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NONLINEAR SHELL THEORY: A DUALITY APPROACH

GIOVANNI ROMANO, CARMEN SELLITTO AND RAFFAELE BARRETTA

The nonlinear kinematics of thin shells is developed in full generality according to a duality approach in
which kinematics plays the basic role in the definition of the model. The Kirchhoff–Love shell model is
the central issue and is discussed in detail but shear deformable and polar models are also considered and
critically reviewed. The analysis is developed with a coordinate-free approach which provides a direct
geometrical picture of the shell model. The finite and tangent Green strains of the foliated continuum
are explicitly expressed in terms of middle surface kinematics. The new expressions contributed here do
not require the splitting of the velocity into parallel and normal components to the middle surface, and
provide a computationally convenient context. Finite strain measures for the shell and their tangent and
secant rates are analyzed and consistency and nonredundancy properties are discussed. The relations
between the finite Green strain, its tangent and secant rates and the corresponding shell strains, are
provided. The differential and boundary equilibrium equations of the shell are given in variational terms,
both in unsplit and split form. A new expression of the boundary equilibrium equations is contributed
and its mechanical soundness with respect to the classical one is emphasized. Equilibrium in a reference
placement for the shell model is briefly discussed.

1. Introduction

The theory of shells is intimately connected with the geometry of Riemannian manifolds and elements of
the relevant theory are summarized in the paper. The middle surface of a shell model is a two-dimensional
submanifold of the three-dimensional euclidean space (the classical physical space). The treatment of
large configuration changes of the Kirchhoff–Love shell is conveniently carried out by considering the
shell as a foliation of the middle surface induced by a distance function. The description of the shell
kinematics in terms of that of the middle surface is carried out by considering the nonlinear projection
of the points of the foliation onto the middle surface and its derivative which is a symmetric linear
operator expressible in terms of the linear projector onto the tangent plane and of the middle surface
shape operator. Remarkably, this result is also useful in elastoplasticity for conveniently estimating the
algorithmic tangent stiffness [Romano et al. 2005a; Romano et al. 2006]. The properties of consistency
and nonredundancy to be fulfilled by a well defined strain measure are briefly illustrated to provide a basis
for the analysis of shell models. The nonlinear analysis of shell deformation is developed in detail with a
coordinate-free exposition. The treatment is founded on a variational approach in which kinematics plays
a primary role while statics is introduced by duality. Stress fields are envisaged as Lagrange multipliers
of the implicit representation of the rigidity constraint provided by a strain measure. In the classical
three-dimensional continuum mechanics the Green strain measure is the most natural one. Accordingly,
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a shell theory requires one to provide the expression of this strain measure and its rates in terms of
the shell kinematical parameters. For the Kirchhoff–Love shell an expression is also provided in terms
of the membrane and curvature strains of the middle surface and the relevant properties of consistency
and nonredundancy are proven. The tangent deformation of the shell is then investigated to provide
explicit expressions of the membrane and curvature tangent strains in terms of the velocity field of the
shell middle surface, and their relation to the tangent Green strain is provided. The presentation is
nontraditional since it makes no reference to coordinate systems and does not require one to split the
velocity field into tangent and normal components to the middle surface. The equilibrium of membrane
and flexural shells is analyzed in variational terms by relying on the virtual work theorem and on the
divergence theorem on a surface, and the relevant differential and boundary conditions are provided. New
results concerning both finite transformations and rate kinematics of the shell are contributed and a new
expression of the equilibrium boundary condition is shown to have a sound mechanical interpretation.
In fact, for nonflat shells, the classical expression of the boundary conditions does not properly take into
account the rotation rate of the transversal fibers. The models of shear deformable shells and of polar
shells, often adopted in computational mechanics, are illustrated and critically discussed.

2. Distance function and shape operator

A differentiable manifold M is a set locally diffeomorphic by Ck-charts to an open set of a model
Banach space E . The tangent space TM(x) at a point x ∈ M is the linear space of tangent vectors
{x, v} : Ck(Ux; R) 7→ Ck−1(Ux; R) where Ck(Ux; R) is the germ of scalar functions which are k-times
continuously differentiable in a neighborhood Ux of x ∈ M. Tangent vectors at a point are uniquely
defined by requiring that they fulfill the formal properties of a point-derivation:

(v1 + v2)( f ) = v1( f ) + v2( f ), additivity,

v(a f ) = av( f ), a ∈ R, homogeneity,

}
R-linearity,

v( f g) = v( f )g + f (v(g)), Leibniz rule,

where f ∈ Ck(Ux; R). The tangent bundle TM of M is the disjoint union of the pairs {x, TM(x)} with
x ∈ M. An element {x, v} ∈ {x, TM(x)} is said to be a tangent vector applied at the base point x ∈ M. We
denote by TM(P) ⊆ TM the disjoint union of the pairs {x, TM(x)} with x ∈ P ⊆ M. With a look at the
theory of shells, we recall some basic ingredients of surface theory. More generally, we may consider a
(n − 1)-dimensional hypersurface M embedded in an n-dimensional Riemannian manifold {S, g}. Since
in shell theory the manifold {S, g} is the euclidean space, the relevant connection will be denoted by the
symbol ∂ of ordinary derivation. A distance function from M ⊂ S is a twice continuously differentiable
scalar valued map r ∈ C2(S; R) such that its gradient is a vector field with unitary norm: ‖∂r(x)‖ = 1.
To build a distance function we consider an open strip UM ⊂ S including M whose thickness is so small
that every point x ∈ UM can be g-orthogonally projected in an unique fashion onto a point P(x) ∈ M.
Denoting by n(P(x)) the normal versor to M at P(x) ∈ M, and by n(x) the normal versor at x ∈ UM to
the parallel hypersurface Mr to M passing through the point x ∈ UM, we have n(x) = n(P(x)) and hence

x = P(x) + r(x)n(x) = P(x) + r(x)n(P(x)).
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Given n(x) = ∂r(x) for all x ∈ UM, the hessian ∂2r(x) provides the variation of the normal to the
hypersurface Mr through x ∈ UM and is named the shape operator of Mr . Two basic properties are
proven in the next Lemmas.

Lemma 2.1. The shape operator S(x) := ∂n(x) = ∂2r(x) is symmetric.

Proof. The symmetry of S(x) = ∂2r(x) is a direct consequence of the symmetry of the Riemannian
connection of {S, g}. �

Lemma 2.2. At any point x ∈ Mr the normal versor n(x) ∈ TS(x) belongs to the kernel of the shape
operator S(x) ∈ BL(TS(x); TS(x)):

S(x)n(x) = ∂2r(x)n(x) = 0,

hence Im S(x) = (Ker S(x))⊥ ⊆ TMr (x).

Proof. By the symmetry of S(x) ∈ BL(TS(x); TS(x)) we have

g(Sn, h) = g(Sh, n) = g(∂hn, n) =
1
2
∂hg(n, n) = 0,

for any h ∈ TS(x). The last statement holds since the kernel and the image of a symmetric operator are
mutual orthogonal complements.

From Lemma 2.2 it follows that the shape operator S ∈ BL(TS; TS) may be also considered as an
operator S ∈ BL(TM; TS) or as an operator SM ∈ BL(TM; TM), named the Weingarten operator. �

3. Nonlinear projector

Let us provide here, for subsequent use, a formula concerning the derivative of the nonlinear projector
P ∈ C1(UM; M) on the hypersurface M.

Lemma 3.1. Let P ∈ C1(UM; M) be the nonlinear projector of the points of the foliation UM ⊂ S on the
hypersurface M. Its derivative at x ∈ Mr

⊂ UM is a symmetric linear operator

∂P(x) ∈ BL(TS(x); TMr (P(x))),

related to the linear projector 5(x) ∈ BL(TS(x); TMr (x)) of the vectors h ∈ TS(x) on the tangent plane
at x ∈ Mr to the r -level folium Mr , by the formulas

5(x) = ∂P(x) + r(x)Sr (x) = (I + r(x)S(P(x)))∂P(x) =5(P(x)),

where S(P(x)) is the shape operator of M at the point P(x) ∈ M and Sr (x) is the shape operator of Mr at
the point x ∈ Mr . Moreover

Ker ∂P(x) = Ker5(x) = Span n(x) and ∂P(x) = (I + r(x)S(P(x)))−15(x).

Proof. Taking the directional derivative along any h ∈ TS(x) in the formula

x = P(x) + r(x)n(x) = P(x) + r(x)n(P(x))

and observing that

∂n(x) = Sr (x), ∂(n ◦ P)(x) = ∂n(P(x))∂P(x) = S(P(x))∂P(x),
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we get h = ∂hP(x)+ r(x)Sr (x)h = ∂hP(x)+ r(x)S(P(x))∂hP(x). The symmetry of ∂P(x) follows from
that of Sr (x). Since

∂nP(x) = 0, Sr (x)n = 0, S(P(x))n = 0,

we infer that n is in the kernel of the symmetric linear operator

∂P(x) + r(x)Sr (x) = (I + r(x)S(P(x)))∂P(x).

By projecting on TMr (x), we get the first result. To get the last formula we remark that the linear projector
5(x) ∈ BL(TS(x); TS(x)) is symmetric since g(5a, b) = g(5a,5b), for all a, b ∈ TS(x) [Yosida 1974].
Moreover, the operator I + r(x)Sr (x) is symmetric and positive definite, and hence invertible, due to the
suitably small value of the thickness of the shell ensuring that the nonlinear projector P ∈ C1(UM; M) is
well defined. �

Remark 3.1. The ranges of the operators 5(x) ∈ BL(TS(x); TS(x)) and ∂P(x) ∈ BL(TS(x); TS(P(x)))

at x ∈ Mr are TMr (x) and TM(P(x)). In a euclidean space the linear subspaces TS(x) and TS(P(x)) are
identified by means of a translation. Accordingly, the subspaces TMr (x) and TM(P(x)) are also identified
and considered as subspaces of the linear space TS(x).

4. First and second fundamental forms

The first fundamental form is the twice covariant tensor field gM ∈ BL(T2
M; R) defined on M as the

restriction of the metric g ∈ BL(T2
S
; R) of {S, g} to the vectors of the tangent spaces TM(x). The pair

{M, gM} is a Riemannian manifold. The second fundamental form on M is the twice covariant tensor
field sM ∈ BL(T2

M; R) defined by

sM (a, b) = gM (SMa, b), for all a, b ∈ TM.

Lemma 4.1. The Weingarten operator SM ∈ BL(TM; TM) meets the identity

gM (SMa, b) = −g(n, ∂ab), for all a, b ∈ TM.

Proof. For any vector field b ∈ C1(M; TM) the inner product g(n, b) vanishes identically on M, so that
0 = ∂ag(n, b) = gM (SMa, b) + g(n, ∂ab), for all a ∈ TM. �

Remark 4.1. The identity in Lemma 4.1 is often taken as the definition of the Weingarten operator. It
is important to highlight the tensoriality property of the bilinear form g(n, ∂ab) in spite of the apparent
dependence of the derivative ∂ab on the local behavior of the field b ∈ C1(M; TM).

5. Strain measures and constrained continua

As a premise to the discussion of shell models, we present here some general considerations that will
be referred to in Section 13. A detailed account may be found in [Romano et al. 2002]. Motions of
a continuous body are mathematically described by flows of a submanifold B in a finite dimensional
ambient manifold S, whose points are the kinematical parameters. Vector fields v ∈ C1(B; TS), defined
on the body-submanifold and tangent to the ambient manifold, are called virtual displacements. The basic
issue in formulating a structural model is the statement of what is understood for a rigid transformation
of the body in the ambient manifold, when passing from any placement to another one. Rigidity is an



NONLINEAR SHELL THEORY: A DUALITY APPROACH 1211

essential issue in defining the elastic response of materials and in formulating the equilibrium conditions.
Rigid transformations form a group under map composition. Once the group of rigid transformations
has been defined, one may choose among several alternative ways to provide an implicit description of
the rigidity group as a submanifold of the manifold of all configuration-changes. This description is
accomplished by choosing a strain measure, that is a suitable differential operator which associates, to
any configuration-change of the body from any given placement, a set of tensor-valued fields, defined on
that placement, which vanish if and only if the configuration-change is a rigid transformation. Although
there are many possible choices in defining a strain measure, definite rules must be fulfilled. A first
rule is expressed by a nonredundancy requirement, a condition which in optimization theory is dubbed
constraint qualification. It is expressed by the property that no set of lower dimensional tensor-valued
fields can do the job in providing an implicit description of the rigidity group. A further consistency
requirement states that a strain measure must meet a pseudo-additivity property as a function of the
configuration-changes. To state this property let us consider a flow ψτ,t ∈ C1(B; S) with ψτ,s =ψτ,t ◦ψ t,s
and ψ s,s the identity map. Denoting by G(ψτ,s) the strain measure corresponding to the configuration-
change ψτ,s , the pseudo-additivity property is

G(ψτ,s) = G(ψ t,s) + A(ψ t,s, G(ψτ,t)), with A(ψ t,s, 0) = 0,

so that the strain measure value is unaffected by a post composition of the configuration-change by a
rigid transformation. The operator A is assumed differentiable with respect to the second argument, with
an invertible derivative so that a stress field conjugate to the strain measure can be defined. Indeed a
stress field is the Lagrange multiplier associated with an implicit representation of the rigidity constraint.
It follows that the equilibrium of the body at any placement can be expressed in terms of the virtual
work of the stress field by the time derivative of the strain measure from that placement to the actual one
[Romano et al. 2002]. The three-dimensional Cauchy continuum is the standard model for experimental
tests on materials and elastic stress and strain computations on a body. To define lower-dimensional
structural models providing suitable approximations, the first step is to choose a simplified kinematics
by specifying which configuration changes are admissible. If the Green strain measure of the continuum
from a reference natural placement can be expressed as a differentiable function of the strain measure of
the approximate model (by means of a strain-relating map) the elastic potential of the model is defined
as the composition between the elastic potential of the continuum and the strain-relating map. Once
the elastic solution of the model is found, the corresponding Green strain measure of the continuum
is available and hence the approximate Cauchy stress field is recovered by means of the constitutive
relations via the one-to one correspondence with the referential stress field. Often engineers, in assign-
ing the constitutive properties of approximate models, are guided by the results to be expected for the
standard three-dimensional continuum. Accordingly, in shell theories, when the transversal shell fibers
are considered elastically inextensible, the elastic relations of the linear isotropic material in a plane
stress state are assumed and the Poisson effect in the transversal direction is taken into account only
after the elastic solution in terms of stress is found. The following basic result of three-dimensional
kinematics in the euclidean space ensures that, for any diffeomorphic transformation ψ ∈ C2(B; S) of a
three-dimensional continuum, the difference between the pull-back of the metric tensor and the metric
tensor itself is a well defined strain measure. This measure is known as the Green strain and is defined
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by

2g(Gψh1, h2 ) :=g((∂h1ψϕ), (∂h2ψϕ)) − g(h1, h2 ), for all h1, h2 ∈ TS.

A direct computation shows that the Green strain is consistent.

Theorem 5.1 (Homogeneous finite strains). Let B ⊂ S be a connected open set and ψ ∈ C2(B; S) be a
diffeomorphism such that the associated Green strain tensor field is constant on B. Then the differential
∂ψ ∈ C1(B; BL(TS(B); TS(ψ(B)))) is a constant field. If the Green strain field vanishes on B, the
differential ∂ψ is a constant isometry on B.

Proof. Let h1, h2, h ∈ TS be arbitrary constant fields. By assumption:

∂hg(∂h1ψ(x), ∂h2ψ(x)) = g(∂2
hh1
ψ(x), ∂h2ψ(x)) + g(∂2

hh2
ψ(x), ∂h1ψ(x)) = 0.

By exchanging h1 with h and h2 with h we get the relations:

g(∂2
hh1
ψ(x), ∂h2ψ(x)) + g(∂h1ψ(x), ∂2

hh2
ψ(x)) = 0,

g(∂2
h1hψ(x), ∂h2ψ(x)) + g(∂hψ(x), ∂2

h1h2
ψ(x)) = 0,

g(∂2
h2h1

ψ(x), ∂hψ(x)) + g(∂h1ψ(x), ∂2
h2hψ(x)) = 0.

From these equalities, by the symmetry of the second derivative, we infer that g(∂2
h1h2

ψ(x), ∂hψ(x)) = 0.
Then, by the nonsingularity of ∂ψ(x), we have ∂2

h1h2
ψ(x) = 0 for all x ∈ B and by the connectedness of

B, we get that ∂ψ is a constant field. �

Let Flv
t,s ∈ C1(S; S) be a flow in the space S, with velocity field v ∈ Ck(S; TS), that is, v = ∂t=sFlv

t,s .
The tangent Green strain at s is the time-derivative at t = s of the Green strain evaluated at the configu-
ration change from B to ψ t,s(B):

g(Ġ(v)h1, h2 ) :=
1
2
∂t=sg(∂h1Flv

t,s, ∂h2Flv
t,s ) = g((sym ∂v)h1, h2 ),

Then the following rate counterpart of Theorem 5.1 holds.

Theorem 5.2 (Homogeneous tangent strains). Let B ⊂ S be a connected open set and v ∈ C2(B; TS) be
a tangent displacement such that the associated tangent Green strain tensor field is constant on B. Then
the gradient field ∂v ∈ BL(TS(B); TS(B)) is constant on B. In particular, if the tangent Green strain field
vanishes in B then the tangent displacement is rigid:

v(x) − v(y) = W(x − y), for all x, y ∈ B,

where W ∈ BL(TS(x); TS(x)) is a skew-symmetric tensor.

Proof. Let h1, h2, h ∈ TS be arbitrary constant fields. By assumption:

∂h(g(∂h1v(x), h2 ) + g(∂h2v(x), h1 )) = g(∂2
hh1

v(x), h2 ) + g(∂2
hh2

v(x), h1 ) = 0.
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By exchanging h1 with h and h2 with h, we get two more relations, so that

g(∂2
hh1

v(x), h2 ) + g(∂2
hh2

v(x), h1 ) = 0,

g(∂2
h1hv(x), h2 ) + g(∂2

h1h2
v(x), h) = 0,

g(∂2
h2h1

v(x), h) + g(∂2
h2hv(x), h1 ) = 0.

From these equalities, by the symmetry of the second derivative, we infer that g(∂2
h1h2

v(x), h) = 0 and
hence that ∂2

h1h2
v(x) = 0 ⇐⇒ ∂2v(x) = 0, for all x ∈ B. By the connectedness of B we infer that ∂v is

a constant field. If its symmetric part vanishes, we get ∂v = W, a skew-symmetric tensor. �

6. Shell models

We will primarily be interested in presenting a general, coordinate free exposition of the classical shell
model without shear deformation, known in the literature as the Kirchhoff–Love shell model. This basic
model provides also the guidelines for the investigation of some more sophisticated shell models proposed
in the discouragingly vast literature on the topic. We will not even try to be exhaustive in this respect
and will limit our attention to the most popular shell models for computational purposes. These models
will be briefly illustrated, with critical remarks, in Section 13.2. Also, neither constitutive relations nor
computational issues will be treated in detail, since attention is focused on the basic kinematical aspects
of the models.

6.1. Kirchhoff–Love shell model. In the classical Kirchhoff–Love model, a shell is described as the
foliation UM ⊂ S of a regular surface M in the three-dimensional euclidean physical space {S, g}. To
this end we consider a distance function from it and define the folii of the shell as level sets for the
distance function by assuming that the thickness of the shell is small enough to ensure that a distance
function of any of its points from the middle surface M is well defined. Let ϕ ∈ C1(M; S) be a one-to-one
transformation of the middle surface M of the shell in the physical space S which is a diffeomorphism
from the placement M ⊂ S to the placement ϕ(M)⊂ S. The differential ∂ϕ(x)∈ BL(TM(x); Tϕ(M)(ϕ(x)))

is a linear isomorphism:

Im ∂ϕ(x) = Tϕ(M)(ϕ(x)),

Ker ∂ϕ(x) = {0} ∈ TM(x).

The g-transposed operator ∂ϕT (ϕ(x)) ∈ BL(Tϕ(M)(ϕ(x)); TM(x)) is a linear isomorphism too, with

Im ∂ϕT (ϕ(x)) = (Ker ∂ϕ(x))⊥ = TM(x),

Ker ∂ϕT (x) = (Im ∂ϕ(x))⊥ = {0} ∈ Tϕ(M)(ϕ(x)).

Performing the decomposition x = P(x) + r(x)n(P(x)), with x ∈ UM, the induced transformation

ψϕ ∈ C1(UM; S)

of the shell is defined by

ψϕ(x) := ϕ(P(x)) + r(x)nϕ(ϕ(P(x))), for all x ∈ UM,
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where nϕ(ϕ(P(x))) is the normal versor to ϕ(M) at ϕ(P(x)). This is the basic kinematical assumption
in the Kirchhoff–Love shell model: material fibers normal to the middle surface remain normal to it and
do not change their length when transformations of the shell in the physical space take place. Given
∂hr = g(h, n), the differential ∂ψϕ is given by:

∂hψϕ= (I + rSϕ)∂ϕ∂hP + g(h, n)nϕ ◦ϕ ◦ P, for all h ∈ TS,

where Sϕ := ∂nϕ ∈ BL(Tϕ(M); Tϕ(M)) is the shape operator of the deformed middle surface ϕ(M). The
last two terms are mutually orthogonal. If r = 0 and h ∈ TM by Lemma 3.1 it is ∂hψϕ = ∂hϕ.

Proposition 6.1. The Green’s strain

Gϕ :=
1
2
(ψT

ϕψϕ − I),

is expressed, in terms of the transformation ϕ ∈ C1(M; S) of the shell middle surface M, by:

2g(Gϕh1, h2 ) := g((∂h1ψϕ), (∂h2ψϕ)) − g(h1, h2 ) = g((I + rSϕ)2∂ϕ∂h1P, ∂ϕ∂h2P) − g(5h1,5h2 ),

for all h1, h2 ∈ TS(x), x ∈ UM or, in operator form:

2Gϕ =5T ((I + rSM)−1∂ϕT (I + rSϕ)2∂ϕ(I + rSM)−1
− I)5

=∂PT (∂ϕT ∂ϕ+ 2r∂ϕT Sϕ∂ϕ+ r2∂ϕT S2
ϕ∂ϕ)∂P −5T5,

with ∂P = (I + rSM)−15=5− rSr
= ∂PT and 5T

=5 and 52
=5.

Proof. From the expression of ∂ψϕ ∈ C1(UM; BL(TS; TS)) we have

g(∂h1ψϕ, ∂h2ψϕ ) = g((I + rSϕ)∂ϕ∂h1P, (I + rSϕ)∂ϕ∂h2P) + g(h⊥

1 , h⊥

2 ).

Subtracting g(h1, h2 ) = g(h||

1, h||

2 ) + g(h⊥

1 , h⊥

2 ), we get the result. �

Proposition 6.2. The Green strain field in the shell vanishes if and only if the following two conditions
are fulfilled:

∂ϕT ∂ϕ = IM, ∂ϕT Sϕ∂ϕ = SM,

where IM is the identity in TM.

Proof. To prove the if part of the statement we observe that from the two assumptions it follows that

∂ϕT Sϕ∂ϕ = SM = ∂ϕT ∂ϕSM ⇐⇒ ∂ϕT (Sϕ∂ϕ− ∂ϕSM) = 0.

Since Ker ∂ϕT (x) = {0}, we get Sϕ∂ϕ = ∂ϕSM. Then

∂ϕT S2
ϕ∂ϕ = ∂ϕT Sϕ∂ϕSM = S2

M,

and, substituting in the expression for the Green strain field, we get

2Gϕ =5T ((I + rS)−1(I + rS)2(I + rS)−1)5−5T5= 0.

The proof of the only if part of the statement is conveniently carried out by making recourse to Theorem
5.1 which ensures that, if Gϕ = 0, the differential ∂ψϕ ∈ C1(UM; BL(TS; TS)) of the transformation
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ψϕ ∈ C2(UM; S) is a constant proper isometry in S. Then ∂ϕT ∂ϕ = IM and nϕ = ∂ψϕ · n. Taking the
derivative along any vector in TM, and observing that ∂ψϕ is constant, we get the equality

Sϕ∂ϕ = ∂nϕ = ∂ψϕ · ∂n = ∂ϕ∂n = ∂ϕS.

Then ∂ϕT Sϕ∂ϕ = ∂ϕT ∂ϕS = S.
To provide an explicit expression of the tangent Green’s strain in terms of the shell kinematics, we

consider the middle surface M flying in the euclidean space S dragged by a flow Flv
t,s ∈ C1(S; S)

associated with the velocity field v ∈ C1(S; TS), defined by the differential equation: v = ∂t=sFlv
t,s . The

time derivative of the normal versor to the middle surface Flv
t,s(M) is defined by

ṅ := ∂t=snFlv
t,s

.

Since g(nFlv
t,s

, nFlv
t,s

) = 1 at any time t we have

∂t=sg(nFlv
t,s

, nFlv
t,s

) = 2g(ṅ, n) = 0.

We denote by ∂vM5 the derivative of a vector field vM ∈ C1(M; TS(M)) along vectors in TM and by
∇vM =5∂vM5 the covariant derivative in M. �

Lemma 6.1. The material time derivative of the normal versor to a surface M dragged by the flow
Flv

t,s ∈ C1(S; S) is given by
ṅ = − (∂vM5)T n = SMvM − ∇vn,

where vM ∈ C1(M; TS(M)) is the velocity of the middle surface M dragged by the flow Flv
t,s ∈ C1(S; S)

and ∇vn ∈ TM is the gradient of vn = g(vM, n) ∈ C1(M; R).

Proof. The first equality holds since, for all a ∈ TM(x):

0 = ∂t=sg(nFlv
t,s

, ∂aFlv
t,s ) = g(ṅ, a) + g(n, ∂t=s∂aFlv

t,s )

= g(ṅ, a) + g(n, ∂a∂t=sFlv
t,s )

= g(ṅ, a) + g(n, ∂avM )

= gM (ṅ, a) + gM ((∂vM5)T n, a).

The second equality follows from Leibniz rule:

g(n, ∂avM ) = ∂a(g(vM, n)) − gM (vM, SMa) = gM (∇vn, a) − gM (SMvM, a).

�

Theorem 6.1. If the middle surface M is dragged by a flow Flv
t,s ∈ C1(S; S), the tangent Green strain

in the shell Ġ(v) := ∂t=sGFlv
t,s

= sym ∂v in terms of the middle surface velocity vM ∈ C1(M; TS(M)) is
given by:

g(Ġ(v)h1, h2 ) = gM ((sym ∇vM)a, b) + rgM (∇aṅ, b)+ rgM (SMa, ∇bvM ) + r2gM (sym(SM∇ṅ)a, b),

where a := ∂h1P, b := ∂h2P and ṅ = − (∂vM5)T n by Lemma 6.1. In operator form:

Ġ(v) = ∂PT (sym ∇vM + r(∇ṅ + (SM∇vM)T ) + r2 sym(SM∇ṅ))∂P.
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Proof. A direct computation shows that

∂t=sg(∂aFlv
t,s, ∂bFlv

t,s ) = gM (∇avM, b) + gM (a, ∇bvM ),

∂t=sg(∂anFlv
t,s

, ∂bFlv
t,s ) = gM (∇aṅ, b) + gM (SMa, ∇bvM ),

∂t=sg(∂anFlv
t,s

, ∂bnFlv
t,s

) = gM (∇aṅ, SMb) + gM (SMa, ∇bṅ),

and the result follows from the formula in Proposition 6.1. �

Let us explicitly observe that the operator ∇ṅ + (SM∇vM)T is symmetric despite of the single terms
∇ṅ and SM∇vM being not symmetric, in general.

Remark 6.1. Let a spherical shell of mean radius R be subject to a homothetical transformation

ψϕ(x) = αx,

with x originating from the center. Then S = R−1IM, ∂ϕT ∂ϕ = α2IM, and nϕ = n, so that:

∂anϕ = ∂an,

g(Sϕ∂aϕ, ∂bϕ ) = αg(Sa, b),

g(Sϕ∂aϕ, Sϕ∂bϕ ) = g(Sa, Sb).

Given (1 + r R−1)∂P =5, the Green strain is given by the formula

2(1 + r R−1)2Gϕ = (α2
− 1 + α(2r R−1

+ r2 R−2)5.

If r R−1
� 1 we may set Gϕ ≈

1
2
(α2

− 1)5.

7. Shell strains

The result of Proposition 6.2 shows that a strain measure of the shell, associated with a configuration
change ϕ ∈ C1(M; S) of the middle surface, is provided by the pair of symmetric operators

Eϕ(x) ∈ BL(TM(x); TM(x)), Kϕ(x) ∈ BL(TM(x); TM(x)),

defined by
2Eϕ := ∂ϕT ∂ϕ− IM, Kϕ := ∂ϕT Sϕ∂ϕ− SM,

where ∂ϕ(x) ∈ BL(TM(x); Tϕ(M)(x)) and ∂ϕT (x) ∈ BL(Tϕ(M)(x); TM(x)). The related pair εϕ = gEϕ
and χϕ = gKϕ of symmetric tensor fields εϕ(x) ∈ BL(T2

M(x); R), χϕ(x) ∈ BL(T2
M(x); R) are given by:

2εϕ(a, b) :=g(∂aϕ, ∂bϕ ) − g(a, b),

χϕ(a, b) :=g(∂a(nϕ ◦ϕ), ∂bϕ ) − g(∂an, b) = g(Sϕ∂aϕ, ∂bϕ ) − g(Sa, b),

where a, b ∈ TM. The symmetric tensor fields εϕ and χϕ are called the membrane and the curvature
strains and can be expressed in terms of pull-backs of the first and of the second fundamental forms of
the middle surface: 2εϕ := ϕ↓gϕ(M)

− gM and χϕ := ϕ↓sϕ(M) − sM.
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By Proposition 6.2, the shell strain fields vanish on M if and only if the configuration change ψϕ ∈

C1(UM; S) is a rigid transformation of the shell. Consistency of the shell strain measure follows from
the relations:

εψ◦ϕ(a, b) =εψ(∂aϕ, ∂bϕ) + εϕ(a, b),

χψ◦ϕ(a, b) =χψ(∂aϕ, ∂bϕ) +χϕ(a, b).

Theorem 7.1. The Green finite strain measure in the shell is expressed in terms of the membrane and
the curvature strains of the middle surface and of the shape operators by:

g(Gϕh1, h2 ) = εϕ(a, b) + rχϕ(a, b) +
1
2

r2χϕ(a, Sb) +
1
2

r2g(Sϕ∂aϕ, (Sϕ∂ϕ− ∂ϕS)b),

with a := ∂h1P, b := ∂h2P. In operator form, we have

Gϕ =∂PT (Eϕ + rKϕ +
1
2r2(Kϕ + S)(IM + 2Eϕ)−1(Kϕ + S) −

1
2r2S2)∂P.

Note that Gϕ and ∂P are evaluated at x ∈ Mr while all other tensors are evaluated at P(x) ∈ M.

Proof. By Proposition 6.1 we have 2g(Gϕh1, h2 ) = A + 2rB + r2C with

A= g(∂aϕ, ∂bϕ ) − g(5h1,5h2 ),

B= g(Sϕ∂aϕ, ∂bϕ ),

C= g(Sϕ∂aϕ, Sϕ∂bϕ ).

A little algebra shows that

A= 2εϕ(a, b) + g(a, b) − g(5h1,5h2 ),

B= χϕ(a, b) + g(Sa, b),

C= χϕ(a, Sb) + g(Sa, Sb) + g(Sϕ∂aϕ, (Sϕ∂ϕ− ∂ϕS)b).

The result then follows by observing that

g(a, b) + rg(Sa, b) = g((I + rS)a, b) = g(5h1, b),

rg(Sa, b) + r2g(Sa, Sb) = rg((I + rS)a, Sb) = rg(5h1, Sb),

g(5h1, b) + rg(5h1, Sb) = g(5h1,5h2 ).

To get the operator expression we write

χϕ(a, Sb) = g(Kϕa, Sb) = g(SKϕa, b),

g(Sϕ∂aϕ, (Sϕ∂ϕ− ∂ϕS)b) = g(a, ∂ϕT Sϕ(Sϕ∂ϕ− ∂ϕS)b).

Then, given Sϕ = ∂ϕ−T (Kϕ + S)∂ϕ−1, we have

∂ϕT Sϕ(Sϕ∂ϕ− ∂ϕS)= (Kϕ + S)∂ϕ−1∂ϕ−T (Kϕ + S) − (Kϕ + S)S.

Recalling that ∂ϕT ∂ϕ = 2Eϕ + IM and taking the transpose, we get

(∂ϕT Sϕ(Sϕ∂ϕ− ∂ϕS))T
= (Kϕ + S)(2Eϕ + IM)−1(Kϕ + S) − S(Kϕ + S).
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Adding the two expressions, the terms in SKϕ cancel and we get the result. �

Remark 7.1. For an initially flat shell (a plate) the expression of the Green strain becomes

Gϕ =5T (Eϕ + rKϕ +
1
2

r2Kϕ(IM + 2Eϕ)−1Kϕ)5.

If the extensional strain Eϕ vanishes, then Gϕ =5T ((IM + rKϕ)
2
− IM)5 and the ratio between final

and initial lengths of the principal fibers has a linear variation along the thickness.

8. Tangent shell strains

The tangent membrane strain ĖM(vM) ∈ BL(TM; TM), associated with a flow Flv
t,s ∈ C1(S; S), is defined

by

ĖM(vM) := ∂t=sEFlv
t,s

=
1
2
∂t=s(∂Flv

t,s)
T ∂Flv

t,s,

and the tangent curvature strain K̇M(vM) ∈ BL(TM; TM) is given by

K̇M(vM) := ∂t=sKFlv
t,s

= ∂t=s(∂Flv
t,s)

T SFlv
t,s

∂Flv
t,s .

We have the following results.

Theorem 8.1 (Tangent membrane strain). The tangent membrane strain ĖM(vM) ∈ Ck−1(M; BL(TS; TS))

is expressed in terms of the velocity field vM ∈ Ck(M; TS(M)) of the middle surface dragged by the flow
by the formula:

ĖM(vM) = sym(5∂vM5) = sym(∇vM).

Proof. The result follows from the equality:

g(∂aFlv
t,s, ∂bFlv

t,s ) = g(∂avM, b) + g(a, ∂bvM ), for all a, b ∈ TM.

It is often expedient to decompose a vector field vM ∈ TS(M) into its parallel and orthogonal components
to the tangent plane to M: vM = v||

M + vnn, with vn = g(vM, n) and v||

M = 5vM := vM − vnn, so that
g(v||

M, n) = 0. �

Theorem 8.2 (Tangent membrane strain — second formula). Setting vM = v||

M + vnn with v||

M ∈ TM, the
tangent membrane strain is given by

ĖM(vM) = sym(∇v||

M) + vnSM.

Proof. The formula follows from the equality:

g(∂avM, b) = g(∂a(v
||

M + vnn), b)

= g(∂av||

M, b) + vng(Sa, b) + (∂avn)g(n, b)

= g(∇av||

M, b) + vng(Sa, b),

for all a, b ∈ TM. �
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Theorem 8.3 (Tangent curvature strain). The tangent curvature strain field K̇M(vM) ∈ BL(TM; TM) is
given by the formula

K̇M(vM) = ∇ṅ + (SM∇vM)T
= −∇((∂vM5)T n) + (SM∇vM)T .

Proof. The result follows from Theorem 6.1. �

Theorem 8.4 (Tangent curvature strain — second formula). The tangent curvature strain is expressed in
terms of the normal and parallel components of the velocity field by the formula:

K̇M(vM) = ∇(SMv||

M) − ∇
2vn + (SM∇v||

M)T
+ vnS2

M.

Proof. Given ṅ = SMvM −∇vn, we infer that ∇ṅ = ∇(SMv||

M)−∇
2vn. Moreover, since Sn = 0, we have

S∇vM = SM∇v||

M + S∇(vnn) = SM∇v||

M + S(n ⊗ ∇vn + vn∇n) = SM∇v||

M + vnS2
M,

Substituting in the formula of Theorem 8.3 we get the result. �

Remark 8.1. At a planar point of the shell the shape operator S vanishes and we get the formula
K̇M(vM) = ∇(SMv||

M) − ∇
2vn. In a planar shell (a plate) the normal versor n ∈ C2(M; TS(M)) is a

constant field and the shape operator S vanishes identically so that the general formula specializes into
K̇M(vM) = −∇

2vn and the expression of the linearized curvature strain tensor field of a plate, in terms
of the transversal displacement field, is recovered.

Theorem 8.5 (Tangent Green strain). The tangent Green strain in the shell Ġ(v) := ∂t=sGFlv
t,s

= sym ∂v,
in terms of the tangent membrane and curvature strains, is expressed by:

g(Ġ(v)h1, h2 ) = g(ĖM(vM)a, b)+rg(K̇M(vM)a, b)+r2(g(sym(SK̇M(vM))a, b)−g(SĖM(vM)Sa, b))

where a := ∂h1P, b := ∂h2P. In operator form we may write

Ġ(v) = ∂PT (ĖM(vM) + rK̇M(vM) + r2 sym(SK̇M(vM) − SĖM(vM)S)∂P.

Proof. The result follows by computing the derivative ∂t=sGFlv
t,s

by the formula in Theorem 7.1 and
observing that by the formula for the derivative of the inverse, it is

∂t=s(2EFlv
t,s

+ IM)−1
= − 2ĖM(vM).

A direct proof in components notation is provided in [Ciarlet 2000, Theorem 2.6-2]. �

Remark 8.2. If a spherical balloon of mean radius R is inflated we see that vn is a constant field and
v||

= 0 identically. Hence ĖM(v) = vnS and K̇M(v) = vnS2. The tangent Green strain is then given by
the formula (1 + r R−1)2Ġϕ(v) = vn(S + rS2). Since S = R−15, all material fibers tangent to a shell
folium have the same elongation rate vn R−1(1 + r R−1)−1. If r � R we may assume the elongation rate
to be ≈ vn R−1.

Theorem 8.6. The tangent Green strain of the shell vanishes if and only if the tangent membrane and
curvature strains of the middle surface vanish.
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Proof. That ĖM(vM) = 0, K̇M(vM) = 0 implies Ġ(v) = 0 follows directly from Theorem 8.5. To get
the converse implication we set r = 0 to infer that ĖM(vM) = 0 and hence, by a continuity argument
for r → 0, conclude that K̇M(vM) = 0. That Ġ(v) = 0 implies ĖM(vM) = 0, K̇M(vM) = 0 may be also
deduced from Theorem 5.2. Indeed, if Ġ(v) = 0, we infer that

vM(x) = v0 + Wx and ∂vM(x) = W.

Then
ĖM(vM) = sym(∇vM) = sym(5T W5) = 0,

and also

K̇M(vM) = − ∇((∂vM5)T n) + (S∇vM)T
= −∇((W5)T n) + (SW5T )T

=5W∇n −5W∇n = 0.

�

Remark 8.3. Let {eα ∈ TM, α = 1, 2} be base vectors of a coordinate system on M. Recalling that the
Christoffel symbols associated with the covariant derivative on M are defined by the relation

∇eα
eβ :=5∂eα

eβ = 0
γ

αβeγ ,

and that the components of the second fundamental form are given by

Sαβ := g(∂eα
n, eβ ) = g(Seα, eβ ) = − g(∂eα

eβ, n),

we get the Gauss formula

∂eα
eβ =g(∂eα

eβ, eγ )eγ + g(∂eα
eβ, n)n = 0

γ

αβeγ − Sαβn = ∇eα
eβ − Sαβn.

By these formulas we may put all the relations above in component form.

9. Divergence theorem on a manifold

We recall here some basic definitions and results for subsequent reference [Marsden and Hughes 1983;
Romano et al. 2005b]. The exterior derivative of a (n − 1)-form is uniquely defined by Stokes formula:∫

M

dω =

∮
∂M

ω.

It states the equality of the integral of a differential (n − 1)-form ω on the boundary ∂M, a (n − 1)D
manifold, to the integral of the exterior derivative dω, which is a differential n-form, on the nD manifold
M. The divergence of a vector field w ∈ Ck(M; TM) on a nD manifold M is defined, in terms of the
exterior derivative, by the formula: d(µ

M
w) = (divw)µ

M
, where µ

M
w is the (n − 1)-form obtained

by evaluating the n-form µ
M

with w as the first argument. Substituting in Stokes formula, we get the
divergence theorem ∫

M

(divw)µ
M

=

∮
∂M

µ
M

w.

Let us now recall the definition of the divergence of tensor fields on a submanifold M of a Riemannian
manifold {S, g}. We are interested in the definition of the divergence for two kinds of tensor fields.
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(i) The divergence div maps a tensor field L ∈ Ck(M; BL(TM; TM)) into the vector field divL ∈

Ck−1(M; TM) defined by the relation

g(divL, a) := div(LT a) − L : ∇a, for all a ∈ C1(M; TM),

with LT a ∈ Ck(M; TM) and div(LT a) := tr(∇(LT a)) and L : (∇a) := tr(LT
∇a)). At any x ∈ M, the

l.h.s in the definition of divL is an inner product which depends only on the point value a(x) ∈ TM(x)

of the vector field a ∈ C1(M; TM). However, the evaluation of (divL)(x) requires to compute the
r.h.s and this requires that a field of frames be assigned on M.

(ii) The divergence Div maps a tensor field A ∈ Ck(M; BL(TM; TS(M))) into the vector field DivA ∈

Ck−1(M; TS(M)) defined by the relation

g(DivA, v) := div(AT v) − A : ∂v5, for all v ∈ C1(M; TS(M)),

with AT
∈ Ck(M; BL(TS(M); TM)) so that AT v ∈ Ck(M; TM) and

div(AT v) := tr(∇(AT v)), A : ∂Mv := tr(AT ∂v5)).

At any x ∈ TM(M), the l.h.s in the definition of DivA is an inner product which depends only on
the point value v(x) ∈ TM(x).

If the tensor field A ∈ Ck(M; BL(TM; TS(M))) is such that ImA ⊂ TM ⊂ TS(M), then the divergence
formulas yield the identity

g(DivA, v) := div(AT v) − A : ∇v = g(divAM, v), for all v ∈ C1(M; TM),

where A = AM ∈ Ck(M; BL(TM; TM)).

10. Equilibrium of a membrane shell

A membrane is a shell model whose kinematics admits any change of curvature strain in a rigid trans-
formation. Accordingly, the strain measure reduces to the variation of the first fundamental form of
the middle surface due to the transformation and the dual field is the membrane stress. The tangent
membrane strain

ĖM(vM) ∈ Ck−1(M; BL(TM; TM))

associated with a velocity field vM ∈ Ck(M; TS(M)) is ĖM(vM) = sym(∇vM) and hence the mem-
brane stress is a symmetric tensor field NM ∈ L2(M; BL(TM; TM)) or equivalently a tensor field N ∈

L2(M; BL(TM; TS(M))) with ImN ⊂ TM ⊂ TS(M). Assuming that the vector field

DivN ∈ L2(M; TS(M))

is square integrable on M, the divergence theorem yields the Green’s formula:∫
M

N : (∂vM5)µ
M

=

∫
M

−g(DivN, vM )µ
M

+

∮
∂M

g(Nn∂M, vM )µ
∂M

,
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and hence the differential and boundary Cauchy’s laws of equilibrium:{
−DivN= p ∈ L2(M; TS(M)), body force on M,

Nn∂M= t ∈ L2(∂M; TM(∂M)), boundary traction on ∂M.

Splitting the body force on the shell middle surface into the parallel and the normal component,

p = p||
+ pnn,

with p||
∈ TM, being NT n = 0 identically, from the divergence formula we get

pn = g(p, n) = − g(DivN, n)= −div(NT n) + N : ∂Mn = NM : SM.

Given that

g(DivN, v||

M ) = gM (divNM, v||

M ),

we have p||
= − divNM.

Equilibrium then requires that normal loads must vanish at planar points of the membrane shell and
that boundary tractions must be tangent to the middle surface of the membrane shell.

11. Equilibrium of a membrane-flexural shell

The tangent strain for the Kirchhoff–Love shell model is provided by the rates of variation of the first and
second fundamental forms of the middle surface along a virtual transformation. The dual stress fields
are represented by tensor fields of membrane stresses and bending-torsional moments. The basic step in
the analysis of the equilibrium of the shell consists again in providing the relevant Green’s formula. The
virtual work principle for the shell subject to a force system f has the expression:∫

M

NM : ĖM(vM)µ
M

+

∫
M

MM : K̇M(vM)µ
M

= 〈 f, vM 〉,

where vM ∈ C1(M; TS(M)) is a virtual displacement field of the actual placement of the shell. Recalling
that the tangent membrane and curvature strains are given by

ĖM(vM) = sym(∇vM) and K̇M(vM) = ∇ṅ + (SM∇vM)T ,

the appropriate divergence formulae yield

NM : ĖM(vM) = N : ∇vM = div(NT vM) − g(DivN, vM ),

MM : K̇M(vM) = MM : ∇ṅ + MM : S∇vM = MM : ∇ṅ + SMMM : ∇vM = div(MMṅ) − gM (divMM, ṅ)

+div((SMMM)T vM) − g(Div(SMM), vM ).
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It is convenient to define the shear vector field TM ∈ Ck−1(M; TM) to be TM := divMM and its normal
component at the boundary T := gM (TM, n∂M ). Then, being ṅ = − (∂vM5)T n, we may write:

−gM (divMM, ṅ )= gM (TM, (∂vM5)T n) = gM ((∂vM5)TM, n)

= n ⊗ TM : ∂vM5

= div((TM ⊗ n)vM) − g(Div(n ⊗ TM), vM )

= div(vnTM) − g(Div(n ⊗ TM), vM ).

An application of the divergence theorem provides the variational form of the equilibrium condition:

〈 f, vM 〉 =

∫
M

−g((Div(N + SMM + n ⊗ TM), vM )µ
M

+

∮
∂M

g((N + SMM)n∂M, vM ) + gM (MMn∂M, ṅ) + T vnµ∂M
,

for any virtual displacement vM ∈ C1(M; TS(M)).

11.1. Differential equilibrium equation. By localizing the variational form of the equilibrium condition
we get the differential equilibrium equation:

− Div(N + SMM + n ⊗ TM) = p,

To split this equation into tangent and normal components to the middle surface, we observe that:

− g(Div(N + SMM), v||

M ) = − div((N + SMM)v||

M),

− g(Div(N + SMM), n) = − div((N + SMM)T n) + (NM + SMMM) : SM

= (NM + SMMM) : SM,

since (N + SMM)T n = 0. Moreover, substituting (n ⊗ T) : ∇n = tr(∇n(n ⊗ T)) = 0, we have

g(Div(n ⊗ T), n)= div((T ⊗ n)n) − (n ⊗ T) : ∇n = divT,

g(Div(n ⊗ T), v||

M )= g((∇n)T, v||

M ) + (divT)g(n, v||

M ) = g(ST, v||

M ).

Hence the differential equilibrium equation may be split into

−div(NM + SMMM) − SMTM = p||,

−div divMM + (NM + SMMM) : SM = pn.

11.2. Interpretation of the boundary terms. To get a clearer mechanical interpretation of the boundary
virtual work, we split the boundary spin ṅ into the bending and the torsional components: ṅ = ṅbn∂M +

ṅt t∂M with ṅb = − gM (∂n∂M
vM, n) and ṅt = − gM (∂t∂M

vM, n). Setting MMn∂M = Mbn∂M + Mt t∂M we
have ∮

∂M

gM (MMn∂M, ṅ)µ
∂M

=

∮
∂M

(Mbṅb + Mt ṅt)µ∂M
.
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Then, given ∮
∂M

Mt ṅtµ∂M
= −

∮
∂M

g(∂t∂M
vM, Mt n)µ

∂M

= −

∮
∂M

∂t∂M
(Mtvn)µ∂M

+

∮
∂M

g(∂t∂M
(Mt n), vM )µ

∂M

=

∮
∂M

(∂t∂M
Mt)vnµ∂M

+

∮
∂M

Mt g(St∂M, vM )µ
∂M

,

the boundary virtual work may be written as∮
∂M

g((N + SMM)n∂M + Mt St∂M, v||

M )µ
∂M

+

∮
∂M

(T + ∂t∂M
Mt)vnµ∂M

+

∮
∂M

Mbṅbµ∂M
.

Hence the boundary equilibrium conditions are given by

(N + SMM)n∂M + Mt St∂M = t||, dual of v||

M,

T + ∂t∂M
Mt = tn, dual of vn,

Mb = m, dual of ṅb.

These boundary conditions differ from the ones reported in the literature which will be referred to as the
standard boundary conditions. Indeed, the bending couple Mb, per-unit-length along the boundary, is
here considered as the force system dual of the bending spin

ṅb = gM (ṅ, n∂M ) = − gM (∂n∂M
vM, n).

In the literature, the bending couple per-unit-length along the boundary has typically been assumed to
be the force system dual of the derivative ∂n∂M

vn of the virtual velocity vn, normal to the middle surface,
along the outward normal to the boundary. This choice has been apparently suggested by the analogous
formula for flat plates. However, when the shell is not flat, the two choices are not equivalent since

ṅb = − ∂n∂M
vn + gM (Sn∂M, v||

M ).

In fact, the derivative ∂n∂M
vn has not a clear kinematical meaning, while apparently ṅb = gM (ṅ, n∂M )

is the appropriate expression for the bending rate of the normal fibers of the shell at a boundary. To
highlight the connection between the new and the standard boundary equilibrium conditions we observe
that

Mbṅb= MbgM (ṅ, n∂M ) = MbgM (SvM − ∇vn, n∂M )

= gM (SvM, MMn∂M ) − gM (SvM, Mt t∂M ) − Mb∂n∂M
vn

= gM (SMMn∂M − Mt St∂M, vM ) − Mb∂n∂M
vn.

Substituting this expression into the boundary virtual work we recover the standard boundary conditions:

(N + 2SMM)n∂M = t||, dual of v||

M,

T + ∂t∂M
Mt = tn, dual of vn,

Mb = m∗, dual of − ∂n∂M
vn.
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Remark 11.1. The split form of the differential condition of equilibrium is reported in coordinate ex-
pression in [Ciarlet 2000; 2005]. The coordinate form of the standard boundary conditions can be found
in [Ciarlet 2005, Theorem 4.4-4]. The unsplit differential condition and the new form of the boundary
conditions are contributed here for the first time in the context of a duality approach to shell theory.
The treatment of shell equilibrium, according to the so-called direct approach in the restricted theory,
is reviewed in the comprehensive article by [Naghdi 1972, section 15] and in the book by [Libai and
Simmonds 1998]. In this context, a differential equilibrium equation formally similar to our was provided
in [Steele 1971].

12. Equilibrium in a reference placement

In the nonlinear analysis of elastic shells the equilibrium condition must be written in terms of fields
defined in a reference placement since constitutive laws are expressed in terms of strain measures from a
natural reference placement. Moreover, in computational mechanics the suitable form of the equilibrium
condition is the variational one in terms of virtual work. Once the referential stress fields are evaluated, it
is needed to recover the physically significant stress fields in the actual placement. To this end we remark
that, by the consistency of the shell strain measure, proven in Section 6.1, the rigid virtual displacements
can be characterized as vector fields in the kernel of the rates of the strain measure from a fixed reference
placement M to the moving actual one ϕ(M). The strain measure associated with the configuration map
ϕ ∈ C1(M; S) is given by the pair of strain fields:

2Eϕ := ∂ϕT ∂ϕ− IM, Kϕ := ∂ϕT Sϕ∂ϕ− SM.

Let Flv
t,s ∈ C1(S; S) be a flow with velocity v = ∂t=sFlv

t,s ∈ C1(S; TS). The tangent membrane and
curvature strain rates at ϕ(M), are the time derivative ∂t=s of the shell strains in the transformation from
ϕ(M) to (Flv

t,s ◦ϕ)(M) evaluated at ϕ(M), and are given by

Ėϕ(M)(v)= sym ∇v, K̇ϕ(M)(v)= ∇ṅϕ + (Sϕ∇v)T .

The secant membrane and curvature strain rates at ϕ(M), are the time derivative ∂t=s of the shell strains
in the transformation from M to (Flv

t,s ◦ϕ)(M) evaluated at ϕ(M), and are given by

Ė{M,ϕ(M)}(v):= ∂t=sEFlv
t,s◦ϕ

= sym(∂ϕT ∂v∂ϕ) = ∂ϕT Ėϕ(M)(v)∂ϕ,

K̇{M,ϕ(M)}(v):= ∂t=sKFlv
t,s◦ϕ

= ∂ϕT (∇ṅϕ + (Sϕ∇v)T )∂ϕ = ∂ϕT K̇ϕ(M)(v)∂ϕ.

The shell stress tensors in the reference placement are defined, in tems of the shell stress tensors in the
actual placement, by the invertible relations

Nϕ(M) = Jϕ∂ϕN{M,ϕ(M)}∂ϕ
T , Mϕ(M) = Jϕ∂ϕM{M,ϕ(M)}∂ϕ

T ,
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where Jϕ is the jacobian determinant associated with the map ϕ ∈ C1(M; S). Then we have the equality:∫
ϕ(M)

Nϕ(M) : Ėϕ(M)(v)µ+

∫
ϕ(M)

Mϕ(M) : K̇ϕ(M)(v)µ

=

∫
M

N{M,ϕ(M)} : Ė{M,ϕ(M)}(v)Jϕµ+

∫
M

M{M,ϕ(M)} : K̇{M,ϕ(M)}(v)Jϕµ,

for any virtual displacement v ∈ C1(ϕ(M); TS) of the actual placement of the shell.

13. Shear deformable and polar shell models

In what follows we outline the main ingredients of two shell models proposed in the literature and
widely adopted for computational purposes. In the former model the shear defomability of the shell
is approximately taken into account since the transversal fibers are allowed to rotate with respect to
the middle surface. In the latter model, a polar structure is introduced with the aim to match the shell
kinematic parameters with that of a shear deformable beam. We will not develop these models here
in full detail but will illustrate some critical remarks that provide guidelines for their modification or
rejection.

13.1. Shells with transversal shear deformation. In this shell model transversal shear deformation is
simulated by means of rigid oriented needles hinged at the points of the middle surface. The middle
surface has then the geometrical structure of a fiber manifold and is commonly called a Cosserat surface
[Naghdi 1972]. However, such a nickname may lead to the misleading conclusion that the need for
a polar structure of the ambient space is implied. The needles are described by a field of directors
d ∈ C1(M; S2(1)) defined on M and with values on the unit sphere S2(1), which is a 2D submanifold of
the euclidean space S. Directors play a role similar to that of normal versors in the Kirchhoff–Love shell
model and hence the shell kinematics describes a 2D model which is a constrained three-dimensional
Cauchy continuum model. In a model with inextensible needles, the shell thickness is assumed to be
small enough to ensure that for all x ∈ UM there exists an unique decomposition such that:

x = Pd(x) + r(x)d(Pd(x)) = Pd(x) + r(x)d(x),

with Pd ∈ C1(UM; M) and ∂Pd(x) ∈ BL(TS(x); TM(Pd(x))). The surfaces which are level sets of the
function r ∈ C2(UM; R) do not form a foliation of the shell middle surface. Indeed g(∂r, d) = 1 and
g(d, n)∂r = n. Hence r is not a distance function unless d = n. The derivative ∂d ∈ BL(TM; TS) is
not necessarily symmetric, so that d ∈ Ker ∂dT and Im ∂d ⊆ (Span∂d)⊥. Taking the derivative we get:
h = ∂hPd + r∂d∂hPd + (∂hr)d.

The transformation ψϕ,d ∈ C1(UM; S) of the shell, induced by a diffeomorphic transformation ϕ ∈

C1(M; S) of the middle surface M and by a field of directors dϕ ∈ C1(ϕ(M); TS), is given by

ψϕ,d(x) := ϕ(Pd(x)) + r(x)dϕ(ϕ(Pd(x))), for all x ∈ UM.

with dϕ ∈ C1(ϕ(M); S2(1)) director field on ϕ(M).
Then

∂hψϕ,dϕ = (I + r∂dϕ)∂ϕ∂hPd + (∂hr)dϕ ◦ϕ,
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and Green strain is:

Gϕ,dϕ = ∂PT
d (∂ϕT ∂ϕ+ r sym(∂ϕT ∂M(dϕ ◦ϕ))

+
1
2

r2∂M(dϕ ◦ϕ)T ∂M(dϕ ◦ϕ))∂Pd + sym(∂PT
d ∂ϕT (dϕ ◦ϕ⊗ ∂r)) − I.

In the relevant literature, [Simo and Fox 1989; VuQuoc et al. 2000], membranal, curvature and shear
strains for the shell have been defined as:

2εϕ(a, b):= g(∂aϕ, ∂bϕ ) − g(a, b),

χϕ,dϕ (a, b):= g(∂a(dϕ ◦ϕ), ∂bϕ ) − g(∂ad, b),

δϕ,dϕ (a):= g(dϕ ◦ϕ, ∂aϕ ) − g(d, a),

where a, b ∈ TM. The membranal strain is a 2 × 2 symmetric tensor, while the curvature strain is a
2 × 2 unsymmetric tensor and the shear strain is a 2D vector. We have then 3 + 4 + 2 = 9 scalar strain
parameters. Despite of its wide usage, this strain measure is redundant. A more economical set of strain
fields can be envisaged by substituting the unsymmetrical curvature strain χϕ,d with its symmetric part
or by retaining the same membranal and curvature strains of the Kirchhoff–Love shell model, adding to
these the shear strain measure. We have then 3 + 3 + 2 = 8 scalar strain parameters. In the literature
no attention seems to have been payed to the issue of redundancy but the topic has been only indirectly
treated by assuming that the shell stress tensor dual of the curvature strain be symmetric [Naghdi 1972;
Simo and Fox 1989]. Moreover, an explicit expression of the Green strain in terms of shell strains is still
lacking. A computational analysis of the shell model with transversal shear strain can be carried out by
a direct recourse to the expression of the Green strain provided above thus avoiding the introduction of
shell strain fields.

13.2. Polar Shells. In the polar model of a shell, a rigid triad is hinged at each point of the middle
surface and arbitrary rotations are allowed for. This is called the shell model with drilling rotations [Fox
and Simo 1992; Ibrahimbegovic 1994]. A placement of the polar shell is described by a placement
of the middle surface M and by a field of rotations which simulate a rigid body kinematics along the
thickness of the shell. The ambient space is then the Cosserat manifold S × SO(3) which is a trivial fiber
bundle whose base manifold is the euclidean space S. The nonlinear fiber manifold SO(3) is the three-
dimensional compact group of rotations, the special orthogonal group. A configuration change is a map
ut,s : M 7→ S × SO(3) described by a configuration change ϕt,s ∈ C1(M; S) of the base manifold M and
by a field of rotations Qt,s ∈ C1(M; SO(3)), with respect to a reference triad. Then, at each point x ∈ M,
we have ut,s(x) = {ϕt,s(x), Qt,s(x)} ∈ S × SO(3). In the literature [Fox and Simo 1992; Ibrahimbegovic
1994], the strain measure is defined to be the pairQT

t,s
∂Mϕt,s − IM, membrane-shear strain,

QT
t,s

∂MQt,s, wryness strain,

where ∂M denoted the derivative along tangent vectors in TM and IM is the identity in TM. Since the
tangent spaces TM(x) are 2D and Q belongs to the three-dimensional manifold SO(3), the vanishing of
the wryness is expressed by 6 scalar differential conditions. The vanishing of the membrane-shear strain
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is also expressed by 6 scalar differential conditions. By decomposing the membrane-shear strain into its
normal and tangent components, the membrane and shear components of the strain measure are given
by [Ibrahimbegovic 1994]:

εϕ,Q(a, b):= g(∂ϕ · a1, Qa2 ) − g(a1, a2 ), a, b ∈ TM,

δϕ,Q(a):= g(∂ϕ · a, Qn) − g(a, n), a ∈ TM.

The wryness may be also expressed in terms of the axial vector �b := axial((∂bQ)QT ). An expression
of the wryness as a 2 × 2 bilinear form was provided in [Ibrahimbegovic 1994] by setting χQ(a, b) :=

g(Qa,�b) but this is a misstatement since only 4 scalar components are involved, instead of the 6
needed. The polar shell model is redundant. To see this, let us assume that the membrane-shear strain
vanishes, that is, ∂ϕ(x) · a = Q(x)a, for all a ∈ TM(x). Hence nϕ(x) = Q(x)n(x). Then the membrane
strain εϕ vanishes and moreover it is sufficient to impose the vanishing of the curvature strain χϕ to
ensure that the shell transformation is rigid, so that ∂MQ = 0. We then need only 6 + 3 = 9 scalar
differential expressions to get a strain measure instead of the 6 + 6 = 12 included in the strain measure of
the polar shell model. This basic criticism, which stems from integrability requirements, also applies to
the Cosserat polar model of a three-dimensional continuum and to the more sophisticated polar models
of micromorphic and microstretch continua proposed in the literature [Eringen 1998]. A discussion on
this topic is presented in [Romano 2002]. Since the polar shell model is a constrained three-dimensional
Cosserat continuum, the constitutive relations of a Cauchy continuum are not applicable and this should
compel the supporters of this model to envisage new nonconventional ones.

14. Concluding remarks

The initial motivation for this investigation on shell models stemmed from the unpleasant sensation
that any aesthetically minded scholar feels in reading most treatises or articles on shells, and from the
headaches provoked by the hoard of indexes that have to be dealt with. Also, it is hard to keep track
of the geometrical significance of the quantities involved when the notation is too disturbing. In the
attempt to overcome these shortcomings, several useful facts have been discovered and the ones most
deserving of attention are recalled below. Basic results of surface geometry needed in a shell theory
have been presented without recourse to coordinate systems or fields of frames. As a premise, the
rules to be followed in the formulation of a structural model as a constrained three-dimensional Cauchy
continuum are illustrated, to ensure that the model itself is well posed and that the experimental evidences,
provided in the three-dimensional context, be available for the model. The rigidity theorem providing
the uniqueness, up to isometries, of a surface with given first and second fundamental forms, is proven
as a special case of a more general result of kinematics in an euclidean space. The result is given both
in finite and in rate form (Theorems 5.1 and 5.2). Explicit expressions of the finite and tangent Green
strains for a Kirchhoff–Love shell, in terms of the shell kinematical parameters and of the membranal and
curvature strains of the shell, are provided. These basic tools are needed to properly state the variational
equilibrium condition and the constitutive laws for the shell. A new expression of the tangent curvature
strain is provided and allows for a direct application of the divergence theorem to get Green’s formula
for the shell model. The basic differential and boundary equilibrium conditions are derived in a straight
way without performing the usual split into tangent and normal components. A new set of boundary
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conditions is provided, since it is shown that the classical definition of the bending couple does not take
properly into account the bending rotation rate of the transversal fibers. Equilibrium conditions in a
reference placement are also dealt with. Two shell models, presently most popular in the computational
mechanics community, are also discussed (Section 13). The former is the shell with transversal shear
deformation while the latter, the polar shell with drilling rotations, has been proposed in the literature to
provide rotational kinematical parameters which allow for the assembly between shell elements and beam
elements, with the aim to give a tool to engineers for the analysis of shells with beam-like reinforcements.
The polar shell model is then a constrained Cosserat three-dimensional continuum model. A closer look
at the strain measure adopted for these shell models reveals, on the basis of the discussion in Section 5,
that the set of strain parameters is redundant in both cases. This unpleasant feature forces one, by duality,
to introduce more stress parameters than necessary and renders the models mechanically unsound. A
suitable remedy for the former model is proposed. Unfortunately, the redundancy of the polar model, also
shared by the Cosserat three-dimensional continuum model, appears to be of a troublesome resolution
and should eventually force researchers to open new ways for the proposal of well posed mechanical
models with a polar structure or to find better alternatives.
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