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A VARIATIONAL ASYMPTOTIC MICROMECHANICS MODEL FOR
PREDICTING CONDUCTIVITIES OF COMPOSITE MATERIALS

TIAN TANG AND WENBIN YU

The focus of this paper is to extend the variational asymptotic method for unit cell homogenization (VA-
MUCH) to predict the effective thermal conductivity and local temperature field distribution of heteroge-
neous materials. Starting from a variational statement of the conduction problem of the heterogeneous
continuum, we formulate the micromechanics model as a constrained minimization problem using the
variational asymptotic method. To handle realistic microstructures in applications, we implement this
new model using the finite element method. For validation, a few examples are used to demonstrate the
application and accuracy of this theory and companion code. Since heat conduction is mathematically
analogous to electrostatics, magnetostatics, and diffusion, the present model can also be used to predict
effective dielectric, magnetic, and diffusion properties of heterogeneous materials.

1. Introduction

Along with increased knowledge and manufacturing techniques for materials, more and more materials
are made with engineered microstructures to achieve better performance. To successfully design and
fabricate these materials, we need efficient high-fidelity analysis tools to predict their effective proper-
ties. Many composites are applied in temperature sensitive environments such as electronic packaging
and thermal protection systems. Accurate prediction of thermal properties such as the specific heat,
coefficients of thermal expansion, and thermal conductivity becomes important for such applications. In
this paper, we focus on developing a model to predict effective thermal conductivity and associated local
temperature and heat flux distribution within the heterogeneous materials.

The effective thermal conductivity of composites is strongly affected by many parameters including the
properties, volume fractions, distributions, and orientations of constituents. Numerous models have been
proposed to predict the effective thermal conductivity [Progelhof et al. 1976]. These models include sim-
ple rules of mixtures, self consistent scheme [Hashin 1968], generalized self consistent scheme [Lee et al.
2006], finite element method [Ramani and Vaidyanathan 1995; Islam and Pramila 1999; Xu and Yagi
2004; Kumlutas and Tavman 2006], effective unit cell approach [Ganapathy et al. 2005] and variational
bounds [Hashin and Shtrikman 1962]. Very recently, a new framework for micromechanics modeling,
namely variational asymptotic method for unit cell homogenization (VAMUCH) [Yu and Tang 2007a],
has been introduced using two essential assumptions in the context of micromechanics for composites
with an identifiable unit cell.
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Assumption 1. The exact field variable has volume average over the unit cell. For example, if ¢ is the
exact temperature within the unit cell, there exist ¢ such that

1
z/f=5f9¢dszs<¢>, (1)

where €2 denotes the domain occupied by the unit cell and its volume, and symbol = denotes a definition.

Assumption 2. The effective material properties obtained from the micromechanical analysis of the unit
cell are independent of the geometry, boundary conditions, and loading conditions of the macroscopic
structure, which means that effective properties are assumed to be the intrinsic properties of the material
when viewed macroscopically.

Note that these assumptions are not restrictive. The mathematical meaning of the first assumption is that
the exact solutions of the field are integrable over the domain of the unit cell, which is true almost all the
time. The second assumption implies that we will neglect the size effects of the material properties in
the macroscopic analysis, which is an assumption often made in the conventional continuum mechanics.
Of course, the micromechanical analysis of the unit cell is only needed and appropriate if n =h /] <K 1,
with & as the characteristic size of the unit cell and [ as the macroscopic size of the macroscopic material.

This new approach to micromechanical modeling has been successfully applied to predict thermo-
mechanical properties including elastic properties, coefficients of thermal expansion, and specific heats
[Yu and Tang 2007a; 2007b]. In this work, we will use this approach to construct micromechanics models
for effective thermal conductivity and the corresponding local fields such as temperature and heat flux
within a unit cell.

2. Theoretical formulation

VAMUCH formulation uses three coordinates systems: two Cartesian coordinates x = (x1, x», x3) and
y = (»1, ¥2, ¥3), and an integer-valued coordinate n = (ny, no, n3) (see Figure 1). We use x; as the
global coordinates to describe the macroscopic structure and y; parallel to x; as the local coordinates
to describe the unit cell (Here and throughout the paper, Latin indices assume 1, 2, and 3 and repeated
indices are summed over their range except where explicitly indicated). We choose the origin of the
local coordinates y; to be the geometric center of unit cell. For example, if the unit cell is a cube with
edge lengths d;, then y; € [—%, %
introduce integer coordinates n;. The integer coordinates are related to the global coordinates in such a
way that n; = x; /d; (no summation over 7). It is emphasized that although only a square array is sketched
in Figure 1, the present theory has not such limitations.

As implied by Assumption 2, we can obtain the same effective properties from an imaginary, un-
bounded, and unloaded heterogeneous material with the same microstrucutre as the real, loaded, and
bounded one. Hence we could derive the micromechanics model from an imaginary, unloaded, heteroge-

]. To uniquely locate a unit cell in the heterogeneous material we also

neous material which completely occupies the three-dimensional space % and composes infinitely many
repeating unit cells. The solution to the steady-state conduction problem, which is sufficient for us to
find the effective thermal conductivity, can be obtained by the stationary value problem of summation of
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Figure 1. Coordinate systems for heterogenous materials (only a two-dimensional
square array unit cell is drawn for clarity).

the “energy” integral over all the unit cells [Hashin 1968; Berdichevsky 1977], which is:

oo
m= )" %/ Kij ¢ ¢,d2, )
n=—oo Q
where K;; are components of the second-order thermal conductivity tensor, and
d¢(n;y)
¢imy) = ———, 3)
9y

with () ; = % Here ¢ is a function of the integer coordinates and the local coordinates for each unit cell.

i

In view of the fact that the infinitely many unit cells form a continuous heterogeneous material, we need
to enforce the continuity of the temperature field ¢ on the interface between adjacent unit cells, which
is (n1, ny, n3):

¢ (ni,ny,n3;di/2, y2, y3) = ¢p(n1 +1,n2,n3; —di/2, y2, y3),

¢ (ni,na,n3; y1,d2/2, y3) = ¢ (ni, na+ 1,135 y1, —da /2, y3),

¢(n1, na, n3; yi, y2,ds/2) = ¢ (ni, na, n3 + 15 y1, ya2, —dsz/2). “)
The exact solution of the steady heat conduction problem will minimize the summation of the “energy”

integral in Equation (2) under the constraints in Equations (1), and (4). To avoid the difficulty associated
with discrete integer arguments, we can reformulate the problem, including Equations (2), (3), and (4),
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in terms of continuous functions using the idea of the quasicontinuum [Kunin 1982]. The corresponding
formulas are:

0 (X;y)
m=3 / (Kij ¢,i ¢,j)dR, dixy)=———, 5)
8 .
R Yi
and
¢ (x1,x2,x3;d1/2, 2, y3) = d(x1 +d1, x2, x3; —=d1/2, y2, y3),
@ (x1, x2, X35 y1,d2/2, y3) = ¢ (x1, X2 + >, X3, y1, —d2/2, y3),
@ (x1, x2, X35 Y1, Y2, d3/2) = P (x1, X2, X3+ d3; y1, Y2, —d3/2). (6)

Using the technique of Lagrange multipliers, we can pose the thermal conduction problem as a stationary
value problem for the following functional:

J=f%{<§l<i,- G b)) +A({() — V)
+/ vilo(x1, x2, x3;d1/2, y2, y3) — ¢ (x1 +di, x2, x3; —d1/2, y2, y3)1dS;
N
+/ 2l (x1, x2, x3; y1,d2/2, y3) — P (x1, X2 +d>, X35 y1, —d2/2, y3)]1dS>
S2

+/ V3 (@ (x1, x2, X35 Y1, ¥2, d3/2) — P (x1, X2, X3 —|—d3;y1,y2,—d3/2)]dS3}d9{, @)
S3

where A and y; are Lagrange multipliers introduced to enforce the constraints in Equations (1) and (6),
respectively, and S; are the surfaces with n; = 1. The main objective of micromechanics is to find the
real temperature field ¢ in terms of 1, which is a very difficult problem because we have to solve this
stationary problem for each point in the global system x; as in Equation (7). It will be desirable if we
can formulate the variational statement posed over a single unit cell only. In view of Equation (1), it is
natural to express the exact solution ¢ as a sum of the volume average i plus the difference, such that

Pxy) =v(x) +wxy), ()

where (w) = 0 according to Equation (1). The very reason that the heterogenous material can be homog-
enized leads us to believe that w should be asymptotically smaller than v, that is, w ~ n . Substituting
Equation (8) into Equation (7) and making use of Equation (5), we can obtain the leading terms of the
functional according to the variational asymptotic method [Berdichevsky 1977] as:

112/{(%1% w i w,j>+/\<w)+f v [wx; di/2, y2, y3) —w(x; —d1/2, y2, y3) — Y1y | dSy
R M
+/ v2 [w; yi,d2/2, y3) —w(x; yi, —da/2, y3) — ¥;2d2 ] dS,
S>

+/ y3 [wx: yi, 2, d3/2) — w(x; y1, y2, —d3/2) — ¥.3d3] d53}d9i, ©)
s
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where ().; = ??in)‘ Although it is possible to carry out the variation of J; and find the Euler—Lagrange
equations and associated boundary conditions for w, which results in inhomogeneous boundary condi-
tions, it is more convenient to use a change of variables to reformulate the same problem so that the
boundary conditions are homogeneous. Considering the last three terms in Equation (9), we use the
following change of variables to express w as:

w(x;y) =y +¢(X5y), (10)

with ¢ normally termed as fluctuation functions. We are free to choose the origin of the local coordinate
system to be the center of the unit cell, which implies the following constraints on ¢:

(¢)=0. (11)

Substituting Equation (10) into Equation (9), we obtain a stationary value problem defined on the unit
cell for ¢, such that

Jo=3(Kij (Vi + i) (¥ +25)) +A(¢) +/ ¢t —¢7hds, +/ = 7HdS,

S] 52
+/ ys(C P —¢7dss, (12)
S3
with ¢+ = ¢ lyi=d; 2, and — ¢lyi=—d; /2, for i = 1,2, 3 where ,; will be shown later to be the com-

ponents of the global temperature gradient vector for the effective material with homogenized material
properties. The functional Jg in Equation (12) forms the backbone of the present theory. This stationary
problem can be solved analytically for very simple cases such as binary composites, however, for general
cases we need to use numerical techniques such as the finite element method to seek numerical solutions.

3. An illustrative example

To illustrate the solution procedure of the stationary problem of the functional in Equation (12), we will
consider a periodic binary composite made of anisotropic layers with material axes that are the same as
the global coordinates x;, so that the material is uniform in the x; — x, plane and periodic along the x3
direction. A typical unit cell can be identified as shown in Figure 2, with the dimension along y; given
by i and dimensions along y; and y, arbitrary. Let ¢; and ¢, denote the volume fraction of the first and
second layer, respectively, and we have ¢ + ¢» = 1.

Because of the uniformity of the structure in the x; — x, plane, we know that the solution to ¢ will
be independent of y; and y;, and is a function of y3 only. Taking advantage of the this fact, we can
specialize the functional in Equation (12) for this particular case in a matrix form as:

(¢1=3)h 3
15:/ / S Lo gargm o dy3+/2 Lyorgoyo ;5,0 4y,
sy /-4 2 @-bn L2

h h
+ 73 [;@)(5) —~ c“>(—§>]} ds, (13)
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Figure 2. Sketch of a binary composite.

with W@ = | .1 Y0 Y3 + {(a)J for o = 1,2, and ¢ @ as the fluctuation functions of the temperature
for each layer. The thermal conductivity matrix K@ is a fully populated symmetric matrix for a general
anisotropic material, such that

Ky K3 K

KO= K K2 K

Kl K il
The corresponding differential statement of the variational statement in Equation (13) can be obtained
following normal procedures of the calculus of variations, as follows:

Ky = (14)

h

(¢1—5)h | s )
/ C()dy3+/ ¢@dy; =0,
—4 (A —¢2)h

h h
oo
¢ 2) = (2),
¢V@pih—h/2)=¢D(p1h—h)2),
Kl(;,)lﬂ 1 —I—K(l)wz—I—K(l) [lﬁ ; +§(1)] |y%:_l _ K(z)w | +K(2)lﬁ 2_|_K(2) [W +§(2)] | i

K v+ K vt K [vate ] = KW+ KW+ KG [0 +¢9]

y3:(¢>1—%) y3=(¢1—3)h

Clearly this differential statement contains two second-order ordinary differential equations in Equation
(14) and five constraints for solving ¢® and A. The solution to A is found to be zero and ¢® are linear
functions of y3. Having solved the fluctuation functions, ¥, the density of the “energy” integral of this
effective material can be trivially obtained as:

T
/A K, Ki, Ki5 | [Va

1
HQ:E (9] Kikz Kéﬁz K;3 Yo,
1//;3 K?} K;% Kék3 1#;3
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with the effective thermal conductivity coefficients K l.*j as

(K — K219

K}, =(Kn)—
K2+ KV
(1) (2)\2
Ky = (Kap) — 23— K ) 010
K§§)¢1 + K(1)¢2
1) @
* K33 K33
33 —

1 2
¢2K3(3) +‘151K3(3)

1 2 1 2
(K — KK — KD i ¢
1 2
0Ky + 31K

K, = (Ki2) —

’

2 2
Kl(é)K( )¢] + K1(3)K(1)¢2
2
DK + oK

*
K13_

1 2 2 1
KVKP¢ + K2k Dg,
DK + K3

It is interesting to note that K35 is the same as the rule of mixtures based on Reuss’ hypothesis for this

*
K23 -

special case. If K 1%) =K, (2) and K%) =K, (2) , then K7, K3,, and K7}, are the same as the rule of mixtures
based on Voigt’s hypothe51s, and K75 and K23 are the same as the constituent properties.

4. Finite element implementation

For more general cases, we need to rely on numerical solutions. Here, we will implement the variational
statement in Equation (12) using the well-established finite element method. It is possible to formulate
the finite element method solution based on Equation (12), however, it is not the most convenient and
efficient way because Lagrange multipliers will increase the number of unknowns. To this end, we can
reformulate the variational statement in Equation (12) as the stationary value of the following functional

1
HQ:E/ Kij (Vi +84) () +¢,5) A2, (s)
Q

under the following three constraints
(=, for i=1,2,3. (16)

The constraint in Equation (11) does not affect the minimum value of Il but helps uniquely determine
. In practice, we can constrain the fluctuation function at an arbitrary node to be zero and later use this
constraint to recover the unique fluctuation function. It is fine to use the penalty function method to
introduce the constraints in Equation (16). However, this method introduces additional approximation
and the robustness of the solution depends on the choice of large penalty numbers. Here, we choose to
make the nodes on the positive boundary surface, y; = d; /2, slave to the nodes on the opposite negative
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boundary surface, y; = —d; /2. By assembling all the independent active degrees of freedom, we can
implicitly and exactly incorporate the constraints in Equation (16). In this way, we also reduce the total
number of unknowns in the linear system which will be formulated as follows.

Introduce the following matrix notations

@=Ly Y ¥l (17)

s 2

38)’1 35”
1 =15t =135 (¢ =Tt (18)

d 9

ay3 ays

where 'y, is an operator matrix. If we discretize ¢ using the finite elements as

¢ (xis yi) = G(yi)§ (xi), (19)

where G representing the shape functions and & a column matrix of the nodal values of the fluctuation
function. Substituting Equations (17), (18), and (19) into Equation (15), we obtain a discretized version
of the functional,

1
Hsz=E(éTFS+2€TKh¢<D+¢TK¢q>¢), (20)

where
F=/(FhG)TK(FhG)dQ, Kh¢=/(FhG)TKdQ, K¢¢=/ KdS,
Q Q Q

with K as the 3 x 3 matrix of K;;. Minimizing I1g in Equation (20), we obtain the following linear
system
F&§ =—Kpp. (21)

It is clear from Equation (21) that the fluctuation function, &, is linearly proportional to ®, which means
the solution can be written symbolically as

§=569 (22)

Substituting Equation (22) into (20), we can calculate the density of the “energy” integral of the unit cell
as

1 1
Mg = ﬁqﬂ (&5 Kno + Koo) © = 5oI>T1<*oI>. (23)

It can be seen that K* in Equation (23) is the effective thermal conductivity matrix, and & is the global
temperature gradient.

If the local fields within the unit cell are of interest, we can recover those fields, including local
temperature and heat flux, in terms of the macroscopic behavior, including the global temperature v and
the corresponding gradient v.;, and the fluctuation function ¢. First, we need to uniquely determine the
fluctuation function. Otherwise, we could not uniquely determine the local temperature field. Because
we have fixed an arbitrary node and made nodes on the positive boundary surfaces, y; = +d; /2, slave
to the corresponding negative boundary surfaces, y; = —d; /2, in forming the linear system in Equation
(21), we need to construct a new array & from &y by assigning the values for slave nodes according
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to the corresponding active nodes, and assigning zero to the fixed node. Clearly, & corresponds to the
stationary value of Ilg, in Equation (15) under constraints in (16). However, & may not satisfy (11). The
real solution, denoted as &, can be found trivially by adding a constant to each node so that Equation
(11) is satisfied.

After having determined the fluctuation functions uniquely, we can recover the local temperature using
Equations (8) and (10) as ¢ =+ y;¢.; + G&y®, where G is different from G due to the recovery of slave
nodes and the constrained node. The local temperature gradient field can be recovered using Equations
(3) and (18):

o1 $2p3]" =D +T1,GED.

Finally, the local heat flux field can be recovered straightforwardly using the three-dimensional Fourier
law for the constituent materials, g; = —K;;¢ ;. We have implemented this formulation in the com-
puter program VAMUCH. In the next section, we will use a few numerical examples to demonstrate the
application and accuracy of this theory and code.

5. Numerical examples

VAMUCH provides a unified analysis for general one-, two-, or three-dimensional unit cells. First, the
same code VAMUCH can be used to homogenize binary composites (modeled using one-dimensional
unit cells), fiber reinforced composites (modeled using two-dimensional unit cells), and particle rein-
forced composites (modeled using three-dimensional unit cells). Second, VAMUCH can reproduce the
results for lower-dimensional unit cells using higher-dimensional unit cells. That is, VAMUCH predicts
the same results for binary composites using one-, two-, or three-dimensional unit cells, and for fiber
reinforced composites using two- or three-dimensional unit cells.

In this section, several examples will be used to demonstrate the accuracy of VAMUCH for predict-
ing the effective thermal conductivity and calculating the local heat flux field within a unit cell due
to temperature gradients. To facilitate comparison with existing models in the literature, we only con-
sider composites with isotropic constituents although the present method and code can handle general
anisotropic constituents.

5.1. Effective thermal conductivity of fiber reinforced composites. The first example is a carbon fiber
reinforced aluminum matrix composite. Both constituents are isotropic with thermal conductivity K =
129 W/(m - K) for the carbon fiber, and K =237 W/(m - K) for aluminum matrix. The fiber is of circular
shape and arranged in a square array. The prediction of VAMUCH for the effective thermal conductivity
along the fiber direction exactly obeys the rule of mixtures, which has been generally accepted as the
exact solution for the longitudinal thermal conductivity for fiber reinforced composites with isotropic
constituents [Hashin 1968].

However, the effective thermal conductivity coefficients in the transverse directions (K3, and K33)
do not in general obey the rule of mixtures. To validate the present theory, we compare the VAMUCH
prediction with other models in the literature [Springer and Tsai 1967; Behrens 1968; Donea 1972;
Hashin 1983; Hatta and Taya 1986]. As shown in Figure 3, VAMUCH results are perfectly located
between the variational bounds of [Donea 1972], while the Springer—Tsai model [Springer and Tsai
1967] and the lower bound of [Hashin 1983] underpredict the results. We have also found out that
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Figure 3. Effective transverse thermal conductivity of the carbon/Al composite.

VAMUCH results are the same as those obtained by Behrens [1968], Hatta and Taya [1986], and the
upper bound of [Hashin 1983], and these results are not shown in the plot for clarity.

The second example is a boron fiber reinforced aluminum composite with isotropic constituents and
thermal conductivity K = 27.4 W/(m - K) for the boron fiber, and K = 237 W/(m - K) for the aluminum
matrix. The fiber is also circular and arranged in a square array. The effective thermal conductivities
computed by different models are plotted in Figure 4. We found out that the results of the Hashin upper
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Figure 4. Effective transverse thermal conductivity of the boron/Al composite.
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bound [Hashin 1983] are the same as those of [Behrens 1968] and [Hatta and Taya 1986]. Hence only
the Hashin upper bound is plotted in the figure. It can be observed that the predictions of the Hashin
upper bound are slightly higher than those of VAMUCH when the fiber volume fraction is higher than
40%. We also observe that the difference between the Hashin upper and lower bounds [Hashin 1983] is
significant for this case which means they are not very useful for composites with constituents having
relatively high contrast ratio in thermal conductivity properties. VAMUCH results are also nicely located
in the much narrower bounds of [Donea 1972], while the prediction of Springer and Tsai [1967] is not
accurate for this case because it is significantly lower than the lower bound of [Donea 1972].

In the two examples just described, the thermal conductivity of the matrix is higher than that of the
fiber. Now, let us consider a glass/polypropylene composite with thermal conductivity K = 1.05 W/(m-K)
for the glass fiber, and K = 0.2 W/(m - K) for the polypropylene matrix. We plot the change of effective
transverse thermal conductivity of composites with respect to volume fraction of fibers in Figure 5. Again,
we find out that VAMUCH results lie between the variational bounds of [Donea 1972]. And the results
of the Hashin lower bound [Behrens 1968; Hashin 1983; Hatta and Taya 1986] are identical but slightly
lower than VAMUCH results when the volume fraction of fibers is higher than 40%. Similarly, as in the
previous case, we can observe that Donea [1972] provides much narrower bounds than Hashin [1983]
for this case.

We also use ANSYS, a commercial finite element method package, to calculate the effective ther-
mal conductivities of these three fiber reinforced composites. According to Islam and Pramila [1999],
given the direction along which we would like to evaluate the thermal conductivity, we apply isothermal
conditions to the edges perpendicular to the direction we want to evaluate the thermal conductivity and
apply adiabatic conditions to the edges parallel to this direction. The effective thermal conductivity is
obtained as the ratio between the average heat flux and average temperature gradient. We found out that
VAMUCH results are almost the same as the ANSYS results for similar discretization schemes.

0.65

—&—VAMUCH
06 —— Hashin Upper bound
—®— Hashin Lower bound
—=&— Donea Upper bound
— - Donea Lower bound

0.55

0.5

0.45

0.4
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Effective transverse thermal conductivity (W/m.K)

10 15 20 25 30 35 40 45 50 55 60

Volume fraction of fibers (%)

Figure 5. Effective transverse thermal conductivity of the glass/polypropylene composite.
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Figure 6. Effective transverse thermal conductivity with respect to varying contrast ratios.

To verify whether VAMUCH can be applied to composites with very high contrast ratio and high
volume fraction, we choose a composite formed by circular fibers arranged in a square array. The volume
fraction of fibers is 65%. We fix the thermal conductivity of the matrix at 1 W/(m - K), while the thermal
conductivity of the fiber varies from 10 to 10*. We plot the effective thermal conductivity computed using
different approaches with different contrast ratios in Figure 6. It can be seen that VAMUCH results fall
right on the curve of the ANSYS results and lie between the Donea variational bounds. The results of
the Hashin lower bound [Hashin 1983] are identical to those obtained from Behrens [1968], Progelhof
et al. [1976], and Hatta and Taya [1986]. It is obvious that these approaches underpredict the results. For
these contrast ratios, the Hashin upper bounds are too large to be nicely plotted in the same figure.

5.2. Effective thermal conductivity of particle reinforced composites. Due to the special arrangements
of the constituents of particle reinforced composites, three-dimensional unit cells are required to accu-
rately model the microstructures. In this section, we will use VAMUCH to analyze two typical particle
reinforced composites to validate the three-dimensional predictive capability of VAMUCH.

The first example is a SiC particle reinforced aluminum composite. The spherical SiC particles are
embedded in a triply periodic cubic array. Both constituents are isotropic with thermal conductivities
K =120 W/(m - K) for the SiC particles, and K = 237 W/(m - K) for the aluminum matrix. The change
in effective thermal conductivity of composites with respect to volume fraction of particles are plotted
in Figure 7. VAMUCH results have an excellent agreement with the Hashin upper bound [Budiansky
1970; Cheng and Vachon 1970; Hashin 1983], although Budiansky [1970] and Cheng and Vachon [1970]
slightly underpredict the results when the volume fraction of particles are higher than 20%. It was also
found that the VAMUCH results are very close to those calculated by McPhedran and Mckenzie [1978].
All these predictions fall within the variational bounds of [Donea 1972]. It can be observed that the results
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of Lewis and Nielsen [2003] significantly underpredict the effective thermal conductivity in comparison

to other approaches.

Another example is an alumina (Al,O3) particle reinforced polyethylene composite. This composite
has the same microstructure as the previous example. Both components are also isotropic with thermal
conductivities K =31 W/(m - K) for alumina particles, and K = 0.545 W/(m - K) for the polyethylene
matrix. The contrast ratio of the thermal conductivity of the two components is as high as 56.88. The
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Figure 8. Effective thermal conductivity of the Al,Os/polyethylene composite.
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predictions of different approaches are shown in Figure 8. VAMUCH results agree with McPhedran and
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Mckenzie [1978] at different volume fractions and with the lower bound of Hashin [1983] very well if
the volume fraction of the particles is smaller than 25%. The prediction of Lewis and Nielsen [2003]
is also very close to that of VAMUCH if the volume fraction of particles is very small. The difference
between the variational bounds of [Donea 1972] becomes too large to be useful for high volume fraction
of particles. The prediction of Cheng and Vachon [1970] for this case cannot be considered as accurate
because it is not located between the lower and upper bounds of [Donea 1972]. We also need to point
out that for this case, the results of the Hashin upper bound are too different from the lower bound and
cannot be nicely plotted in the same figure.

We also analyzed these two examples of particle reinforced composites using ANSYS following the
approach of Kumlutas and Tavman [2006]. Again, we found out VAMUCH results are identical to
ANSYS results if similar meshes are used for both approaches.

It is noted that the Hashin bounds are known to be the best possible bounds for statistically isotropic or
transversely isotropic composites, when the only available geometrical information is the phase volume
fractions [Hashin and Shtrikman 1962]. However, such bounds can be improved if additional information,
such as shape of inclusions and geometry of microstructure are added into the formulation [Hashin 1983].
It has been shown that the Hashin lower bound or upper bound is the exact solution for composite spheres
assemblage (CSA) [Hashin 1968], which explains why one of the Hashin bounds agrees with VAMUCH
very well if the inclusion volume fraction is not very large. Donea bounds [Donea 1972] are not rigorous
variational bounds. Rather the material is considered as a composition of CSA within the largest possible
circle/sphere and matrix. The Voigt rule of mixtures is used to obtain the Donea upper bound and the
Ruess rule of mixtures is used to obtain the Donea lower bound. The effective properties of a CSA are
calculated using the theory of Hashin [1968], which is also one of the Hashin bounds. Therefore, Donea
bounds will fall outside at least one of the Hashin bounds, as is consistently shown in these examples.
The gap between the Donea bounds could be smaller than that of the Hashin bounds because more
information has been used in obtaining the Donea bounds.

5.3. Recovery of local heat flux. VAMUCH can accurately recover the local heat flux distribution within
the unit cell due to temperature gradients. We will use the ANSYS results as benchmarks to verify the
prediction of VAMUCH. First, we consider the glass/polypropylene fiber reinforced composite with a
fiber volume fraction of 0.2. Due to the difference in thermal conductivities of the two components,
the local heat flux distribution resulting from 100 K/m in the y, direction is not uniform within a unit
cell. The distribution contours of g, and g3 are plotted in Figure 9 (left and right, respectively). The
sudden changes of local heat flux at the interface between the fibers and the matrix are well captured by
VAMUCH. For a quantitative comparison, we also plot the local heat flux distribution ¢, along y, =0
predicted by VAMUCH and ANSYS in Figure 10. It can be seen that there is excellent agreement
between these two sets of results.

Second, we choose a special example that is a composite having an X-shape microstructure. The local
heat flux distribution predicted by VAMUCH is shown in Figure 11. There are narrow necks at the corner
contacts between the reinforcements that exhibit significant fluctuation in the local heat flux. The local
heat flux distributions along the diagonal line predicted by VAMUCH and ANSYS are plotted in Figure
12. Excellent match between these two approaches is clear from this plot.
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Figure 9. Left: Contour plot of heat flux ¢, in the glass/polypropylene composite. Right:
Contour plot of heat flux g3 in the glass/polypropylene composite.

6. Conclusion

The variational asymptotic method for unit cell homogenization (VAMUCH) has been extended to predict
the effective thermal conductivity coefficients of composites. In comparison to existing models, the
present theory has the following unique features:
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Figure 10. Heat flux ¢, distribution along y, = 0 in the glass/polypropylene composite.
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Figure 11. Contour plot of the heat flux of an X-shape composite.
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Figure 12. Heat flux of the X-shape composite along the diagonal line.
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(1) It adopts the variational asymptotic method as its mathematical foundation. It invokes only essential
assumptions inherent to the concept of micromechanics.

(i1) It has an inherent variational nature and its numerical implementation is shown to be straightforward.

(iii) It handles one-, two-, and three-dimensional unit cells uniformly. The dimensionality of the problem
is determined by the periodicity of the unit cell.

The present theory is implemented in the computer program, VAMUCH. Numerous examples have
clearly demonstrated its application and accuracy as a general-purpose micromechanical analysis tool.
For the examples we have studied, although VAMUCH results are almost identical to ANSYS results,
VAMUCH has the following advantages over ANSYS for micromechanical analysis:

(i) VAMUCH can obtain different material properties in different directions simultaneously, which is
more efficient than those approaches requiring multiple runs under different temperature conditions.

(ii)) VAMUCH can model general anisotropic heterogeneous materials with constituents having full
anisotropy (with six material constants for thermal conductivity), while ANSYS and other finite el-
ement method packages can only handle constituents up to orthotropic material (with three material
constants for thermal conductivity). The current finite element method approaches for predicting
thermal conductivity [Islam and Pramila 1999; Kumlutas and Tavman 2006] are restricted to be at
most macroscopically orthotropic, which is an unnecessary restriction.

(iii) VAMUCH calculates effective properties and local fields directly with the same accuracy as the
fluctuation functions. No postprocessing calculations which introduces more approximations, such
as averaging temperature gradient and heat flux, are needed.

As a byproduct of validating VAMUCH, we also provided a brief assessment of existing models for
predicting effective thermal conductivity.

Due to the mathematical analogy of heat conduction, electrostatics, magnetostatics, and diffusion, the
present theory and the companion code can also be used to predict effective dielectric, magnetic, and
diffusion properties of heterogeneous materials.
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