeneity parameter βd [in µ1 = µ0 exp(βx)] on the mode

I and II crack tip stress intensity factors (SIF) for the case of constant p(x)= σ0, linear p(x)= σ1(x/d),
quadratic p(x) = σ2(x/d)2 and cubic p(x) = σ3(x/d)3 crack surface normal tractions. The results
were calculated for plane strain conditions, a Poisson’s ratio ν = 0.25 and a coating thickness h/d = 2.
Increasing the value of the nonhomogeneity parameter βd from −3 to 3 results in a decrease in both mode
I and mode II stress intensity factors. In addition, k1 and k2 are much more sensitive to the variations in
βd for βd < 0 (that is, compliant graded coating) than for βd > 0 (stiff graded coating).
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Figure 3. Effect of coating thickness h/d and stiffness parameter βd on the normal-
ized mode I stress intensity factor under various distributions of crack surface normal
tractions, ν = 0.25, plane strain, (a) constant normal traction p(x) = σ0, (b) linear
normal traction p(x) = σ1(x/d), (c) quadratic normal traction p(x) = σ2(x/d)2, (d)
cubic normal traction p(x)= σ3(x/d)3; σn (n = 0, 1, 2, 3), τn (n = 0, 1, 2, 3).

Figures 3 and 4 illustrate the effect of varying the coating thickness h/d ( = 2, 4, 10) and the stiffness
parameter βd ( = −3, . . . , 3) on the normalized mode I and mode II stress intensity factor under various
distributions of crack surface normal tractions. The results were calculated for plane strain conditions, a
Poisson’s ratio ν = 0.25. It can be seen from Figure 3 that k1 is sensitive to the variations of the coating
thickness h/d for βd < 0 and tends to be insensitive for βd > 0. Furthermore, for negative values of
βd, the value of k1 tends to increase when the coating thickness is increased. In addition, the rate of
change of k1 with respect to βd for βd < 0 becomes more important for increasing values of the coating
thickness. Moreover, increasing h/d from 2 to 10 indicates that the crack-tip is located more and more
in the stiffer side of the coating, and, therefore, the increase of k1 can be compensated somewhat by a
larger fracture toughness which decreases for a compliant graded coating (βd < 0). On the other hand,
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Figure 4. Effect of coating thickness h/d and stiffness parameterβd on the normalized
mode II stress intensity factor under various distributions of crack surface shear tractions,
ν = 0.25, plane strain, (a) constant shear traction q(x) = τ0, (b) linear shear traction
q(x) = τ1(x/d), (c) quadratic shear traction q(x) = τ2(x/d)2, (d) cubic shear traction
q(x)= τ3(x/d)3.

Figure 4 indicates that the mode II stress intensity factor is relatively insensitive to the variations of the
coating thickness h/d. In other words, further increase of h/d from 4 to 10 does not seem to affect the
values of k2.

Figure 5 shows some sample results for the normalized normal and tangential crack opening displace-
ments, v∗(x)= v(x, 0+)−v(x, 0−) and u∗(x)= u(x, 0+)−u(x, 0−), obtained by applying, respectively,
constant normal and shear tractions. The results were calculated for plane strain conditions, a Poisson’s
ratio ν = 0.25 and a coating thickness h/d = 2. It may be observed that as βd increases, the crack
opening displacements decrease. Furthermore, the influence of βd on the crack opening displacement is
more significant for a compliant graded layer (βd < 0) than for a stiff graded layer (βd > 0). The crack
opening displacements for the homogeneous medium (βd = 0.0001) is bracketed by the results obtained
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Figure 5. Normal (left) and tangential (right) crack opening displacement under con-
stant normal traction p(x) = σ0 (left) or constant shear traction q(x) = τ0 (right). In
both cases, ν = 0.25 and h/d = 2.

for βd < 0 and βd > 0. In addition, for βd < 0, crack opening displacements under mode I loading
(that is, normal crack surface tractions) is greater than that under mode II loading (shear crack surface
tractions).
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Appendix: Mode II problem expressions

A.1. Expressions of displacements and stresses in the infinite graded medium (half-plane y ≥ 0).

ui+
2 (x, y)=

1
2π

∫
+∞

−∞

4∑
k=3

Dkemk yei xλdλ, y ≥ 0, (A-1a)

vi+
2 (x, y)=

1
2π

∫
+∞

−∞

4∑
k=3

Dksi
kemk yei xλdλ, y ≥ 0, (A-1b)

σ i+
xx2(x, y)=

µ1

2π(κ−1)

∫
+∞

−∞

4∑
k=3

pi
xx1,k(λ)Dkemk yei xλdλ, y ≥ 0, (A-1c)
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σ i+
yy2(x, y)=

µ1

2π(κ−1)

∫
+∞

−∞

4∑
k=3

pi
yy1,k(λ)Dkemk yei xλdλ, y ≥ 0, (A-1d)

σ i+
xy2(x, y)=

µ1

2π

∫
+∞

−∞

4∑
k=3

pi
xy1,k(λ)Dkemk yei xλdλ, y ≥ 0, (A-1e)

where Dk(λ), (k = 3, 4) are unknowns functions, the roots mk (k = 3, 4) are given by (10b), the known
function si

k(λ) is given by (8) and pi
xx1,k(λ), pi

yy1,k(λ) and pi
xy1,k(λ) are known functions given by the

equations following (11).

A.2. Expressions of displacements and stresses in the graded strip.

us
2(x, y)=

∫
+∞

0

4∑
k=1

Fkenk x sin(yα) dα, (A-2a)

vs
2(x, y)=

∫
+∞

0

4∑
k=1

Fkr s
k enk x cos(yα) dα, (A-2b)

σ s
xx2(x, y)=

µ1

κ−1

∫
+∞

0

4∑
k=1

qs
xx2,k(α)Fkenk x sin(yα) dα, (A-2c)

σ s
yy2(x, y)=

µ1

κ−1

∫
+∞

0

4∑
k=1

qs
yy2,k(α)Fkenk x sin(yα) dα, (A-2d)

σ s
xy2(x, y)= µ1

∫
+∞

0

4∑
k=1

qs
xy2,k(α)Fkenk x cos(yα) dα, (A-2e)

where Fk(λ) (k = 1, 2, 3, 4), are unknown functions, the roots nk , k = 1, . . . , 4, are given by (15), the
known functions r s

k (λ), (k = 1, 2, 3, 4), are such that r s
k (λ)= −ss

k(λ) in which ss
k(λ) is given by (13) and

qs
xx2,k(α), qs

yy2,k(α) and qs
xy2,k(α) are known functions given by

qs
xx2,k(α)= (1+κ)nk − (3−κ)αr s

k ,

qs
xy2,k(α)= α+ r s

k nk, (k = 1, . . . , 4),

qs
yy2,k(α)= (3−κ)nk − (1+κ)αr s

k , (k = 1, . . . , 4).

A.3. Expressions of displacements and stresses in the homogeneous substrate.

uh
2(x, y)=

∫
+∞

0
(D5 + D7x)e−αx sin(yα) dα, (A-3a)

vh
2 (x, y)=

∫
+∞

0

(
D5 + D7

κ

α
− D7x

)
e−αx cos(yα) dα, (A-3b)

σ h
xx2(x, y)=

µ2

κ−1

∫
+∞

0

(
qh

xx2,1 D5 + qh
xx2,2 D7 + qh

xx2,1 D7x
)
e−αx sin(yα) dα, (A-3c)
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σ h
yy2(x, y)=

µ2

κ−1

∫
+∞

0

(
qh

yy2,1 D5 + qh
yy2,2 D7 + qh

yy2,1 D7x
)
e−αx sin(yα) dα, (A-3d)

σ h
xy2(x, y)= µ2

∫
+∞

0

(
qh

xy2,1 D5 + qh
xy2,2 D7 + qh

xy2,1 D7x
)
e−αx cos(yα) dα, (A-3e)

where D5 and D7 are unknown functions and qh
xx2,1, qh

xx2,2, qh
yy2,1, qh

yy2,2, qh
xy2,1 and qh

xy2,2 are known
functions given by

qh
xx2,1(λ)= 2(1 − κ)α, qh

xx2,2(λ)= (κ−1)2,

qh
yy2,1(λ)= −2(1 − κ)α, qh

yy2,2(λ)= 3 − 2κ − κ2,

qh
xy2,1(λ)= 2α, qh

xy2,2(λ)= −(1+κ).

A.4. Expressions of D3 and D4 in terms of the density function f2.

D3 =
κ+1
4µ0

i
λ

(−q i
yy2,4)

q i
yy2,4 − q i

yy2,3

∫ d

0
f2(t)e−iλt dt, (A-4a)

D4 =
κ+1
4µ0

i
λ

q i
yy2,3

q i
yy2,4 − q i

yy2,3

∫ d

0
f2(t)e−iλt dt . (A-4b)

A.5. Linear system of equations obtained after applying boundary conditions (28)–(30).

−qs
xx2,1 −qs

xx2,2 −qs
xx2,3 −qs

xx2,4 0 0

qs
xy2,1 qs

xy2,2 qs
xy2,3 qs

xy2,4 0 0

−qs
xx2,1en1h

−qs
xx2,2en2h

−qs
xx2,3en3h

−qs
xx2,4en4h qh

xx2,1e−αh (qh
xx2,2 + hqh

xx2,1)e
−αh

qs
xy2,1en1h qs

xy2,2en2h qs
xy2,3en3h qs

xy2,4en4h
−qh

xy2,1e−αh
−(qh

xy2,2 + hqh
xx2,1)e

−αh

−en1h
−en2h

−en3h
−en4h e−αh he−αh

r s
1en1h r s

2en2h r s
3en3h r s

4en4h e−αh (h −
κ
α
)e−αh





F1

F2

F3

F4

D5

D7



=



G R
1

G R
2

G R
3

G R
4

G R
5

G R
6



,

where we have defined

G R
j =

κ+1
4π2µ0

∫ d

0
f2(t)R′

j (α, t) dt ( j = 1, . . . , 6),

the R′

j (α, t) ( j = 1, . . . , 6) being integrals evaluated using the residue theorem in a similar manner as
the integrals R j for the mode I problem.

A.6. Expressions of D5, D7, F1, F2, F3 and F4 in terms of the density function f2.

F1 = Q
∫ d

0
S′

1(α, t) f2(t) dt,

F2 = Q
∫ d

0
S′

2(α, t) f2(t) dt,

F3 = Q
∫ d

0
S′

3(α, t) f2(t) dt,

F4 = Q
∫ d

0
S′

4(α, t) f2(t) dt,

D5 = Q
∫ d

0
S′

5(α, t) f2(t) dt,

D7 = Q
∫ d

0
S′

6(α, t) f2(t) dt,
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in which Q = (κ+1)/(4π2µ0) and, for j = 1, . . . , 6,

S′

j (α, t)=
H1 j

H
R′

1(α, t)−
H2 j

H
R′

2(α, t)+
H3 j

H
R′

3(α, t)−
H4 j

H
R′

4(α, t)+
H5 j

H
R′

5(α, t)−
H6 j

H
R′

6(α, t).

References

[Bogy 1975] D. B. Bogy, “Solution of the plane end problem for a semi-infinite elastic strip”, Journal of Applied Mathematics
and Physics 26 (1975), 749–769.

[Chen and Erdogan 1996] Y. F. Chen and F. Erdogan, “The interface crack problem for a nonhomogeneous coating bonded to
a homogeneous substrate”, Journal of Mechanics and Physics of Solids 44 (1996), 771–787.

[Chen et al. 2002a] J. Chen, Z. Liu, and Z. Zou, “Transient internal crack problem for a nonhomogeneous orthotropic strip
(Mode I)”, International Journal of Engineering Science 40 (2002), 1761–1774.

[Chen et al. 2002b] Y.-H. Chen, M. Guruz, Y.-W. Chung, and L. M. Keer, “Thermal stability of hard TiN/SiNx coatings with
an equiaxed microstructure”, Surface and Coatings Technology 154 (2002), 162–166.

[Chen et al. 2002c] Y.-H. Chen, I. A. Polonsky, Y.-W. Chung, and L. M. Keer, “Tribological properties and rolling-contact-
fatigue lives of TiN/SiNx multilayer coatings”, Surface and Coatings Technology 154 (2002), 152–161.

[Ching and Yen 2005] H. K. Ching and S. C. Yen, “Meshless local Petrov-Galerkin analysis for 2D functionally graded elastic
solids under mechanical and thermal loads”, Composites Part B 36 (2005), 223–240.

[Dag and Erdogan 2002] S. Dag and F. Erdogan, “A surface crack in a graded medium under general loading condition”, ASME
Journal of Applied Mechanics 69 (2002), 580–588.

[Dag et al. 1999] S. Dag, S. Kadioglu, and O. S. Yahsi, “Circumferential crack problem for an FGM cylinder under thermal
stresses”, Journal of Thermal Stresses 22 (1999), 659–687.

[Delale and Erdogan 1983] F. Delale and F. Erdogan, “The crack problem for a nonhomogeneous plane”, ASME Journal of
Applied Mechanics 50 (1983), 609–614.

[Dhaliwal and Singh 1978] R. S. Dhaliwal and B. M. Singh, “On the theory of elasticity of a non-homogeneous medium”,
Journal of Elasticity 8 (1978), 211–219.

[El-Borgi et al. 2000] S. El-Borgi, L. Hidri, and F. Erdogan, “Stress intensity factors for a crack arbitrarily oriented in a
functionally graded layer”, Ceramic Transactions (2000), 723–730.

[El-Borgi et al. 2003] S. El-Borgi, F. Erdogan, and F. Ben Hatira, “Stress intensity factors for an interface crack between a
functionally graded coating and a homogeneous substrate”, International Journal of Fracture 123 (2003), 139–162.

[El-Borgi et al. 2004a] S. El-Borgi, F. Erdogan, and L. Hidri, “A partially insulated embedded crack in an infinite functionally
graded medium under thermo-mechanical loading”, International Journal of Engineering Science 42 (2004), 371–393.

[El-Borgi et al. 2004b] S. El-Borgi, L. Keer, and W. Ben Said, “An embedded crack in a functionally graded coating bonded to
a homogeneous substrate under frictional Hertzian contact”, Wear, An International Journal on the Science and Technology of
Friction, Lubrication and Wear 257 (2004), 760–776.

[Erdogan 1985] F. Erdogan, “The crack problem for bonded nonhomogeneous materials under antiplane shear loading”, ASME
Journal of Applied Mechanics 52 (1985), 823–828.

[Erdogan 1995] F. Erdogan, “Fracture mechanics of functionally graded materials”, Composites Engineering 5 (1995), 753–
770.

[Erdogan and Wu 1996] F. Erdogan and B. H. Wu, “Crack problems in FGM layers under thermal stresses”, Journal of Thermal
Stresses 19 (1996), 237–265.

[Erdogan and Wu 1997] F. Erdogan and B. H. Wu, “The surface crack problem for a plate with functionally graded properties”,
ASME Journal of Applied Mechanics 64 (1997), 449–456.

[Erdogan et al. 1973] F. Erdogan, G. D. Gupta, and T. S. Cook, “Numerical solution of singular integral equations”, pp. 368–
425 in Mechanics of Fracture, edited by G. Sih, Norrdhoff, Leyden, 1973.

[Guo et al. 2004a] L.-C. Guo, Lin-Zhi, L.-Z. Wu, T. Zeng, and L. Ma, “Mode I crack problem for a functionally graded
orthotropic strip”, European Journal of Mechanics A/Solids 23 (2004), 219–234.



1352 SAMI EL-BORGI, RADHI ABDELMOULA, SERKAN DAG AND NIZAR LAJNEF

[Guo et al. 2004b] L.-C. Guo, L.-Z. Wu, T. Zeng, and L. Ma, “The dynamic fracture behavior of a functionally coating-substrate
system”, Composite Structures 64 (2004), 433–441.

[Holt et al. 1992] J. Holt, M. Koizumi, T. Hirai, and Z. A. Munir (editors), Functionally gradient materials ceramic transactions,
vol. 34, The American Ceramic Society, Ohio, 1992.

[Jin and Noda 1993] Z.-H. Jin and N. Noda, “An internal crack parallel to the boundary of a nonhomogeneous half plane under
thermal loading”, International Journal of Engineering Science 31 (1993), 793–806.

[Jin and Noda 1994a] Z.-H. Jin and N. Noda, “Crack tip singular fields in nonhomogeneous materials”, ASME Journal of
Applied Mechanics 61 (1994), 738–740.

[Jin and Noda 1994b] Z.-H. Jin and N. Noda, “Edge crack in a nonhomogeneous half plane under thermal loading”, Journal of
Thermal Stresses 17 (1994), 591–599.

[Jin and Noda 1994c] Z.-H. Jin and N. Noda, “Transient thermal stress intensity factors for a crack in a semi-infinite plate of a
functionally gradient material”, International Journal of Solids Structures 31 (1994), 203–218.

[Jin and Paulino 2001] Z.-H. Jin and G. H. Paulino, “Transient thermal stress analysis of an edge crack in a functionally graded
material”, International Journal of Fracture 107 (2001), 73–98.

[Kadioglu et al. 1998] S. Kadioglu, S. Dag, and S. Yahsi, “Crack problem for a functionally graded layer on an elastic founda-
tion”, International Journal of Fracture 94 (1998), 63–77.

[Kaya and Erdogan 1987] A. C. Kaya and F. Erdogan, “On the solution of integral equations with strong singular kernels”,
Quarterly of Applied Mathematics, XLV (1987), 105–122.

[Koiter 1965] W. T. Koiter, “Discussion of rectangular tensile sheet with symmetrical edge cracks”, Trans. ASME, Journal of
Applied Mechanics 87 (1965), 237–238.

[Konda and Erdogan 1994] N. Konda and F. Erdogan, “Mixed mode crack problem in a non-homogeneous elastic medium”,
Engineering Fracture Mechanics 47 (1994), 533–547.

[Kreyszig 1999] E. Kreyszig, Advanced engineering mathematics, 8th ed., Wiley, 1999.

[Lanutti 1994] J. J. Lanutti, “Functionally graded materials: properties, potential and design guidelines”, Composites Engineer-
ing 4 (1994), 81–94.

[Lee and Erdogan 1998a] Y. D. Lee and F. Erdogan, “Interface cracking of FGM coatings under steady state heat flow”,
Engineering Fracture Mechanics 59 (1998), 361–380.

[Lee and Erdogan 1998b] Y.-D. Lee and F. Erdogan, “Interface cracking of FGM coatings under steady-state heat flow”, Engi-
neering Fracture Mechanics 59:3 (1998), 361–380.

[Long and Delale 2005] X. Long and F. Delale, “The mixed mode crack problem in an FGM layer bonded to a homogeneous
half-plane”, International Journal of Solids and Structures 42 (2005), 3897–3917.

[Ma and Wang 2003] L. S. Ma and T. J. Wang, “Nonlinear bending and post-buckling of a functionally graded circular plate
under mechanical and thermal loadings”, International Journal of Solids and Structures 40 (2003), 3311–3330.

[Noda and Jin 1993] N. Noda and Z.-H. Jin, “Steady thermal stresses in an infinite nonhomogeneous elastic solid containing a
crack”, Journal of Thermal Stresses 16 (1993), 181–196.

[Ozturk and Erdogan 1993] M. Ozturk and F. Erdogan, “The axisymmetric crack problem in a nonhomogeneous medium”,
ASME Journal of Applied Mechanics 44 (1993), 631–636.

[Shao 2005] Z. S. Shao, “Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length”,
International Journal of Pressure Vessels and Piping 82 (2005), 155–163.

[Shodja and Ghahremaninejad 2006] H. M. Shodja and A. Ghahremaninejad, “An FGM coated elastic solid under thermome-
chanical loading a two dimensional linear elastic approach”, Surface & Coatings Technology 200 (2006), 4050–4064.

[Yildirim and Erdogan 2004] B. Yildirim and F. Erdogan, “Edge crack problems in homogeneous and functionally graded
material thermal barrier coatings under uniform thermal loading”, Journal of Thermal Stresses 27 (2004), 311–329.

[Zhao et al. 2004] J. Zhao, X. Ai, J. Deng, and J. Wang, “Thermal shock behavior of functionally graded ceramic tool materials”,
Journal of the European Ceramic Society 24 (2004), 847–854.



SURFACE CRACK IN A GRADED COATING BONDED TO A HOMOGENEOUS SUBSTRATE 1353

Received 20 Jul 2006. Accepted 27 Jan 2007.

SAMI EL-BORGI: sami.elborgi@gnet.tn
Applied Mechanics and Systems Research Laboratory, Tunisia Polytechnic School, B.P. 743, La Marsa 2078,
Tunisia

RADHI ABDELMOULA: radhi.abdelmoula@lpmtm.univ-paris13.fr
Laboratoire des Propriétés Mechaniques et Thermodynamiques de Matériaux, UPR-CNRS 9001, Institut Galilée,
Université Paris 13, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

SERKAN DAG: sdag@metu.edu.tr
Department of Mechanical Engineering, Middle East Technical University, Ankara 06531, Turkey

NIZAR LAJNEF: lajnef001@yahoo.fr
Applied Mechanics and Systems Research Laboratory, Tunisia Polytechnic School, B.P. 743, La Marsa 2078,
Tunisia



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 2, No. 7, 2007

BUCKLING AND NONLINEAR RESPONSE OF SANDWICH PANELS WITH A
COMPLIANT CORE AND TEMPERATURE-DEPENDENT MECHANICAL

PROPERTIES

YEOSHUA FROSTIG AND OLE THYBO THOMSEN

This paper deals with the buckling response and nonlinear behavior of sandwich panels with soft cores
that have temperature-dependent mechanical properties and are subjected to thermally induced defor-
mations and mechanical loads simultaneously. This study investigates the effects of the degradation of
properties of the core as a result of rising temperature on the response of the sandwich panel. Analyses
are carried out for cases of pure thermal loading, with either uniform or gradient temperature fields
through the depth of the panel, as well as for thermal loading acting simultaneously with external me-
chanical loads. The formulation is based on variational principles along with the high-order sandwich
panel approach. It takes into account the flexibility of the core in the vertical direction as well as the
dependency of the mechanical core properties of the temperature distribution through the core depth.
The stress and deformation fields of the core have been solved analytically, including the case where the
temperature-dependent properties attain a complex pattern. The buckling equations are derived using the
perturbation technique, yielding a set of nonlinear algebraic equations for the case of a simply-supported
panel and a uniform temperature field. The critical temperatures and modes of wrinkling and global
buckling are determined numerically for some foam types of core made by Rohacell and Divinycell.
The nonlinear response caused by thermally induced deformations is presented for Divinycell foam core
with different temperature distributions through the depth of the core. Finally, the nonlinear response
caused by the simultaneous action of external mechanical loading and increased temperatures on the
compressive or the tensile side of the panel, with a thermal gradient through the core depth, is presented.
The interaction between elevated temperatures and mechanical loads changes the response from a linear
into an unstable nonlinear one when the degradation of the mechanical properties due to temperature
changes is considered and the panel is unrestrained. Moreover, the unstable nonlinear behavior becomes
even more severe when the face, loaded in compression, is subjected to elevated temperatures. This
study reveals that a reliable, realistic design of a sandwich panel that is subjected to elevated temperature
(within working temperature range) and mechanical loads must take into account the degradation of the
properties of the core as a result of the thermal field even at working temperature range, especially when
cores made of foam are considered.

Keywords: thermal buckling and postbuckling, nonlinear geometrical response, sandwich structures, high-order theory,
temperature-dependent properties.
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1. Introduction

Modern structural sandwich panels are used for a variety of applications in most major industries. They
usually consist of two face sheets made of either metal or composite laminated materials that are separated
and bonded to a low-strength compliant core material. The use of sandwich structures is on the increase
as primary and secondary structural components due to their superior qualities in terms of high strength
to weight and stiffness to weight ratios, ease of manufacturing, acoustic and thermal insulation, and
flexibility in design. Sandwich structures are often subjected to aggressive service conditions includ-
ing external mechanical loads and elevated temperatures, which lead to thermally induced deformation
loads and degradation of the material properties. Thermally induced deformations with and without
external mechanical loads are in general associated with bending, buckling and a nonlinear response of
the sandwich panel, with and without degradation of the material properties.

In general, the material properties of the constituents of a sandwich panel depend on the temperature
field imposed on the structure. However, this dependency is usually ignored, even for cases where
temperature fields are induced and the material properties degrade significantly with increasing tempera-
tures. In many modern sandwich panel applications, the core material is made from polymer foam where
significant changes in the properties may occur in the operating range of temperatures for the structure.
For example, a Rohacell type of foam looses its heat distortion resistance at about 200o C [Rohacell
2004], while Divinycell foam loses its strength at about 80–100o C [Diab Group 2003; 2005 (private
communication)]. Hence, it becomes extremely important to understand how the thermally induced
degradation of the core properties lead to deformation loads, and large deformations affect the buckling
and the nonlinear response of the sandwich panel with soft cores made of polymer foam. The response of
a sandwich panel when subjected to an external mechanical load may involve a stable type of nonlinear
response (such as a plate type of buckling response), or an unstable response (like the buckling response
of a beam or a shell), and it depends on the sandwich panel layout, the geometrical and mechanical
properties of the sandwich constituents, and the boundary conditions.

Moreover, when external mechanical loads act simultaneously with thermal loads (rising tempera-
tures), the degradation of the material properties with rising temperature may shift the response from
a linear and stable one into an unstable one. One of the objectives of this investigation is to study this
occurrence.

Sandwich panels with vertically rigid cores made of metallic or polymer honeycombs have been
considered by many researchers. It is usually assumed that the core is an antiplane and is incompressible
(see [Plantema 1966; Allen 1969; Zenkert 1995; Vinson 1999]). Usually, the models adopted for predict-
ing the linear and nonlinear load-response of sandwich panels are based on the equivalent single layer
approach (ESL), where the layered panel (beam, plate or shell type) is replaced by an equivalent sin-
gle layer with homogenized (equivalent) mechanical properties (see Mindlin first-order theory [Mindlin
1951]), and Reddy’s high-order theories [Reddy 1984]. Recently Huang and Kardomateas [2002] and
Kardomateas and Huang [2003] have used the ESL approach to analyze a sandwich panel with very large
deformations. The classical and ESL computation models usually disregard the changes in the height of
the core (the compressibility) when the panel is deformed.

Thermal buckling and nonlinear analyses using the ESL approach and using mechanical properties that
are independent of temperature have been considered by a few authors: Ko [1994] treated the buckling
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problem with various boundary conditions; Kant and S. [2000] used a first-order shear model along
with finite element analysis for skew plates; Tessler et al. [2001] used a first-order shear deformable
(FOSD) model along with a second–order polynomial for the vertical deflection; and Liew et al. [2004]
used a FOSD model to investigate the effects of temperature dependent properties. Several researchers
have used high-order models: these researchers include Najafizadeh and Heydari [2004], who adopted
a third-order approach for the analysis of functionally graded material (FGM) circular plates; Kapuria
and Achary [2004], who used a zig-zag third-order model for simply-supported panels; Shiau and Kuo
[2004], who used a 72-DOF triangular finite element; and Matsunaga [2005], who used truncated power
series expansions for representing the distribution of the displacements through the thickness of the panel
(limited to simply-supported boundary conditions and buckling only).

Some research has been done on the response of panels with temperature-dependent mechanical prop-
erties. Chen and Chen [1989; 1991] used an FE solution to deal with buckling and postbuckling of a
plate made of composite laminates with temperature-dependent mechanical properties. Gu and Asaro
[2005] have analyzed a sandwich panel made of FGM face sheets and an incompressible core. They
have used a power fitted function to describe the degradation of the mechanical properties due to rising
temperature. Birman [2005] dealt with wrinkling of a simply-supported sandwich panel using the FOSD
model, assuming material properties that are linearly dependent on temperature. Using the FOSD theory,
Birman et al. [2006] and Liu et al. [2006] have considered the responses of a sandwich panel and a
sandwich beam with temperature-dependent properties subjected to elevated temperatures. In general,
the classical sandwich, described by ESL/FOSD and high-order computation models, mentioned above,
disregards the changes in the height of the core (compressibility) during the deformation of the sandwich
panel. Accordingly, they yield inaccurate results when used for sandwich panels with a soft/compliant
core such as a polymer foam.

An approach that models the layered sandwich panel—that is, in being made of two face sheets and a
core layer that are interconnected through fulfillment of equilibrium and compatibility conditions and in
thus being able to incorporate the vertical flexibility of the core—represents a more consistent and rational
approach and offers significant advantages when considering sandwich structures with compliant, soft
cores. This approach has been implemented through a variational principle into the high-order sandwich
panel theory approach (HSAPT), and has been successfully used for the analysis of various linear and
nonlinear applications including hygrothermal effects [Frostig 1997]; buckling analysis of unidirectional
sandwich panels [Frostig and Baruch 1993]; buckling analysis of sandwich plates [Frostig 1998]; non-
linear response to in-plane compressive loads [Sokolinsky and Frostig 2000]; and a general nonlinear
response [Frostig et al. 2005]. Recently, Frostig and Thomsen [2007b] used the HSAPT approach to
derive governing equations of the thermal buckling and the nonlinear response when taking into account
the core thermal expansion in the vertical direction but with thermal independent properties. In a recently
published paper, Frostig and Thomsen [2007a], have investigated numerically the thermal buckling and
nonlinear response together with localized effects of a sandwich panel which has a compliant, soft core
and temperature independent or averaged mechanical properties.

The literature survey reveals that most researchers generally ignore the effects associated with the
vertical flexibility of the core. Moreover, they do not consider the nonlinear interaction response when
the mechanical and the thermal loads are applied simultaneously, in which case the nonlinear interac-
tion effects are enhanced when the mechanical properties are degrading as a result of their temperature
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dependency. In such cases, the mechanical properties generally vary spatially (coordinates dependent),
especially when temperature gradients through the depth of the sandwich panel are involved.

The present analysis incorporates the flexibility of the core in the vertical direction, the thermally
induced deformations and mechanical loads, and the nonuniform core properties resulting from temper-
ature dependency into the mathematical modeling according to the HSAPT approach. The variational
principle of minimum of the total potential energy is used to derive the field equations along with the
appropriate boundary conditions.

The formulation is based on the following classical assumptions for sandwich structures with compli-
ant cores: the face sheets possess in-plane and bending rigidities; the face sheets and the core material are
assumed be linear elastic; the face sheets undergo large displacements and moderate rotations (geomet-
rically nonlinear); the core is considered as a two-dimensional linear elastic continuum with kinematic
relations that correspond to small deformations (geometrically linear), where the core height may change
during deformation, and section planes do not remain plane after deformation; the core possesses only
shear and transverse normal stiffness, whereas the in-plane (longitudinal) normal stiffness is assumed to
be nil; thermal fields are applied to the face sheets and the core with temperature dependent mechanical
properties; full bond is assumed between the face sheets and the core; and the mechanical loads are
applied to the face sheets only.

The paper briefly presents the nonlinear thermomechanical governing equations of the face sheets and
the stress and displacement fields of the core. Temperature dependent material properties of the core are
implemented into the governing equations through closed-form solutions of the governing core equations.
The buckling equations are derived following the perturbation approach. Results of a numerical study
investigating the effects of the temperature-dependent mechanical properties on the following are pre-
sented: buckling; nonlinear response due to thermal induced deformation only; and interaction response
of thermal and mechanical loads. Finally a summary is presented and conclusions are drawn.

2. Nonlinear governing equations

The set of nonlinear governing equations used for the analysis herein have been derived through the min-
imization of the total potential energy following the procedure presented in [Frostig and Thomsen 2007a;
2007b]. The kinematic relations used for the isotropic face sheets, which are assumed to have temperature
independent mechanical properties, correspond to large displacements with moderate rotations.

Thus, the nonlinear thermal field equations for the sandwich panel read:

−

( d
dx

Nxxt(x)
)

− τct(x)bw − nt = 0, (1)

−Nxxt(x)
( d2

dx2wt(x)
)

−

( d
dx

Nxxt(x)
)( d

dx
wt(x)

)
−

1
2

bwdt

( d
dx
τct(x)

)
−

( d2

dx2 Mxxt(x)
)

−σzzt(x)bw +

( d
dx

mt(x)
)

− qt = 0, (2)

−

( d
dx

Nxxb(x)
)

+ τcb(x)bw − nb = 0, (3)
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− Nxxb(x)
( d2

dx2wb(x)
)
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( d
dx
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)( d

dx
wb(x)

)
−

1
2

bwdb

( d
dx
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−

( d2

dx2 Mxxb(x)
)

+ σzzb(x)bw +

( d
dx

mb(x)
)

− qb = 0, (4)

−

( ∂

∂zc
τc(x, zc)

)
bw = 0, −

( ∂
∂x
τc(x, zc)

)
bw −

( ∂

∂zc
σzz(x, zc)

)
bw = 0, (5)

where Nxx j and Mxx j are the in-plane and bending moment stress resultants of each face sheet; τcj (x)
and σzz j (x) are the shear stresses and the vertical normal stresses at the face-core interfaces; n j , q j , and
m j are external distributed loads in the longitudinal and vertical direction and the bending moments
exerted at the upper and the lower face sheets respectively; w j (x) are the vertical displacements of the
upper and the lower face sheets; x is the longitudinal coordinate of the panel; bw, d j is the width of the
panel and the thickness of the face sheets; j = t, b denotes the upper or the lower face sheets; τc(x, zc)

and σzz(x, zc) are the shear and vertical normal stresses within the core; and zc is vertical coordinate of
the core. For sign conventions of coordinates, stresses, displacements, temperatures distribution, stress
resultants, see Figure 1. The notation ( ),x in Figure 1 refers to a derivative with respect to x .

The isotropic constitutive relations of the face sheets and the core yield the following additional load-
displacement equations:
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(i) For the face sheets (j=t,b):

Nxxt(x)− E A j (x)

(( d
dx

uoj (x)
)

+
1
2

( d
dx
w j (x)

)2
)

+ E A j (x)α j

(
1
2

T jt (x)+
1
2

T jb(x)
)

= 0, (6)

Mxx j (x)= E I j

(
−

(
d2

dx2w j (x)
)

−
α j
(
T jb(x)− T j j (x)

)
d j

)
. (7)

(ii) For the core:

σzz(x, zc)

Ec(Tc(x, zc))
=

( ∂

∂zc
wc(x, zc)

)
−αcTc(x, zc), (8)

τc(x, zc)

Gc(Tc(x, zc))
=

(
∂

∂zc
uc(x, zc)

)
+

( ∂
∂x
wc(x, zc)

)
, (9)

where Tc(x, zc) is the temperature distribution within the core that equals:

Tc(x, zc)= Tct (x)
(

1 −
zc

c

)
+

Tcb(x)zc

c
, (10)

and where the following refers to terms/quantities of the two face sheets: uoj is the mid-plane in-plane
displacements of the face sheets; E A j and E I j are the in-plane and flexural rigidities, respectively; α j is
the coefficient of thermal expansion of the face sheets; T jk (x) (k = t, b) are the temperatures at the upper
and lower fibers of the faces, respectively. The terms/quantities related to the core include the following:
Ec(Tcx, zc) and Gc(Tcx, zc) are the vertical modulus of elasticity and the shear modulus, respectively;
wc(x, zc) and uc(x, zc) are the vertical and in-plane displacements, respectively; αc is the coefficient of
thermal expansion; Tck (x, zc) (k = t, b) are the temperatures at the upper and lower fiber of the core,
respectively; and c is the core height. See Figure 1 for sign conventions and temperature distributions.

The set of field equations, Equations (1) to (4), are given in an inexplicit form, since the face-core
interfacial stresses are unknown. In addition, this set of equations does not fulfill the compatibility
conditions of a full bond at the upper and the lower face-core interfaces.

The core stress fields using Equation (5) yields:

τc(x, zc)= τct(x)= τcb(x)= τ(x), σzz(x, zc)= −

( d
dx
τ(x)

)
zc + σzzt(x). (11)

Thus, the shear stresses within the core are uniform and the distribution of the vertical normal stresses
through the depth of the core is linear. Hence, the vertical stress distribution and the displacements fields
of the core are derived through the closed form solution of Equations (8) and (9). The compatibility con-
ditions of the vertical displacement at the upper and the lower core-face interfaces and the compatibility
condition of the longitudinal displacement at the upper interface are:

σzzc(x, zc)= −Ec1(x, c)wt(x)+ Ec1(x, c)wb(x)+
(

−zc +
Ec1(x, c)
Ec2(x, c)

)( d
dx
τ(x)

)
−

1
2

Ec1(x, c)αcTct (x)c −
1
2

Ec1(x, c)cαcTcb(x); (12)
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where

Ec1(x, c)=
1

c∫
0

1
Ec(Tc(x,zc))

dzc

, Ec2(x, c)=
1

c∫
0

zc
Ec(Tc(x,zc))

dzc

,
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dz1
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dz1
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1

zc∫
0

1
Gc(Tc(x,zc))

dzc

. (15)

Hence, the interfacial vertical normal stresses at the upper and lower face-core interfaces (see Equa-
tions (2) and (4)) equal:

σzzt(x)= −Ec1(x, c)wt(x)+ Ec1(x, c)wb(x)+
Ec1(x, c)

( d
dx τ(x)

)
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−
1
2

Ec1(x, c)αcTct (x)c −
1
2
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(
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)( d
dx
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)
−

1
2

Ec1(x, c)αcTct (x)c −
1
2

Ec1(x, c)cαcTcb(x).

(16)

The additional governing equation is the one that corresponds to the compatibility requirement in the
longitudinal direction at the lower face-core interface, and it reads:

(
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where

Ec1z(x, zc)=
1

c∫
0

z2∫
0

1
Ec(Tc(x,z1))

dz1dz2

, Ec2z(x, c)=
1

c∫
0

z2∫
0

z1
Ec(Tc(x,z1))

dz1dz2

,

Gc1(x, c)=
1

c∫
0

1
Gc(Tc(x,zc))

dzc

. (18)

Hence, the thermomechanical nonlinear governing set of equations are derived by substitution of the
force-displacements equations, Equations (6) to (9), into the four field equations, Equations (1) to (4),
and the fifth equation is the compatibility condition expressed by Equation (17). This set of equations
corresponds to five unknowns: the longitudinal and vertical displacement of the upper and the lower face
sheets and the shear stress in the core.

The boundary and the continuity conditions are based on fourteen unknown functions and are not
presented herein for brevity. For details see [Frostig 1997].

3. Buckling analysis

The buckling analysis is based on the perturbation approach in which the nonlinear governing equations
are linearized [Simitses 1976]. The linearized governing equations for the prebuckling and buckling
stages appear in [Frostig and Thomsen 2007b] for a sandwich panel with temperature-independent me-
chanical properties and a uniform temperature field through the length and through the height of the
panel.
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For the case of a sandwich panel with temperature-dependent properties subjected to a longitudinally
and vertically uniform temperature field, the critical temperatures (the wrinkling and global buckling
modes) have been derived assuming the prebuckling case following the perturbation procedure described
in [Frostig and Baruch 1993] and [Frostig and Thomsen 2007b]. In this procedure the thermal strain of
the core in the vertical direction is ignored, which yields a membrane thermal prebuckling stage where
the face sheets are subjected to in-plane stress resultants only due to the in-plane constraints imposed at
the edges of the face sheets. The critical temperatures are determined through the closed-form solution
of the buckling equations of a simply-supported panel that yields a set of algebraic equations. For this
case it, is assumed that the two face sheets are of identical geometry and have temperature-independent
mechanical properties that are uniform through the length of the panel. In addition, it is assumed that
the core has uniform mechanical properties that depend on the temperature.

For the wrinkling mode where the two face sheets move in opposite directions (symmetric mode with
respect to mid-height), the solution reads:

−
2bwEc(Tcr,wr )L4

+ E It m4π4c
L2m2π2c

= −E Atαt Tcr,wr , (19)

where the critical half wave number m equals:

m = integer
(

2(1/4)(bwEc(Tcr,wr )E I 3
t c3)(1/4)L

E Itπc

)
, (20)

and where L is the length of the panel and Tcr,wr is the critical temperature that yields a wrinkling
buckling mode.

For the global buckling mode, where the two face sheets move in the same direction and with the
same displacement value (a symmetric mode), the closed-form solution reads:

m2π2
(

c3 E At E It Gc(Tcr,gl)π
4m4

+ 6bwE At Ec(Tcr,gl)Gc(Tcr,gl)L4c2

+12cL4bwE At dt Ec(Tcr,gl)Gc(Tcr,gl)+ 12cE At E It Ec(Tcr,gl)π
2m2L2

+24bwE It Ec(Tcr,gl)Gc(Tcr,gl)L4

+6L4bwE At d2
t Ec(Tcr,gl)Gc(Tcr,gl)

)/(
L2(12m2π2L2cE At Ec(Tcr,gl

)
+m4π4c3 E At Gc(Tcr,gl)+ 24bwL4 Ec(Tcr,gl)Gc(Tcr,gl)

)
= E Atαt Tcr,gl, (21)

where m is the critical half wave number and Tcr,gl is the critical temperature, which corresponds to
m = 1.

It should be noticed that, as a result of the temperature dependency, the critical temperatures can
be evaluated only through the solution of the nonlinear algebraic equations, while for the case where
the properties are temperature-independent, the critical values can be derived in terms of closed-form
expressions [Frostig and Thomsen 2007b].

A numerical study, presented in the forthcoming section, has been conducted in order to determine
the effects of the temperature-dependent properties of the core on the critical temperatures for the case
of Rohacell WF and Divinycell P- and HP-types of foams. Figure 2 describes the nondimensional elastic
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Figure 2. Normalized temperature-dependent elastic and shear moduli of various poly-
mer foam cores: (a) Rohacell WF foam, (b) Divinycell HP foam, (c) Divinycell P foam.
Legend: (E) – modulus of elasticity (thick lines), (G ) – Shear modulus (dashed thin
lines).

and shear moduli of these materials as functions of temperature. The curve fitted data appearing in
Figure 2 are based on the data that appear in [Rohacell 2004] and [Diab Group 2005]. For the case of
the Rohacell foam it is assumed that the degradation of the elastic and the shear moduli is the same (see
Figure 2a). For the two Divinycell foams the degradation is slightly different for the elastic and the shear
moduli, and it is denoted by the letters E and G in Figures 2b and Figure 2c.

The critical temperatures have been determined for foams with temperature independent and dependent
mechanical properties for comparison (see Tables 1 and 2 for the different core materials). A sandwich
beam with length of 1000 mm, width 30 mm, two aluminum face sheets of 0.5 mm thickness, CTE of
1e-5, modulus of elasticity of 69130 MPa, and a core height of 25 mm is investigated. The results in
Tables 1 and 2 include the critical temperature for the wrinkling and the global buckling modes, as well
as the value of the mechanical properties when the critical temperature values are reached.

The results for the WF foam made by Rohacell (see Table 1), reveal that when the E- and G-moduli
at room temperature are considered and denoted as temperature independent properties (TI), the critical
temperatures are much above the range of operating temperatures for this material. However, when the
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Foam Buckling-Properties Tcr
o [C]∗ Mode Number (m) Ec(Tcr ) [MPa] Gc(Tcr ) [MPa]

Types

51WF

Wr-TI∗∗ 384.7 97 70.5 22.1
Wr-TD 201.7 70 21.1 6.6
Gl-TI 136.2 1 70.5 22.1
Gl-TD 122.5 1 44.0 13.8

71WF

Wr-TI 457.5 105 100.3 38.8
Wr-TD 188.5 68 18.4 7.1
Gl-TI 145.7 1 100.3 38.8
Gl-TD 139.2 1 72.3 27.9

110WF

Wr-TI 601.5 121 169.5 63.3
Wr-TD 194.7 69 19.7 7.3
Gl-TI 151.2 1 169.5 63.3
Gl-TD 143.1 1 95.5 35.6

200WF

Wr-TI 719.8 132 237.6 132.7
Wr-TD 191.7 68 19.05 10.6
Gl-TI 156.0 1 237.6 132.7
Gl-TD 152.1 1 139.3 77.8

Table 1. Critical temperatures of Rohacell WF foam. Legend: Wr – wrinkling
mode; Gl – global mode; TI – temperature-independent properties; TD – temperature-
dependent properties. ∗ With respect to an unheated panel at room temperature (20o C).
∗∗ Modulus of elasticity and shear modulus at room temperature.

temperature dependence of the E- and G-moduli of the core is included in the analyses (denoted by TD
for temperature-dependent in Table 1), the predicted critical temperatures reach the upper range of the
operating temperature of the foam, which is associated with very low values of E and G. Notice that for
the case of wrinkling buckling mode, the half wave number is significantly reduced compared to the TI
case. For most of the cases, the critical buckling mode is associated with global buckling.

Considering the results obtained for the Divinycell foams (see Table 2), similar trends are observed.
The differences in the critical temperatures between the TI and the TD cases are significant, especially
when the wrinkling buckling mode occurs. The differences between the critical values for the case
of global buckling are smaller, and they are almost in the same range. Again, for the case of foams
with TD properties, the critical values are predicted to reach the upper range of operating temperature,
which is associated with very small values of the core E- and G-moduli. The critical values for the HP
foams are higher then those of the P-type foams. For the case of the P foams, the critical temperatures
for wrinkling and global buckling are almost identical, and they are in the upper range of the operating
temperature for this material. In conclusion, the temperature dependency of polymer foam core materials
significantly affects the buckling behavior of sandwich panels with a compliant core. In particular, the
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Foam Buckling-Properties Tcr
o [C]∗ Mode Number (m) Ec(Tcr ) [MPa] Gc(Tcr ) [MPa]

Types

HP80

Wr-TI∗∗ 356.4 93 63.6 28.4
Wr-TD 102.2 50 5.4 2.4
Gl-TI 140.1 1 63.6 28.4
Gl-TD 95.0 1 13.8 6.2

HP100

Wr-TI 390.8 97 77.0 36.9
Wr-TD 106.1 51 5.8 2.8
Gl-TI 144.2 1 77.0 36.9
Gl-TD 99.8 1 14.6 7.0

HP130

Wr-TI 462.9 106 105.6 44.9
Wr-TD 155.2 61 12.5 5.3
Gl-TI 147.1 1 105.6 44.9
Gl-TD 128.1 1 39.7 16.9

P500

Wr-TI 371.8 95 72.8 38.9
Wr-TD 71.9 42 2.7 1.4
Gl-TI 144.4 1 72.8 38.9
Gl-TD 70.4 1 6.2 3.3

P600

Wr-TI 455.6 105 106.4 49.7
Wr-TD 68.5 41 2.4 1.1
Gl-TI 147.9 1 106.4 49.7
Gl-TD 67.4 1 6.6 3.1

P800

Wr-TI 550.2 116 153.8 68.6
Wr-TD 69.0 41 2.5 1.1
Gl-TI 151.2 1 153.8 68.6
Gl-TD 68.1 1 7.1 3.1

Table 2. Critical temperatures of Divinycell HP and P foams. Legend: Wr – wrinkling
mode; Gl – global mode; TI – temperature-independent properties; TD – temperature-
dependent properties. ∗With respect to an unheated panel room temperature (22o C).
∗∗Modulus of elasticity and shear modulus at room temperature.

critical temperatures predicted when the temperature dependency is accounted for are always significantly
lower than those predicted when the core properties are assumed to be temperature independent, with
properties corresponding to room temperature. The reduction is most significant when wrinkling type of
buckling occurs, whereas the reduction is less severe for the global buckling mode.

Next, the postbuckling behavior is investigated numerically through the solution of the full nonlinear
governing equations under the assumption that a uniform temperature field is applied.
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4. Nonlinear governing equations — uniform temperature field

The nonlinear response, for the case of a uniform distribution of the temperature field along the panel
length and a linear gradient through its depth (see Figure 1a) is determined. The formulation is based on
a set of first-order ordinary differential equations (ODEs) instead of the set of five governing ODEs (see
Equations (1) to (4) along with Equations (6) to (9) and Equation (16)). The first-order set consists of
fourteen ODEs that are consistent with the fourteen boundary conditions [Frostig 1997]. The transfor-
mation of the original ODEs into the first-order has been conducted using well known procedures [Stoer
and Bulirsch 1980]. Thus, the nonlinear thermal governing equations read:

(i) For the upper and the lower face sheets ( j = t, b):

d
dx

Nxx j (x)= (−1)kτ(x)bw − n j (k = 1 with j = t and k = 0 with j = b),

d
dx

uoj (x)= −

−Nxx j (x)−E A j (x)α j
(1

2
T j j +

1
2

T jb
)

E A j (x)
−

1
2

Dw j (x)2,

d
dx

Vxz j (x)= AA j bw − q j , where AAt = − σzzt(x), AAb = σzzb(x),

d
dx

Mxx j (x)= Vxz j (x)−
1
2

bwd jτ(x)− Nxxt(x)
( d

dx
w j (x)

)
+ m j (x),

d
dx

w j (x)= Dw j (x),

d
dx

Dw j (x)= −
Mxx j (x)

E I j
−
α j (T jb −T j j )

d j
.

(ii) For the core:

d
dx
τ(x)= Dτ(x)Eca +

−

c∫
0
αczc −

1
2

Ec1(c)αcc
Ec1(zc)

−
1
2
αczc

2

c dzcTct −

c∫
0

−
1
2

Ec1(c)αcc
Ec1(zc)

+
1
2
αczc

2

c dzcTcb

c∫
0

−
1

Ec2(zc)
+

Ec1(c)
Ec1(zc)Ec2(c)

dzc

, (22)

d
dx

Dτ(x)=

−
τ(x)

Gc1(c)
+
(
c +

1
2 dt −

Ec1(c)
Ec1z(c)

)
Dwt(x)+

( 1
2 db +

Ec1(c)
Ec1z(c)

)
Dwb(x)+ uob(x)− uot(x)

Eca
Ec2z(c)

−
Ec1(c)Eca

Ec2(c)Ec1z(c)

, (23)

where

Eca =

c∫
0

Ec(Tc(x, zc))

c
dzc. (24)

The nonlinear response is determined numerically using trapezoid or mid-point methods with Richard-
son extrapolation or deferred corrections (see [Ascher and Petzold 1998]), as implemented in Maple.
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(a)

(b) (c)

Figure 3. Geometry and temperature-dependent properties of the core and its distribu-
tion: (a) geometry and mechanical properties; (b) temperature dependence of elastic
and shear moduli of core; (c) distribution of moduli through depth of core for a thermal
gradient of 40o C

5. Nonlinear thermomechanical response — numerical study

The numerical study consists of two parts. In the first part the postbuckling response of sandwich panels
due to thermally induced deformation associated with a thermal gradient through the core depth is inves-
tigated. The second part of the study investigates the nonlinear interaction response when a sandwich
panel is loaded simultaneously by an external mechanical load and thermal load with a gradient through
the core depth.

5.1. Postbuckling response. The postbuckling response plays a major role in the safe design of sandwich
panels. It defines whether the buckling loads may be exceeded based on the stability of the sandwich
assembly. In general, the postbuckling response can be characterized as belonging to one of the following
types: beam, plate or shell form. The plate type response is considered as stable, since any additional
deformation is associated by a load increase, while the beam and shell types are unstable since any
additional displacement is associated with an unchanged or a reduced load. The postbuckling response
of a sandwich panel may fall into all three categories (see [Sokolinsky and Frostig 2000]) depending on
the geometry, loading scheme, mechanical properties and boundary conditions.

The study investigates the effects of a thermal gradient through the core depth on the postbuckling
response, assuming TD and TI elastic properties. It is assumed that the distribution of the temperatures
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through the thickness of each face sheet is uniform, and the difference in temperatures, 1T , between
the lower and upper face sheets is changing from 0o to 40o C (see Figure 3a, where Tb = Tt +1T ).
The temperature at the upper face sheet is increased from 20o C until the lower face sheet reaches a
temperature of 79o C.

The nonlinear response examines a typical sandwich panel with face sheets made of Kevlar composite
faces and a HD 80 foam core from DIAB. The geometry of the panel and the temperature distribution
through the depth of the panel appear in Figure 3a. The panel is pin supported at the edges of the face
sheets, which are restrained longitudinally. The temperature distribution is uniform through the length of
the panel. The moduli of the core are temperature-dependent, and the Ec(T ),Gc(T ) versus temperature
(T ) plots appear in Figure 3b, in the temperature range 20–80o C, based on the data in [Diab Group
2003].

The fitted curve moduli are based on data from [Diab Group 2003] and Figure 3b. The variations of
the E- and G-moduli through the depth of the core for a thermal gradient of 1T = 40o C (Tt = 20o C
and Tb = 40o C) are significant (see Figure 3c).

A global buckling mode has been detected for this case, within the range of the operating temperatures
of the foam, and in order to initiate a global buckling mode an imperfection in the form of two very small
concentrated loads of 1N have been applied in the same direction to the two face sheets at mid-span, see
Figure 3a.

The results corresponding to global buckling of the sandwich panel heated by a uniform temperature
field in the longitudinal and the vertical directions appear in Figure 4. The results along the half length
of the panel are presented at five different temperature levels. The vertical displacements appear in
Figure 4a and reveal that the faces move in opposite directions (upwards and downwards) in the vicinity
of the supports as a result of the expansion of the core in the vertical direction. The displacements
at mid-span at a temperature of 78o C reach very large values, as compared to those values reached
at lower temperatures, due to the loss of the rigidity of the core at this elevated temperature level.
The bending moments that are quite small (see Figure 4b) yield localized effects in the vicinity of
the support as a result of the inability of the core to expand vertically due to the thermal strains. In
addition, bending moments are induced around mid-span due to the small imperfection loads. The
in-plane stress results, which are mainly caused by the longitudinal restraints of the supports, appear
in Figure 4c. These forces are not constant, due to the existence of shear stresses at the face–core
interfaces. Finally, the vertical interfacial stresses appear in Figure 4d, for which it is observed that large
localized effects occur in the vicinity of the supports as a result of restraining the expansion of the core
in the vertical direction. Small vertical normal stresses occur around mid-span due to the imperfection
loads.

The equilibrium curves appear for all temperature gradients in Figure 5, which also includes the
cases of TD and TI core properties. The equilibrium curves have been determined using a parametric
continuation procedure up to the temperature level when either the solution does not converge, or the
upper limit of the range of the operating temperatures (20 to 80o C) has been reached. Hence, there is no
case where the E- and G-moduli reaches the value of zero within the core depth. The temperature versus
the maximum vertical displacements at the upper and the lower face sheets, assuming a core either with
or without temperature dependent properties, appears in Figure 5a. The temperature independent core
with room-temperature properties yields a linear curve, almost constant for all gradients, which indicates
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Figure 4. Postbuckling results along the length of a restrained sandwich panel with a
zero thermal gradient at various temperatures: (a) vertical displacements, (b) bending
moments, (c) in-plane stress resultants, (d) interfacial vertical normal stresses at inter-
faces. Legend: t upper face/ interface; - - - - b lower face/ interface.

that the panel does not buckle within this range of temperatures (denoted by TI). The results reveal also
that in the case of zero thermal gradient (a uniform distribution in the vertical direction) the behavior is
stable up to 77o C, and beyond this temperature the sandwich panel collapses as a result of the very low
rigidity of the core. For the case of a thermal gradient of 1T = 10o C, the equilibrium curves exhibit a
nonlinear stable response. A nonlinear behavior with smaller deformations occurs for all gradients. The
temperature versus the extreme compressive values of the vertical interfacial stresses appear in Figure 5b
for cores with and without temperature dependent properties. For the temperature independent case at
1T = 0o C (uniform) and 1T = 40o C, linear responses occur, that is, the peak vertical interfacial stresses
(compressive) increase with increasing temperature as a result of the large expansion of the core in the
vertical direction (restrained by the fixity of the supports in the vertical direction). The curves obtained
for the temperature dependent cores exhibit a nonlinear pattern where the maximum compressive stress
occurs around 30o C for all cases. The maximum compressive stresses occur at the support, as a result
of the restraint of the expansion of the core in the vertical direction, along with the relatively undegraded
core properties (around 30o C) and the minor influence of the global buckling mode.
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Figure 5. Temperature equilibrium curves of maximum values for a restrained sandwich
panel subjected to various thermal gradients: (a) maximum vertical displacements of
face sheets, (b) maximum compressive interfacial vertical normal stresses at interfaces.
Legend: t upper face or interface; - - - - b lower face or interface.

5.2. Interaction of mechanical loads and thermally induced deformations. The nonlinear thermome-
chanical response of restrained and unrestrained sandwich panels loaded by a prescribed mechanical load
and a changing thermal gradient is studied. In addition, the study examines the effects on the response of
elevated temperature in the imposed thermal gradient when applied either to the tensile (Ten) face sheet
or to the compressive (Com) face sheet. Notice that a linear response occurs when the loads are applied
separately as well as when the two loads are applied simultaneously, and the core properties are TI.

The investigated sandwich panel consists of two face sheets made of Kevlar composite laminates and
a Divinycell core made of HD-80 foam. The layout, dimensions, mechanical properties and loadings
appear in Figure 6a. The panel is loaded in a three-points bending scheme, where the load is applied at
the upper face sheet and the panel is supported only at its lower face sheet, while the edges of its core
and upper face are free of force tractions. The fixity of the panel is achieved by imposing longitudinal
restraints on the edges of the face sheets (see dotted supports in Figure 6a). The thermal gradient is
imposed only within the core with two different variants (see temperature distribution in Figure 6a).
In the first variant the highest temperature is imposed at the lower tensile face sheet (Ten), while in
the second variant the highest temperature is imposed at the upper compressed face sheet (Com). The
temperature-dependent properties of the core are the same as in the previous case. See Figure 3b and
Figure 3c for temperature dependency of the E- and G-moduli and their distribution through the core
depth for a gradient of 40o C. The solution procedure uses a parametric continuation approach with the
temperature T as the parameter. The procedure halts when the solution does not converge or when it
violates the assumption of large displacements and moderate rotations, which in this study occurs when
the maximum displacement approaches a value of L/10. The results are also limited to a temperature
of 79o C, which represents the upper limit of the range of operating temperatures for this particular
temperature-dependent DIAB core (HD80).
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(a)

(b)

Figure 6. Geometry and deformed shapes of sandwich panel loaded by a mechanical
load and thermally induced deformations with a zero thermal gradient: (a) geometry of
unrestrained and restrained panels; (b) deformed shape of an unrestrained at T = 56o C
and a restrained panel at T = 79o C.

The deformed shapes of a sandwich panel which is considered to be either longitudinally restrained
or nonrestrained at uniform (zero gradient through the core depth) temperatures of 79o C and 56o C,
respectively, appear in Figure 6b. The displacements patterns for the two cases are very different, and
it is seen that the displacements for the case of the unrestrained sandwich panel are much larger than
for the restrained case. Notice that the indentation zone in the vicinity of the load is significant for the
unrestrained deformation pattern, whereas it is almost invisible for the restrained case. If the core material
properties are temperature independent and stiffness properties corresponding to room-temperature are
used, the predicted deformations are much smaller (see Figure 8a). Moreover, notice that the upper face
sheet in the two cases has settled as a result of the unsupported edge.

The results obtained for an unrestrained sandwich panel with a zero gradient through the core depth
appear in Figure 7 at five different temperature levels; 20o C, 29o C, 39o C, 49o C and 56o C. The vertical
displacements appear in Figure 7a where it is observed that an indentation occurs at mid-span for all
temperature levels. Moreover, it is seen that the magnitude of the indentation increases with increasing
temperature as a result of the degradation of the mechanical properties of the core. The mid-span dis-
placement at the highest temperature (56o C) is about 2.5 times larger than the mid-span displacement
corresponding to the temperature immediately below (49o C) as a result of the loss of stability (see Figure
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Figure 7. Nonlinear response along sandwich panel loaded simultaneously by a me-
chanical load and thermally induced deformations with a zero thermal gradient at vari-
ous temperatures: (a) vertical displacements, (b) bending moments, (c) in-plane stress
resultants, (d) interfacial vertical normal stresses at interfaces. Legend: t upper
face/ interface; - - - - b lower face/interface.

8a). From the bending moment diagrams (see Figure 7b) it is observed that significant bending moments
are present and reach very high values at higher temperatures. The in-plane stress resultants of the
face sheets appear in Figure 7c, where it is seen that fluctuations occur around mid-span only at high
temperatures as a result of the large vertical displacements in this area. Notice that the in-plane stress
resultants are nearly unaffected by the thermal loading, since the structure is statically determined and
the overall bending moment corresponds to the three point bending load case. The mid-span fluctuations
seen at the highest temperature (56o C) are due to the reduced core height, which is caused by the large
vertical displacements in this vicinity (see Figure 7a). Finally, the interfacial vertical normal stresses
appear in Figure 7d. From Figure 7d it is seen that very high stresses are induced in the vicinities of the
support and the mid-span load at high temperatures as a result of the large displacements and the reduced
rigidity of the core.

In Figures 8 and 9, the equilibrium curves are presented for both types of sandwich panels, those
with and those without longitudinal restraints, and for all thermal gradients. In addition, three different
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Figure 8. Temperature equilibrium curves of maximum displacements and vertical nor-
mal stresses versus temperature for an unrestrained sandwich panel loaded with mechan-
ical and thermal loads simultaneously, with temperature-independent and temperature-
dependent properties at various thermal gradients, and where the elevated tempera-
tures are imposed either on the tensile (Ten) or the compressed (Com) face sheet: (a)
maximum vertical displacements, (b) maximum compressive interfacial vertical normal
stresses at interfaces. Legend: t upper face or interface; - - - - - -b lower face or
interface.

cases of thermal effects are presented. The first case represents a sandwich panel with TI core properties.
The other two cases examine a core with temperature-dependent properties, one case where elevated
temperatures are imposed at the tensile face sheets (Ten), and another where elevated temperatures are
imposed at the face sheets loaded in compression (Com).

The equilibrium curves for the unrestrained sandwich panel appear in Figure 8. The equilibrium curves
of temperature versus maximum vertical displacement appear in Figure 8a. For the TI case it is seen that
a thermal gradient exerts a minor effect on the response, which remains linear through the entire range of
working temperatures. For the TD cases it is seen that unstable behavior with very large displacements
are seen for all thermal gradients at temperatures that lie well below the upper limit of the range of
operating temperatures. For the zero thermal gradient case, denoted by 1T = 0o C, the instability starts
around 55o C. Beyond 56o C the panel reaches extremely large displacements. The results reveal that
when the tensile face sheet is warmer than the bottom face, loss of stability always occurs at a higher
temperature than when the compressed face sheet is warmer. This difference is especially significant at a
thermal gradient of 40o C. Notice that at this gradient the case with a warmer tensile face sheet exhibits a
stable nonlinear behavior, while the case where the compressed face sheet is warmer yields an unstable
pattern with the probable existence of a limit point at a very low temperature. The same trends are
observed for the maximum compressive interfacial vertical normal stresses (see Figure 8b). In all cases,
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Figure 9. Temperature equilibrium curves of maximum displacements and vertical nor-
mal stresses versus temperature for a restrained sandwich panel loaded with mechan-
ical and thermal loads simultaneously, with temperature-independent and temperature-
dependent properties at various thermal gradients and where the elevated temperatures
are imposed either on the tensile (Ten) or the compressed (Com) face sheet: (a) maxi-
mum vertical displacements of face sheets; (b) maximum compressive interfacial vertical
normal stresses at interfaces. Legend: t upper face or interface; - - - - b lower face
or interface.

larger compressed stresses are observed when the compressed face sheet is warmer. They always reach
very high values, which may exceed the allowable compressive normal stresses (compressive strengths
at the relevant temperatures) of the core.

The equilibrium curves for the restrained sandwich panel case appear in Figure 9. The curves of
temperature versus maximum values of the vertical face sheet displacements appear in Figure 9a. Again,
the TI core yields a linear response, which is associated with larger displacement with increasing thermal
gradient, but the peak displacements are still quite small. In contrast to this, the TD cases behave in a
stable nonlinear manner, and in all cases the upper limit of the temperature range has been reached.
The zero thermal gradient case is the most sensitive one. It consists of a stable curve up to 77o C, and
above this temperature the equilibrium curve shows signs of loss of stability similar to the postbuckling
case shown in Figure 5a. Generally, in this case it matters little if the compressed face sheet is warmer
than the tensile face sheet, and vice versa. The same trends are observed for the maximum compressive
interfacial vertical normal stresses (see Figure 9b). Here, notice that in all cases the larger compressive
stress occurs at the supports and at the lower temperatures as a result of the fixity of the supports and
the high resistance (rigidity) of the core. As the temperatures are raised this resistance reduces due to
the degradation of the core material, and much smaller interfacial stresses are induced. This is exactly
opposite to the case where the core is assumed to have TI properties. For the TI core case the resistance
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of the core is unaffected by increased temperatures, and therefore the higher thermal strains cause higher
stresses with a linear behavior.

6. Summary and conclusions

The nonlinear thermal behavior, buckling and postbuckling of a sandwich panel with a compliant core
that has temperature-dependent properties is presented. The analysis considers the thermal strains of the
core in the vertical direction along with the effects of the vertical flexibility of the core using variational
principles and the HSAPT approach. The temperature-dependent properties of the core, along with a
thermal gradient, yields stiffness coordinates dependent properties. The stress and displacement fields
of the core with such nonuniform properties have been solved analytically.

The buckling analysis follows the perturbation technique. It yields a nonlinear set of algebraic equa-
tions which are solved numerically for the wrinkling and the global buckling critical temperatures, assum-
ing a uniform temperature field, simple support conditions and temperature-dependent core properties.

The nonlinear response is determined through a numerical solution of a set of coupled first-order
nonlinear ordinary differential equations. The parametric continuation procedure, using the temperature
at one of the face sheet as a parameter, has been used to determine the equilibrium curves.

The numerical study includes the responses due to buckling, postbuckling and interactions between
mechanical loads and thermal ones. The buckling study examines various foam cores including Rohacell
foam from Rohm GmbH & Co. KG and the P and HP Divinycell foams from DIAB. A comparison
between the critical wrinkling and global buckling temperatures for a core with TI mechanical properties
(room-temperature properties assumed) and a core with TD mechanical properties has been conducted.
In all cases the analyses predict a significant reduction of the critical wrinkling temperature of the TD
core panels, along with changes in the number of half-waves in the buckling pattern, in comparison with
panels with TI cores. The changes in the critical temperatures corresponding to the global buckling mode
are much smaller (10 to 30%). In all cases, for a particular sandwich panel configuration, the critical
temperatures are predicted to be in the upper part of the feasible range of working temperatures.

The numerical study of the nonlinear response consists of two parts. In the first part a postbuckling
response of a panel subjected to a thermal gradient loading with fixed support is examined. The second
part examines the effect of rising temperatures imposed simultaneously with a prescribed mechanical
load, on either the tensile or the compressed face sheets. The effect on the mechanical response of the
sandwich panel with and without restrained supports is measured.

The postbuckling study reveals that for the case of a uniform temperature field the nonlinear response
is stable as a result of the fixity of the supports in the longitudinal direction, as long as the temperatures
are below the upper limit of the working temperature range. As the temperature approach this value,
the panel looses its stability with very large displacements and high stresses due to the very low elastic
moduli of the core at elevated temperatures. For all other cases, with a gradient through the depth of the
core, the response is stable within the feasible working temperature range.

The interaction between a mechanical load and rising temperature at the tensile and compressive face
sheets has been studied for restrained and unrestrained sandwich panels with and without a TI core.
The results reveal that the response, for an unrestrained sandwich with a temperature-independent core,
remains linear and constant through the entire range of working temperatures. In contrast to this, for the
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case of a temperature-dependent core, the response is nonlinear and loss of stability occurs far below the
upper limit of the operational temperature range. The case where the elevated temperature is imposed
on the compressed face is even more severe, and loss of stability occurs at temperatures below those
predicted for the case where the tensile face sheet is warmer. For sandwich panels with fixed boundary
conditions (full restraint) the nonlinear response generally is of a stable type.

The interaction between mechanical and a thermally induced deformation loads is highly relevant and
likely to occur under practical service conditions. This is especially the case for unrestrained sandwich
panels with temperature-dependent core properties (as is always the case for polymer foam core mate-
rials), and such interactions may seriously affect structural reliability and safety. Hence, it is important
to assess these effects for a reliable design of sandwich panels/structures. This implies that a nonlinear
analysis procedure, which accounts for the compliant temperature-dependent core properties and the
interaction between the mechanical loads and the loads due to thermally induced deformations, must be
adopted.
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MATERIAL GRADING FOR IMPROVED AEROELASTIC STABILITY IN
COMPOSITE WINGS

LIVIU LIBRESCU AND KARAM Y. MAALAWI

A novel analytical formulation has been developed for the aeroelastic design of a class of solid nonuni-
form composite wings with improved aeroelastic torsional stability. Rectangular, unswept slender con-
figurations made of unidirectional fibrous composites are considered, where the mechanical and physical
properties can vary in the spanwise direction. Such a structural configuration yields to grading of the
material properties along the wing span. The enhancement of the wing torsional stability can be attained,
among others, by increasing the critical flight speed at which flutter or divergence instabilities occur.
In this study, the latter problem is addressed, where the wing divergence speed is maximized while
maintaining the total structural mass at a value equal to that of a known baseline design. Both continu-
ous and discrete structural models have been examined, using classical elasticity and aerodynamic strip
theories. The functional behavior of the divergence speed is comprehensively investigated by varying the
volume fraction of the constituent materials in preassigned distributions. Exact solutions were obtained
for different categories of unidirectionally reinforced composite wing structures: the linear volume frac-
tion (L-VF), the parabolic volume fraction (PR-VF) and the piecewise volume fraction (PW-VF) wing
models.

Our results reveal that in general, the torsional stability of the wing can be substantially improved by
using nonuniform, functionally graded composites instead of the traditional ones having uniform volume
fractions of the constituent materials. Several solutions are given for determining the optimal in-plane
fiber distributions, which maximize the divergence speed of a wing made of carbon/epoxy composites
without violating the performance requirements imposed on the total structural weight of the aircraft.

1. Introduction

Aeroelastic instabilities are a crucial factor in the design of modern flight vehicle structure. Friedmann
[1999] demonstrated that several important aeroelastic problems are still far from being understood.
Furthermore, the emergence of new technologies, such as the use of advanced composites and smart
materials have invigorated aeroelasticity, and generated a host of new and challenging research topics
that can have a major impact on the design of new generation of aerospace vehicles. The creative use of
composite materials is becoming important for controlling aeroelastic instabilities beside the benefits of
saving structural weight and increasing the fatigue life as well. For example, in the design of a laminated
composite wing, Weisshaar [1987] and Karpouzian and Librescu [1994] showed that aeroelastic tailoring
can be achieved commonly by varying the ply thickness, ply material and the stacking sequence. Another
new class of composite materials can be produced by varying the volume fractions of their constituents in

Keywords: fibrous composites, aeroelastic stability, optimum wing design, functionally graded materials.
This research was performed while Maalawi was visiting the Virginia Institute of Technology with support from the Ministry
of Higher Education and the National Research Center in Cairo, Egypt.
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a predetermined profile. Such nonuniform composites are called functionally graded materials (FGMs),
in which the properties are functions of the spatial coordinates. Although the concept of aeroelastic
tailoring of flight structures has been considered extensively in the literature [Librescu and Song 1992],
functional grading has not yet, been implemented, to the authors’ knowledge, in the available works. The
main aim of the present paper is to open the door for the subject of aeroelastic tailoring of FGMs flight
structures. The application to the optimization aspects in composite rotor blades [Ozbay et al. 2005]
would also be a future extension of the current material grading concept.

Basic knowledge on the use of FGMs and their wide applications are given in [Suresh and Mortensen
1998]. FGMs were primarily used in situations where large temperature gradients are encountered and
have also found several applications in the semiconductor industry. It was also shown that better per-
formance for both static and dynamic behavior of structures fabricated from such advanced composite
materials can be substantially achieved. There are different scenarios in modeling the spatial variation of
material properties of a functionally graded structure. For example, Chen and Gibson [1998] performed
experimental and theoretical analyses to determine the in-plane fiber distribution in unidirectional re-
inforced composites. They considered distributions represented by polynomial functions, and applied
Galerkin’s method to calculate the required polynomial coefficients from the resulting algebraic equa-
tions. Finally, they found that the linear variation of the volume fraction is a best fit with that predicted
experimentally for selected composite beam specimens. Chi and Chung [2006] studied the mechanical
behavior of FGM plates under transverse loading, where a constant Poisson’s ratio and variable moduli of
elasticity throughout the plate thickness was assumed. The volume fraction of the constituent materials
were defined by simple power- laws, and closed form solutions using Fourier series were given for the
case of simply- supported plates.

Considering structural stability of functionally graded beams, Elishakoff and Rollot [1999] presented
closed-form solutions of the buckling load of a variable stiffness column. The modulus of elasticity was
taken as a polynomial of the axial coordinate along the column’s length. Cases in which a fourth-order
polynomial serves as an exact buckling mode were provided. Another work dealing with the buckling
behavior of two dimensional FGM rectangular plates subjected to in-plane edge loads was addressed by
Chen and Liew [2004]. They applied a mesh-free approach, which approximates displacements based
on a set of scattered nodes instead of the commonly implemented finite elements. Elishakoff and Guede
[2004] then derived other closed-form solutions for the natural frequencies of an axially graded beam
with variable mass and stiffness properties along its length.

In the field of the optimum design of FGM-structures, Qian and Batra [2005] considered frequency
optimization of a cantilevered plate with variable volume fraction according to simple power-laws. They
implemented genetic algorithms to find the optimum values of the power exponents, which maximize
the natural frequencies, and concluded that the volume fraction needs to be varied in the longitudinal
direction of the plate rather than in the thickness direction. More recently, Goupee and Vel [2006]
proposed a methodology to optimize the natural frequencies of functionally graded beam with variable
volume fraction of the constituent materials in the beam’s length and height directions. They used a
piecewise bicubic interpolation of volume fraction values specified at a finite number of grid points, and
applied a genetic algorithm code to find the needed optimum designs.

As it clearly appears, in spite of its enormous potential benefits in aerospace industry, the use of
the in-plane grading was exploited in problems involving only fundamental mechanical problems. The
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same conclusions were given in the extensive review paper by Birman and Byrd [2007]. In the present
study, analytical solutions are developed and presented for improving the torsional stability of a slender
subsonic wing through optimal grading of the material volume fraction in the spanwise direction. Three
models have been thoroughly analyzed: continuous linear (L-VF), continuous parabolic (PR-VF) and
piecewise (PW-VF) mathematical models. The enhancement of the wing torsional stability is measured
by maximization of the divergence speed while maintaining the total structural mass at a value equals
to that of a known baseline design. The functional behavior of the divergence speed is comprehensively
investigated by varying the volume fraction of the constituent materials in preassigned distributions. En-
hanced wing designs made-up from carbon/epoxy composite material have been obtained and discussed.
Side constraints are set on the fiber volume fractions to not exceed prescribed lower and upper limiting
values.

2. Statement of the problem and basic formulation

When the flight speed of an aircraft exceeds a certain value called the divergence speed, Vdiv, the
aerodynamic twist moment applied to the wing exceeds the restoring elastic moment of its structure
[Bisplinghoff and Ashley 1962]. This causes static torsional instability of the lifting surface, which may
twist to failure. Therefore, high divergence speed can be regarded as a major aspect in designing an
efficient lifting surface with enhanced torsional stability. Maximization of the divergence speed can also
have other desirable effects on the overall structural design. It helps in avoiding the occurrence of large
displacements, distortions and excessive vibrations, and may also reduce fretting among structural parts,
which is a major cause of fatigue failure. Consider an unswept, slender wing with rectangular planform
and solid cross section, as depicted in Figure 1. The coordinates x1 and x2 are associated with the
wing middle surface, whereas the x3-axis points in the airfoil thickness direction. In the present model
formulation, the wing is considered to be made of unidirectional fiber-reinforced composites with variable
fiber volume fraction in the spanwise direction, x1. The flow is taken to be steady, and incompressible.
The aspect ratio is assumed to be sufficiently large with no major cutouts through the structure so that
the classical engineering theory of torsion can be applicable and the state of deformation described in
terms of one space coordinate. The elastic axis is assumed to be well defined and, hence, the bending and
torsion degrees of freedom can be decoupled. For wings with low aspect ratio, the cross section warping
ought to be included to account for three dimensional deformation effects [Librescu and Thangjitham
1991]. This will be considered by the authors in an extension of the present study.

It was shown by in [Lekhnitski 1981, Chapter 6, Sections 55–56] and [Tsai et al. 1990] that the
equivalent shear modulus G of a unidirectionally reinforced composite lamina with thin cross section
can be determined from the relation

G = f1G12,

where f1 is a function that depends on the geometry and thickness ratio h/C of the cross section (C
being the chord length and h the maximum thickness of the cross section) and on the ratio G12/G13

between the in-plane and out-of-plane shear moduli G12 and G13.
For many types of fibrous composites commonly utilized in aircraft structures, such as carbon/epoxy

and graphite epoxy, the two moduli are approximately equal. Some experimental results were given in
[Tsai and Daniel 1990] for the determination of the in- and out-of-plane shear moduli. We apply here
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Figure 1. Unidirectional fiber-reinforced composite wing model.

semiempirical formula from [Halpin and Tsai 1967] to determine G12:

G12 = Gm
1 + ξηV f

1 − ηV f
, where η =

(G f/Gm)− 1
(G f/Gm)+ ξ

, (1)

where Gm and G f ( ≡ G f 12, in the x1-x2 plane) are the shear moduli of the matrix and fiber materials,
V f is the fiber volume fraction and the parameter ξ is called the reinforcing efficiency and may be taken
as 100% for theoretical analysis [Daniel and Ishai 2006]. The variation of the fiber volume fraction in
FGM structures is usually described by power-law or exponential function models:

V f (x)= V f r (1 −βx p), β = (1 −1),

V f (x)= V f r eβx , β = ln1,
(2)

where 1= V f t/V f r is the ratio between the fiber volume fractions V f t and V f r at the wing tip and at the
root, the symbol x = x1/L denotes the dimensionless spanwise coordinate and p is an integer exponent.
Wings with uniform, linear or parabolic distributions of V f (x) correspond to p = 0, 1 and 2. Similar
distributions were utilized in [Chi and Chung 2006] to analyze FGM plates under transverse loading.
The exponential distribution is not considered in the present investigation.

3. Stability analysis

Using classical elasticity and aerodynamic strip theories, we can write the differential equation governing
wing torsional stability (see [Bisplinghoff and Ashley 1962]) as

d
dx1

(
G J

dα
dx1

)
+

1
2ρV 2C2eaα(x1)= 0, (3)
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subject to the boundary conditions

α(0)= 0 for x1 = 0,

indicating that the elastic angle of attack α vanishes at the wing root, and[
G J

dα
dx1

]
x1=L

= 0 for x1 = L ,

which says that the torsional moment T vanishes at the wing tip. Here J is the torsion constant, which for
thin wings with solid cross section, is directly proportional to the cube of the maximum airfoil thickness
h, and the chord length C :

J = f2Ch3,

where f2 is a shape factor that depends upon the geometry of the airfoil section. The other parameters
in (3) are defined as follows: ρ is the air density, depending on the flight altitude, V is the flight speed,
e is the fractional location of the shear center, positive aft with respect to the aerodynamic center, and a
is the airfoil lift-curve slope.

It is convenient to normalize all variables and parameters with respect to a baseline design having
uniform mass and stiffness distributions. The baseline is made of a uniform unidirectional fibrous com-
posite with equal volume fraction of the matrix and fiber materials: V f 0 = 50%. The optimum wing
designs presented herein shall have the same material type of construction, wing planform geometry,
airfoil section, and same total structural mass as those of the baseline design. Therefore, the preassigned
parameters ought to be selected as the type and dimensions of the airfoil section (that is, C , J , e and a
are fixed), wing span L, and type of material of construction (that is, Gm , G f , ρm , ρ f are fixed). The
flight altitude is also fixed (that is, ρ is fixed). Therefore, the only remaining variable to be taken into
consideration is the distribution of the modulus of rigidity in the spanwise direction. Normalizing with
respect to the uniform baseline design defined above, (3) takes the dimensionless form

(Ĝα′)′ + V̂ 2α(x)= 0, α(0)= 0, α′(1)= 0, (4)

where Ĝ = G12/G12,0 is the dimensionless shear modulus and the prime denotes differentiation with
respect to the dimensionless coordinate x = x1/L . The dimensionless flight speed is defined by

V̂ = V C L
√
ρea

2G J0
,

where G J0 is the torsional stiffness of the baseline design. The shear modulus G12,0 of the baseline
design can be calculated from (1) by setting V f 0 = 0.5 and ξ = 1. Substituting Equations (1) and (2) into
(4), we get

(1 − f 2)α′′
+ 2 f ′α′

+µ(1 − f )2α = 0, (5)

where

f = ηV f (x) and µ= V̂ 2 2 + η

2 − η
.
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3.1. Continuous model: An exact power series solution. Since f is a polynomial, an exact power series
solution to (5) can be obtained by the method of Frobenius [Edwards and Penney 2004], in which the
general solution is expressed as

α(x)=

2∑
m=1

Cmλm(x),

where the Cm are constants of integration and the λm are two linearly independent solutions having the
form

λm(x)=

∞∑
n=m

am,nxn−1, m = 1, 2.

The unknown coefficients am,n can be determined by substitution into the differential equation (5) and
equating coefficients of like powers of x . The required recurrence formulas have been evaluated and are
given for the linear distribution model by

am,n =

2βγ (n−2)
(
1−γ (n−3)

)
am,n−1 +

(
(n−3)(n−4)(βγ )2−µ(1−γ )2

)
am,n−2

− 2βγµ(1−γ )am,n−3−µ(βγ )2am,n−4

(n−1)(n−2)(1−γ 2)

and for the parabolic distribution model by

am,n =

(
2βγ (n−3)(2−γ (n−4))−µ(1−γ )2

)
am,n−2

+
(
(βγ )2(n−5)(n−6)−2βγµ(1−γ )

)
am,n−4 − µ(βγ )2am,n−6

(n−1)(n−2)(1−γ 2)
,

where γ = ηV f r . A coefficient am,n is set equal to zero whenever n is less than m, and the leading
coefficients am,m in each series are arbitrary and can be set to one. This method was successfully applied
by Maalawi and Negm [2002] to determine the exact rotating frequencies of a wind turbine blade in
flapping motion.

Application of the associated boundary conditions and consideration of the nontrivial solution lead to
the required characteristic equation:

λ′

2(1)= 0,

which is to be solved for the lowest root corresponding to the critical flight speed V̂div at which divergence
of the wing occurs.

3.2. Piecewise wing model. A piecewise model concept was used by [Maalawi 2002] to find optimized
designs of elastic columns against buckling. The optimization variables included the cross section di-
mensions as well as the length of each segment composing the column, and several solutions were given
for both solid and tubular configurations. It was concluded that the use of piecewise models in structural
optimization gives excellent results and can be promising for similar applications. Figure 2 shows a
rectangular lifting surface, which is constructed from N uniform piecewise panels, each of which has
different fiber volume fractions and length. For the k-th panel (see Figure 3), Equation (4) reduces to

α′′(x̂)+ λ2
kα(x̂)= 0, λk = V̂ /

√
Ĝk, (6)
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Figure 3. Definition of the state variables for the k-th panel.

where x̂ = x − xk is a local coordinate, ranging from 0 to L̂k = Lk/L , the dimensionless length of the
k-th panel, and Ĝk is the dimensionless shear modulus of the kth wing panel.

The exact solution of (6) is of course

α(x̂)= A sin(λk x̂)+ B cos(λk x̂),

where A and B are the constants of integration. The dimensionless internal torsional moment, T (x̂), can
be obtained by differentiating this equation and multiplying by the dimensionless torsional rigidity:

T (x̂)= Ĝkα
′
= λk Ĝk

(
−A sin(λk x̂)+ B cos(λk x̂)

)
.

Applying the boundary conditions at stations k and k + 1 (see Figure 3), we obtain at x̂ = 0 the equations

αk = A, Tk = Bλk Ĝk, (7)

and at x̂ = L̂k the equations

αk+1 = A cos(λk L̂k)+ B sin(λk L̂k),

Tk+1 = λk Ĝk
(
−A sin(λk L̂k)+ B cos(λk L̂k)

)
.

(8)
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Substituting from (7) into (8), the relation between the state variables (α, T ) at both ends of the k-th
panel can be expressed by the matrix equation{

αk+1

Tk+1

}
= E (k)

{
αk

Tk

}
, where E (k) =

[
cos λk L̂k sin λk L̂k/(λk Ĝk)

−λk Ĝk sin λk L̂k cos λk L̂k

]
.

It is now possible to compute the state variables progressively along the wing span by applying con-
tinuity requirements of the variables (α, T ) among the interconnecting boundaries of the various wing
panels. Therefore, the state variables at the extreme boundaries are related by the matrix equation{

αN+1

TN+1

}
= E

{
α1

T1

}
, (9)

where
E = E (N )E (N−1) . . . E (3)E (2)E (1).

The nontrivial solution of equation (9) can be determined by applying the appropriate boundary
conditions at the wing root and tip sections. The resulting transcendental equation, also named the
characteristic equation, is given by

E22 = 0,

which can be solved for determining the critical flight speed at which torsional divergence instability
occurs.

4. Results and discussion

The mathematical models developed in the previous sections have been applied to obtain wing designs
with improved torsional stability, measured in the context of static aeroelasticity, by raising the divergence
speed without weight penalties. The selected wing material is carbon-AS4 / epoxy-3501-6 composite,
which has favorable characteristics and is highly desirable in both civilian and military aircraft structures.
Its properties are given in Table 1. Lower and upper bounds of 25% and 75%, respectively are imposed
on the fiber volume fraction. The total structural mass M is kept equal to the mass M0 of the baseline
design, so the dimensionless mass M̂ = M/M0 equals 1. Since the fiber volume fraction of the baseline
design, V f 0, equals 50%, a feasible design must satisfy the constraint equations∫ 1

0
V f (x) dx = 0.5

for the continuous model or
N∑

k=1

V f k L̂k = 0.5 (10)

for the piecewise model, where V f k and L̂k are the fiber volume fraction and dimensionless length of
the k-th panel (Figure 2).

The mass density distribution ρc(x) of the composite material is determined by the rule of mixture,
assuming no voids are present:

ρc(x)= ρm + (ρ f − ρm)V f (x).
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Property fiber matrix

Mass density (g/cm3) ρ f = 1.81 ρm = 1.27

Young’s moduli (GPa) E1 f = 235 Em = 4.3
E2 f = 15

Shear moduli (GPa) G12 f = 27.0 Gm = 1.60
G23 f = 7.0

Poisson’s ratio ν12 f = 0.2 νm = 0.35

Table 1. Material properties of carbon-AS4 / epoxy-3501-6 composite. The data are
from [Daniel and Ishai 2006]. For a final structural design, however, experimental veri-
fications are necessary.

The developed level curves of the dimensionless critical velocity V̂div in V f r -V f t design space for the
linear grading model (L-VF) are depicted in Figure 4, left. We see that V̂div is a well behaved function
and continuous in the design variables, namely, the fiber volume fractions at the wing root, V f r , and tip,
V f t . It increases monotonically with the penalty of increasing the total structural weight, which has a
harmful effect on the overall performance characteristics of the aircraft design. Therefore, maintaining
the mass constant, one must follow the line M̂ = 1, as shown in the figure, to attain a feasible design.
Results for the parabolic model (PR-VF) are depicted in Figure 4, right.

The variation of V̂div and the fiber volume fraction at the wing root V f r with the ratio 1= V f t/V f r

is given in Figure 5. Results for both linear and parabolic grading models are depicted, are based on the
preservation of the total structural mass (M̂ = 1.0). As 1 increases, Vdiv decreases until it reaches its
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Figure 5. Variation of V̂div and V f r with volume fraction ratio (M̂ = 1.0).

principal value π/2, which corresponds to the uniform baseline design having volume fraction of 50%.
When 1 exceeds unity, a noticeable drop in the divergence speed occurs resulting in an undesirable
degradation in the overall torsional stability level of the wing. Table 2 gives the final results for both
cases with and without the side constraints imposed on V f (x).

It is observed that the linear grading excels the parabolic one in attaining higher torsional stability
levels. However, this may not guarantee satisfactions of other strength requirements. The parabolic
distribution seems to be more feasible since the main characteristic length of the fibers’ cross section
(say, the diameter of a circular fiber) can change linearly along the span.

We next consider the piecewise model (PW-VF). Figure 6, left, shows the developed isomerits for a
wing composed from two panels. The design variables are (V f 1, L̂1) and (V f 2, L̂2). However, one of
the panel lengths can be eliminated, because of the equality constraint L̂1 + L̂2 = 1.0. Another variable
can also be discarded by applying the mass equality constraint (10), which further reduces the number of
variables to only any two of the whole set of variables. The level curves shown in the figure represent the
dimensionless critical speed V̂div, augmented with the equality mass constraint, M̂ = 1.0. It is seen that

L-VF PR-VF
Case A Case B Case A Case B

V f r 1.0 0.75 0.75 0.625
1 0.0 0.33 0.0 0.4
V̂div 1.91 1.75 1.85 1.71
Gain 21% 11% 18% 9%

Table 2. Carbon/epoxy wing designs with improved torsional stability (M̂ = 1.0).
Case A: No side constraints are imposed on V f (x). Case B: The side constraint
0.25 ≤ V f (x)≤ 0.75 is imposed. Gain is relative to the baseline value (π/2) of V̂div.
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Figure 6. Isomerits of V̂div in V f 1-V f 2 design space (left) and V f 1-L̂1 design space
(right) for a two-panel wing.

the function is well behaved and continuous everywhere in the selected design space V f 1-V f 2, except in
the empty regions of the first and third quadrants, where the equality mass constraint is violated. The
cross lines V f 1 = 0.5 and V f 2 = 0.5 represent the level curves of the principal value π/2.

The functional behavior of the divergence speed in the V f 1-L̂1 design space is shown in Figure 6,
right. The shape of the contour lines resemble the streamlines of a flow originated from a jet at the
vertex (V f 1, L̂1)= (0.5, 1.0) and collides with a flat plat located at the horizontal line L̂1 = 0, with the
stagnation point (V f 1, L̂1)= (0.5, 0.0). The middle vertical line V f 1 = 0.5 represents the contour of the
principal value π/2 of the uniform baseline wing design. Two empty zones, where the equality mass
constraint is violated, are indicated in the figure.

The feasible domain is bounded from above by the two curved lines representing the upper and lower
limiting constraints imposed on the volume fraction of the outboard wing panel. The contours inside
the feasible domain are not allowed to penetrate these borderlines and obliged to turn sharply to be
asymptotes to them, in order not to violate the mass constraint. This is why they appear in the figure as
zigzag lines.

The constrained optima were found to be (V f 1, L̂1)= (0.75, 0.5) and (V f 2, L̂2)= (0.25, 0.5), which
means that the side constraints are always active [Venkataraman 2002].

The corresponding maximum value of the divergence speed is V̂div = 1.81, representing an optimiza-
tion gain of 15%. This means that a piecewise grading of the material is slightly better than the parabolic
model described by Equation (2). Isomerits of a three-panel wing is depicted in Figure 7, which has a
pyramidal shape with its vertex at the design point (V f 2, L̂2)= (0.5, 1.0) having V̂div = π/2 and M̂ = 1.0.
The feasible domain is bounded from above by the two lines representing cases of a two-panel wing, with
V f 1 = 0.75 for the line to the left and V f 3 = 0.25 for the right line. Both have a zigzag pattern because
of the crowded pattern of the interior contours, which are forced to turn and becoming asymptotical to
them, in order not to violate the mass equality constraint.
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Figure 7. Global optimality solution for a three-panel wing model.

The final global optimal solution, lying in the bottom of the pyramid, can be calculated using the
MATLAB optimization toolbox routines [Venkataraman 2002]. We obtain

(V f 1, L̂1)= (0.75, 0.43125), (V f 2, L̂2)= (0.50, 0.1375), (V f 3, L̂3)= (0.25, 0.43125), V̂div =1.82.

This represents an optimization gain of about 16%.

5. Conclusions

We have presented a novel design approach, based on the proper use of functional graded materials for
improving the overall torsional stability of a class of unidirectionally reinforced composite wings. The
torsional stability is measured by increasing the critical flight speed at which wing divergence occurs
while not violating performance requirements imposed on the total structural weight of the aircraft. The
mechanical and physical properties of the material are optimized in the spanwise direction, where the
spatial distribution of the fiber volume fraction is assumed to be prescribed by either continuous or
piecewise mathematical models. Lower and upper bounds are imposed on the design variables in order
to avoid having odd-shaped optimized configurations with unrealistic values of the volume fractions.
The functional behavior of the divergence speed V̂div with the selected optimization variables has been
thoroughly investigated, and useful design charts are given showing conspicuous design trends for wings
with improved aeroelastic performance. The given exact mathematical approaches ensured the attainment
of global optimality of the proposed wing model.

To our knowledge, aeroelastic tailoring of a wing with material grading in the spanwise direction had
not yet been considered in the available research work. It has been the major aim of this paper to open the
door for such a promising direction in the field of aeroelasticity of flight structures. Future work includes
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aeroelastic optimization of functionally graded trapezoidal and swept wings. The behavior when grading
is performed in both the spanwise and the airfoil thickness directions is now under study.
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