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PLASTIC HINGES AS PHASE TRANSITIONS IN STRAIN SOFTENING BEAMS

GIANNI ROYER-CARFAGNI AND GIOVANNI BURATTI

A jump between the upper yield point and lower yield point is well evident in strain driven tests on low-
carbon steel bars. However, in the constitutive equations commonly used to model the elastic-plastic
flexure of beams this jump is usually neglected. Here, we show instead that such jump, albeit small,
may drastically vary the structural response, because it renders the moment-curvature relationship of the
beam strain-softening in type and with horizontal asymptotes. Because of this, with a process analogous
to a phase transition within the solid state itself, strain may suddenly localize in the form of concentrated
rotations of the beam axis, indeed forming a plastic hinge in the classical sense of limit analysis. There-
fore, the formation of plastic hinges, usually indicated as an approximate or technical model, is now
rigorously predicted by this approach. Experimental observations corroborate this finding.

1. Introduction

The elastic-plastic design of civil structures is classically associated with the plastic-hinge model which
allows the technical analysis of the bending of beams in a relatively simple manner. Following this
rationale, when a beam made of a ductile material, such as steel, is gradually loaded, plastic hinges
are assumed to develop at those sections where the bending moment reaches a certain threshold, that
is, at those sections rotations of any amount may occur while the bending moment remains fixed at the
threshold value [Neal 1963]. However, the plastic hinge model is traditionally considered an approximate
or technical model because, even when the material is idealized as elastic-perfectly plastic, regardless of
the shape of beam cross-section the bending moment M is a monotonically increasing function of the
beam curvature χ asymptotically approaching, but never reaching, the full plastic moment as χ → ∞.
Thus, the development of a plastic hinge can be read as a borderline case, never attained in practice, but
a very useful simplification in the structural analysis.

There are, however, some interesting but perhaps forgotten old experiments by Nakanishi et al. [1934],
which have provided a wealth of evidence describing how the plastic hinge model may indeed be more
accurate than expected. To illustrate, Figure 1 represents the bending moment M̄ versus sag δ relationship
measured from tests on simple supported beams with various cross-sections, loaded as in Figure 2. If
the material is considered elastic-perfectly plastic and, according to the Bernoulli–Navier hypothesis,
cross-sections remain planar in the deformation, then the flexure is uniform in the central portion A-B
of Figure 2, and the bending moment is a monotonically increasing function of the beam curvature χ ,
asymptotically approaching the full plastic threshold. However, this trend is not confirmed by experi-
ments. In fact, if the flexure were uniform, the M̄-δ diagrams of Figure 1 would also represent, by a
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Figure 1. Experimental M̄-δ relationships for beams with different cross-sections
[Nakanishi et al. 1934].

proper change of scale, the moment-curvature response of the beam. This is because the curvature of its
centroid line could be expressed, with the usual first-order approximation, as

χ(z)∼=
8δ
l2 . (1)

Quite surprisingly, the graphs of Figure 1 do not show monotonically increasing curves, but rather exhibit
a horizontal plateau, revealing that the bending moment remains constant while the beam sag increases
indefinitely as if a classical plastic hinge had developed.

In order to solve the apparent discrepancy between theoretical predictions and experimental results, we
simply propose to consider in the constitutive stress-strain law the jump between the so called upper yield
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Figure 2. Layout of the experimental configuration for tests of Figure 1 [Nakanishi et al. 1934].
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point (Oberestreckgrenze) and lower yield point (Unterestreckgrenze). Such jump is usually neglected in
the constitutive equations, although it is well evident in strain driven tests on low-carbon steel bars [Neal
1963]. For example, in Figure 3, which shows the engineering stress σ versus the engineering strain ε
diagrams as measured in one of the tests recorded in [Froli and Royer-Carfagni 1999], the ratio between
Oberestreckgrenze and Unterestreckgrenze is of the order of 1.12; this value may vary according to the
carbon level in the steel. In fact, at the nanoscale, the stress drop can be attributed to the pinning of
the dislocations (Peierls–Nabarro effect) due to the presence of solute atoms of carbons in the metallic
lattice [Cottrell 1953]. It has been demonstrated [Froli and Royer-Carfagni 2000] that the consideration
of such a jump is of crucial importance for the orderly formation, at the microscale, of slip (Lüder) bands
in stretched bars of mild steel.

For the case of bending, consideration of this jump is not without consequences because it renders
the elastic-plastic moment-curvature relationship M(χ) nonmonotone in type. Indeed, the nonmonotone
character of M(χ), analogously to the classical loops in the pressure versus volume isotherms of a
Van der Waals fluid, may produce a transition in the beam strain reminiscent of the sudden volume
change associated with the transition from the liquid to the vapor phase in the fluid. The extension of
Van der Waals model to solids has received much attention recently; see [Müller and Villaggio 1977;
Dunn and Fosdick 1980]. The relevant theories, which allow for stress- and deformation-induced phase
transitions within the solid state itself, predict discontinuous strain fields in reasonable agreement with
the experimental observations. Another characteristic feature of the M(χ) function that will be deduced
from the proposed constitutive σ -ε law, is that it exhibits a horizontal asymptote. Truskinovsky [1996] has
perhaps been the first to consider the consequences of assuming constitutive relationships with horizontal
plateaux for the one-dimensional case of a tensile bar, evidencing the consequent possibility of strain
localization, similar in type to the nucleation of passing through a crack.

 

Figure 3. Local σ -ε relationship in a stretched bar of mild steel [Froli and Royer-
Carfagni 1999]. Local strain measured with strain gauges.
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In this paper we will show that the loops and the horizontal asymptotes of the M(χ) constitutive law
may imply, similarly to phase transitions, a sudden strain localization in the beam, that is, a discontinuity
in the rotation field of the centroid line, analogous to the formation of a plastic hinge in the classical
meaning of limit analysis. An accurate reworking of the traditional technical theories from this novel
approach may be of importance, especially in the seismic design of civil engineering works, where the
plastic resources in terms of ductility play a decisive role in the structural performance.

2. Moment versus curvature relationships for elastic-plastic beams

To illustrate the consequences of considering a jump between the upper and lower yield points in the
stress-strain constitutive law, consider the case of a beam with constant cross-section under flexure. Ac-
cording to the Bernoulli–Navier hypothesis we assume that cross-sections remain planar during bending,
so that the elongation of each longitudinal fiber is directly proportional to the distance y from the neutral
axis by a coefficient χ , representing the curvature of the centroid line of the beam. In particular, consider
the simplest relationship between engineering stress σ and engineering strain ε of the type reported
in Figure 4. Clearly, the material is elastic-perfectly plastic, symmetric in tension and compression.
Nevertheless, it exhibits a well marked jump from Oberestreckgrenze to Unterestreckgrenze. For the
constitutive law σ(ε) can be written in the form

σ(ε)=


−σ0, ε <−ε0,

α σ0
ε0
ε, −ε0 ≤ ε ≤ ε0,

σ0, ε > ε0,

where ασ0, with α > 1, is the Oberestreckgrenze and σ0 the Unterestreckgrenze.
Let us now examine beams with cross-sections of three different shapes. Consider first a rectangular

cross section of depth h and width b. As the beam curvature χ is gradually increased, the distribution of
normal stress along the depth of the cross-section is of the type sketched in Figure 5, where χI denotes
the curvature corresponding to the elastic limit. When the curvature is increased beyond χI, the most
distant fibers from the neutral axis are strained beyond ε0 and, consequently, in these overstrained regions
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Figure 4. Stress-strain relationship with stress jump at yielding.
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Figure 5. Rectangular cross-section: stress distribution with discontinuous σ -ε relationship.

the stress remains constant and equal to the lower yield point stress, σ0. Further increasing the curvature,
more and more fibers reach the yield point until the entire beam, with the exception of a thin layer at the
neutral axis, becomes plastic. In Figure 5 this condition is referred to as the stage χ → ∞.

Denoting by y0 the distance from the fiber neutral axis at which the strain reaches the limit value ε0,
the relationship between bending moment and curvature is M(χ)=

2
3 Eby3

0χ + σ0b
(1

4 h2
− y2

0

)
, where

y0 =

{
h/2, χ ≤ χI,

ασ0/(χE), otherwise,

and E denotes the Young’s modulus. The corresponding moment-curvature M-χ relationship is repre-
sented in Figure 6 for different values of the parameter α. In particular, observe that for α > 3/2 the
M-χ curve exhibits a well-recognizable strain-softening branch. In this latter case, under a strain history
monotonically increasing the curvature χ , the work U consumed in deforming the beam per unit beam
length defined as

U (χ)=

∫ χ

0
M(η)dη (2)

is a nonconvex function with oblique asymptotes of the type schematically represented in Figure 7.
As a second example consider a beam whose cross-section is rhomboidal with depth bR and height

h R . The stress diagram for gradually increasing curvatures is shown in Figure 8, while the corresponding
M-χ relationship is qualitatively sketched in Figure 9. Again, when α > 3/2, the bending moment attains
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Figure 6. Bending moment versus curvature of beams with rectangular cross-section
for (a) 1< α < 3/2, (b) α = 3/2, (c) α > 3/2.
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 Figure 7. Rectangular cross section. Elastic-plastic work per unit length U (χ) for α > 3/2.
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Figure 8. Stress distribution for rhomboidal cross-sections.
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Figure 9. Bending moment versus curvature for rhomboidal cross-sections for (a)
1< α ≤ 3/2, (b) 3/2< α ≤ 2, (c) α = 2, (d) α > 2.
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Figure 10. I-shaped cross-section: stress distribution with discontinuous σ -ε relationship.

its maximum value at the (finite) curvature given by

χM =
3

2h R

3α− 4
2α− 3

, M(χM)=
(128α2

− 333α+ 216)α
324(4 − 3α)2

bRh2
R,

but such value is greater than the full plastic moment M0. Consequently, the M(χ) curve becomes
nonmonotone, with a strain softening branch. Correspondingly, the work consumed in deforming the
beam U (χ) results again in a nonconvex type when α > 3/2.

As a third, and perhaps most practically relevant example, consider an I-shaped cross section. The
stress-distribution at different values of the curvature is schematically represented in Figure 10, where
χI denotes again the elastic limit curvature and χII the curvature at which the flanges become plastic.
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Figure 11. Bending moment versus curvature for I-shaped beams for (a) α ≤ 60/59, (b)
60/59< α ≤ 12615/11569, (c) 12615/11569< α < 3/2, (d) α = 3/2, (e) α > 3/2.
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The M-χ curves obtained for different choices of the parameter α are schematically represented in
Figure 11. Remarkably, in the third example the dependence of the M-χ relationship on α is quite
nonlinear, and the nonmonotone character is observed also for very small values of α. This finding is
crucial for the forthcoming analysis, where a nonmonotone (strain-softening) character for the moment-
curvature relationship will be systematically assumed. The corresponding diagrams for the elastic-plastic
work U (χ) are sketched in Figure 12.

Note that in this case the nonmonotone character of the bending M-χ relationship is attained also
for small jumps in the stress-strain curve, specifically for α > 60/59. A value of this order is certainly
reached in practice; experimental tests on mild steel show that α ∼= 1.1 [Froli and Royer-Carfagni 1999].
Moreover, as the parameter α is varied within this range, the corresponding graphs of M(χ) and U (χ)
may exhibit loops that are different in kind. Thus, at least for I-shaped profiles, the discussion of the
cases when the moment-curvature relationship is of the type represented in Figure 11 acquires a practical
interest.

3. The energy functional

Consider a simply supported beam subject to a transversally distributed load q(z) and two couples,
WA and WB , acting at its ends (considered positive if oriented as in Figure 13). Let v(z) denote the
displacement component in the y-direction of the beam centroid axes at z, ϕ(z) the corresponding rotation
which is positive if counterclockwise, and define the curvature χ through the relationship χ(z)= ϕ′(z),
where the prime indicates a derivative with respect to z.
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Figure 12. Elastic-plastic work per unit length U (χ) in I-shaped beams for (a)
α ≤ 60/59, (b) 60/59< α ≤ 12615/11569, (c) 12615/11569< α < 3/2, (d) α = 3/2,
(e) α > 3/2.
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At this stage, the analysis will be limited to the case of holonomic plasticity only, so that a strain
energy functional can be defined. This produces noteworthy simplifications because the beam stable
equilibrium configurations will be associated with absolute minimizers of the energy functional. This
allows modern techniques in the calculus of variations to be applied to the corresponding nonconvex
minimization problem. Under these assumptions, the energy functional associated with the sum of the
strain energy and the potential energy of the applied loads can be written in the form

E[ϕ, v] =

∫ L

0
U

(
ϕ′(z)

)
dz −

∫ L

0
q(z)v(z)dz −

[
Wϕ(z)

]z=L
z=0 , (3)

where U (ϕ′)= U (χ) is the bulk energy density, defined as in Equation (2). In general, for the reasons
discussed in Section 2, U is an even, nonconvex function whose qualitative form will represented by one
of the graphs in Figure 12.

It is useful to introduce the quantity

T (z)= −

∫ z

0
q(z)dz + C1, (4)

where C1 is a constant whose value will be determined afterward. It is easy to recognize that when the
constant C1 represents the vertical reaction at point A of Figure 13, then T (z) denotes the shear force
acting at section z. The importance of Equation (4) is that it allows us to write a convenient expression
for the work of the external load. In fact, by setting

ϕ(z)∼= −
d
dz
v(z) (5)

as customary in the technical theory of beams, upon integrating by parts one obtains∫ L

0
q(z)v(z)dz =

∫ L

0
T (z)v′(z)dz −

[
T (z)v(z)

]z=L
z=0 = −

∫ L

0
T (z)ϕ(z)dz, (6)

that, once introduced into Equation (3), provides a simpler form of the total energy functional to be
minimized. In particular,

π [ϕ] =

∫ L

0
U

(
ϕ′(z)

)
dz +

∫ L

0
T (z)ϕ(z)dz −

[
W (z)ϕ(z)

]z=L
z=0 , (7)

A
WA WB
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y

ν(z)

ϕ(z)

q(z)

 

Figure 13. Generic layout of beam under flexure.
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since now only the rotation field ϕ comes into play. Using Equation (5) the boundary conditions
v(0)= v(L)= 0 can be equivalently restated in terms of ϕ only via∫ L

0
ϕ(z)dz = 0. (8)

Solutions of the variational problem have to be sought in the space of function of bounded variation on
[0, L], usually referred to as BV[0, L]. For our derivations we will need to use some notions of functional
analysis; see [Kolmogorov and Fomin 1975] for details and notation. The necessity of considering a space
of functions allowing for discontinuities such as the space BV comes essentially from the presence of
the oblique asymptotes in the strain energy function U (χ). In fact, due to the linear growth of U (χ) at
infinity, a finite value of the energy is associated with infinite curvatures.

To illustrate this point, let us take a step function of the type

H(z)=

{
0, 0 ≤ z < z0,

ϕ0, z0 ≤ z ≤ L ,

where ϕ0 is a fixed number. Consider then the sequence ϕH
(n) (z) defined by

ϕH
(n)(z)=


0, 0 ≤ z < z0,

ϕ0 n(z − z0), z0 ≤ z ≤ z0 + 1/n,

ϕ0, z0 < z ≤ L ,

converging to H(z) when n → ∞. The derivative of ϕH
(n)(z) with respect to the variable z is not null in

the interval z0 ≤ z ≤ z0 + 1/n only, where it is constant and directly proportional to n. But U (ϕ′(z))
has oblique asymptotes with slope ±M0; consequently, the strain energy remains bounded also when
n → ∞ because

lim
n→∞

∫ L

0
U

(
ϕH ′

(n)(z)
)
dz ∼= lim

n→∞

(
sgn(ϕ0)M0

ϕ0

1/n
1
n

)
= M0 ϕ0 sgn(ϕ0)= M0|ϕ0|, (9)

where sgn(ϕ0) denotes the sign of ϕ0. Therefore, since by Equation (9) the total energy is also limited
for functions with discontinuous rotation fields, the possibility of discontinuities must be contemplated
in a proper class of function in which minimizers have to be sought. Moreover, the energy functional
given in Equation (3) must be modified to account for the energy associated with the singularities of the
rotation field.

The energy contribution due to concentrated rotations has been evaluated with a limit procedure by
Royer-Carfagni [2001]. Here we only recall the main results, which were also discussed in [Del Piero
2003]. First of all, recall by Lebesgue decomposition [Kolmogorov and Fomin 1975] that any function
ϕ of bounded variation can written in the form

ϕ(·)= ϕa(·)+ϕs(·)+ϕd(·), (10)

that is, the sum of a function ϕa whose derivative, in the sense of distributions, is absolutely continuous
with respect to the Lebesgue measure, a singular Cantor-like function ϕs and a jump function ϕd . Then,
the new energy functional 5[ϕ] to be considered [Royer-Carfagni 2001] has the property that 5[ϕ]
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coincides with π [ϕ] of Equation (7) whenever dϕ(z) is absolutely continuous, that is, dϕs = dϕd ≡ 0.
Furthermore, lim infn→∞ π [ϕ(n)] =5[ϕ] for any sequence ϕ(n) converging in a suitable topology 1 onto
a singular function ϕ with null absolutely continuous part, that is, with ϕa ≡ 0.

The result is as follows. Recalling that any function in BV: R → R can be written as the sum of a
nondecreasing function and a nonincreasing function [Kolmogorov and Fomin 1975], using Equation (6)
and writing ϕs as the sum of a nondecreasing and nonincreasing functions ϕ+

s and ϕ−
s acting in their

domains of definition J+ and J−, respectively, the energy stored in the beam, obtained by augmenting
Equation (3) of the contribution due to possible irregularities in the rotation field, can be written in the
form [Royer-Carfagni 2001; Del Piero 2003]

5[ϕ] =

∫ L

0
U (ϕ′

a)dz + M0

( ∫
J+

dϕ+

s −

∫
J−

dϕ−

s

)
+ M0

∑
z∈0(ϕ)

∣∣[[ϕ]](z)
∣∣

+

∫ L

0
T (z)ϕ(z)dz −

[
W (z)ϕ(z)

]z=L
z=0 , (11)

where 0(ϕ) is the (countable) set of discontinuity points of ϕ and [[ϕ]](z) := ϕ(z+)−ϕ(z−) is the jump
of ϕ at z ∈ 0(ϕ). It should be remarked that in addition to a bulk term Equation (11) also consists of a
surface or interfacial part, that is, the part associated with the Cantor part dϕs and jump part [[ϕ]] of ϕ.
Such parts take into account of the energy consumed at those points where the beam curvature becomes
infinite.

The energy functional has to be minimized in the class ϕ ∈ BV[0, L] → R subject to the condition∫ L

0
ϕ(z)dz =

∫ L

0
ϕa(z)dz+

∫ L

0
ϕs(z)dz+

∫ L

0
ϕd(z)dz = 0, (12)

analogous to Equation (8). In what follows, we will consider the variational problem of minimizing 5[ϕ]

for two specific cases.

4. Simple supported beam under uniform bending

Consider first the bending of an originally straight beam loaded by bending moments at its ends, that
is, W (z = 0) = WA, W (z = L) = WB and q(z) ≡ 0 in the notation of Figure 13. To analyze the
stationary points of the energy functional Equation (11), observe first that q(z) = 0 and Equation (6)
imply

∫ L
0 T (z)ϕ(z)dz = 0. Let then ϕ∗(z) ∈ BV : [0, L] → R be a minimizer of 5[ϕ] of Equation (11),

and consider the variation ϕ∗
+ εψ . Lebesgue’s decomposition (10) gives

ψ = ψa +ψs +ψd ∈ BV : [0, L] → R, (13)

with dψ consisting of the absolutely continuous part dψa , the singular part dψs and the jump part dψd .
Then, by the boundary condition (8), ψ has to satisfy∫ L

0
ψ(z)dz =

∫ L

0
ψa(z)dz +

∫ L

0
ψs(z)dz +

∫ L

0
ψd(z)dz. (14)

1The weak* topology in the space of measures [Buttazzo 1989].
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The necessary conditions for equilibrium, yielded by a standard procedure of calculus of variation, are
given by the inequality

lim
ε→0+

5[ϕ∗
+ εψ] −5[ϕ∗

]

ε
≥ 0, for all ψ. (15)

For the following, it is convenient to introduce the function

M∗(z)= U ′
(
ϕ∗′

a (z)
)
, (16)

representing the bending moment in the beam. Three classes of perturbations will be considered.
In the first case, let dψ = dψa , dψs = dψd = 0, that is, the perturbation is represented by a rotation

field whose distributional derivative is absolutely continuous with respect to the Lebesgue measure. Since
two-sided variations are allowed, the inequality (15) reduces to the equality

0 = d5[ψ] =

∫ L

0
U ′

(
ϕ∗′

a (z)
)
ψ ′

a(z)dz −
[
W (z)ψa(z)

]z=L
z=0 ,

that, after integrating by parts and using Equation (16), can be rewritten in the form

0 = d5[ψ] =
[
U ′

(
ϕ∗′

a (z)
)
ψa(z)

]z=L
z=0 −

∫ L

0

d
dz

U ′
(
ϕ∗′

a (z)
)
ψa(z)dz −

[
W (z)ψa(z)

]z=L
z=0

= −

∫ L

0

d
dz

M∗(z)ψa(z)dz +
[(

M∗(z)− W (z)
)
ψa(z)

]z=L
z=0 . (17)

Because of the arbitrariness of ψa and Equation (14), this is satisfied if and only if

−
d
dz

M∗(z)= C = const, M∗(z = 0, L)= W (z = 0, L). (18)

These are the standard equilibrium equations at the interior points and at the ends of the beam, respectively.
Consequently, integrating the first equation of (18), with the natural conditions given in the second part
of (18) one gets

M∗(z)=
WB − WA

L
z + WA. (19)

In the particular case of uniform bending whence WA = WB as in Figure 2, Equation (19) reduces to

M∗(z)= WA. (20)

As a second case, consider the variation dψ = dψa + dψs , dψd = 0. Condition (15) yields∫ L

0
M∗(z)ψ ′

a(z)dz + M0

( ∫
J+

dψs −

∫
J−

dψs +

∫
J0

|dψs |

)
−

[
W (z)ψ(z)

]z=L
z=0 ≥ 0, (21)
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with J0 = Supp[dψs]\{J+ ∪ J−}, where Supp[dψs] denotes the support of dψs . Consequently, integrating
by parts the first integral and recalling that ψa = ψ −ψs , we get

−

∫ L

0

d
dz

M∗(z)ψ(z)dz +

∫ L

0

d
dz

M∗(z)ψsdz +
[
M∗(z)ψa(z)

]z=L
z=0

+ M0

(∫
J+

dψs −

∫
J−

dψs +

∫
J0

|dψs |

)
−

[
W (z)ψ(z)

]z=L
z=0 ≥ 0. (22)

However, from the conditions (14) and (18) the first term vanishes. Thus, integrating by parts once more
and using Equation (18), Equation (22) can be put into the equivalent form

−

∫ L

0
M∗(z)dψs + M0

(∫
J+

dψs −

∫
J−

dψs +

∫
J0

|dψs |

)
+

[(
M∗(z)− W (z)

)
ψ(z)

]z=L
z=0

= −

∫ L

0
M∗(z)dψs + M0

(∫
J+

dψs −

∫
J−

dψs +

∫
J0

|dψs |

)
≥ 0.

From this inequality, after subdividing the first integral into the same portions, J+, J− and J0 and using
the arbitrariness of dψs , one gets the following conditions

M(z)= M0, for all z ∈ J+,

M(z)= −M0, for all z ∈ J−,

−M0 ≤ M(z)≤ M0, for all z ∈ J0. (23)

In words, the bending moment cannot take values outside the interval [−M0,M0]. Moreover, where the
rotation field presents positive or negative discontinuities, the bending moment must be equal to M0 or
−M0, respectively.

Finally, assume a perturbation dψ = dψa +dψd , dψs = 0, such that the term ψd satisfies the condition

ψd =

{
0, 0 ≤ z < z0,

[[ψd ]](z0) 6= 0, z0 ≤ z < L .
(24)

If [[ϕ∗
]](z0) = 0 one obtains

∫ L
0 M∗(z)ψ ′

a(z)dz + M0|[[ψd ]](z0)| − [W (z)ψ(z)]z=L
z=0 ≥ 0, that, due to

Equations (14) and (18), similarly to the second case, can be rewritten as

−

∫ L

0
M∗(z)dψd +

[
M∗(z)ψd(z)

]z=L
z=0 +

[
M∗(z)ψa(z)

]z=L
z=0 + M0

∣∣[[ψd ]](z0)
∣∣ − [

W (z)ψ(z)
]z=L

z=0

= −M∗(z0)[[ψd ]](z0)+ M0
∣∣[[ψd ]](z0)

∣∣ + [(
M∗(z)− W (z)

)
ψ(z)

]z=L
z=0

= −M∗(z0)[[ψd ]](z0)+ M0
∣∣[[ψd ]](z0)

∣∣ ≥ 0,

giving the condition −M0 ≤ M∗(z0)≤ M0. Otherwise, if [[ϕ∗
]] (z0) 6= 0, one finds∫ L

0
M∗(z)ψ ′

a(z)dz + M0
(
[[ψd ]](z0)

)
sgn

(
[[ϕ∗

]](z0)
)
−

[
W (z)ψ(z)

]z=L
z=0 ≥ 0.



1690 GIANNI ROYER-CARFAGNI AND GIOVANNI BURATTI

Consequently, −M∗(z0)[[ψd ]](z0)+ M0
(
[[ψd ]](z0)

)
sgn

(
[[ϕ∗

]](z0)
)
≥ 0. Since [[ψd ]](z0) is arbitrary, this

is equivalent to the condition
M∗(z0)= M0sgn

(
[[ϕ∗

]](z0)
)
, (25)

from which it follows that at the jump points of ϕ∗ the function M∗ can assume the values M0 or −M0.
The sign of the bending moment is consistent with the sign of the jump, as stated by Equation (25).

The analysis of the second variation for the energy functional (11) provides the simple inequality

U ′′
(
ϕ∗′

a
)
≥ 0. (26)

It is then clear that any field that solves the Euler equations, but attains the softening branches of the
moment curvature relationship, that is, the concave portion of the strain potential, corresponds to an
unstable equilibrium configuration.

Finally, for a complete characterization of minimizers it is convenient to introduce an auxiliary problem
known as the relaxed problem. After a well known procedure in the calculus of variations [Buttazzo
1989], the relevant procedure consists of the minimization of the relaxed strain energy functional

5∗∗
[ϕ] =

∫ L

0
U∗∗(ϕ′

a)dz + M0

(∫
J+

dϕ+

s −

∫
J−

dϕ−

s

)
+ M0

∑
z∈0(ϕ)

∣∣[[ϕ]] (z)
∣∣

+

∫ L

0
T (z)ϕ(z)dz −

[
W (z)ϕ(z)

]z=L
z=0 . (27)

This functional is identical to 5[ϕ] of Equation (11) except for the strain energy density U that has been
substituted with its lower-convex envelope U∗∗, that is, the lower convex function which supports U from
below. Observe that U∗∗ is identified by the envelope of the lines that are tangent but not intersecting the
graph of U and, for the cases shown in Figure 12, such envelope is delimited by those tangent lines which
are parallel to the oblique asymptotes of U . Correspondingly, the graph of U∗∗′ presents a horizontal
plateau in correspondence with the horizontal asymptote of U ′.

As discussed at length by Royer-Carfagni [2001], the relationship between the original energy (11)
and the relaxed energy (27) consists of the fact that minimizers ϕ∗of 5[ϕ] enjoy the properties that
U∗∗(ϕ∗′

a (z)) ≡ U (ϕ∗′
a (z)), ∀z ∈ (0, L). In other words, the beam curvature χ∗(z) ≡ ϕ∗′

a (z) can only
attain those values at which U coincides with its lower convex envelope U∗∗. This finding, first ob-
served by Truskinovsky [1996], represents the natural extension to localized deformations of the well
known Ericksen’s problem of a tensile bar with nonconvex strain energy [Ericksen 1975]. In conclusion,
solutions of the nonconvex minimization problem can be equivalently investigated by considering the
associated relaxed minimization problem that, in the one-dimensional case, is obtained by substituting
the strain energy function with its lower convex envelope.

In order to characterize the equilibrium states of the beam, one has to consider the conditions (18),
(23) and (25). One of the main results due to Equation (23)3, is that deformation paths made of stable
equilibrium configurations cannot attain values of the bending moment outside the interval [−M0,M0],
whose extremities are defined by the levels of the horizontal asymptotes of the moment-curvature rela-
tionship. For the cases represented in Figure 11 it follows, in particular, that those parts of the linear
elastic path passing through the origin that are outside the interval [−M0,M0] are inaccessible via stable
configurations and should be regarded as points of metastable equilibrium.
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Now, let a beam be gradually strained according to the static scheme of Figure 2, corresponding to
the Nakanishi experimental condition referred to in Section 1. The central portion A-B of the beam is
uniformly bent, that is, WA = WB ≡ M̄ and q = 0 in the scheme of Figure 13, so that Equation (20)
holds. Imagine now that a closed loop control of the loading device allows to gradually increase the sag
δ by controlling applied force M̄/a of Figure 2 (strain driven test), and consider the beam response for
various forms of the M-χ constitutive relationships, of the type represented in Figure 11.

Consider first the case of part (a) of Figure 11, where the M-χ law is strain-hardening in type and
the associated strain potential strictly convex. Then, whenever M̄ < M0, by Equation (23) the rotation
field ϕ∗(z) must be absolutely continuous, that is, ϕ∗

s (z) = ϕ∗

d(z) ≡ 0. Consequently, the curvature is
uniform and, by Equation (1), a unique value of the sag δ corresponds to each value of M̄ . According
to Equation (25), strain localization in the form of concentrated rotations may occur when M̄ reaches
the threshold value M0, but before reaching such a value the beam curvature has to become, at least in
theory, infinite. In other words, whenever the constitutive relationship M-χ is monotonically increasing,
the beam is bent with uniform curvature. Consequently, because of Equation (1), the experimental tests
of Figure 1 should provide a M versus δ response that should be similar, at the qualitative level, to the
M versus χ graph of Figure 11 in part (a). However, Nakanishi’s results do not corroborate this finding.

As a second case, assume that the constitutive law of the bar is the one of part (b) of Figure 11. What
should be observed now is that whenever the bending moment M̄ satisfies MII < M̄ < MI, there are three
values of the curvature that correspond to the same value of M̄ . In this situation, the characterization of
minimizers is analogous to that recorded by James and Fosdick [1981], even if the energy they considered,
though nonconvex, exhibited a superlinear growth at infinity that prevented the formation of singularities
in the minimizing field. Introducing the Maxwell line M = MM in the graph of the function M(χ)
determined by the equal area rule as in part (a) of Figure 14 and the lower convex envelope of the potential
U (χ) as in part (b), and recalling Equation (1), the M̄-δ relationship resulting from the corresponding
nonconvex minimization problem takes the form

M̄ =


M(8δ/ l2), δ ≤ δA = χAl2/8,

MM, δA ≤ δ ≤ δB = χBl2/8,

M(8δ/ l2), δ ≥ δB = χBl2/8.

M U

M 0

MM

χΙΙ

M I

M II

χΑ χΒ χΙΙχΑ χΒ χ

o o

χ
χΙ χΙ

∞ ∞

 
 (a) (b) 

 
(a) (b)

Figure 14. Equilibrium configuration path for case (b) in Figure 11: (a) M-χ relation-
ship, (b) U -χ relationship.
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In particular, similarly to phase transitions [Ericksen 1975], provided the test is strain driven, when
M̄ = MM the beam curvature may take the constant value χ =χA on a portion of length lA and the constant
value χ = χB on a portion of length lB = l − lA satisfying 8δA/ l ≤ χAlA +χBlB ≤ 8δB/ l. Consequently,
the M̄-δ response exhibits a plastic plateau in correspondence of the Maxwell line, followed by a work-
hardening branch. Likewise, in the previous case, by Equation (25) concentrated rotations may develop
when M̄ approaches M0, but only after that the beam curvature has attained very large uniform curvatures.
However, this response again does not match the experimental results of Figure 1.

The situation becomes more involved when the moment-curvature relationship M(χ) is as in part (c)
of Figure 11. Clearly, when M̄ ≤ MII to each value of the bending moment corresponds one and only one
value of the beam curvature. Therefore, the central portion A-B of Figure 2 becomes uniformly bent and,
by Equation (1), the corresponding sag ends up being δ = M−1(M̄)l2/8. Moreover, by Equation (23) one
finds that stable equilibrium states must satisfy 0 ≤ M̄ ≤ M0. Consequently, any equilibrium configuration
attaining the branches with M̄ ≥ M0 has to be considered metastable.

It should be noticed, however, that when MII ≤ M̄ ≤ M0 there are still three different values of the
curvature which correspond to the same value of the applied bending moment. On the one hand, the
second variation condition (26) rules out the possibility of attaining the strain softening branch, which
corresponds to unstable equilibrium states. On the other hand, it is possible to find equilibrium states for
which the beam curvature takes two distinct values, one in the interval (χI MII/MI, χI M0/MI), that is, on
the first linear elastic branch, the other in the strain hardening branch (χII,+∞), both corresponding to
the same value of the bending moment M̄ . In order to recognize if such states are of stable equilibrium,
it is necessary to consider the relaxed problem and the minimization of the relaxed energy (27), obtained
by introducing the lower convex envelope of the strain energy U (χ) in part (c) of Figure 12. The lower
convex envelope is represented with bold face in part (b) of Figure 15 and the corresponding moment-
curvature relationship M(χ), which follows the Maxwell line at M = M0, in part (a) of Figure 15.
The result is that curvatures attaining the branch (χII,+∞) do not correspond to minimizers because
U (χ) 6= U∗∗(χ) when χ ∈ (χII,+∞) [Royer-Carfagni 2001]. In particular, Royer-Carfagni [2001]
demonstrated that it would be possible to lower the energy by considering curvature in the branch (0, χA).
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(a) (b)

Figure 15. Equilibrium configuration path for case (c) of Figure 11: (a) M-χ relation-
ship, (b) U -χ relationship.
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(a) (b)

Figure 16. Equilibrium configuration path for case (e) of Figure 11: (a) M-χ relation-
ship, (b) U -χ relationship.

In conclusion, when Equation (1) holds, the M̄-δ relationship takes the form

M̄ =

{
M(8δ/ l2), δ ≤ δA = χAl2/8,

MM, δ > δA.
(28)

It is important to remark that with a process similar to a phase transition when the moment approaches
M0, the strain is instantaneously localized at some point of the beam axis under the form of a concentrated
rotation. At that point the curvature increases infinitely, and the corresponding kinematic characterization
is analogous to the nucleation of a perfectly plastic hinge. One of the surprising results of this analysis
is the predicted M̄ versus δ response of Equation (28) matches surprisingly well with the diagrams of
Figure 1. In particular, the plastic plateau has to be associated with the formation of a plastic hinge which
may indefinitely increase the value of the sag δ while keeping fixed the value of the bending moment
M̄ . Moreover, the apparent transition from an upper to a lower yield point in some of the diagrams of
Figure 1 may be associated with the attainment of metastable equilibrium states which touch those points
in the first linear elastic branch of Figure 15, above the threshold value M = M0.

A similar response can be obtained when the bending moment-curvature relationship is of the type
indicated in parts (d) or (e) of Figure 11. The main difference with the previous case (c) is that now

L

q

A B

z

y

ν(z)

ϕ(z)

 

Figure 17. The propped cantilever layout.
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there is no strain hardening branch for χ ≥ χI. Therefore, by Equation (23), stable equilibrium states
can only attain the curvature interval (χ, χA) when M̄ < M0. Strain localization occurs at M̄ = M0 and
neither MI nor MII can be attained (see Figure 16). The form of the energy minimizers is analogous to
that expressed in Equation (28).

5. The propped cantilever

To discuss a statically undetermined structure, let us consider the propped cantilever of Figure 17 under
the uniform transverse load q. Such a problem has been already recorded in [Royer-Carfagni 2001;
Del Piero 2003] for a particular form of a moment-curvature relationship, analogous to that of part (e)
of Figure 11, but now the analysis is extended to the remaining cases of that figure. Obviously, if the
material response is symmetric in tension and compression, the beam M-χ response is symmetric when
the bending moment changes its sign. As a result, the properties of Figure 11 are extended symmetrically
with respect to the origin in order to account for this possibility.

Let us briefly recall the main equations of [Royer-Carfagni 2001]. Keeping the notation of Section 4,
and once more taking the rotation ϕ as the independent variable, the functional to be minimized is
5[ϕ] of Equation (11) with W (0)= W (L)= 0. Using Equations (5) and (10), the boundary conditions
v(0)= v(L) give again Equation (12), to which the additional condition ϕ(0)= 0 has to be applied. If
ϕ∗(z)∈ BV : [0, L] → R is a minimizer of 5[ϕ], then considering the variation ϕ∗

+εψ with ψ satisfying
Equation (13), one obtains again Equation (14) subject to the additional restriction ψ(0)= 0.

We now consider particular variations. First, let dψ = dψa , dψs = dψd = 0. Defining the bending
moment M∗(z) as in Equation (16), the first variation condition (15) gives, after an integration by parts
analogous to Equation (17), the condition

d5[ψ]=

∫ L

0
M∗(z)ψ ′

a(z)dz+
∫ L

0
T (z)ψa(z)dz =

[
M∗(z)ψa(z)

]z=L
z=0 +

∫ L

0

(
−

d
dz

M∗(z)+T (z)
)
ψa(z)dz =0.

Since the sign of ψa is not restricted and ψa(0)= 0, this is satisfied if and only if

M∗(L)= 0, −M∗′(z)+ T (z)= const. (29)

Evaluation of Equation (29)2 at z = 0 gives C = −M∗′(0)+ T (0) or equivalently, using Equation (4),
C = −M∗′(0)+ C1, where C1 represents the vertical reaction at the clamped section A, considered
positive if upwards oriented. Without loss of generality, assuming C1 = M∗′(0) gives C = 0. Then from
Equations (4) and (29)2, the equilibrium equations may be written as

−M∗′(z)+ T (z)= 0, T (z)= M∗′(0)−
∫ z

0
q(t)dt . (30)
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As a second case consider the variation dψ = dψa + dψs , dψd = 0. Defining J+, J−, and J0 as in
Equation (21), condition (15) yields∫ L

0
M∗(z)ψ ′

a(z)dz + M0

(∫
J+

dψs −

∫
J−

dψs +

∫
J0

|dψs |

)
+

∫ L

0
T (z)(ψa +ψs)dz

=
[
M∗(z)ψa(z)

]z=L
z=0 + M0

(∫
J+

dψs −

∫
J−

dψs +

∫
J0

|dψs |

)
+

∫ L

0
T (z)ψs(z)dz

=
[
M∗(z)

(
ψa(z)+ψs(z)

)]z=L
z=0 + M0

(∫
J+

dψs −

∫
J−

dψs +

∫
J0

|dψs |

)
−

∫ L

0
M∗(z)dψs

= M0

(∫
J+

dψs −

∫
J−

dψs +

∫
J0

|dψs |

)
−

∫ L

0
M∗(z)dψs ≥ 0,

where we have integrated by parts, used Equation (30)1, and in the last line used the fact that ψa(0)+
ψs(0)= 0 and M∗(L)= 0. Because of the arbitrariness of dψs , this again yields condition (23).

Finally, assume a perturbation dψ = dψa + dψd , dψs = 0, with ψd of the form (24). If [[ϕ∗
]](z0)= 0,∫ L

0
M∗(z)ψ ′

a(z)dz +

∫ L

0
T (z)

(
ψa(z)+ψd(z)

)
dz + M0

∣∣[[ψd ]](z0)
∣∣ ≥ 0,

which, in view of Equation (30), gives

[
M∗(z)ψa(z)

]z=L
z=0 +

∫ L

0

(
−M∗(z)+ T (z)

)
ψadz +

[
M∗(z)ψd(z)

]z=L
z=0 −

∫ L

0
M∗(z)dψd + M0

∣∣[[ψd ]](z0)
∣∣

= −M∗(z0)[[ψd ]](z0)+ M0
∣∣[[ψd ]](z0)

∣∣ ≥ 0,

and, consequently, the condition −M0 ≤ M∗(z0)≤ M0. Otherwise, if [[ϕ∗
]](z0) 6= 0, one obtains∫ L

0
M∗(z)ψ ′

a(z)dz +

∫ L

0
T (z)

(
ψa(z)+ψd(z)

)
dz + M0

(
[[ψd ]](z0)

)
sgn

(
[[ϕ∗

]](z0)
)

= −M∗(z0)[[ψd ]](z0)+ M0
(
[[ψd ]](z0)

)
sgn

(
[[ϕ∗

]](z0)
)
≥ 0,

and, since [[ψd ]](z0)is arbitrary, condition (25) follows.
The complete characterization of minimizers of the energy functional (11) again requires the second

variation inequality (26) and the additional condition coming from the relaxed energy functional (27),
that is, the beam curvature χ∗(z)≡ ϕ∗′

a (z) can only attain those values at which U and its lower convex
envelope U∗∗ coincide.

The detailed derivation of the solution follows that in [Royer-Carfagni 2001; Del Piero 2003]. The
starting point is the equilibrium equation (30)1. Considering Equation (4) from which we have T (z)=
qz + C1, the differential equation (30)1 can be easily integrated and, by introducing the natural condition
M∗(L)= 0, it provides the expected parabolic dependence of M∗ upon z, that is,

M∗(z)=
1
2q(L2

− z2)− C1(L − z). (31)

However, because of Equation (23), M∗ can take values only within the admissible range [−M0,M0].
Such a state coincides with the equilibrium states of a properly defined elastic-perfectly plastic beams, for
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which the plastic plateau is defined by the horizontal asymptotes of the M-χ curve. We notice that, due
to the parabolic dependence of M∗ on z, the first two equations of (23)) exclude the presence of plastic
zones of finite length along the beam, so that if a plastic deformation occurs, it has to be concentrated at
isolated points. In addition, condition (25) at the jump points of ϕ∗ is analogous to that associated with
a plastic hinge in the classical sense. Let us then consider, more in detail, the various possibilities.

Consider first the strain hardening M-χ law of part (a) of Figure 11. Assume that the load q and the
constant C1 in Equation (31) are such that −M0 < M∗(z) < M0. Then, by Equation (23) the rotation field
ϕ∗(z) is absolutely continuous, that is, ϕ∗

s (z)= ϕ
∗

d(z)≡ 0, and the corresponding curvature χ∗(z)≡ ϕ∗′
a (z)

can be found from the assumed M-χ constitutive relationship with Equation (31), as a function of C1. The
value of the constant C1 is found by imposing Equation (12) and the boundary condition ϕ(0)= 0, and
checking a posteriori that indeed −M0<M∗(z)<M0. If the applied load q is gradually augmented, using
the aforementioned procedure there will be a value of q such that |M∗(z)| reaches first the threshold value
M0 at some point, say zR , usually coinciding with the constrained extremity A of Figure 17. However,
before reaching such a value, the beam curvature becomes infinitely large in a neighborhood of such a
point. Further increasing the load q , the bending moment cannot increase any more at zR , but the effect
of the resultant rotation is that of producing a redistribution of the bending moments along the beam axis.
Eventually, the threshold value M0 is reached at a second point; infinitely large deflection of the beam
may now occur because of the formation of a collapse mechanism.

As the second case, let the M-χ relationship be the one of part (b) of Figure 11. When |M∗
|< MII, the

rotation field ϕ∗(z) and the value of the constant C1 in Equation (31) can be found as already discussed.
If q is further augmented, then in a certain portion of the beam axis MII < |M∗

|< MM, being M = MM

the Maxwell line as part (a) of Figure 14. In this portion there are three values of the curvature that
may correspond to the same value of the sectional bending moment, but minimizers of the energy can
only take values on the first linear branch, that is, |χ∗

| < χA because on this branch only the strain
potential U of Equation (11) and its lower convex envelope U∗∗ of Equation (27) coincide. Increasing q ,
then at some section, say again zR , |M∗(zR)| = MM. It is well known [Ericksen 1991] that in this case,
analogously to a stress driven test, the beam curvature |χ∗(zR)| jumps from the value χA to the value χB

along the Maxwell line of part (a) of Figure 14. Increasing q , the bending moment also increases, but the
beam curvature can never attain values in the interval (χA, χB). In other words, the moment-curvature
relationship is that corresponding to the points where U and its lower convex envelope U∗∗ coincide,
represented as well in part (b) of Figure 14. Eventually, like the previous cases, Equation (25) tell us
that concentrated rotations may develop at those sections where |M∗

| approaches M0, but only after the
beam curvature has reached very large uniform curvatures. The beam collapses when the threshold value
M0 is reached at two distinct sections of the beam.

When the M-χ relationship is that of part (c) of Figure 11, the rotation field ϕ∗(z) and the constant C1

in Equation (31) can be found as in the previous cases provided the load q is so small that |M∗(z)|< MII

for all z ∈ (0, L), that is, when one and only one value of the beam curvature corresponds to each value of
the bending moment. If q is increased so that MII ≤ |M∗(z)| ≤ M0 for some z, then it is possible to find
equilibrium states for which the absolute value of the beam curvature takes two distinct values, one in the
interval (χI MII/MI, χI M0/MI), that is, on the first linear elastic branch, and the other in (χII,+∞), both
corresponding to the same value of the bending moment. Again, the possibility of attaining the strain
softening branches is ruled out by the second variation condition (26). Moreover, consideration of the
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relaxed energy (27), represented in this case in part(b) of Figure 15, implies that only the linear elastic
branch can be attained by minimizers, because if |χ∗(z)| ∈ (χII,+∞) then U (χ∗(z)) 6= U∗∗(χ∗(z)).

The process of formation of a plastic hinge deserves some comments (see [Royer-Carfagni 2001]
for more details). Let us assume the beam is progressively loaded. Eventually, the bending moment
approaches the limit thresholds M0 (or −M0) at some points. A further increase of q involves the instan-
taneous formation of a concentrated rotation, that is, the point representative of M and χ immediately
reaches an infinite curvature corresponding to the point at infinity of the horizontal asymptotes of part
(c) of Figure 11.

Indeed, neither the softening branches of the moment-curvature relationship nor bending moments
in absolute value greater than M0 are accessible via deformation paths made of stable equilibrium con-
figurations. The beam collapses when the threshold value M0 is reached at two distinct sections of the
beam.

The beam response is very similar to the one just presented when the bending moment versus curvature
relationship is of the type indicated in parts (d) or (e) of Figure 11 As discussed in Section 4, the main
difference from case (c) is that now there is no strain hardening branch for χ ≥ χI. Therefore, by
Equation (23) stable equilibrium states can only attain the curvature interval (χ, χA) when |M∗(z)|< M0.
Strain localization occurs when |M∗(z)| = M0 at a certain cross section; the value of the bending moment
remains fixed at that section, while concentrated rotations are allowed. When q is further increased, this
produces a redistribution of the bending moment along the beam axis until, eventually, M0 is reached at
another cross section and we achieve collapse.

6. Discussion and conclusions

The main result of this work consists in having observed that the notion of plastic hinge, usually referred
to as an approximate or technical model in the classical plastic methods of structural analysis may be, as
a matter of fact, more accurate than traditionally reputed. In the classical approach, when the material is
modeled to be elastic-perfectly plastic and cross sections are assumed to remain planar in the deformation,
the bending moment M is a monotonically increasing function of the beam curvature χ , asymptotically
approaching, but never reaching, the full plastic moment M0 as χ → ∞. Ingenious solution methods,
such as the approach by Neal and Symonds in limit analysis [Neal 1963] have been developed under the
simplifying assumption that the bending moment remains a linear function of the beam curvature up to the
attainment of the full plastic moment, at which strain localization under the form of concentrated rotations
of the beam axis may indefinitely occur; this is the so-called plastic hinge model. Traditionally, such
methods are considered approximate since the transitory stage when the cross section is only partially
yielded is neglected.

On the other hand, here we have shown that a response that matches the static-kinematic response of
the plastic hinge model can be reproduced by maintaining the most classical Bernoulli–Navier hypothesis,
that is, that cross sections remain planar in the deformation, but simply considering the stress jump from
an upper to a lower yield point in the material stress-strain constitutive law. Indeed, such a jump is well
evident in strain driven experimental tests [Froli and Royer-Carfagni 1999] and is responsible for the
orderly formation of Lüder’s bands [Froli and Royer-Carfagni 2000]. This jump is usually neglected
in the elastic-plastic technical theories, but once it is considered, the moment-curvature relationship,



1698 GIANNI ROYER-CARFAGNI AND GIOVANNI BURATTI

deduced under the same hypotheses of the classical theories of beams, exhibits a strain-softening branch,
while the associated flexural strain potential becomes nonconvex and with oblique asymptotes. The
nonconvex character of the potential, together with its linear growth at infinity, are sufficient to provoke
a phenomenon presenting a strict similarity with a phase transition in the classical thermodynamic sense
within the solid state itself: when a threshold value, coinciding with the value of the full plastic moment,
is approached, the beam curvature exhibits a sudden transition. In particular, the beam cross section
immediately passes from a state where it is completely elastic to a state where it is completely plasticized,
and concentrated rotation may indefinitely occur while the cross sectional bending moment remains
constant. In other words, the response predicted upon considering the dichotomy between the upper and
lower yield points is surprisingly similar to that referred to as approximate in the technical theories. It
should be recalled that the pioneering experimental observations by Nakanishi et al. [1934] seemed to
confirm the approximate rather than the ideal response. As such, one may wonder why the results of such
tests have been completely forgotten and are not mentioned, to the authors’ knowledge, in the majority
of famous treatises.

Unfortunately, the present analysis is to some extent limited by the variational approach, which pre-
supposes the hypothesis of reversibility of deformation proper of holonomic plasticity, that is, inelastic
unloading can only occur along the same loading path so that the possibility of irreversible unloading,
following a path possibly different from the first loading branch, is ruled out. Thus, this approach is cer-
tainly not exhaustive and, in a certain sense, even unrealistic. Nevertheless, it certainly greatly facilitates
the search of stable equilibrium configurations because they can be investigated as energy minimizers.
For this goal recent results in the calculus of variations on space of functions allowing for discontinuities
have been conveniently used. On the other hand, consideration of irreversible unloading would require
a much more complicated treatment, at least from a mathematical point of view. In any case, although
unloading remains the essential aspect of the problem on the side of the localizing damage band, for
the case of stable bifurcation (at increasing load) it certainly plays no role for the initial postbifurcation
response.

A definite attempt to compare the proposed theory with the experimental observations is still lacking at
this stage. Unfortunately, the details of the experimental studies by Nakanishi have not been recorded in
the literature so that, in order to investigate the process leading to the strain localization at the mesoscopic
scale, an ad hoc experimental campaign is still needed. In particular, it will be important to evaluate the
actual width of the plastic hinge in order to interpret the sectional (mesoscopic) consequences of strain
localization. At the present time the theory seems to suggests that the thickness of the beam cross section
may be considered the characteristic length scale of the elastic-plastic transition, but this is certainly a
consequence of the orderly formation, at the microscale, of slip (Lüder) bands in a neighborhood of the
yielded cross sections. The relationship between the complex phenomena occurring at the meso and
microscale and their consequences in the macroscopic interpretation of the proposed theory are presently
under investigation and will be the subject of further work.

Another possible criticism could be that the strain hardening branch in the stress-strain response,
though well evident in the experiments, is not considered. The material is consequently assumed to be
able to withstand indefinitely large strain at constant stress. However, our main goal here has been to
show the (quite surprising in our opinion) consequences on the gross structural response of considering
just a small stress jump in the constitutive relationship, while maintaining all the other hypotheses of the
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classical structural technical theories. Indeed, it is the stress jump from the upper to the lower yield point
that induces the peculiarities of the strain energy, that is, its nonconvexity and linear growth at infinity,
and it is precisely this that allows for the possibility of sudden discontinuities in the rotation of the beam
axis, with a process similar in kind to a phase transition.
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