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WITH SEGMENTED EXTENSION/SHEAR MODE,

PIEZOELECTRIC ACTUATORS AND SENSORS

SANTOSH KAPURIA AND PETER HAGEDORN

A unified coupled efficient layerwise theory is presented for the dynamics of smart laminated beams
with surface-mounted and embedded piezoelectric actuators and sensors with arbitrary poling direc-
tions, acting in extension or shear mode. The theory considers a global third-order variation across
the thickness combined with a layerwise linear variation for the axial displacement, expressed in terms
of only three primary variables, and accounts for the transverse normal strain due to the electric field in
the approximation for the transverse displacement. The electric potential is approximated as piecewise
quadratic across sublayers. A finite element is developed which has two physical nodes with mechanical
and some electric potential degrees of freedom (DOF), and an electric node for the electric potentials of
the electroded surfaces of the piezoelectric patches. The electric nodes eliminate the need for imposition
of equality constraints of the electric DOF on the equipotential electroded surfaces of the segmented
piezoelectric elements and result in significant reduction in the number of electric DOF. The electric
DOF associated with the physical nodes allow for the inplane electric field that is induced via a direct
piezoelectric effect. The accuracy of the formulation is established by comparing the results with those
available in literature and the 2D piezoelasticity solutions for extension and shear mode actuators, sensors
and adaptive beams. The effect of segmentation of the electroded surface on the deflection, sensory
potential and natural frequencies is illustrated for both extension and shear mode cases. The influence
of the location of extension and shear mode actuators and sensors on the response is investigated for a
hybrid mode composite beam. The effect of actuator thickness on the actuation authority is studied.

1. Introduction

Adaptive laminated structures, incorporating some surface-mounted and embedded piezoelectric patches
for sensing and actuation, are now widely used in noise, vibration, acoustic, shape and position control
applications. Even though the orthorhombic piezoelectric materials of symmetry class mm2 [Auld 1973]
have five piezoelectric constants, namely, d31, d32 d33, d15, d24, most research and development efforts
in this technology have generally been focused on the piezoelectric elements that are poled parallel to
the applied electric field (in the thickness direction) and use only the d31, d32 constants to use membrane
strains. This is known as the extension actuation mechanism (EAM). Consequently, most of the existing
refined models incorporating advanced kinematics and two-way electromechanical coupling also con-
sider the extension mode piezoelectric elements; see, for example, the review articles of Saravanos and
Heyliger [1999], Gopinathan et al. [2000] and Benjeddou [2000]. Coupled discrete layer theories (DLT)
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with layerwise linear description of inplane displacements and electric potential have been presented for
hybrid beams [Lee and Saravanos 1996] and plates [Saravanos et al. 1997; Lage et al. 2004]. Plagianakos
and Saravanos [2005] presented a higher-order DLT for hybrid beams using layerwise quadratic and
cubic variations for the inplane displacements and electric potential, respectively. These theories yield
excellent accuracy, but the computational effort increases in proportion to the number of layers, which
restricts their application for practical dynamics and control problems. Mixed coupled equivalent single
layer (ESL) theories such as the first-order shear deformation theory (FSDT) [Saravanos 1999; Wang
2004] and refined third-order theory (TOT) [Correia et al. 2000], considering a global variation for the
displacements across the entire thickness and a layerwise distribution for the electric potential, have been
employed for the dynamic analysis of hybrid plates. It is now well known that since these theories do not
account for the layerwise (zigzag) nature of distributions of the inplane displacements, they yield inac-
curate results for moderately thick laminates and even thin laminates with strong inhomogeneity across
the thickness. Vasques and Rodrigues [2005] presented a finite element formulation based on a coupled
partial layerwise theory for three layer piezoelectric beams. Kapuria [2001] and Kapuria and Alam
[2006] presented a coupled zigzag theory for hybrid beams, which considers a layerwise approximation
for the inplane displacement, like the DLT, but the number of primary displacement variables is reduced
to only three as in the ESL theories, FSDT and TOT, by enforcing the conditions on the transverse shear
stresses at the top and bottom surfaces and the layer interfaces. Comparison with the two-dimensional
(2D) piezoelasticity solutions have established the excellent accuracy of this theory for active and sensory
dynamic response of moderately thick hybrid beams for various inhomogeneous lay-ups and boundary
conditions.

The piezoelectric materials, when constrained and poled perpendicularly to the applied electric field,
undergo transverse shear deformation through the d15, d24 constants, which is known as the shear actu-
ation mechanism (SAM). The use of shear mode actuators for adaptive structures was first investigated
by Sun and Zhang [1995] who carried out a 2D finite element analysis of a plane strain adaptive beam
consisting of an axially poled piezoelectric core embedded between two elastic face sheets. The results
showed that the shear actuators are subjected to much lower stresses compared to the extension actuators
under the same electric field. Zhang and Sun [1996] presented a three layer sandwich beam theory
for the shear actuated laminate by modeling the face layers as classical Euler–Bernoulli beams and
the central core as a Timoshenko beam, without considering the two-way electromechanical coupling.
Benjeddou et al. [1997] presented a finite element (FE) formulation based on this uncoupled three-layer
beam model for analysis of adaptive sandwich beams with elastic/EAM piezoelectric faces and SAM
piezoelectric/elastic core. An improved FE model [Benjeddou et al. 1999] eliminating the shear locking
problem was used for comparing SAM and EAM actuators for static and free vibration response [Ben-
jeddou et al. 2000]. Raja et al. [2002; 2004] generalized the sandwich model by considering laminates
(instead of single layers) for the faces and the core and by incorporating the electric DOF. The electric
potential was assumed to be linear across a sublaminate (core/face). Trindade and Benjeddou [2005]
extended their previous model by modeling the core with the TOT and considering the variation of the
electric potential to be cubic across the core thickness and linear across the faces. It was shown that this
led to a significantly stiffer response, but the results did not match with the 2D FE results. It is important
to note that all the publications reported above use a three layer beam model, which is rather restrictive
for modeling general laminates with EAM and SAM actuators to be placed at any arbitrary location
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across the thickness. It has been observed from 2D piezoelasticity solutions that the electric potential
follows a nearly quadratic variation across the thickness in extension mode piezoelectric elements [Dube
et al. 1996] and a nearly cubic variation in shear mode elements [Parashar et al. 2005]. It is also well
established that the assumption of a linear electric potential along the thickness can cause a significant
error in the computed response [Bisegna and Caruso 2001; Sze et al. 2004; Parashar et al. 2005]. Khdeir
and Aldraihem [2001; 2003] presented a closed form solution for deflection analysis of beams with shear
and extension actuators employing the uncoupled FSDT and an uncoupled higher-order theory. Parashar
et al. [2004] presented a coupled FSDT for the nonlinear vibration of shear actuators considering material
nonlinearities.

Conventionally, the finite element models based on coupled theories consider electric DOF at the
nodes. However, the piezoelectric sensing and actuating patches are always electroded with metallic
coating, which makes their surfaces equipotential. To model this condition, particularly for sensing, it
would be necessary to impose the constraint of equality on the electric DOF of the nodes on the same
electroded surface. To avoid this tedious task, the concept of electric nodes has been used by Sze and
Yao [2000], wherein the electric DOF are separated from the kinetic (physical) nodes with which only
mechanical DOF are associated. It results in significant reduction in the number of electric DOF. But in
this approach, as all the electric DOF are associated with electric nodes, the inplane electric fields which
may be induced due to direct piezoelectric effect cannot be accounted for.

In this work, a new unified coupled efficient layerwise formulation is presented for hybrid laminated
beams with surface-bonded or embedded piezoelectric actuators and sensors with arbitrary poling direc-
tions, which act in extension or shear mode. The constitutive equations of piezoelectric plane stress beams
and plane strain panels with arbitrary poling direction are derived using transformation rules. The axial
displacement is approximated as a third-order zigzag variation across the thickness, which is expressed
in terms of only three primary displacement variables. The transverse displacement is approximated to
account for the transverse normal strain due to the electric field, and the electric potential is assumed
to follow a quadratic variation across sublayers, which can effectively model the observed quadratic
and cubic variations in, respectively, the extension and shear mode piezoelectric elements. A novel finite
element is developed consisting of two physical nodes with kinetic and some electric DOF, and an electric
node with the electric DOF for the equipotential surfaces of the electroded piezoelectric patches. The
electric nodes conveniently model the equipotential condition of electroded surfaces with significantly
reduced number of electric DOF. The quadratic component of electric DOF associated with the physical
nodes enable modeling the inplane electric field induced due to the direct piezoelectric effect.

2. Constitutive equations for piezoelectric beams/panels with arbitrary poling direction

The 3D linear constitutive equations of a piezoelectric orthorhombic material of class mm2 symmetry
(commonly used materials PZT and PVDF belong to this class or its subset), with principal material axes
x1, x2, x3 and polarized along axis x3, are given by [Auld 1973]

ε′
= S σ ′

+ dT E ′, D′
= d σ ′

+ ε E ′
; σ ′

= Cε′
− eT E ′, D′

= e ε′
+ η E ′. (1)
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Reference axes (x, y, z) and material principal axes (x1, x2, x3) for piezoelectric material 
with arbitrary poling direction

x3
x1 (poling direction / 
     fibre direction) 

(on xy plane)
       x2  y

x

Figure 1. Reference axes (x, y, z) and material principal axes (x1, x2, x3) of piezoelec-
tric material with arbitrary poling direction.

The superscript ( )T denotes matrix transpose. The components of stress σ ′, engineering strain ε′, electric
field E ′ and electric displacement D′ are given with respect to the principal material axes by

σ ′
=

[
σ1 σ2 σ3 τ23 τ31 τ12

]T
, ε′

=
[
ε1 ε2 ε3 γ23 γ31 γ12

]T
, E ′

=
[
E1 E2 E3

]T
, D′

=
[
D1 D2 D3

]T
.

S, d, η are the matrices of elastic compliance, piezoelectric strain constants and electric permittivities,
with C = S−1, e = d S−1, ε = η+ edT, where

S =



s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66


, dT

=



0 0 d31

0 0 d32

0 0 d33

0 d24 0
d15 0 0
0 0 0


, η =

η11 0 0
0 η22 0
0 0 η33

 .

Consider that the material axis x1 is spatially oriented at angles α with the reference axis x and β
with the xy-plane (Figure 1). The axis x2 is assumed to lie on the xy-plane. Thus the poling direction
x3 is at angle β with the reference axis z which is along the thickness direction. Using transformation
rules, σ, ε, E and D in the reference coordinate system (x, y, z) can be related to those in the material
coordinate system (x1, x2, x3) by

σ ′
= Tσ, ε′

= RT R−1ε, D′
= aD, E ′

= aE, (2)

where

σ=
[
σx σy σz τyz τzx τxy

]T
, ε=

[
εx εy εz γyz γzx γxy

]T
, E=

[
Ex Ey Ez

]T
, D=

[
Dx Dy Dz

]T
,

and the transformation matrices a, T and R are defined in the Appendix in terms of direction parameters
c = cosα, s = sinα, p = cosβ, and q = sinβ. Using the transformation rules in Equation (1), the
constitutive equations of a piezoelectric medium with arbitrary poling direction, with respect to reference
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axes x, y, z, are obtained as

ε = S̄ σ + d̄T E, D = d̄ σ + ε̄ E; σ = C̄ε− ēT E, D = ē ε+ η̄ E, (3)

where

S̄ = T TS T, d̄ = aTd T, ε̄ = aTε a, C̄ = T −1C (T −1)T, ē = aTe (T −1)T, η̄ = aTη a.

For structural applications as sensors and actuators, the electric field is generally applied in the thickness
direction z. Thus, for extension mode sensing/actuation mechanism, the poling direction x3 will be
along the z-axis, that is, β = 0 ⇒ p = 1, q = 0. For the shear mode case, the poling direction will be
perpendicular to the z-axis so that β = ±90◦

⇒ p = 0, q = ±1. Thus for extension and shear mode
actuation/sensing, pq = 0. For this case, Equation (3) assumes the following form

εx

εy

εz

γyz

γzx

γxy


=



s̄11 s̄12 s̄13 0 0 s̄16

s̄12 s̄22 s̄23 0 0 s̄26

s̄13 s̄23 s̄33 0 0 s̄36

0 0 0 s̄44 s̄45 0
0 0 0 s̄45 s̄55 0

s̄16 s̄26 s̄36 0 0 s̄66





σx

σy

σz

τyz

τzx

τxy


+



d̄11 d̄21 d̄31

d̄12 d̄22 d̄32

d̄13 d̄23 d̄33

d̄14 d̄24 d̄34

d̄15 d̄25 d̄35

d̄16 d̄26 d̄36


Ex

Ey

Ez

 ,

Dx

Dy

Dz

 =

d̄11 d̄12 d̄13 d̄14 d̄15 d̄16

d̄21 d̄22 d̄23 d̄24 d̄25 d̄26

d̄31 d̄32 d̄33 d̄34 d̄35 d̄36




σx

σy

σz

τyz

τzx

τxy


+

ε̄11 ε̄12 0
ε̄12 ε̄22 0
0 0 ε̄33

 Ex

Ey

Ez

 .
(4)

For a beam of small width along the direction y, a state of plane stress (σy = τyz = τxy = 0) is assumed
as in [Robbins and Reddy 1991; Lee and Saravanos 1996; Plagianakos and Saravanos 2005]. We neglect
transverse normal stress σz , that is, σz ' 0. The axial and transverse displacements u, w and electric
potential φ are assumed to be independent of y. With these assumptions, Equation (4) reduces to

εx

γzx

Dx

Dz

 =


s̄11 0 d̄11 d̄31

0 s̄55 d̄15 d̄35

d̄11 d̄15 ε̄11 0
d̄31 d̄35 0 ε̄33



σx

τzx

Ex

Ez

 . (5)

The explicit expressions of s̄i j , d̄i j and ε̄i j in terms their values in the material coordinate system are
given in the Appendix. Inversely, Equation (5) can be written as

σx

τzx

Dx

Dz

 =


Q̂11 0 ē11 ê31

0 Q̂55 ê15 ê35

ê11 ê15 −η̂11 −η̂13

ê31 ê35 −η̂13 −η̂33



εx

γzx

−Ex

−Ez

 (6)
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with

η̂11 = ε̄11 − ê11d̄11 − ê15d̄15, η̂33 = ε̄33 − ê31d̄31 − ê35d̄35, η̂13 = −(ê31d̄11 + ê35d̄15),

Q̂11 = 1/s̄11, Q̂55 = 1/s̄55, ê11 = d̄11/s̄11, ê31 = d̄31/s̄11, ê15 = d̄15/s̄55, ê35 = d̄35/s̄55.
(7)

For infinite panels (infinite dimension along y direction), a state of plane strain exist, that is, εy =

γyz = γxy = 0. For this case, with the assumption of σz ' 0, the other components of Equation (3) can
be reduced to the same form as Equation (6) with the associated material constants defined as

η̂11 = η̄11 + ē2
13/c̄33, η̂33 = η̄33 + ē2

33/c̄33, η̂13 = ē13ē33/c̄33, Q̂11 = c̄11 − c̄2
13/c̄33,

Q̂55 = c̄55, ê11 = ē11 − c̄13ē13/c̄33, ê31 = ē31 − c̄13ē33/c̄33, ê15 = ē15, ê35 = ē35.
(8)

The expressions of c̄i j , ēi j and η̄i j are given in the Appendix. Thus, Equation (6) and the subsequent
development are valid for both plane stress (thin width) and plane strain (infinite panel) beams, with the
material constants to be calculated using Equations (7) and (8), respectively.

3. Potential and displacement field approximations

Consider a hybrid beam having any lay-up, whose thickness h and the number of layers L may vary
segment-wise due to the presence of piezoelectric patches, which can be either surface-bonded or em-
bedded; see Figure 2. The piezoelectric patches can have the poling direction parallel or normal to the
z-axis, depending on their use in extension or shear mode. The longitudinal and thickness axes are along
the x and z directions. The xy-plane is chosen to be the plane which is the midplane for most of the
length of the beam. Let the planes z = z0 and z = zL be the bottom and top surfaces of the beam, which

2
zp

    layer L Lzz       

                    

            

                 layer k0                         

          

                

 layer k

0 x         

       

                       

         
1
zp

                       0zz  

Segments:    

1

EAM piezoelectric patches 

�
 kz z

z

SAM piezoelectric patches 

lx  

h

x

Figure 2. Geometry of hybrid beam with EAM and SAM piezoelectric patches.
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may vary segment-wise. The z-coordinate of the bottom surface of the kth layer numbered from the
bottom is denoted as zk−1 and its material axis x1 has orientation angles αk and βk . The reference plane
z = 0 either passes through or is the bottom surface of the k0th layer. All the elastic and piezoelectric
layers are perfectly bonded. The beam is loaded transversely on the bottom and top with no variation
along the width b.

Two-dimensional coupled piezoelasticity solutions for piezoelectric beams/panels have revealed (see
Section 6) that the electric potential φ follows a nearly quadratic distribution across the thickness for the
extension mode [Dube et al. 1996] and a nearly cubic distribution with zero quadratic contribution for
the shear mode [Parashar et al. 2005]. To model according to these observations, the potential field at
time t is assumed as piecewise quadratic between nφ points at z = z j

φ across the thickness (Figure 3):

φ(x, z, t)=9
j
φ(z)φ

j (x, t)+9l
c(z)φ

l
c(x, t), (9)

where φ j (x, t) is the electric potential at z = z j
φ , φl

c(x, t) denotes the quadratic component of electric
potential at z = (zl

φ + zl+1
φ )/2, and the summation convention is used with the indices j and l taking

values j = 1, 2, . . . , nφ and l = 1, 2, . . . , nφ − 1. 9 j
φ(z) and 9l

c(z) are the piecewise linear and quadratic
functions, respectively, given by

9
j
φ(z)=


0, if z ≤ z j−1

φ or z ≥ z j+1
φ ,

(z − z j−1
φ )/(z j

φ − z j−1
φ ), if z j−1

φ < z < z j
φ,

(z j+1
φ − z)/(z j+1

φ − z j
φ), if z j

φ < z < z j+1
φ ,

9l
c(z)=

{
4(zl+1

φ − z)(z − zl
φ)/(z

l+1
φ − zl

φ)
2, if zl

φ ≤ z ≤ zl+1
φ ,

0, otherwise.

The surfaces of the piezoelectric sensor and actuator patches are always electroded with metallic coating,
which makes the surfaces equipotential. Thus, φ j should be taken as independent of x in a finite element

Figure 3. Approximation of φ along z-direction.
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covering the electroded patch. With this description, φ in the piezoelectric layer can be modeled by a
single layer discretization (nφ = 2) for the extension mode case and by a two-sublayer discretization
(nφ = 3) for the shear mode case. In the latter case, since the quadratic contribution in the variation of
φ is zero [Parashar et al. 2005], the mid-surface between the equipotential top and bottom surfaces will
also be equipotential and, hence the above discretization holds well.

Exact 2D piezoelasticity solutions for hybrid beams and panels [Kapuria et al. 1997] have revealed
that for moderately thick beams under electric field Ez the deflection w has significant variation across
the thickness of the piezoelectric layers due to the significant contribution of Ez (d̄33 effect) to εz , which
is much greater than the negligible contributions of the inplane electric field Ex and the stresses. Hence,
w is approximated by integrating the constitutive Equation (4) for εz by neglecting the contributions of
Ex and the stresses. It may be noted that the contribution of the inplane stresses to εz via Poisson’s effect
is neglected in most one-dimensional theories for elastic laminated beams, wherein w is approximated to
be constant across the thickness. Thus, integrating εz =w,z = s̄13σx + s̄23σy + d̄13 Ex + d̄33 Ez ' −d̄33φ,z

yields
w(x, z, t)= w0(x, t)− δ1

{
9̄

j
φ(z)φ

j (t)+ 9̄l
c(z)φ

l
c(t)

}
, (10)

where δ = 1 or 0 depending upon whether or not the nonuniformity terms are considered, and

9̄
j
φ(z)=

∫ z

0
d̄339

j
φ,z(z) dz, 9̄l

c =

∫ z

0
d̄339

l
c,z(z) dz.

A subscript comma denotes differentiation. The axial displacement u is assumed to follow a global third-
order variation with a layerwise linear variation across the thickness [Shu and Sun 1994; Kapuria et al.
2003]:

u(x, z, t)= uk(x, t)− zw0,x(x, t)+ zψk(x, t)+ z2ξ(x, t)+ z3η(x, t),

where uk and ψk denote the translation and shear rotation variables of the kth layer, representing the
layerwise linear variation, and ξ and η are the quadratic and cubic terms in z, representing the global
cubic variation across the entire laminate thickness. The 2L + 3 displacement variables uk , ψk , ξ , η and
w0 are expressed in terms of only three variables by imposing the 2(L − 1) conditions of continuity of
transverse shear stress τzx and u at the layer interfaces, and the two conditions of zero transverse shear
at the top and bottom surfaces. This gives

u(x, z, t)= u0(x, t)− zw0,x(x, t)+ Rk(z)ψ0(x, t), (11)

where u0 denotes the axial displacement of the reference (z = 0) plane and ψ0 is related to the shear
strain of the reference plane. Rk(z) is a layer-wise function of z for the kth layer given by

Rk(z)= R̂k
1 + z R̂k

2 + z2 R̂3 + z3 R̂4, (12)

where the coefficients R̂k
1 , R̂k

2 , R̂3 and R̂4 are dependent on the lay-up and the material properties of the
layers and are defined in the Appendix. Equation (11) for u can expressed as

u = f1(z)ū1, (13)

where
ū1 =

[
u0 −w0,x ψ0

]T
, f1(z)=

[
1 z Rk(z)

]
.
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Using Equations (9), (10) and (13), the strains and the electric fields can be expressed as

εx = u,x = f1(z)ε̄1, Ex = −φ,x = − f3(z)ε̄3,

γzx = u,z +w,x = f2(z)ε̄2, Ez = −φ,z = − f4(z)ε̄4,
(14)

with

ε̄1 = ū1,x =
[
u0,x −w0,xx ψ0,x

]T
, ε̄2 =

[
ψ0 −φl

c,x
]T
, ε̄3 = φl

c,x , ε̄4 =
[
φl

c φ j
]T
,

f2(z)=
[
Rk
,z(z) δ19̄

l
c(z)

]
, f3(z)=9l

c(z), f4(z)=

[
9l

c,z(z) 9
j
φ,z(z)

]
.

(15)

4. Variational principle for the coupled one-dimensional theory

Let p1
z , p2

z be the normal forces per unit area on the bottom and top surfaces of the beam in direction z.
Let there be distributed viscous resistance force with the distributed viscous damping coefficient c1 per
unit area per unit transverse velocity of the top surface of the beam. Using the notation

〈. . .〉 =

L∑
k=1

∫ z−

k

z+

k−1

(. . .)b dz

for integration across the thickness, the extended Hamilton’s principle [Tiersten 1969] for the beam
reduces to∫

x

[
〈ρk üδu + ρkẅδw+ σxδεx + τzxδγzx − DxδEx − DzδEz〉 − bp1

z δw(x, z0, t)

− b
{

p2
z − c1ẇ(x, zL , t)

}
δw(x, zL , t)+ bDz(x, z0, t)δφ1

− bDz(x, zL , t)δφnφ
]

dx

− 〈σxδu + τzxδw+ Dxδφ〉
∣∣
x = 0, (16)

for all δu0, δw0, δψ0, δφ
l
c, δφ

j , where ρk is the material mass density of the kth layer. It has been
observed elsewhere [Kapuria and Alam 2006] that the explicit contribution of electric potential terms
in w (see Equation (10)) to inertia and damping can be neglected to achieve computational efficiency
without sacrificing virtually any accuracy. Considering this, substituting the expressions (9), (10) and
(13) for φ,w and u and (14) for εx , γzx , Ex , Ez into Equation (16) yields∫

x

[
δūT

1 I ¨̄u1 + δw0 Î ẅ0 + δε̄T
1 F1 + δε̄T

2 F2 + δε̄T
3 F3 + δε̄T

4 F4 − (P2 + P̂2)δw0 − P j
φ δφ

j] dx

−
[
N̄xδū0 + V̄xδw̄0 − M̄xδw̄0,x + P̄xδψ̄0 + (H̄ j

− δ1V̄ j
φ )δφ̄

j
+ (H̄ l

c − δ1V̄ l
c )δφ̄

l
c
]∣∣

x = 0, (17)

where an over-bar on the stress and electric resultants and on u0, w0, ψ0, φ
j , φl

c means values at the ends.
In this equation, I and Î are the inertia terms defined by

I = 〈ρk f T
1 (z) f1(z)〉 =

I11 I12 I13

I12 I22 I23

I13 I23 I33

 , Î = 〈ρk
〉 = I11. (18)
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The stress resultants F1 of σx , F2, Vx , V j
φ , V l

c of τzx , and the electric displacement resultants F3, H j of
Dx and F4 of Dz are defined by

F1 =

Nx

Mx

Px

 = 〈 f T
1 (z)σx 〉, F2 =

[
Qx

Q̄l
x

]
= 〈 f T

2 (z)τzx 〉, F3 = H l
c = 〈 f3(z)Dx 〉, (19)

F4 =

[
Gl

c
G j

]
= 〈 f T

4 (z)Dz〉, H j
= 〈9

j
φ(z)Dx 〉, Vx = 〈τzx 〉, V j

φ = 〈9̄
j
φ(z)τzx 〉, V l

c = 〈9̄l
c(z)τzx 〉. (20)

The mechanical load P2, electrical loads P j
φ and damping load P̂2 are defined as

P2 = b(p1
z + p2

z ), P j
φ = b

[
− p1

z 9̄
j
φ(z0)− p2

z 9̄
j
φ(zL)+ DzL δ jnφ − Dz0δ j1

]
, P̂2 = −ĉ1ẇ0,

where δi j is Kronecker’s delta, Dz0 = Dz(x, z0, t), DzL = Dz(x, zL , t) and ĉ1 = bc1.
Define generalized strains ε̄ and generalized stress resultants F̄ as

ε̄ =
[
ε̄T

1 ε̄T
2 ε̄T

3 ε̄T
4

]T
, F̄ =

[
FT

1 FT
2 FT

3 FT
4

]T
. (21)

Substituting the constitutive Equation (6) into Equation (19), the beam constitutive equation relating the
generalized beam stress resultants F̄ with the generalized strains ε̄ can be obtained as

F̄ = D̄ε̄, (22)

where

D̄ =


A 0 eT

1 eT
2

0 Ā eT
3 eT

4

e1 e3 −η1 −ηT
2

e2 e4 −η2 −η3

 , (23)

with

A = 〈Q̂11 f T
1 (z) f1(z)〉 =

A11 A12 A13

A12 A22 A23

A13 A32 A33

 , Ā = 〈Q̂55 f T
2 (z) f2(z)〉 =

[
Ā11 Āl ′

12

Āl
12 Āll ′

22

]
nφ×3

,

e1 = 〈ê11 f T
3 (z) f1(z)〉 =

[
e1l

1 e1l
2 e1l

3

]
(nφ−1)×3 , e2 = 〈ê31 f T

4 (z) f1(z)〉 =

[
e2l

11 e2l
12 e2l

13

e2 j
21 e2 j

22 e2 j
23

]
(2nφ−1)×3

,

e3 = 〈ê15 f T
3 (z) f2(z)〉 =

[
e3l

1 δ1e3ll ′
2

]
(nφ−1)×nφ

, e4 = 〈ê35 f T
4 (z) f2(z)〉 =

[
e4l

11 δ1e4ll ′
12

e4 j
21 δ1e4 jl ′

22

]
(2nφ−1)×nφ

,

η1 = 〈η̂11 f T
3 (z) f3(z)〉 =

[
ηll ′

1

]
(nφ−1)×(nφ−1)

, η2 = 〈η̂13 f T
4 (z) f3(z)〉 =

[
η2ll ′

1

η
2 jl ′

2

]
(2nφ−1)×(nφ−1)

,

η3 = 〈η̂33 f T
4 (z) f4(z)〉 =

[
η3ll ′

11 η
3l j ′

12

η
3 jl ′

12 η
3 j j ′

22

]
(2nφ−1)×(2nφ−1)

. (24)
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The indices l ′ and j ′ take values l ′ = 1, 2, . . . , nφ − 1 and j ′
= 1, 2, . . . , nφ like l and j , respectively.

Using Equations (21) and (22), the contribution T e of an element of length a to the integral in Equation
(17) can be expressed as

T e
=

∫ a

0

[
δūT Ī ¨̄u + δε̄T D̄ε̄− δūT fuφ + δūTC̄ ˙̄u

]
dx, (25)

where

ū =
[
ūT

1 w0 φ
j
]T

=
[
u0 −w0,x ψ0 w0 φ

j
]T
, (26)

Ī =

I 0 0
0 Î 0
0 0 0

 , C̄ =

0 0 0
0 ĉ1 0
0 0 0

 , fuφ =

[
0 P2 P j

φ

]T
. (27)

5. Finite element model

The highest derivatives of u0, ψ0, w0, φ
l
c and φ j appearing in the variational Equation (17) are u0,x , w0,xx ,

ψ0,x , φl
c,x and φ j . Accordingly, to meet the convergence requirement, the interpolation functions for

u0, w0,x , ψ0 and φl
c must be continuous at the element boundaries. These variables are interpolated

using two physical nodes as shown in Figure 4. The variable w0 is interpolated using the C1-continuous
cubic Hermitian function in terms of the nodal values of w0, w0,x , and u0, ψ0, φ

l
c are interpolated using

a C0-continuous linear Lagrangian function. Since ψ0 is a measure of shear strain at the reference plane
and not the rotation of the normal, a linear interpolation for ψ0 does not cause shear locking [Kapuria
and Alam 2006]. Thus, at the element level, each physical node will have four degrees of freedom,
u0, w0, w0,x , ψ0, for the displacements and (nφ − 1) degrees of freedom of φl

c for the electric potential.
As stated in Section 3, φ j is constant in an element. However, if a number of elements fall in the

same electroded surface, it would be necessary to impose the constraint of equality on the electric DOF
φ j of the elements on the same electroded surface. To avoid this task, the set of φ j of the equipotential
surfaces of piezoelectric patches in a beam section are associated with a separate electric node p, see
Figure 4, which can be connected to several elements. The electric node does not have any x-coordinate
unlike the physical nodes, and has nφ degrees of freedom. This concept not only eliminates the need
of imposing equality constraints on the electric DOF for equipotential condition, but also results in

l
c

x
w
w
u

1

1

1

1

1

0

,0

0

0

2

l
c

x
w
w
u

2

2

2

2

2

0

,0

0

0

a1 2

p j

- Physical nodes 
- Electric node 

              Degrees of freedom for the beam element    

Figure 4. Degrees of freedom for the beam element.
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significant reduction in the number electric DOF. Thus, denoting the values of an entity ( . ) at the physical
node i by ( . )i , the variables u0, ψ0, w0, φ

l
c are interpolated in an element of length a as

u0 = Nue
0, w0 = N̄we

0, ψ0 = Nψe
0 , φl

c = Nφl
c

e
, (28)

with

ue
0 =

[
u01 u02

]T
, we

0 =
[
w01 w0,x1 w02 w0,x2

]T
, ψe

0 =
[
ψ01 ψ02

]T
, φl

c
e
=

[
φl

c1
φl

c2

]T
,

N =
[
N1 N2

]
, N̄ =

[
N̄1 N̄2 N̄3 N̄4

]
, N1 = 1 − (x/a), N2 =

x
a
,

N̄1 = 1 −
3x2

a2 +
2x3

a3 , N̄2 = x −
2x2

a
+

x3

a2 , N̄3 =
3x2

a2 −
2x3

a3 , N̄4 = −
x2

a
+

x3

a2 .

Defining the element generalized displacement vector U e as U eT
= [ueT

0 weT
0 ψeT

0 φle
c

T
φ j

] and using
Equation (28), the generalized displacements ū and strains ε̄ defined in Equations (15), (21) and (26) can
be related to U e as

ū = N̂U e, ε̄ = B̂U e, (29)

where

N̂ =


N 0 0 0 0
0 −N̄,x 0 0 0
0 0 N 0 0
0 N̄ 0 0 0
0 0 0 0 1

 , B̂ =



N,x 0 0 0 0
0 −N̄,xx 0 0 0
0 0 N,x 0 0
0 0 N 0 0
0 0 0 −N,x 0
0 0 0 N,x 0
0 0 0 N 0
0 0 0 0 1


. (30)

Substituting the expressions for û and ε̂ from Equation (29) into Equation (25), T e can be expressed as

T e
=

∫ a

0
δU eT[

N̂ T Ī N̂ Ü e
+ N̂ TC̄ N̂U̇ e

+ B̂T D̄ B̂U e
− N̂ T fuφ

]
dx

= δU eT[
MeÜ e

+ CeU̇ e
+ K eU e

− Pe],
where Me,Ce and K e are the generalized element inertia, damping and stiffness matrices, and Pe is the
element load vector defined as

Me
=

∫ a

0
N̂ T Ī N̂ dx =

Me
uu 0 0

0 0 0
0 0 0

 , Ce
=

∫ a

0
N̂ TC̄ N̂ dx =

Ce
uu 0 0
0 0 0
0 0 0

 ,
K e

=

∫ a

0
B̂T D̄ B̂ dx =

K e
uu K e

ul K e
u j

K e
lu K e

ll K e
l j

K e
ju K e

jl K e
j j

 , Pe
=

∫ a

0
N̂ T fuφ dx =

Pe
u

0
Pe

j

 . (31)

The subscripts u, l and j correspond to the mechanical displacement variables, φl
c and φ j , respectively.

The elements of the submatrices in Equation (31) are listed in the Appendix. The elements of the same
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electroded surface are connected to one electric node having a global degree of freedom number for the
potential φ j of the equipotential surface at z = z j

φ . The node numbers of the two physical nodes and the
electric node of each element are stored in the element connectivity matrix. The element matrices are
then assembled using the standard assembly procedure, by storing the global DOF numbers of all element
DOF in an index matrix, and placing the elements of the element matrix in the appropriate locations of
the global matrix, according to the global DOF numbers [Chandrupatla and Belegundu 2002]. Summing
up contributions of all elements to the integral in Equation (17), the system equation can be obtained as

MÜ + CU̇ + KU = P, (32)

in which M,C, K are assembled from the element matrices Me,Ce, K e and U, P are the assembled
counterparts of U e, Pe.

At the actuated surfaces (closed circuit condition), electric potentials have known prescribed values.
At the sensory surfaces under open circuit condition, the electric loads are known (zero electric charge,
that is,

∫ ae
0 bDz dx = 0, ae being the length of the electrode), but the electric potentials are unknown.

The system vector U is partitioned into vectors of mechanical displacements Ū , unknown output voltages
8s and known input actuation voltages 8a . Thus, Equation (32) can be partitioned and arranged as

Muu 0 0
0 0 0
0 0 0


 ¨̄U
8̈s

8̈a

 +

Cuu 0 0
0 0 0
0 0 0


 ˙̄U
8̇s

8̇a

 +

K uu K us K ua

K su K ss K sa

K au K as K aa

  Ū
8s

8a

 =

 P̄
Qs

Qa

 . (33)

Equation (33) yields the output potentials as

8s = −(K ss)−1[K suŪ + K sa8a − Qs
]
. (34)

Substitution of Equation (34) into Equation (33) yields

Muu ¨̄U +Cuu ˙̄U +
[
K uu

−K us(K ss)−1K su]Ū = P̄−K us(K ss)−1 Qs −
[
K ua

−K us(K ss)−1K sa]8a. (35)

For undamped free vibration, the damping matrix Cuu and the right-hand side vector of the above equation
are set to zero. The resulting generalized eigenvalue problem is solved using subspace iteration method
[Petyt 1990] to obtain the undamped natural frequencies ω and the mode shapes. For transient response,
Equation (35) can be solved using Newmark direct time integration method [Petyt 1990]. The advantage
of first partitioning the electric potential vector 8 into 8s and 8a , and then carrying out the condensation
as per Equations (34) and (35) is that it can model the response of the structure under any electric boundary
conditions, namely, in the active mode (closed circuit), the sensory mode (open circuit) and the combined
active-sensory mode (some electrodes in open circuit and some in closed circuit). In contrast, if the entire
electric potential vector 8 is condensed out as in [Tzou and Tseng 1990], the resulting free vibration
problem would give only the open circuit frequencies.
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Equation (17) indicates that the mechanical boundary conditions for simply-supported, clamped and
free ends are:

simply-supported Nx = 0, w0 = 0, Mx = 0, Px = 0,

clamped u0 = 0, w0 = 0, w0,x = 0, ψ0 = 0,

free Nx = 0, Vx = 0, Mx = 0, Px = 0.

6. Results and discussion

6.1. Validation. In order to validate the new FE formulation and the computer program developed, can-
tilever plane strain beams (a) and (b) made of aluminum substrate with surface-bonded and embedded
PZT-5H layers, respectively, are considered, which have been analyzed in [Zhang and Sun 1996; Ben-
jeddou et al. 1999]. The configurations and the dimensions of the beams are shown in Figure 5 and the
material properties are selected as in the references mentioned above:

(i) PZT-5H:

{c11, c22, c33, c12, c23, c31, c44, c55, c66} = {126, 126, 117, 79.5, 84.1, 84.1, 23, 23, 23.25} GPa,

{e31, e32, e33, e15, e24} = {−6.5,−6.5, 23.3, 17.0, 17.0} C/m2,

{η11, η22, η33} = {1.503, 1.503, 1.3} × 10−8 F/m, ρ = 7500 kg/m3
;
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Figure 5. Configurations of SAM and EAM beams.
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(ii) Al:

Y1 = Y2 = Y3 = Y = 70.3GPa, ν12 = ν23 = ν31 = ν = 0.345, ρ = 2710 kg/m3,

where Yi and νi j denote the Young’s moduli and Poisson’s ratios.

In beam (a) the piezoelectric layer embedded between the two aluminum layers is polarized along the
axial direction x (α = 0, β = −90◦), and hence an applied electric potential across its thickness gives rise
to shear mode actuation. For actuation, a voltage of 20 V is applied at the bottom surface of the actuator,
while its top surface is grounded. In beam (b) the surface-mounted PZT layers at the top and bottom
of the aluminum substrate are polarized along the thickness direction z, and hence an applied electric
potential across its thickness causes extension mode actuation. In this case a potential of -10 V is applied
at the top and bottom surfaces of the beam for actuation. Both the beams are modeled with 20 equal-size
elements to obtain converged results. The shear mode piezoelectric layer in beam (a) is divided into
two sublayers and those in beam (b) are modeled as one sublayer for the discretization of potential φ.
The present results for the deflection profile of the centerline (z = 0) are compared in Figure 6 with
the FE FSDT results of Benjeddou et al. [1999] for beam (a) and with the analytical FSDT solution of
Zhang and Sun [1996] for beam (b). It is found that the present results are in excellent agreement with the
reference results in both cases. The beams are also analyzed using the commercial FE software ABAQUS
employing eight-node plane strain element, CPE8RE, with a mesh of 20 (thickness)×50 (length). The
2D FE results are also plotted in Figure 6, which compare very well with the present results.

The present result for the tip deflection of the shear actuated beam (a) is compared in Table 1 with
other available results. While the present result and those obtained using a sandwich model using FSDT
for the core [Zhang and Sun 1996; Benjeddou et al. 1999] match closely with the 2D FE results of
ABAQUS, while those reported by Trindade and Benjeddou [2005] considering an improved sandwich
model with the core modeled with the TOT have considerable difference from the 2D results. This
difference between the FSDT and the TOT modeling of the core predicted by Trindade and Benjeddou
[2005] appears to be inconsistent, since the 2D FE solution does not involve any approximation on the
through-the-thickness variations of field variables and hence are accurate. The electric field Ez in the

x (m) x (m)

Figure 6. Central deflection of beams with shear and extension mode actuators under
potential load.
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Model w(l, 0) (µm) Ez (V/mm)

Present 0.1203 10
FSDT analytic [Zhang and Sun 1996] 0.1196 10
FSDT FE [Benjeddou et al. 1999] 0.1196 10
TSDT FE, φ linear [Trindade and Benjeddou 2005] 0.0999 –
TSDT FE, φ cubic [Trindade and Benjeddou 2005] 0.0879 6.94–16.11
ABAQUS 0.1180 10

Table 1. Tip deflection of SAM beam (a) under actuation potential of 20 V.

piezoelectric layer obtained from different models are also compared in Table 1. It is seen from the 2D
FE results that Ez is almost uniform across the thickness of the PZT layer and the same is predicted
by the present model. Trindade and Benjeddou [2005] have, however, reported a quadratic variation of
Ez across the thickness, which is attributed to the induced potential due to the direct piezoelectric effect.
This also seems incorrect, since the 2D results show no such trend. It may also be noted that while Zhang
and Sun [1996] and Benjeddou et al. [1999] have assumed a linear variation for the electric potential φ,
the present model with 2 sublayers in the PZT layer can capture the cubic variation of φ, and has still
predicted a practically linear variation of φ as in the 2D solution. The cubic component of φ induced to
the direct piezoelectric effect is predicted as 0.010 V only, which is very small compared to the applied
electric potential of 20 V.

Beams (a) and (b) are also analyzed for a uniform pressure load of p2
z = 1000 N/m2 with the surfaces

of the PZT layers kept at zero potential (closed circuit condition). The midsurface deflection obtained
from the present one-dimensional model is compared with 2D FE result of ABAQUS in Figure 7. The
two results are found to be in excellent agreement for both SAM and EAM beams.

No results for the free vibration response of the above beams have been reported in literature. To
validate the present model for the free vibration response, the present results for natural frequencies of
the first 7 modes (of which five are flexural modes and two are extension modes) are compared in Table 2

x (m) x (m)

Figure 7. Central deflection of beams with shear and extension mode actuators under
pressure load.
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Frequency, fn (Hz)

Beam Mode, n Type ABAQUS Present model (# of elts.)
(2D FE) 10 20 30

1 flexural 1414.6 1404.2 1403.6 1403.4
2 flexural 7796.2 7728.6 7693.5 7684.0
3 extension 12799 12251 12242 12240

(a) 4 flexural 18876 18757 18582 18537
5 flexural 31767 31693 31234 31125
6 extension 38057 37056 36801 36754
7 flexural 45598 45764 44815 44622

1 flexural 1370.8 1365.1 1364.5 1364.4
2 flexural 7475.6 7471.5 7439.6 7430.9
3 extension 12345 12292 12282 12280

(b) 4 flexural 17996 18053 17897 17855
5 flexural 30172 30381 29969 29868
6 extension 36752 37179 36922 36875
7 flexural 43207 43715 42870 42691

Table 2. Closed circuit natural frequencies of SAM beam (a) and EAM beam (b).

with the 2D FE results obtained using ABAQUS. The present results are obtained with 10, 20 and 30
equal-size elements to study the convergence. It is observed that very good convergence is achieved with
20 elements, and the present results are in excellent agreement with the 2D FE results with a maximum
error of 0.8% for the fundamental frequency and 2% for the higher mode frequencies up to the 7th mode
(5th flexural mode).

6.2. Bimorph EAM beam. A simply-supported plane-stress (thin width) bimorph extension mode actu-
ator beam (c) made of two layers of PZT-5H polarized along opposite transverse directions, see Figure
5, is analyzed for the following two load cases:

(1) Uniform potential φnφ = φ0 applied on the top surface with the bottom being grounded (φ1
= 0).

(2) Uniform pressure p2
z = −p0 applied on the top surface with φnφ = φ1

= 0 (closed circuit condition).

These results and all subsequent ones for beams (c) and (d) for the potential and pressure load cases are
nondimensionalized as:

1. w̄ = 10w/S2d0φ0, σ̄x = σx h/10Y0d0φ0, φ̄ = φ/φ0,

2. w̄ = wY0/ l S3 p0, σ̄x = σx/S2 p0, φ̄ = 100φY0d0/hS2 p0,

with Y0 = 60 GPa and d0 = 274.8 × 10−12 CN−1. S is the span-to-thickness ratio (l/h). Using symmetry
the half length of the beam is discretized with 20 equal-size elements and only one electric node is used
to model the closed circuit equipotential surfaces at the top and bottom. Each PZT layer is considered as
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Figure 8. Through-the-thickness distributions of w̄, σ̄x , φ̄ for bimorph EAM beam (c)
under potential load 1.

one sublayer for φ-discretization. It is pertinent to note here that the number of electric potential DOF
for the piezoelectric surfaces is only 3 in the present model using the electric node, which would have
been 63 if the traditional concept of nodal electric variables were used. For a 2D plate or shell problem
this reduction will be even more significant.

The present through-the-thickness distributions of deflection w̄, axial stress σ̄x and potential φ̄ are
compared in Figure 8 with the exact 2D solution of Kapuria et al. [1997] for the potential load of case (1).
In order to illustrate the effect of exclusion of the layerwise term in w in Equation (10), the present results
with δ1 = 0 are also presented in Figure 8. It is observed that under the potential load, the top and bottom
layers of the bimorph actuator undergo, respectively, expansion and contraction of their thickness, and
the resulting variation of w across the thickness is accurately predicted by the present model with δ1 = 1.
As expected, the model with δ1 = 0 is unable to predict this variation. The nonuniform variation of w is
more significant for the thick beam with S = 5 than the thinner one with S = 10. The present results for the
variations of σ̄x and φ̄ are indistinguishable from the 2D results. The deflection profile of the centerline
and the through-the-thickness distributions of σ̄x and φ̄ for the beam (c) under pressure load case (2)
are presented in Figure 9. The results are in excellent agreement with the exact 2D results. The present
model is able to accurately predict the quadratic variation of φ induced due to the direct piezoelectric
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Figure 9. Deflection profile and distributions of σ̄x and φ̄ for bimorph EAM beam (c)
under pressure load 2.

effect across the thickness. In earlier publications of Kapuria et al. [2003] it has been observed that, with
a sublayerwise linear approximation for the electric potential, a piezoelectric layer needs to be divided
into 4 sublayers to capture the quadratic variation of the induced potential accurately, and also to achieve
convergence in results. Thus, the number of electric variables with such an approximation would be 189
(= 9 × 21), which is reduced to 45 (= 2 × 21 + 3) in the present model.

6.3. Shear mode pointer. A cantilever plane-stress shear mode pointer beam (d), see Figure 5, of PZT-
5H with span-to-thickness ratio S = 10 is analyzed for an uniform pressure load of case (2), using the

Entity 2D FE
Present model

nφ = 3 nφ = 2

w̄(l, 0) −1.839 −1.833 −1.884
φ̄(0, z)|max 11.048 11.927 0.0
σ̄x(0, 0.5h) 2.772 2.618 3.049

Table 3. Effect of φ-discretization in shear pointer beam (d) under pressure load (S = 10).
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Figure 10. Deflection profile and distribution of φ̄ for shear pointer beam (d) under
pressure load 2.

present model and the 2D FE model with eight-node plane stress element, CPS8RE, in ABAQUS. For
the present model results are obtained considering 1 (nφ = 2) and 2 (nφ = 3) sublayers in the single-
layer beam for discretization of φ across the thickness. For the 2D FE model the beam is modeled with
1600 [100 (length) × 16 (thickness)] elements to obtain converged results. The deflection profile of the
centerline and the distributions of φ across the thickness at two locations at and near the clamped end
are plotted in Figure 10. The tip deflection and the maximum values of σ̄x and φ̄ are listed in Table 3. It
is revealed from the 2D FE results that the electric potential induced in the shear actuator due to direct
piezoelectric effect follows a cubic variation across the thickness, which is quite accurately predicted by
the present model with nφ = 3. It is also revealed that the quadratic component in the third-order variation
of φ is zero yielding zero potential at the midsurface. This fact justifies the use of two sublayers having
quadratic variation of φ across each sublayer and an equipotential surface at the midsurface to model
the cubic distribution of φ. With one sublayer (nφ = 2), however, the estimated induced potential is zero
as expected. Consequently, the deflection profile predicted by the present model with nφ = 3 matches
closely with the 2D FE results, whereas that with one sublayer (nφ = 2) is not as accurate. It can be seen
from Table 3 that σ̄x predicted with nφ = 2 is also less accurate than that with nφ = 3. The variation
φ across the thickness of the beam under the same pressure load, but with the top surface having 5
electrode segments under open circuit condition, is shown in Figure 11 for two locations, x = 0, l/2. The
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Figure 11. Distribution of φ̄ for shear pointer beam (d) under pressure load with open
circuit condition at top.

distribution is again cubic, the cubic component being larger than the linear component at the clamped
end. However, at the midspan the cubic component is much smaller than the linear one. It has been
observed that the distribution becomes almost linear near the free end. With nφ = 2, even though the
cubic variation is completely missed, the open circuit potential at the top surface is accurately predicted
at x = 0. However, it is not as accurately predicted at x = l/2.

6.4. Extension and shear mode sensors. The sensory response of an extension mode bimorph beam
(c) and a shear mode beam (d), both under cantilever boundary condition, is obtained for (i) an uniform
pressure load (UDL) p0 on the top and (ii) a concentrated load P = p0l/2 at the free end (tip load) for
thickness ratio S = 10. The top surface is in open circuit condition while the bottom surface is grounded.
Both beams are modeled with 20 equal-size elements. In order to illustrate the effect of segmentation
of the electroded sensor surface, results are obtained with the beam surfaces divided into 1, 2, 5, 10 and
20 electroded patches. This is modeled by assigning an electric node to each electroded patch pair. The
variation of the sensory potential induced at the top surface for the two load cases is plotted in Figures 12

x/ l x/ l

Figure 12. Sensory potential for varying number of electrodes for cantilever EAM beam (c).
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x/ l x/ l

Figure 13. Sensory potential for varying number of electrodes for cantilever SAM beam (d).

and 13, respectively. It is observed that for the extension mode sensor (c), the sensory potential of the
electrodes follows a step-wise quadratic variation for the UDL and a step-wise linear variation for the
tip load, since it is related to the induced bending moment (axial stress). For the shear mode sensor (d),
however, the sensory potential of the electrodes follows a stepwise linear variation for the UDL and an
uniform variation for the tip load (except near the clamped end, which is believed to be due to boundary
effect). This is because the sensory potential in shear mode is proportional to the induced shear. Thus,
the sensory potential is independent of the electrode location, as long as the applied load causes constant
transverse shear (as for tip load), but varies with the electrode location if the transverse shear changes
(as for the UDL).

It is apparent from Figures 12 and 13 that the potential induced in a larger electrode is approximately
equal to the area average of the potentials induced when it is divided into smaller segments. The tip de-
flection w and the maximum sensory potential φ induced for varying number of electrodes are presented
in Tables 4 and 5 for beams (c) and (d), respectively. For comparison, the deflection for the closed circuit
condition of the top surface (with zero potential) is also listed in these tables. It is revealed that the tip
deflections of beam (c) with 1 and 20 electrodes differ by 4% and 3% for the UDL and the tip load,
respectively. For the shear mode beam (d), however, the tip deflection is independent of the number of
electrodes. It is also observed that, for the extension mode beam, the closed circuit deflection differs
from the open circuit deflection with 20 electrodes by about 12.5% for both the load cases. For the shear

Number of electrodes
Load case Entity

1 2 5 10 20
Closed circuit

UDL
w̄(l, 0) −1.3422 −1.3021 −1.2910 −1.2894 −1.2890 −1.4516
φ̄(0.5h)|max 7.6158 13.195 18.315 20.297 21.277 0

Tip load
w̄(l, 0) −1.7703 −1.7302 −1.7192 −1.7174 −1.7170 −1.9308
φ̄(0.5h)|max 11.169 16.750 20.093 21.196 21.714 0

Table 4. Effect of number of electrodes on w̄ and φ̄ for cantilever EAM sensory beam
(c) (S = 10).
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Number of electrodes
Load case Entity

1 2 5 10 20
Closed circuit

UDL
w̄(l, 0) −1.8271 −1.8272 −1.8272 −1.8272 −1.8271 −1.8330
φ̄(0.5h)|max −2.3296 −3.4588 −3.8508 −4.2304 −4.5151 0

Tip load
w̄(l, 0) −2.4492 −2.4492 −2.4492 −2.4491 −2.4491 −2.4552
φ̄(0.5h)|max −2.3667 −2.4526 −2.4517 −2.4517 −2.4511 0

Table 5. Effect of number of electrodes on w̄ and φ̄ for cantilever SAM sensory beam
(d) (S = 10).

mode beam, this difference is negligible (0.25–0.3%). The induced sensory potential in the shear mode
case is 21 and 11% of the extension mode sensory potential for the UDL and the tip load, respectively.

The undamped natural frequencies of the cantilever sensory EAM beam (c) and SAM beam (d) when
the beam surfaces are segmented in to 1, 2, 5, 10 and 20 electroded patches are presented in Table 6 for
five modes. All the electrode segments are in open circuit condition. The frequency of the nth mode
is nondimensionalized as ω̄n = ωnl S(ρ0/Y0)

1/2 where ρ0 = 7500 kg/m3. For comparison, ω̄n of the
beams with their top surface being under closed circuit condition is also listed in Table 6. It can be seen
from Equation (35) that the effective stiffness matrix gets modified by the electromechanical stiffness
corresponding to the open circuit potentials 8s . Physically, it occurs since a part of the mechanical
energy is converted into electric energy through the induced electric potential and results in an increase
in the effective stiffness. Thus, the open circuit frequencies are higher than the closed circuit ones, as
can be seen from Table 6. Since the degree of constraint of equipotential condition over the electroded
surface changes with the number electrode segments, the latter modifies the electromechanical stiffness
and consequently the natural frequencies. It is observed that the natural frequencies of the bimorph EAM

Open circuit (# of electrodes) Closed Combined
Beam Entity 1 2 5 10 20 circuit open-closed

ω̄1 5.3281 5.4224 5.4489 5.4529 5.4538 5.1446 5.4367
ω̄2 31.209 31.383 32.372 32.527 32.562 30.858 31.761

(c) ω̄3 81.605 83.243 84.478 85.103 85.169 81.292 83.093
ω̄4 83.781 84.799 85.103 85.158 85.297 83.781 85.169
ω̄5 148.09 148.41 150.81 153.59 154.14 147.80 150.63

ω̄1 4.5865 4.5871 4.5875 4.5876 4.5877 4.5792 4.5855
ω̄2 27.633 27.882 27.913 27.924 27.930 27.593 27.873

(d) ω̄3 71.055 71.055 71.055 71.055 71.055 71.055 71.055
ω̄4 73.214 73.298 74.697 74.967 75.033 73.137 74.446
ω̄5 134.03 134.09 138.51 139.11 139.43 133.88 137.34

Table 6. Effect of number of electrodes on ω̄n for cantilever EAM and SAM beams (S = 10).
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beam with 1 and 20 electrodes differ by 2 and 4% for the first and the fifth modes, respectively. For the
SAM beam, the open circuit natural frequencies are little sensitive to the number of electrodes for the
first four modes. For the fifth mode, however, the difference between the frequencies of the beam with
1 and 20 electrodes is 4%, similar to the EAM beam. The open circuit frequencies with 20 electrodes
differ from the respective closed circuit frequencies by 6 and 4% for the first and fifth modes, for the
EAM beam. The corresponding differences for the SAM beam are 0.3 and 4%. For the EAM beam, the
lower mode frequencies are generally more sensitive to the electric boundary conditions than the higher
mode ones. The reverse is true for the SAM beam. The case of combined open-closed condition with 10
electrodes from the clamped end being under open circuit condition and the remaining 10 under closed
circuit condition is also analyzed and the corresponding natural frequencies are presented in the above
table. It is observed that the frequencies for this combined case lie in between the corresponding closed
circuit and open circuit frequencies (with 20 electrodes).

6.5. Hybrid SAM-EAM composite beam. A thin width (plane stress) composite beam (e) with an EAM
piezoelectric patch of PZT-5H bonded at the top surface and a SAM patch embedded between two
graphite-epoxy composite faces, see Figure 5, is considered next. The beam has a foam core of the same
thickness as the SAM patch at the portion where the patch is not present. The material properties of the
graphite epoxy and the foam are selected as [Benjeddou et al. 2000; Kapuria and Alam 2006]:

(i) Graphite epoxy:

{Y1, Y2, Y3,G12,G23,G31} = {181, 10.3, 10.3, 7.17, 2.87, 7.17} GPa,

{ν12, ν13, ν23} = {0.28, 0.28, 0.33}, ρ = 1578 kg/m3

(ii) Foam:
{Y,G} = {35.3, 12.76} GPa, ρ = 32 kg/m3.

The length of both the PZT patches is taken as lp = 0.2l. The beam is modeled with 50 equal-size
elements to obtain converged results. The surfaces of the piezoelectric patches are electroded. Thus all
the elements under a patch are connected to one electric node. The beam is analyzed for the following
two load cases:

(1) Actuation potential φ0 on the top surface of the EAM or SAM patch with the other piezoelectric
surfaces grounded.

(2) Uniform pressure p0 applied on the top surface over a length of l/25 from the free end. For this
load case, the top surface of either EAM or SAM patch is under open circuit condition, while the
other piezoelectric surfaces are grounded.

The static results for the two load cases and the natural frequencies are nondimensionalized as

(1) w̄ = 10w/S2d0φ0, σ̄x = σx h/10Y0d0φ0,

(2) φ̄ = 104φY0d0/hS2 p0, ω̄n = ωnl S(ρ0/Y0)
1/2,

with Y0 = 6.9 GPa, d0 = 274.8 × 10−12 CN−1 and ρ0 = 1000 kg/m3.
In order to illustrate the effect of location x p of the EAM and SAM actuators on their actuation

capability, one of the actuators (EAM or SAM) is actuated with electric potential of load case 1 and its
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Potential load Pressure load
EAM SAM EAM SAM

x p/ l w̄(l, 0) σ̄
p
x (x p, 0.5h+) σ̄ e

x (x p, 0.5h−) w̄(l, 0) σ̄
p
x (x ′

p, 0.05h−) σ̄ e
x (x

′
p,−0.5h) φ̄(0.6h) φ̄(0.05h)

0.1 −5.012 −6.881 3.970 −1.358 0.6902 −1.167 −1.899 −0.1381
0.3 −3.982 −6.864 4.053 −1.496 0.2748 −1.303 −1.496 −0.1953
0.5 −2.821 −6.863 4.055 −1.122 0.2748 −1.303 −1.046 −0.1953
0.7 −1.693 −6.863 4.055 −0.7474 0.2748 −1.303 −0.6101 −0.1953
0.9 −0.5598 −6.863 4.057 −0.3718 0.2748 −1.303 −0.1802 −0.1851

Table 7. Effect of actuator/sensor location on the response of hybrid beam (e) (S = 20).
Here, x ′

p = x p − 0.5lp, x p denotes xe for EAM and xs for SAM.

location is varied from the clamped end (x p = 0.1l) to the free end (x p = 0.9l), while the unactuated
patch is kept fixed at the clamped end. x p refers to xe for the EAM and xs for the SAM, see Figure 5.
The tip deflection w̄, axial stress σ̄ e

x in the elastic substrate and σ̄ p
x in the actuated piezoelectric patch

are presented in Table 7 for the beam with S = 20 for both EAM and SAM actuation cases for five
different actuator locations. The tip deflection is also plotted against the actuator location in Figure 14.
It is observed that the EAM actuator is most effective inducing the maximum deflection, when placed at
the clamped end. The SAM actuator develops the maximum tip deflection when it is placed at a clear
distance of 0.1l from the clamped end (x p = 0.2l).

This observation is in line with the results of Sun and Zhang [1995] obtained for Al/PZT-5H beams,
through 2D FE analysis. It, however, does not support the conclusion made by Raja et al. [2004] based
on the three-layer sandwich model that the shear actuator for a cantilever beam is most effective if it is
placed at the center of the beam. It is revealed from Table 7 that even though the maximum tip deflection
developed by shear actuator is 36% of that produced by the extension mode actuator, the maximum stress
σ̄

p
x induced in the actuator for the SAM is only 10% of that for the EAM. Also, the maximum value of
σ̄ e

x induced in the elastic substrate for SAM is 29% of that for EAM. Thus, for the same stress level in

Figure 14. Variation of tip deflection and natural frequency of hybrid beam (e) with
actuator/sensor location.
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Figure 15. Variation of tip deflection with actuator thickness for actuation with constant
energy for hybrid beam (e).

the actuator (which is often the governing criteria), the SAM actuator can develop more tip deflection
than the EAM actuator. This is an attractive feature of the SAM actuators, which can be useful in many
control applications.

The sensory potential developed when the beam is subjected to mechanical load of case (2) is also
presented in Table 7 for different locations of the SAM and EAM sensors. It is revealed that for the
extension mode, the sensor is most effective when placed at the clamped end like the actuator. For the
shear mode, however, the sensory potential for this tip loading case is independent of the location beyond
a small distance from the the clamped end. As explained earlier, this is because the sensory potential is
related to the induced shear which is constant in the region 0 ≤ x ≤ 0.96l, for the present loading.

The variation of the fundamental frequency ω̄1 of the hybrid beam (e) with the location of the EAM
and SAM sensors is plotted in Figure 14. As expected, the frequency of the beam reduces as the sensor
is moved from the clamped to the free end. This reduction is more for the surface mounted patch than
the embedded one.

6.6. Effect of actuator thickness on actuation capability. Here the entities are nondimensionalized as
w∗

= 1000w/h, φ∗
= φd0/h. The energy required to develop a potential difference φ∗

0 across an actuator
of thickness ha for the beam (e) with thickness of the composite substrate being hs is proportional to
Ev = φ∗

0
2/(ha/hs). To illustrate the effect of actuator thickness on its effectiveness, the actuator potential

is varied for varying ha such that Ev is constant (= 10−11). The induced deflection w∗ is plotted as a
function ha/hs in Figure 15 for both SAM and EAM actuators. It is observed that in both cases, the
actuation authority increases with the increase in ha/hs . However, the rate of increase in w∗ reduces
with the increase in ha/hs .

7. Conclusions

The new unified formulation based on the efficient layerwise approximations for the displacement field
and sublayerwise quadratic approximation for the electric potential can model actuators, sensors and
hybrid adaptive beams with surface-mounted and embedded actuator/sensor patches in extension or shear
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mode. The numerical results show that the model accurately predicts the nonuniform variation of w
across the thickness in presence of electric field, and also the quadratic and cubic variations of electric
potential in the extension and shear modes, respectively, as observed from 2D piezoelasticity solutions.
The concept of electric node results in significant reduction in the number of electric DOF.

It is revealed that while for the extension mode sensor, the sensory potential is dependent on the sensor
location unless the loading causes a constant bending moment, the sensory potential in shear mode does
not change with the location, if the loading causes constant shear. For extension mode sensors, the
number of segments in the electroded surface can have appreciable effect on the deflection and natural
frequencies. However, for the shear mode sensors, the deflection and lower mode natural frequencies are
independent of the segmentation of the electrode. An extension actuator yields maximum tip deflection
in a cantilever adaptive beam when it is placed at the clamped end, whereas a shear actuator should be
placed at a distance of l/10 from the clamped end to develop the maximum tip deflection. The ability of
an actuator in inducing deflection for a given energy increases with its thickness for both extension and
shear mode actuation.

Appendix

The transformation matrices a, T and R in Equation (2) are given by

R =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


, T =



c2 p2 s2 p2 q2 2spq 2cpq 2csp2

s2 c2 0 0 0 −2cs
c2q2 s2q2 p2

−2spq −2cpq 2csq2

csq −csq 0 cp −sp −(c2
− s2)q

−c2 pq −s2 pq pq s(p2
− q2) c(p2

− q2) −2cspq
−csp csp 0 cq −sq (c2

− s2)p


,

a =

 cq sp q
−s c 0
−cp −sq p

 ,
where c = cosα, s = sinα, p = cosβ, and q = sinβ. The expressions of s̄i j , d̄i j and ε̄i j in Equation (5)
are given, for the case pq = 0, by

s̄11 = c4 p4s11 + c2s2 p2(2s12 + s66)+ s4s22 + c2s2q2(2s23 + s44)+ c4q4s33,

s̄55 = s2 p2s44 + c2(p4
+ q4)s55 + s2q2s66,

d̄11 = −cq[s2(d32 + d24)+ c2q2d33], d̄35 = −cq3d15,

d̄31 = p(c2 p2d31 + s2d32), d̄15 = p(c2 p2d15 + s2d24),

ε̄11 = c2 p2ε11 + s2ε22 + c2q2ε33, ε̄33 = q2ε11 + p2ε33.
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The expressions of c̄i j , ēi j and η̄i j in Equation (8) are given, for the case pq = 0, by

c̄11 = c4 p4c11 + 2c2s2 p2(c12 + 2c66)+ s4c22 + 2c2s2q2(c23 + 2c44)+ c4q4c33,

c̄13 = s2 p2c23 + c2(p4
+ q4)c13 + s2q2c12, c̄33 = q4c11 + p4c33,

c̄55 = s2 p2c44 + c2(p4
+ q4)c55 + s2q2c66,

ē11 = −cq[s2(e32 + 2e24)+ c2q2e33], ē35 = −cq3e15,

ē31 = p(c2 p2e31 + s2e32), ē15 = p(c2 p2e15 + s2e24),

η̄11 = c2 p2η11 + s2η22 + c2q2η33, η̄33 = q2η11 + p2η33.

The hatted R-coefficients in Equation (12) are defined as {R̂k
1, R̂k

2, R̂3, R̂4} = {Rk
1, Rk

2, R3, R4}/Rk0
2 with

Rk
1 = R̄k

2 − R̄k0
2 , Rk

2 = ak
1 R3 + ak

2 R4, R3 =
4C L

2

1
, R4 = −

4C L
1

31
, R̄k

2 =

k∑
i=2

zi−1(Ri−1
2 − Ri

2),

ak
1 = 2

(
Ck

1/Q̂k
55 − zk

)
, ak

2 = 3
(
2Ck

2/Q̂k
55 − z2

k
)
, 1= 4z2

0C L
1 − 8z0C L

2 ,

Ck
1 =

k∑
i=1

Q̂i
55(zi − zi−1), Ck

2 =
1
2

k∑
i=1

Q̂i
55

(
z2

i − z2
i−1

)
.

Using Equations (18), (23), (24), (27), (29) and (30), the elements of the submatrices of Me, Ce and K e

defined in Equation (31) are obtained by exact integration as

Me
uu =

 I11c1 −I12c2 I13c1

I22c3 + I11c4 −I23cT
2

symm. I33c1

 , Ce
uu =

 0 0 0
ĉ1c4 0

symm. 0

 ,

K e
uu =

 A11c5 −A12c6 A13c5

A22c7 −A23cT
6

symm. A33c5 + Ā11c1

 , K e
ul =

 e1l ′
1 c5 + e2l ′

11 c8

−
(
e1l ′

2 cT
6 + e2l ′

12 c10
)

e1l ′
3 c5 + e2l ′

13 c8 +
(
e3l ′

1 − Āl ′
12

)
cT

8 + e4l ′
11 c1

 ,

K e
u j =


e2 j ′

21 c9

−e2 j ′

22 c11

e2 j ′

23 c9 + e4 j ′

21 c12

 , K e
l j =

[
−

(
δ1e4l j ′

22 + η
2l j ′

2

)
c9 − η

3l j ′

12 c12

]
,

K e
ll =

[(
Āll ′

22 − 2δ1e3ll ′
2 − ηll ′

1

)
c5 −

(
δ1e4ll ′

12 + η2ll ′
1

)(
c8 + cT

8

)
− η3ll ′

11 c1
]
,

K e
j j =

[
−η

3 j j ′

22 a
]
,
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where ci are given by

c1 =

∫ a

0
N T N dx =

a
3

[
1 1/2

1/2 1

]
,

c2 =

∫ a

0
N T N̄,x dx =

1
2

[
−1 a/6 1 −a/6
−1 −a/6 1 a/6

]
,

c3 =

∫ a

0
N̄ T
,x N̄,x dx =


6/5a 1/10 −6/5a 1/10
1/10 2a/15 −1/10 −a/30

−6/5a −1/10 6/5a −1/10
1/10 −a/30 −1/10 2a/15

 ,

c4 =

∫ a

0
N̄ T N̄ dx =


13a/35 11a2/210 9a/70 −13a2/420

11a2/210 a3/105 13a2/420 −a3/140
9a/70 13a2/420 13a/35 −11a2/210

−13a2/420 −a3/140 −11a2/210 a3/105

 ,

c5 =

∫ a

0
N T
,x N,x dx =

1
a

[
1 −1

−1 1

]
,

c6 =

∫ a

0
N T
,x N̄,xx dx =

1
a

[
0 1 0 −1
0 −1 0 1

]
,

c7 =

∫ a

0
N̄ T
,xx N̄,xx dx =


12/a3 6/a2

−12/a3 6/a2

6/a2 4/a −6/a2 2/a
−12/a3

−6/a2 12/a3
−6/a2

6/a2 2/a −6/a2 4/a

 ,

c8 =

∫ a

0
N T
,x N dx =

1
2

[
−1 −1

1 1

]
,

c9 =

∫ a

0
N T
,x dx =

[
−1

1

]
,

c10 =

∫ a

0
N̄ T
,xx N dx =


−1/a 1/a
−1 0
1/a −1/a

0 1

 ,
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c11 =

∫ a

0
N̄ T
,xx dx =


0

−1
0
1

 ,

c12 =

∫ a

0
N T dx =

a
2

[
1
1

]
.

Considering that the loading terms p1
z , p2

z , Dz0, DzL vary linearly over the length of the element with
nodal values

p1e
z , p2e

z , De
z0
, De

zL

via the relation pi
z = N pie

z , Dzi = N De
zi

, the elements of Pe
u and Pe

j in Equation (31) are obtained as

Pe
u =

 0
c13 pe

z
0

 , Pe
j =

[
bcT

12 p je
φ

]
,

where

c13 = b
∫ a

0
N̄ T N dx =

b
10


7a/2 3a/2
a2/2 a2/3
3a/2 7a/2

−a2/3 −a2/2

 ,
pe

z = p1e
z + p2e

z ,

p je
φ = −δ1

[
p1e

z 9̄
j
φ(z0)+ p2e

z 9̄
j
φ(zL)

]
− De

z0
δ j1 + De

zL
δ jnφ .
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