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EFFECT OF NONHOMOGENEITY ON THE CONTACT OF AN ISOTROPIC
HALF-SPACE AND A RIGID BASE WITH AN AXIALLY SYMMETRIC RECESS

SAKTI PADA BARIK, MRIDULA KANORIA AND PRANAY KUMAR CHAUDHURI

We study an axially symmetric frictionless contact problem between a nonhomogeneous elastic half-
space and a rigid base that has a small axisymmetric surface recess. We reduce the problem to solving
Fredholm integral equations, solve these equations numerically, and establish a relationship between the
applied pressure and the gap radius. We find and graph the effects of nonhomogeneity on the normal
pressure, critical pressure and on the surface displacement.

1. Introduction

When two bodies are placed in contact, they touch either at a point, along a line, over a surface or in
a combination thereof. While the initial contact is determined by the geometric features of the bodies,
the extent generally changes when the bodies are deformed by applied forces, changes in temperature
or other sources of stress. In the study of contact problems, a class of problems is considered when two
bodies are in contact without a bond, so that the region of contact is not known. Here, determining the
contact region, which depends on geometric features as well the load distribution, presents an additional
task for finding the stress distribution. Contact problems have been studied extensively in the literature,
but in most cases the study was confined to isotropic and homogeneous solids. With the increasing use
of functionally graded materials or anisotropic materials in industry, the study needs to be extended to
these materials also.

A comprehensive list of work by earlier investigators has been provided in [Sneddon and Lowengrub
1969] and also [Gladwell 1980]. Among the recent works on the contact problems, notable are the works
of Civelek et al. [1978], Schmuesre et al. [1980], Gecit [1981], Selvanduri [1983], Loboda and Tauchert
[1985], Martynyak [1985], Fabrikant [1986], Li and Dempsey [1988], Wu and Yen [1994], Shvets et al.
[1996], Argatov [2000], Brock and Georiadis [2001], Kit and Monastyrsky [2001], Argatov [2004], and
Barik et al. [2006].

The very important class of contact problems known as receding contact problems is the subject of
study for many investigators. If the contact area diminishes as the load is applied, the contact is called
receding. The analytical studies involving receding contact in homogeneous and graded media can be
found in [Hussain et al. 1968; Noble and Hussain 1969; Weitsman 1969; Pu and Hussain 1970; Keer et al.
1972; Gecit 1986; Nowell and Hills 1988; Chaudhuri and Ray 1998; Birinci and Erdol 1999; Chaudhuri
and Ray 2003; Comez et al. 2004; El-Borgi et al. 2006]. Numerical studies based either on the finite
element method or on the boundary element method can be found in [Jing and Liao 1990; Garrido et al.
1991; Paris et al. 1995; Satish Kumar et al. 1996; Garrido and Lorenzana 1998].

Keywords: Hankel transform, dual integral equation, Fredholm integral equation, elastic nonhomogeneity.
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Figure 1. The semiinfinite solid with recess considered here.

In a recent paper, Kit and Monastyrsky [2001] discussed an axially symmetric problem of frictionless
contact between an elastic half space and a rigid base with a small surface recess. The elastic material
considered was isotropic and homogeneous. The present investigation aims at studying a similar problem,
but in an nonhomogeneous elastic medium.

The nonhomogeneity arises because the rigidity modulus varies with distance in the medium. Al-
though in the homogeneous case the displacement components are expressible in terms of potential
functions, the solution of the governing equations is not so simple here, because of the nonhomogeneous
modulus. Following the technique discussed in [Ozturk and Erdogan 1993], we have found the displace-
ment components and, using the boundary conditions, have obtained a pair of dual integral equations
Further manipulation yields Fredholm integral equations, which we solve numerically. We have done
numerical computations to show the effect of the nonhomogeneity. Finally, we have checked that results
of [Kit and Monastyrsky 2001] are recovered from ours by zeroing the nonhomogeneous parameter.

2. Formulating the problem

Let a semiinfinite solid of nonhomogeneous isotropic material with a flat surface lie on a semiinfinite
solid of rigid material. The boundary of the solid of rigid material is everywhere planar except for a
geometrical defect, which is shallow axisymmetric recess, as seen in Figure 1. We put the origin at the
common boundary of the half spaces and point the z1-axis of the cylindrical coordinate system (r1, θ, z1)

into the elastic medium along the recess’s axis of symmetry. We represent the bounding surface of the
rigid base containing the recess by the equations

z1 = f1(r1)=

− h0

(
1 −

r2
1

b2

)3/2
, 0< r1 ≤ b,

0, r1 > b.

We shall assume that contact is smooth. In the absence of applied pressure on the solids, contact is made
along the plane z1 = 0, except for the central area | r1 |< b. Applying the normal pressure p at infinity
will cause the contact surface to increase. Let a1(p) be the radius of the gap, that is, the region in which
there is no contact, as an as-yet unknown function of p, as shown in Figure 2. Before proceeding, it
will be convenient to adopt dimensionless variables by rescaling all lengths by the problem’s only length
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Figure 2. The first contact point a1 moves inward as the pressure p increases.

scale b:

r =
r1

b
, z =

z1

b
, h =

h0

b
, a =

a1

b
, σ̂i, j =

σi, j

µ0
, ûi =

ui

b
,

where here and in the following i, j = r, θ, z. In the dimensionless variables, the surface with recess
becomes

z = f (r)=

{
− h

(
1 − r2

)3/2
, r ≤ 1,

0, r > 1.
(1)

In the analysis below, for notational convenience, we shall use only dimensionless variables and politely
remove their hats ˆ .

We suppose that the elastic material is nonhomogeneous by assuming the rigidity modulus µ varies
along the z-axis as

µ= µ0eαz, (2)

where α is the nonhomogeneity parameter. Because of axisymmetry, the field variables are independent
of θ and the displacement vector (u, 0, w) is a function of r and z only. Using the strain displacement
relations

err =
∂u
∂r
, eθθ =

u
r
,

ezz =
∂w

∂z
, 2er z =

∂u
∂z

+
∂w

∂r
,

and Hooke’s law

σi j =
λ

µ0
ekkδi j + 2

µ

µ0
ei j ,

where λ and µ are the Lame’s constants and δi j is the Kronecker delta, the equations of equilibrium

0 =
∂σrr

∂r
+
∂σr z

∂z
+
σrr − σθθ

r
,

0 =
∂σr z

∂r
+
∂σzz

∂z
+
σr z

r
,

(3)



4 SAKTI PADA BARIK, MRIDULA KANORIA AND PRANAY KUMAR CHAUDHURI

may be expressed in terms of displacements components u and w as:

0 = (κ + 1)
(
∂2u
∂r2 +

1
r
∂u
∂r

−
u
r2

)
+ 2

∂2w

∂r∂z
+ (κ − 1)

∂2u
∂z2 + (κ − 1)α

(
∂u
∂z

+
∂w

∂r

)
,

0 = (κ + 1)
∂2w

∂z2 +
2
r
∂u
∂z

+ 2
∂2u
∂r∂z

+ (κ − 1)
(
∂2w

∂r2 +
1
r
∂w

∂r

)
+ (3 − κ)α

(
∂u
∂r

+
u
r

)
+ (κ + 1)α

∂w

∂z
,

(4)

where κ = 3 − 4ν and ν is Poisson’s ratio.
The boundary conditions for the problem are

lim
z−∞

σzz(r, z)= −
p
µ0
,

lim
z−∞

σr z(r, z)= 0,
(5)

σzz(r, 0)= 0, 0< r < a,

σr z(r, 0)= 0, 0< r <∞,

w(r, 0)= f (r), a < r <∞,

(6)

In addition to conditions Equation (6) we should have the condition

σzz(a, 0)= 0, 0 ≤ a ≤ 1 (7)

which follows from the smoothness of f (r) ∈ [0, 1).
The boundary condition of Equations (5) and (7) can also be written as

σzz(r, 0)[w(r, 0)− f (r)] = 0,

σzz(r, 0)≤ 0, w(r, 0)≤ f (r), 0≤ r ≤ 1

σr z(r, 0)= 0, 0 ≤ r <∞,

w(r, 0)= f (r), 1 ≤ r <∞.

3. Solving the problem

Now we will describe the strained state of the elastic body and the relation between the gap geometry
and ambient pressure. We will also find the critical value at which the gap disappears. To this end, we
divide the solutions into two parts:

σ = σ (1) + σ (2), u = u(1) + u(2). (8)

The first terms, σ (1) and u(1), are solutions of the problem of the contact of an elastic body and rigid
base with flat surface. The second terms correspond to the perturbed stressed-strained state caused by
geometric nonhomogeneity of the surface.
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Because the perturbations are local, we can write

lim
(r,z)→∞

σ (2)(r, z)= 0, lim
(r,z)→∞

u(2)(r, z)= 0.

The first solution may be obtained in the form

σ (1)zz = −
p
µ0
, σ (1)rr = 0, σ (1)r z = 0,

u(1) =
ν

E
pr, w(1) =

ν

αE
pz.

(9)

Using the boundary conditions of Equations (5) and (6) and using Equations (8) and (9), the boundary
conditions for the perturbed fields become

lim
z→∞

σ (2)zz (r, z)= 0

lim
z→∞

σ (2)r z (r, z)= 0,

σ (2)zz (r, 0)=
p
µ0
, 0< r < a,

σ (2)r z (r, 0)= 0, 0< r <∞,

w(2)(r, 0)= f (r), a < r <∞

(10)

To solve for the perturbed field, we assume the solution of Equation (3) in the form

u(2)(r, z)=

∫
∞

0
dρ F1(z, ρ)ρ J1(rρ),

w(2)(r, z)=

∫
∞

0
dρ F2(z, ρ)J0(rρ),

(11)

where J0 and J1 are Bessel functions of first kind of orders zero and one, respectively. Substituting
Equation (11) into Equation (4) and inverting the related Hankel transforms, we find[

(κ − 1)D2
+α(κ − 1)D − (κ + 1)ρ2] F1 − [2D +α(κ − 1)] F2 = 0[

(κ + 1)D2
+α(κ + 1)D − (κ − 1)ρ2] F2 + ρ2 [2D +α(3 − κ)] F1 = 0,

(12)

where D =
d
dz . In deriving this, the following relationships have been used:(

∂2

∂r2 +
1
r
∂

∂r
−

1
r2

)
J1(rρ)= − ρ2 J1(rρ),(

∂

∂r
+

1
r

)
J1(rρ)= ρ J0(rρ),

∂2

∂r2 J0(rρ)=
ρ

r
J1(rρ)− ρ2 J0(rρ).
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The solutions of the system of differential equations (12) are found to be

F1(z, ρ)=

4∑
k=1

Ak(ρ)emk z,

F2(z, ρ)=

4∑
k=1

ak(ρ)Ak(ρ)emk z,

(13)

where the functions Ak , k = 1, . . . , 4, are unknowns, and mk , k = 1, . . . , 4, are the roots of the charac-
teristic equation

m4
+ 2αm3

+ (α2
− 2ρ2)m2

− 2αρ2m +α2ρ2 3 − κ

1 + κ
+ ρ4

= 0, (14)

and the coefficients ak , k = 1, . . . , 4, are given by

ak(ρ)= − ρ2 2mk +α(3 − κ)

(1 + κ)m2
k + (1 + κ)αmk − (κ − 1)ρ2

. (15)

The characteristic Equation (14) may easily be rewritten as(
m2

+αm − ρ2)2
+α2ρ2 3 − κ

1 + κ
= 0,

from which it follows that

m3 = m1 =
−α+β

2
, m4 = m2 = −

α+β

2

where

β =

√
α2 + 4ρ2 + i4αρ

√
3 − κ

1 + κ
,

After solving for mk , k = 1, . . . , 4, the expressions for the coefficients ak in Equation (15) may be
simplified as follows:

ak(ρ)= − ρ
2mk +α(3 − κ)

2ρ+ iα
√
(3 − κ)(1 + κ)

,

ak+2 = ak,

for k = 1, 2. We observe that <m1, <m3 > 0 and <m2, <m4 < 0, so, to satisfy the regularity condition
at z = ∞ in the solution given by Equation (13), we must put A1 = A3 = 0 for z > 0. Thus the problem
may be considered as that of an elastic upper half space with rigid base involving only two unknowns
A2 and A4, and, for z > 0, we have

F1(z, ρ)= A2(ρ)em2z
+ A4(ρ)em4z,

F2(z, ρ)= a2(ρ)A2(ρ)em2z
+ a4(ρ)A4(ρ)em4z.
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The unknowns A2 and A4 may be determined from the mixed boundary conditions of Equation (6).
Hence, the dimensionless displacement and stress components can be written in terms of A2 and A4 as

u(2)(r, z)=

∫
∞

0
dρ

(
A2em2z

+ A4em4z) ρ J1(rρ)

w(2)(r, z)=

∫
∞

0
dρ

(
a2 A2em2z

+ a4 A4em4z) J0(rρ)

σ (2)r z (r, z)=
µ

µ0

∫
∞

0
dρ

(
(m2 − a2)A2em2z

+ (m4 − a4)A4em4z) ρ J1(rρ)

σ (2)zz (r, z)=
µ

µ0

∫
∞

0
dρ

[
κ + 1
κ − 1

(
m2a2 A2em2z

+ m4a4 A4em4z)
+

3 − κ

κ + 1

(
A2em2z

+ A4em4z) ρ2
]

J0(rρ)

(16)

Using the second boundary condition of Equation (10) yields

A4(ρ)= −
m2 − a2

m4 − a4
A2(ρ), (17)

and the remaining two mixed boundary conditions, with the help of the last two of Equation (16) and
Equation (17), give a pair of dual integral equations∫

∞

0
dρ A∗

2(ρ)J0(rρ)= f (r), a < r <∞,∫
∞

0
dρ G1(ρ)A∗

2(ρ)J0(rρ)=
κ − 1
µ0

p, 0< r < a, (18)

where

A∗

2(ρ)=
a2m4 − a4m2

m4 − a4
A2(ρ),

G1(ρ)=
1

a2m4 − a4m2

[
(κ + 1)

(
|m2|

2(a2 − a4)− |a2|
2(m2 − m4)

)
+ (3 − κ)(a2 − a4 + m4 − m2)ρ

2] .
(19)

Denoting

a2(ρ)= A(ρ)+ i B(ρ),

m2(ρ)= −
α+ c(ρ)

2
− i

d(ρ)
2
,

we get G1(ρ) in the form

G1(ρ)=
(κ + 1)

(
2|m2|

2 B(ρ)− |a2|
2d(ρ)

)
+ (3 − κ)ρ2 (2B(ρ)+ d(ρ))

A(ρ)d(ρ)− (α+ c(ρ)) B(ρ)
.

If we write
A∗

2(ρ)= C∗(ρ)+ D∗(ρ),
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where

D∗(ρ)= ρ

∫
∞

0
dr J0(rρ)r f (r), (20)

then the dual integral equations of Equation (18) transform into∫
∞

0
dρ C∗(ρ)J0(rρ)= 0, a < r <∞,∫

∞

0
dρ G1(ρ)C∗(ρ)J0(rρ)= g(r), 0< r < a, (21)

where

g(r)=
κ − 1
µ0

p −

∫
∞

0
dρ G1(ρ)D∗(ρ)J0(rρ). (22)

Substituting the expression for f (r) from Equation (1) into Equation (20) we get

D∗(ρ)= − 3h
√
π

2
ρ−3/2 J5/2(ρ)

If we write

C∗(ρ)=

∫ a

0
dt φ(t) sin(tρ), (23)

where φ(t) is an unknown integrable function, then the first of Equation (21) is automatically satisfied.
Substitution of Equation (23) in the second of Equation (21) leads to the equation

r
∫ a

0
dt φ(t)

∫
∞

0
dρ

G1(ρ)

ρ
J1(rρ) sin(tρ)=

∫ r

0
ds sg(s)≡ g1(r), (24)

for determining the unknown function φ. We note that for large ρ,

G1(ρ)

ρ
= χ1 + O(ρ−1), where χ1 = 4

1 − κ

1 + κ
.

Equation (24) may be reduced to a standard integral equation by rewriting it in the form

r
∫ a

0
dt φ(t)

∫
∞

0
dρ J1(rρ) sin(tρ)

[
χ1 +

(
G1(ρ)

ρ
−χ1

)]
= g1(r). (25)

Using the properties of Bessel function, this equation is finally reduced to a Fredholm integral equation
of the second kind;

χ1φ(r)+
∫ a

0
dt K (r, t)φ(t)=

2
π

∫ r

0
dy

y g(y)√
r2 − y2

, 0< r < a, (26)

where the kernel K (r, t) is given by

K (r, t)=
2
π

∫
∞

0
dρ G2(ρ) sin(rρ) sin(tρ), (27)

and
G2(ρ)=

G1(ρ)

ρ
−χ1.

We shall discuss the integral equation (26) and its kernel K (r, t) in the next section.
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Equations (16), (17), (19), (23), and (26) determine that the deformed state of the elastic half-space,
the normal displacement w(2), and the pressure on its surface are given by

w(2)(r, 0)=


∫ a

0 dt φ(t)H2(t, r)+ f (r), 0< r < a,

f (r), r > a,
(28)

where

H2(t, r)=

∫
∞

0
dρ sin(tρ)J0(rρ)

and

σ (2)zz (r, 0)=



p
µ0
, 0< r < a,

1
κ−1

[
H1(r)−

3hπχ1
4

(
1 −

3
2r2

]
)]
, a < r ≤ 1,

1
κ−1

[
H1(r)+

hχ1
5r3 2

F1
( 3

2 ,
3
2 ;

7
2 ,

1
r2

)]
, r > 1,

(29)

where

H1(r)=

∫ a

0
dt φ(t)

∫
∞

0
dρ G2(ρ)J0(ρ) sin(tρ)− 3h

√
π

2

∫
∞

0
dρ ρ−1/2G2(ρ)J0(ρ)J5/2(ρ)

−χ1
φ(a)

√
r2 − a2

+χ1
φ(0)

r
+χ1φ

′(a) sin−1(a/r)−χ1

∫ a

0
dt φ′′(t) sin−1(t/r) . (30)

Finally, putting Equations (9), (28), and (29) into Equation (8), we get the expressions for w(r, 0) and
σzz(r, 0):

w(r, 0)=

{∫ a
0 dt φ(t)H2(t, r)+ f (r), 0< r < a,

f (r), r > a,
(31)

σzz(r, 0)=


p
µ0

0< r < a

1
κ−1

[
H1(r)−

3hπχ1
4 (1 −

3
2r2)

]
, a < r ≤ 1

1
κ−1

[
H1(r)+

hχ1
5r3 2F1

(3
2 ,

3
2 ;

7
2 ,

1
r2

)]
, r > 1.

(32)

The boundary condition Equation (7) demands that

φ(a)= 0. (33)

Putting this and Equation (22) into Equation (26) yields

p
µ0

=
1

a(κ − 1)

[
π

2

∫ a

0
dt K (a, t)φ(t)+

∫
∞

0
dρ

G1(ρ)

ρ
D∗(ρ) sin(aρ)

]
. (34)

This equation gives a relationship between the dimensionless applied pressure p/µ0 and the dimension-
less radius a of the gap. For a given p/µ0, the equation determining a is nonlinear. From this equation,
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it is easy to obtain the critical pressure p? at which gap disappears, that is, at which a = 0. The value of
p∗ is obtained as

p?

µ0
=

1
κ − 1

∫
∞

0
dρG1(ρ)D∗(ρ). (35)

It should be noted as an important check on our results that if we take α = 0—that is, if we assume
the upper half space is homogeneous and isotropic—then the expressions for p and p? reduce to those
obtained by Kit and Monastyrsky [2001].

4. Determining φ(r)

The infinite integral K (r, t) in Equation (27) is smooth except possibly at ρ = 0 and ρ = ∞. We may
check that

G2(ρ)=
ψ(ρ)

ρ2 −χ1 as ρ → 0, (36)

where ψ(ρ) is regular in the neighborhood of ρ = 0. This implies that

lim
ρ→0

G2(ρ) sin(tρ) sin(rρ)= a finite quantity, (37)

so ρ = 0 is not a singularity for that integral.
Now, for large ρ, G2(ρ)= O(ρ−1). From Gradshteyn and Ryzhik [1963],∫

∞

0
dρ

sin(tρ) sin(rρ)
ρ

=
1
2

log
∣∣∣∣r + t
r − t

∣∣∣∣ , r 6= t, (38)

and it follows that the behavior of the integral as ρ → ∞ is not smooth for r = t , so determination of
φ(r) from Equation (26) could be a problem. However, this difficulty may be easily overcome by writing
Equation (25) in the form ∫ a

0
dt
[

1
t − r

+ L(r, t)
]
φ(t)= g1(r) (39)

where

L(r, t)= χ1L0(r, t)+ L1(r, t)−
1

t − r
,

L0(r, t)= r
∫

∞

0
dρ J1(rρ) sin(tρ)=


t

√
r2 − t2

, t < r,

0, t ≥ r,

L1(r, t)= r
∫

∞

0
dρ

(
G1(ρ)

ρ
−χ1

)
J1(rρ) sin(tρ),

(40)

Using the rescalings

t (u)=
a
2
(1 + u), r(x)=

a
2
(1 + x), (41)

and the notations
φ∗(u)= φ (t (u)) , g∗(x)= g (r(x)) , (42)
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Equation (39) is transformed into a singular integral equation∫ 1

−1
du φ∗(u)

[
1

u − x
+

a
2

L∗(u, x)
]

du = g∗

1(x), where L∗(u, x)= L
(a

2
(1 + u),

a
2
(1 + x)

)
. (43)

This integral equation can be evaluated by using Gauss–Chebyshev method. It may be noted that
u = −1 corresponds to t = 0 and u = 1 corresponds to t = a. Since the contact is smooth, neither
the point t = 0 (that is, u = −1) nor the point t = a (that is, u = 1) is a singularity of the function φ.
Following [Erdogan and Gupta 1972], we take the solution φ∗(u) of integral equation Equation (43) in
the form

φ∗(u)=

√
1 − u2 G(u), −1 ≤ u ≤ 1,

where G(u) is a bounded unknown function. Now, using Gauss–Chebyshev formula, we express the
integral equation (43) in discretized form as

N∑
k=1

π

√
1 − u2

k

N + 1
G(uk)

[
1

uk − x j
+

a
2

L∗(uk, x j )

]
= g1(x j ), (44)

where j = 1, . . . , N + 1, and uk and x j are given by

uk = cos
(

kπ
N + 1

)
and x j = cos

(
π

j − 1/2
N + 1

)
.

Equation (44) gives a set of (N + 1) linear equations—one for each collocation point x j —in the
N unknowns G(u1), . . . ,G(uN ). To determine the G(uk), we may ignore one collocation point, say
the midpoint xN/2+1 when N is even, and let the remaining N equations determine G(uk). This linear
algebraic system can be solved by gaussian eliminations.

We note here that although Equation (26) is not quite suitable for numerical evaluation of φ(r), it is
very much useful for determining the applied pressures p and p∗ in relatively simple forms (see Equations
(34) and (35)). Also, evaluating the integral∫ a

0
dt K (a, t)φ(t) (45)

in Equation (34) will not pose any problem here, since φ(a)= 0.

5. Numerical results and discussions

We have noted that zero is not a singularity for the infinite integrals in Equations (27) and (30), and,
because the integrals are regular for finite ρ, we will, in numerically evaluating these integrals, study
only their behavior at infinity. We find that G2(ρ) can be asymptotically represented for large ρ as

G2(ρ)=
χ2

ρ
+
χ3

ρ2 +
χ4

ρ3 + · · · . (46)

The coefficients χ2, χ3, and χ4 are given in Appendix A.
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To examine the convergence of the improper integrals in Equations (27) and (30), let us take any one,
say, the improper integral ∫

∞

0
dρ G2(ρ) J0(ρ) sin(tρ) (47)

in Equation (30). We write∫
∞

0
dρ G2(ρ) J0(ρ) sin(tρ)= lim

A→∞

∫ A

0
dρ G2(ρ) J0(ρ) sin(tρ). (48)

For large ρ, we write the integral ∫ A

0
dρ G2(ρ) J0(ρ) sin(tρ) (49)

as the sum of two integrals I1 and I2(A) such that

I1 =

∫ ζ

0
dρ G2(ρ) J0(ρ) sin(tρ),

I2(A)=

∫ A

ζ

dρ G2(ρ) J0(ρ) sin(tρ),
(50)

where ζ is a suitably chosen cutoff point. The first integral I1 is numerically evaluated using gaussian
quadratures. Noting the asymptotic behavior of G2(ρ) from Equation (46) and shown in Figure 3, it is
expected that for sufficiently large A, the integral I2 should converge. This is numerically checked and
shown in Table 1.

Thus, for a given tolerance ε, the upper limit A can be determined numerically, and the value of the
integral I2(∞) can then be approximated as I2(A) at tolerance level ε. For example, from Table 1, for
ζ = 25 and ε = 10−5, we have A = 205.

We can then determine φ numerically by the method described in Section 4. Finally, we find w(r, 0),
σzz(r, 0), p/µ0, and p∗/µ0 from Equations (31), (32), (34), and (35).

The dimensionless gap radius a depends on p/µ0 as well as on the nonhomogeneity parameter α.
From Equation (2), it is clear that as α increases, the material becomes harder. This implies in turn that if
α is larger, a larger pressure p/µ0 will be required to produce same change in a. Also, it is expected that

� ���

���

�
� � ���

���
	
ρρ �

ρρ

Figure 3. A plot of G2(ρ).



EFFECT OF NONHOMOGENEITY ON CONTACT 13

A I2(A)

30 –0.00077027
35 –0.00056793
40 –0.00162461
45 –0.00070269
50 –0.00114482
55 –0.00090488
60 –0.00077959
65 –0.00129027
70 –0.00085225

A I2(A)

75 –0.00162461
80 –0.00095082
85 –0.00084971
90 –0.00118899
95 –0.00090935

100 –0.00105012
105 –0.00097268
110 –0.00088441
115 –0.00110913

A I2(A)

120 –0.00093715
125 –0.00103405
130 –0.00098509
135 –0.00090544
140 –0.00107440
145 –0.00095260
150 –0.00102384
155 –0.00099292
160 –0.00091986

A I2(A)

165 –0.00105215
170 –0.00096191
175 –0.00101668
180 –0.00099818
185 –0.00093061
190 –0.00103696
195 –0.00096784
200 –0.00101127
205 -0.00100183

Table 1. I2(A) for t = 0.5 and cutoff point ζ=25.

as p/µ0 increases, a should decrease. To check the expected behavior we have computed from Equation
(34), we compute p/µ0 for different a and α. The results are graphed in Figure 4. In Figure 5, we show
how dimensionless critical pressure p∗/µ0 varies with nonhomogeneity parameter α. As expected, the
critical pressure increases with α.

From Equation (1), we find that the function f (r) is not differentiable at r = 1. Because the geometrical
structure of the recess is expected to contribute to the behavior of surface stress distribution, we have
evaluated the surface stress σzz(r, 0) as r → 1. We find that there is a finite discontinuity in the normal
stress σzz(r, 0) in the neighborhood of r = 1. The values of σzz(r, 0) have been plotted against the
nonhomogeneity parameter α and the gap radius a in Figures 6 and 7, respectively. In Figures 8 and 9,
we show how w(r, 0) varies with a and α.

µµ

α.α.

�

��� �

�

� � � � � �
�
	

µµ 00

�

α=0α=0 α=.1α=.1

α=.2α=.2 α=.4α=.4

α=.5α=.5 α=.6α=.6

µµ

αα

µµ

αα

Figure 4. Variation of ambient pressure p/µ0 with the first contact radius a for different
values of the nonhomogeneity parameter α.
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Figure 5. Variation of dimensionless critical pressure p∗/µ0 for different values of the
nonhomogeneity parameter α.
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Figure 6. Variation of dimensionless normal stress σzz(r, 0) with r (> a) for various
values of the nonhomogeneity parameter α.
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Figure 7. Variation of dimensionless normal stress σzz(r, 0) with r (> a) for different
values of a.
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Figure 8. Variation of dimensionless normal displacement w(r, 0) with r for different
values of a.

r

αα

αα

� ��� �

� ��� ���

� ��� �
� ��� 	 ��� 
 ��� � ��� � ��� � ��� �

α=0.0α=0.0 α=.4α=.4

α=.6α=.6 α=.8α=.8

������

r

��� ��� ���

Figure 9. Variation of dimensionless normal displacement w(r, 0) with r < a for various
values of the nonhomogeneity parameter α.

Appendix A

χ2 = 2
b1α (χ1 + 2(κ + 1))+ 2b2 (χ1 + 2(κ − 1))+ A1d1 (2(κ + 1)−χ1)

α
√
(3 − κ)(κ + 1)

,

χ3 =
1
p2

[4d1α
2(1 − κ − κ2)

κ + 1
− 4A2α

√
(3 − κ)(κ + 1)− 2α(κ + 1)b2

+ (κ + 1)d1(A2
1 + 2A2 + b2

1)
]
+

1
p2

2

(
p1 p2χ2 − p2

1χ1 + p2 p3χ1
)
,

χ4 =
1
p2

2
[(κ + 1) (p2(u4 +w4)− p1(u1 +w1))+ (3 − κ) (2p2b4 − p1(2b3 − d2))] ,

(A.1)
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where

2p1/d1 = κ2
+ κ − 4)α,

p2/d1 = κ + 1,

p3/d1 =
(κ3

− κ − 2)α
4(κ + 1)

+ (κ + 2)A2,

A1 =
α(κ − 2)

2
,

A2 =
α2

4(κ + 1)
(2 − κ(κ + 1)(3 − κ)) ,

A3 =
α3

8
(2 − κ)(κ + 1)(3 − κ),

u1 =
4b1

κ + 1
α2

+ 2αb2 + 2b3,

u4 =
4b2

κ + 1
α2

+ 2αb3 + 2b4 +
α3b1

κ + 1
,

w1/d1 = (A2
1 + 2A2 + b2

1)−
α2

2(κ + 1)
,

w4/d1 = (2A1 A2 + 2A3 + 2b1b2)− 2A1
α2

2(κ + 1)
,

b1 = −
κd1

2
,

b2 = −
(κ + 1)A1d1

2
,

b3 = −
α

2
A2
√
(3 − κ)(κ + 1)+

α2

4(κ + 1)
d1,

b4 =
α4

16
(κ − 2) 3

√
(κ + 1)(3 − κ),

d1 = α

√
3 − κ

κ + 1
,

d2 = −
α2

2(κ + 1)
d1.
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ESTIMATING LEVER-TYPE ACTIVE MULTIPLE TUNED MASS DAMPERS FOR
STRUCTURES UNDER HARMONIC EXCITATION

CHUNXIANG LI AND BINGKANG HAN

Lever-type active multiple tuned mass dampers (LT-AMTMD) consisting of several lever-type active
tuned mass damper (LT-ATMD) units with a uniform distribution of natural frequencies have been
proposed here for the vibration control of long-span bridges under the excitation directly acting on the
structure, rather than through the base. The main purpose of selecting this form of excitation is to present
guidelines for the buffeting control design of long-span bridges under wind loads. Estimations have
been made on the performance of the LT-AMTMD with identical stiffness and damping coefficient and
unequal masses for the reduction of harmonically forced vibrations by resorting to the defined evaluation
criteria. The LT-AMTMD with the actuator set at the mass block is found to have better effectiveness and
higher robustness in alleviating the vibrations of structures in comparison with the LT-AMTMD with the
actuator set at any other location. A new major result is that both the spring static and dynamic stretching
of the LT-AMTMD with the actuator set at the mass block may be freely adjusted in accordance with
the practical requirements by changing the support locations within the viable range while practically
maintaining the same performance. Numerical results demonstrate that the LT-AMTMD with the actu-
ator set at the mass block can highly improve the performance of the LT-MTMD (that is, the passive
counterpart of the LT-AMTMD) and provide better effectiveness than a single LT-ATMD. Estimations
have also been simultaneously carried out on the LT-AMTMD (a single LT-ATMD) with respect to the
hanging-type AMTMD (a single hanging-type ATMD) as well as on the LT-MTMD (a single LT-TMD)
with reference to the hanging-type MTMD (a single hanging-type TMD), so as to highlight the improved
performance of the proposed control system.

1. Introduction

The tuned mass damper (TMD) has been theoretically and experimentally corroborated to be effective
in reducing the buffeting response of long-span bridges subjected to wind loads [Gu and Xiang 1992;
Gu et al. 1994; Lin et al. 2000]. However, both large static and dynamic stretching of the spring in the
hanging-type tuned mass damper (hanging-type TMD) may cause the spring to operate nonlinearly and
the hanging-type TMD may not be fitted into the space available for installation within the bridge deck,
consequently downgrading the performance and limiting the practical implementation of the hanging-
type TMD. To overcome these shortcomings, the lever-type tuned mass damper (LT-TMD) has been
proposed to deal with large static stretch of the spring in the hanging-type TMD [Gu et al. 1999]. In
terms of the numerical results to be provided later on, the LT-TMD and the hanging-type TMD can
approximately achieve the same effectiveness and mass block stroke. With respect to the hanging-type
TMD, the LT-TMD, designed in accordance with the hypothesis-1 to be introduced later on, needs smaller

Keywords: damping, mass dampers, vibration control, harmonically forced vibrations, lever-type active multiple tuned mass
dampers (LT-AMTMD), static and dynamic stretching of the spring, long-span bridges.
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optimum damping ratio but significantly higher optimum tuning frequency ratio. However, the optimum
parameters, effectiveness, and mass block stroke of the LT-TMD designed according to the hypothesis-
2 to be introduced later on are approximately equal to those of the hanging-type TMD. As such, the
LT-TMD can also not surmount the main disadvantage of the TMD (hanging-type TMD); that is, the
sensitivity problem due to the fluctuation in tuning the natural frequency of the TMD (hanging-type
TMD) to the controlled natural frequency of structures and (or) the offset in the optimum damping
ratio of the hanging-type TMD. Furthermore, it has been demonstrated that both the dynamic responses
and dynamic parameters of long-span bridges in terms of field measurements and wind tunnel tests and
theoretical analyses are usually different from each other due in large part to the fact that the phenomenon
of the wind-induced vibrations of long-span bridges is very complex [Diana et al. 1992; Conti et al. 1996].

In view of the above mentioned reasons, a more robust control device, such as the multiple tuned
mass dampers (MTMD), which is able to control structural vibrations with variable natural frequencies,
is needed for attaining a satisfying reduction of the buffeting response of long-span bridges under wind
loads. As is well known, the MTMD with distributed natural frequencies were proposed by [Xu and Igusa
1992] and also investigated by many investigators such as [Yamaguchi and Harnpornchai 1993; Abe and
Fujino 1994; Igusa and Xu 1994; Kareem and Kline 1995; Jangid 1995; Li 2000; Park and Reed 2001;
Gu et al. 2001; Chen and Wu 2003; Kwon and Park 2004; Yau and Yang 2004; Hoang and Warnitchai
2005; Wang and Lin 2005; Lee et al. 2006]. The MTMD is confirmed to be capable of rendering better
effectiveness and higher robustness in the mitigation of the oscillations of structures in comparison with a
single TMD. Nevertheless, we note that if the hanging-type multiple tuned mass dampers (hanging-type
MTMD) are directly used to suppress the buffeting response of long-span bridges, then each hanging-
type TMD will possess both large static and dynamic stretching of the spring. Quantitatively, the static
stretching of the spring of the j th hanging-type TMD in the hanging-type MTMD,h j , can be determined
in terms of the equation

h j = g/(ω2
T j ),

where ωT j is the circular frequency of each hanging-type TMD and g refers to the acceleration due to
gravity. Likewise, the maximum static stretching of the spring in the hanging-type MTMD is larger than
the static stretching of a single hanging-type TMD with equal total mass ratio. Each LT-TMD in the
lever-type multiple tuned mass dampers (LT-MTMD), proposed by the first author [Li and Li 2005], has
the static stretching of the spring

h∗

j = α[g/(ω2
T j )] = αh j ,

when the rigid arm is in a horizontal state. The numerical results to be stated later on demomstrate that the
LT-MTMD designed in terms of the hypothesis-2 and the hanging-type MTMD have the approximately
same effectiveness, robustness, and mass block stroke; but when the hanging-type MTMD is extended in
terms of the hypothesis-1 to the LT-MTMD, the optimum tuning frequency ratio will change significantly
while the optimum average damping ratio will show minor variations. A new basic result is that both the
static and dynamic stretching of the spring in the LT-MTMD may be freely adjusted in accordance with
the practical requirements through changing the support locations while approximately maintaining the
same effectiveness, robustness, and mass block stroke.

Recently, a single lever-type active tuned mass damper (LT-ATMD) for mitigating harmonically forced
vibrations has been recommended by [Li 2004] to acquire a control system with high effectiveness, in
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which both the static and dynamic stretching of the spring may be freely adjusted to meet the practical
requirements. The numerical results to be given next demonstrate that the LT-ATMD with the actuator set
at the mass block can practically reach the same optimum damping ratio, optimum tuning frequency ratio,
effectiveness, and mass block stroke as a single hanging-type ATMD. The LT-ATMD with the actuator set
at the mass block is found to have much better effectiveness than the LT-TMD. More importantly, both the
static and dynamic stretching of the spring in the LT-ATMD with the actuator set at the mass block may
be freely adjusted in accordance with the practical requirements through changing the support locations,
while approximately maintaining the same control performance (including the same mass block stroke).
Further, the multiple active lever-type tuned mass dampers (MALTTMD), consisting of several active
lever-type tuned mass damper (ALTTMD) units with a uniform distribution of natural frequencies, have
been developed with the objective of attenuating the vibration control of long-span bridges under the
ground acceleration, namely the external excitation acting on structures through the base [Li and Zhou
2004]. Taking into account that the probability of great drift of the controlled natural frequency may occur
due to the complexity of the wind-induced vibrations of long-span bridges, a beforehand well-designed
optimum LT-MTMD may result in the unsatisfactory effectiveness. This drawback can be surmounted
by using the lever-type active multiple tuned mass dampers (LT-AMTMD). Therefore, there is a need
for making an estimation of the LT-AMTMD with the aim of the external excitation directly acting on
the structure, rather than through the base. Such a form of excitation is suitable for the buffeting control
design of long-span bridges under wind loads, thereby giving guidelines for the buffeting control design
of long-span bridges under wind loads.

The objective of this paper then is to evaluate the performance of the LT-AMTMD, including assess-
ing the mass block stroke of the LT-AMTMD, in order to verify that the LT-AMTMD may also be a
good candidate for the reduction of the buffeting response of long-span bridges with the consequence
of not requiring both large static and dynamic stretching of the spring with respect to the hanging-type
active multiple tuned mass dampers (hanging-type AMTMD) and possessing a desirable robustness in
comparison with a single LT-ATMD. Estimations will also be simultaneously made on the LT-AMTMD
/ a single LT-ATMD with the actuator set at the mass block with respect to the hanging-type AMTMD
/ a single hanging-type ATMD, as well as on the LT-MTMD / a single LT-TMD with reference to the
hanging-type MTMD / a single hanging-type TMD, so as to highlight both the improved performance
and conspicuous feature of the proposed control system.

Nomenclature

ALTTMD active lever-type tuned mass damper

cs mode-generalized damping coefficient of structures

cT constant damping coefficient of the LT-AMTMD

cT j damping coefficient of the j th LT-ATMD in the LT-AMTMD

ct j velocity feedback gain of the j th LT-ATMD in the LT-AMTMD

DMF dynamic magnification factors of the structure with the LT-AMTMD

DMF j dynamic magnification factors of the j th LT-ATMD in the LT-AMTMD

Fcj (t) resultant force to act between the structure and j th LT-ATMD in the LT-AMTMD

Fs frequency spacing of the LT-AMTMD, used for measuring its robustness
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Fs j (t) interaction force between the structure and support point of the j th LT-ATMD
in the LT-AMTMD

f tuning frequency ratio of the LT-AMTMD

f (t) external excitation directly acting on the structure, rather than through the base

Hanging-type AMTMD hanging-type active multiple tuned mass dampers

Hanging-type ATMD Hanging-type active tuned mass damper

Hanging-type MTMD hanging-type multiple tuned mass dampers

Hanging-type TMD hanging-type tuned mass damper

Hys (−iω) transfer function of the structure with the LT-AMTMD

HyT j (−iω) transfer function of the j th LT-ATMD in the LT-AMTMD

h j static stretching of the spring in the j th hanging-type TMD in the
hanging-type MTMD

h∗

j static stretching of the spring in the j th LT-TMD in the LT-AMTMD

Im(ω)[Im(ω)] imaginary part of a complex function, such as the transfer function of the structure
with the LT-AMTMD

IT j mass moment of inertia of the j th lever in the j th LT-ATMD

ks mode-generalized stiffness of structures

kT constant spring stiffness of the LT-AMTMD

kT j spring stiffness of the j th LT-ATMD in the LT-AMTMD

kt j displacement feedback gain of the j th LT-ATMD in the LT-AMTMD

LT-AMTMD lever-type active multiple tuned mass dampers

LT-ATMD lever-type active tuned mass damper

LT-MTMD lever-type multiple tuned mass dampers

LT-TMD lever-type tuned mass damper

LT 1 j distance between the mass block and support point of the j th LT-ATMD

LT 2 j distance between the spring and support point of the j th LT-ATMD

LT 3 j distance between the active control force and mass block of the j th LT-ATMD

MALTTMD multiple active lever-type tuned mass dampers

min .min .max .DMF minimization of the minimum values of the maximum dynamic magnification
factors of the structure with the LT-AMTMD

MTMD multiple tuned mass dampers

m j lever mass of the j th LT-ATMD in the LT-AMTMD

ms mode-generalized mass of structures

mT j mass of the j th LT-ATMD mass block

m t j acceleration feedback gain of the j th LT-ATMD in the LT-AMTMD

n number of the LT-ATMD units in the LT-AMTMD

RI minimization of the minimum values of the maximum dynamic magnification
factors (DMF) of the structure with the LT-AMTMD

Re(ω)[Re(ω)] real part of a complex function, such as the transfer function of the j th LT-ATMD
in the LT-AMTMD
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Rm1 ratio of the inertial force due to lever mass to that of block mass
Rm2 ratio of the moment of inertial force due to lever mass to that of block mass around

the horizontal axis through the support point of the lever
RI I j maximum dynamic magnification factors (DMF) of the j th LT-ATMD (that is, mass

block stroke)
R∗

I I j spring stroke of the j th LT-ATMD in the LT-AMTMD

rT j ratio of the natural frequency of the j th LT-ATMD to the structural natural frequency
rt j normalized acceleration feedback gain factor, NAFGF
r constant normalized acceleration feedback gain factor, NAFGF
SDOF single degree of freedom
TMD tuned mass damper
yT s j dynamic stretching of the spring in the j th LT-ATMD
ys displacement of the structure with respect to the ground
yT j displacement of the j th LT-ATMD with reference to the structure
α constant ratio of the distance between the spring and support point to that between

the mass block and support point
α j ratio of the distance between the spring and support point to that between the mass

block and support point
β constant ratio of the distance between the active control force and mass block to that

between the spring and mass block, LT 1 j + LT 2 j

β j ratio of the distance between the active control force and mass block to that
between the spring and mass block, LT 1 j + LT 2 j

η j normalized mass moment of inertia of the j th lever
λ ratio of the external excitation frequency to the structural frequency corresponding

to the vibration mode being controlled, which is set within the range from 0.4 to 3.4
ξs structural damping ratio, which is set in this paper equal to 0.02
ξT average damping ratio of the LT-AMTMD
ξT j damping ratio of the j th LT-ATMD in the LT-AMTMD
µ constant ratio of the lever mass to block mass of the LT-AMTMD
µ j lever mass to block mass ratio of the j th LT-ATMD in the LT-AMTMD
µT total mass ratio of the LT-AMTMD
µT j mass ratio of the j th LT-ATMD in the LT-AMTMD
ω external excitation frequency
ωs structural natural frequency corresponding to the vibration mode being controlled
ωT average natural frequency of the LT-AMTMD
ωT j natural frequency of the j th LT-ATMD in the LT-AMTMD

2. Transfer functions (TFs) of the LT-AMTMD structure system

In the present paper, the LT-AMTMD is taken into account for the control of the specific vibration mode
of a structure. Likewise, only the translation degree of freedom for the dynamic response of the structure



24 CHUNXIANG LI AND BINGKANG HAN

20

Figure 1. Schematic diagram of the lever-type active multiple tuned mass dampers (LT-AMTMD) structure 

system under the excitation directly acting on the structure rather than through the base. 
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Figure 1. Schematic diagram of the lever-type active multiple tuned mass dampers (LT-
AMTMD) structure system under the external excitation directly acting on the structure
rather than through the base.

is taken into consideration. The structure is modeled as a single degree of freedom (SDOF) system,
generally referred to as the main system, characterized by the mode-generalized dynamic parameters.
Each LT-ATMD, with different dynamic characteristics, is also modeled as an SDOF system. Further,
the lever is supposed to be a rigid arm. As a result, the total number of degrees of freedom of this
combined system is n + 1, as shown in Figure 1, in which n denotes the total number of the LT-ATMD
units in the LT-AMTMD. Introducing the nondimensional parameters

α j =
LT 2 j

LT 1 j
and β j =

LT 3 j

LT 1 j + LT 2 j
,

in which LT 1 j represents the distance between the mass block and support point of the j th LT-ATMD in
the LT-AMTMD, LT 2 j denotes the distance between the spring and support point of the j th LT-ATMD
in the LT-AMTMD, and LT 3 j is the distance between the active control force and mass block of the j th
LT-ATMD in the LT-AMTMD, the dynamic stretching of each spring and the location of each active
control force in the LT-AMTMD can be, respectively, determined by

yT Sj = α j yT j , (1a)

LT 3 j = [(1 +α j )β j ]LT 1 j , (1b)

in which yT j is the displacement of each LT-ATMD in the LT-AMTMD with reference to the structure.
Each LT-ATMD spring stroke, namely the dynamic stretching, can be calculated using Equation (1a),

consequently meaning that R∗

I I j =α j RI I j , in which R∗

I I j represents the spring stroke of the j th LT-ATMD
in the LT-AMTMD and RI I j denotes the mass block stroke of the j th LT-ATMD in the LT-AMTMD to
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be defined next. The equations of motion of the LT-AMTMD structure system can be given by

IT j
[
(ÿs + ÿT j )/LT 1 j

]
+
[
mT j (ÿs + ÿT j )+ cT j ẏT j

]
LT 1 j

+α j kT j yT j LT 2 j = u j (t)(LT 1 j − LT 3 j ),

α j kT j yT j + Fs j (t)+ u j (t)= cT j ẏT j + mT j (ÿs + ÿT j ),

ms ÿs + cs ẏs + ks ys = f (t)+
n∑

j=1

Fcj (t),

Fcj (t)= cT j ẏT j − u j (t)− Fs j (t)−α j kT j yT j = −mT j (ÿs + ÿT j ).

(2)

An active control algorithm is required to use the measured displacement, velocity, and acceleration
responses of the LT-AMTMD structure system to calculate the active control forces to drive the levers
or the mass blocks during the design process of the LT-AMTMD. In the present paper, the frequency
domain design method [Chang and Yang 1995; Ankireddi and Yang 1996; Yan et al. 1999] is employed
for designing the LT-AMTMD. In this method, the optimum LT-MTMD, as obtained earlier, is utilized.
For designing the LT-AMTMD, choices are displacement feedback, velocity feedback, and acceleration
feedback. Such a LT-AMTMD control system, if properly designed, can be used to bring the system per-
formance to another optimum state. Therefore, the active force u j (t) is calculated from the displacement,
velocity, and acceleration of the mass block of the jth LT-ATMD in the following form:

u j (t)= −mt j ÿT j − ct j ẏT j − kt j yT j , (3)

where ms , cs , and ks are, respectively, the mode-generalized stiffness, damping coefficient, and mass
of structures; mT j , cT j , and kT j are the mass, damping coefficient, and stiffness of the j th LT-ATMD
in the LT-AMTMD, respectively; ys is the structural displacement relative to the ground; Fs j (t) is the
interaction force between the structure and the support point of each LT-ATMD in the LT-AMTMD;

IT j =
[3(1 −α j )

2
+ (1 +α j )

2
]m j L2

T 1 j

12

is the mass moment of inertia of each lever in the LT-AMTMD, where m j is the mass of each lever; f (t)
is the external excitation; mt j is the acceleration feedback gain of the j th LT-ATMD in the LT-AMTMD;
ct j is the velocity feedback gain of the j th LT-ATMD in the LT-AMTMD; and kt j is the displacement
feedback gain of the j th LT-ATMD in the LT-AMTMD.

It is pointed out herein that this is the external excitation directly acting on the structure, rather than
through the base. The main purpose of selecting this form of excitation is to give guidelines for the
buffeting control design of long-span bridges under wind loads.

It is assumed that the stiffness and damping coefficient of each LT-ATMD in the LT-AMTMD are
kept same and the natural frequencies of the LT-AMTMD are uniformly distributed around their av-
erage natural frequency. As a result, the LT-AMTMD is manufactured by keeping constant stiffness
and damping and unequal masses (that is, kT 1 = kT 2 = · · · = kT n = kT ; cT 1 = cT 2 = · · · = cT n = cT ;
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mT 1 6= mT 2 6= · · · 6= mT n). Likewise, the nondimensional parameter α j and β j are, respectively, assumed
to be maintained constant (that is, α1 = α2 = · · · = αn = α; β1 = β2 = · · · = βn = β).

In the formulation of the transfer functions (TFs), the following parameters are introduced:

η j =
3(1 −α j )

2
+ (1 +α j )

2

12
,

(in physical terms η1 = η2 = · · · = ηn = η);

ωs =

√
ks

ms
, ξs =

cs

2msωs
, ωT j =

√
α2

j kT j + kt j (1 −β j −α jβ j )

mT j
,

ξT j =
cT j + ct j (1 −β j −α jβ j )

2mT jωT j
, r j =

mt j

mT j
, (4)

(normalized acceleration feedback gain factor, referred to as NAFGF, letting r1 = r2 = · · · = rn = r);
µT j =

mT j
ms

(mass ratio of each LT-ATMD in the LT-AMTMD); µ j =
m j
mT j

(lever mass to block mass ratio
of each LT-ATMD in the LT-AMTMD). Let it be supposed that the lever mass to block mass ratio of
each LT-ATMD in the LT-AMTMD is held constant (that is, µ1 = µ2 = · · · = µn = µ).

Letting f (t) = ms[e−iωt
], yT j = [HyT j (−iω)][e−iωt

] and ys = [Hys (−iω)][e−iωt
], and setting these

in Equation (2), the transfer functions (TFs) of the LT-AMTMD structure system can then be given by

ω2
s [Hys (−iω)] =

1
[Re(ω)+ i Im(ω)]

, (5)

ω2
s [HyT j (−iω)] =

(1 + η jµ j )[ω
2/ω2

s ]

[Re(ω)+ iIm(ω)][Re(ω)+ i Im(ω)]
, (6)

in which Hys (−iω) refers to the transfer function (TF) of the structure with the LT-AMTMD; HyT j (−iω)
signifies the transfer function (TF) of the j th LT-ATMD in the LT-AMTMD; and Re(ω), Im(ω), Re(ω),
and Im(ω) will be given next.

Lastly, it is pointed out that [Li and Wang 2003] have performed numerical simulations of the lever-
type multiple tuned dampers (LT-MTMD) in the case of ignoring the lever mass effect. Recently, [Li and
Li 2005] have again evaluated the optimal performance of the LT-MTMD under the circumstances of
taking the lever moment effect into consideration and ignoring both the inertial force and corresponding
moment due to the lever mass. The numerical simulations demonstrate that the lever mass may be set
equal to zero in designing the LT-AMTMD. For the LT-AMTMD, the ratio of the inertial force due to
lever mass to that of block mass may be given by

Rm1 =
µ j [ÿs + 0.5(1 −α j )ÿT j ]

(ÿs + ÿT j )
,
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whereas the ratio of the moment of inertial force due to lever mass to that of block mass around the
horizontal axis through the support point of the lever can be determined by

Rm2 =
µ j [0.5(1 −α j )ÿs + 0.25(1 −α j )

2 ÿT j ]

(ÿs + ÿT j )
.

Therefore, both the inertial force and corresponding moment due to lever mass are also ignored in the
present paper according to recommendations of the foregoing literatures [Li and Li 2005; Li and Wang
2003] and considering aforementioned two ratios.

3. Optimum criteria of the LT-AMTMD

Let ωT be the average frequency of the LT-AMTMD, that is,

ωT =

n∑
k=1

ωT k

n
.

The natural frequency of each LT-ATMD in the LT-AMTMD can be derived as follows:

ωT j = ωT

[
1 +

[
j −

n + 1
2

] FS

n − 1

]
, (7)

in which the nondimensional parameter FS is defined to be the frequency spacing of the LT-AMTMD
(used for estimating the robustness of the LT-AMTMD) determined by

FS =
[ωT n −ωT 1

ωT

]
.

Then, the ratio of the natural frequency of each LT-ATMD in the LT-AMTMD to the controlled fre-
quency of the structure can be written as follows:

rT j =
ωT j

ωs
= f

[
1 +

[
j −

n + 1
2

] FS

n − 1

]
, (8)

in which f is defined to be the tuning frequency ratio of the LT-AMTMD calculated by f =
ωT
ωs

.
The average damping ratio of the LT-AMTMD is defined as follows:

ξT =

n∑
j=1

ξT j

n
. (9)

The ratio of the total mass of the LT-AMTMD to the mode-generalized mass of the structure is referred
to as the total mass ratio of the LT-AMTMD, which has the form

µT =

n∑
j=1

mT j

ms
=

n∑
j=1

µT j . (10)

Employing the above assumptions and derived expressions, the total mass ratio of the LT-AMTMD
and the damping ratio of each LT-ATMD in the LT-AMTMD can be, respectively, determined as [Li
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2000]

µT =
[
µT jr2

T j
][ n∑

j=1

r−2
T j

]
, (11)

ξT j =
rT jξT

f
. (12)

Defining the ratio of the external excitation frequency to the controlled frequency of the structure (that
is, λ= ω/ωs) and taking advantage of Equation (5) and (6), the dynamic magnification factors (DMF)
of the structure with the LT-AMTMD and each LT-ATMD in the LT-AMTMD can then be respectively
calculated by

DMF = |ω2
s [Hys (−iλ)]| =

1√
[Re(λ)]2 + [Im(λ)]2

,

DMF j = |ω2
s [HyT j (−iλ)]| =

(1 + η jµ j )λ
2√

[Re(λ)]2 + [Im(λ)]2
√

[Re(λ)]2 + [Im(λ)]2
,

in which

Re(λ)= 1 − (1 +µT )λ
2
−

n∑
j=1

[µT j (1 + η jµ j )λ
4
]Re(λ)

[Re(λ)]2 + [Im(λ)]2
,

Im(λ)= −2ξsλ+

n∑
j=1

[µT j (1 + η jµ j )λ
4
]Im(λ)

[Re(λ)]2 + [Im(λ)]2
,

Re(λ)= r2
T j −

[
1 + η jµ j + r j (1 −β j −α jβ j )

]
λ2,

Im(λ)= −2ξT jrT jλ.

Estimation can now be conducted on the optimum parameters and effectiveness of the LT-AMTMD
through the implementation of the following optimum criterion:

RI = min .min .max .DMF(Fs, f, ξT ). (13)

Equation (13) means that the examination of the optimum parameters is conducted through the mini-
mization of the minimum values of the maximum dynamic magnification factors (DMF) of structures
with the LT-AMTMD. They can be explicitly explained in the following steps. First of all, for a fixed
value of λ (set in the present paper within the range from 0.4 to 3.4) and a fixed tuning frequency ratio,
the maximum amplitudes for different average damping ratios and frequency spacings are found, and the
minimum amplitudes are selected from the maximum amplitudes, which is the minimax amplitude for
that tuning frequency ratio. Then the above procedure is repeated for different tuning frequency ratios
to find the minimax of each tuning frequency ratio. Finally, the smallest minimaxes are selected and
the corresponding tuning frequency ratio, average damping ratio, and frequency spacing are optimum
values.
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Control
systems Units comprising the control systems

LT-AMTMD LT-ATMD1 LT-ATMD2 LT-ATMD3 LT-ATMD4 LT-ATMD5

Hanging-type
AMTMD

Hanging-type
ATMD1

Hanging-type
ATMD2

Hanging-type
ATMD3

Hanging-type
ATMD4

Hanging-type
ATMD5

LT-MTMD LT-TMD1 LT-TMD2 LT-TMD3 LT-TMD4 LT-TMD5

Hanging-type
MTMD

Hanging-type
TMD1

Hanging-type
TMD2

Hanging-type
TMD3

Hanging-type
TMD4

Hanging-type
TMD5

Table 1. The control systems and units comprising these control systems

Estimation on the mass block stroke the LT-AMTMD can be simultaneously performed in terms of the
maximum dynamic magnification factor (Max .DMF j ) of each LT-ATMD using the obtained optimum
parameters of the LT-AMTMD based on Equation (13), which has the following form:

RI I j = Max .DMF j . (14)

It is further pointed out here that in this study, a frequency domain analysis is conducted to demonstrate
the performance of the LT-AMTMD, thus implying that the aforesaid RI and RI I j can be considered as
the formal indices.

4. Numerical simulation study

Displayed in Figures 2–8 are the numerical results of the present research, in which the structural damping
ratio is set equal to 0.02 and the ratio (λ) of the external excitation frequency to the structural controlled
frequency is set within the range from 0.4 to 3.4. The superscript opt represents the optimum values of the
LT-AMTMD system parameters. By optimizing RI , the optimum frequency spacing, tuning frequency
ratio, and average damping ratio of the LT-AMTMD will be obtained. It is worth mentioning that the
numerical analysis may be carried out of the LT-AMTMD with 5 LT-ATMD units, due to economical
reasons that the number of LT-ATMD units should be as low as possible. However, to disclose the per-
formance of the LT-AMTMD more clearly, the present paper will display the charts of the LT-AMTMD
with up to 31 LT-ATMD units. For the sake of clarity, Table 1 presents the control systems and units
comprising these control systems.

4.1. Estimating the optimum locations of the actuator in the LT-AMTMD. It is interesting in observing
Figure 2 [(a1) and (b1)] to note that changing the locations of the actuator makes little difference in the
optimum average damping ratio of the LT-AMTMD. It is seen that the optimum average damping ratio
of the LT-AMTMD is greater than that of the LT-MTMD, but is significantly lower than the optimum
damping ratio of a single LT-ATMD. From Figure 2 [(a2) and (b2)], it is important to note that the
LT-AMTMD with the actuator set at the mass block offers higher robustness in comparison to the LT-
AMTMD with the actuator set at any other locations. Likewise, this LT-AMTMD with the actuator set at
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Figure 2. Variation of the optimum parameters and effectiveness of the LT-AMTMD / LT-MTMD (the 
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Figure 2. Variation of the optimum parameters and effectiveness of the LT-AMTMD /
LT-MTMD (the passive counterpart of the LT-AMTMD) / a single LT-ATMD. (a1) ξ opt

T
for r = −0.4; (b1) ξ opt

T for r = −0.8; (a2) Fopt
S for r = −0.4; (b2) Fopt

S for r = −0.8; (a3)
f opt for r = −0.4; (b3) f opt for r = −0.8; (a4) RI for r = −0.4; (b4) RI for r = −0.8

with respect to total mass ratio with n = 5, α = 0.4, µ = 0.01, and several β values
(considering the changes of actuator locations). Legend: 2 = LT-AMTMD (β = 0.0);
3= LT-AMTMD (β=0.36); 4= LT-AMTMD (β=0.86); ×= LT-AMTMD (β=1.0);
E = LT-MTMD; # = LT-ATMD (β = 0).
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the mass block renders higher robustness in comparison with the LT-MTMD. It is seen from Figure 2 [(a3)
and (b3)] that the influence of the locations of the actuator is not insignificant on the optimum tuning
frequency ratio of the LT-AMTMD. Further, the optimum tuning frequency ratio of the LT-AMTMD
is considerably close to that of a single LT-ATMD when both actuators are all set at the mass block,
but is remarkably lower than that of the LT-MTMD. Figure 2 [(a4) and (b4)] clearly demonstrates that
the LT-AMTMD with the actuator set at the mass block results in higher effectiveness compared to the
LT-AMTMD with the actuator set at any other locations. The LT-AMTMD with the actuator set at the
mass block can provide better effectiveness in comparison with the LT-MTMD and a single LT-ATMD.
Therefore, it is preferable to choose to use the LT-AMTMD with the actuator set at the mass block.

4.2. Estimating the optimum parameters and effectiveness of the LT-AMTMD with the actuator set at
the mass block. It is interesting in observing Figure 3 to find that the locations of the support makes
little difference in the optimum parameters and effectiveness of the LT-AMTMD, corresponding to the
respective NAFGF. This observation effectively means that both the static and dynamic stretching of the
spring in the LT-AMTMD may be freely adjusted in accordance with the practical requirements through
changing the locations of the support while practically maintaining the same optimum average damping
ratio, frequency spacing, tuning frequency ratio, and effectiveness. It is clear from Figure 4 that the
lever mass to block mass ratio makes little difference in the optimum parameters and effectiveness of
the LT-AMTMD. This effectively means the influences of the lever mass are rather negligible on the
optimum parameter and effectiveness of the LT-AMTMD.

4.3. Estimating the mass block stroke of the LT-AMTMD with the actuator set at the mass block.
Figure 5 [(a1) and (b1)] clearly illustrates that the influence of the α value within the range from 0.3
to 0.7 is rather negligible on the RI I j value of the LT-AMTMD, but not insignificant out of the range.
Thus, both the static and dynamic stretching of the spring in the LT-AMTMD may be freely adjusted in
accordance with the practical requirements through changing the location of the support within the range
from α = 0.3 to α = 0.7 while practically maintaining the same mass block stroke. This character is very
useful for the implementation of the LT-AMTMD for long-span bridges. It is seen from Figure 5 [(a2)
and (b2)] that the influence of the µ value is rather negligible on the RI I j value of the LT-AMTMD at
smaller NAFGF such as r = − 0.8, but not insignificant at higher NAFGF such as r = − 0.4. In order to
more accurately estimate the mass block stroke, the lever mass thus needs to be accounted for. It is seen
from Figure 5 [(a3) and (b3)] that the RI I j value of the LT-AMTMD decreases rapidly with the increase
of the total mass ratio, which implies that the mass block stroke of the LT-AMTMD is greatly reduced
at higher total mass ratio. However, the gradient of mass block stroke reduction becomes small in the
case where the total mass ratio is beyond 0.03. It is important to emphasize that the NAFGF makes little
difference in the mass block stroke of the LT-AMTMD.

4.4. Estimating the frequency response functions (FRFs) of the structures with the LT-AMTMD with
the actuator set at the mass block. It is seen from Figure 6 that the FRFs of the structures with the
LT-AMTMD for different α values are very consistent with each other, thus meaning that changing
the support locations practically has no influence on the FRFs of the structures with the LT-AMTMD.
Likewise the FRFs of the structures with the LT-AMTMD are very consistent with those of the hanging-
type AMTMD. Figure 7 is presented to take into account the effects of the mass ratio (µ) on the FRFs
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Figure 3. Variation of the optimum parameters and effectiveness of the LT-AMTMD with the actuator set 

at the mass block with respect to total mass ratio with n=5 and P=0.01 [(a1): opt

T[ ;(a2): opt

SF ; (a3): optf ; (a4): 

RI ] and total number with PT=0.01 and P=0.01 [(b1): opt

T[ ; (b2): opt

SF ; (b3): optf ; (b4): RI ].  
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Figure 3. Variation of the optimum parameters and effectiveness of the LT-AMTMD
with the actuator set at the mass block with respect to total mass ratio with n = 5 and
µ = 0.01. (a1) ξ opt

T ; (a2) Fopt
S ; (a3) f opt ; (a4) RI and total number with µT = 0.01

and µ= 0.01 (b1) ξ opt
T ; (b2) Fopt

S ; (b3) f opt ; (b4) RI . Legend: 2 = LT-AMTMD (α =

0.1, γ =−0.4); 3= LT-AMTMD (α= 0.3, γ =−0.4); 4= LT-AMTMD (α= 0.5, γ =

−0.4); × = LT-AMTMD (α = 1.0, γ = −0.4); E = LT-AMTMD (α = 0.1, γ = −0.8);
# = LT-AMTMD (α = 0.3, γ = −0.8); = LT-AMTMD (α = 0.5, γ = −0.8); − =

LT-AMTMD (α = 1.0, γ = −0.8).
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Figure 4. Variation of the optimum parameters and effectiveness of the LT-AMTMD with the actuator set 

at the mass block with respect to total mass ratio with n=5 and D=0.4 [(a1): opt
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and total number with PT=0.01 and D=0.4 [(b1): opt
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Figure 4. Variation of the optimum parameters and effectiveness of the LT-AMTMD
with the actuator set at the mass block with respect to total mass ratio with n = 5 and
α= 0.4 (a1) ξ opt

T ; (a2) Fopt
S ; (a3) f opt ; (a4) RI and total number with µT = 0.01 and α=

0.4 (b1) ξ opt
T ; (b2) Fopt

S ; (b3) f opt ; (b4) RI . Legend: 2 = LT-AMTMD (µ= 0.01, γ =

−0.4); 3 = LT-AMTMD (µ= 0.05, γ = −0.4); 4 = LT-AMTMD (µ= 0.1, γ = −0.4);
× = LT-AMTMD (µ = 0.2, γ = −0.4); E = LT-AMTMD (µ = 0.01, γ = −0.8);
# = LT-AMTMD (µ = 0.05, γ = −0.8); = LT-AMTMD (µ = 0.1, γ = −0.8); − =

LT-AMTMD (µ= 0.2, γ = −0.8).
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Figure 5. Variation of the RII j value of the LT-AMTMD / a single LT-ATMD with the actuator set at the 

mass block with respect to the D value with n=5 and PT=0.01 and P=0.03 [(a1): r=-0.4; (b1): r=-0.8] and 

the P value with n=5 and PT =0.01 and D=0.3 [(a2): r=-0.4; (b2): r=-0.8] and the PT value with n=5 and

D=0.3 and P=0.03 [(a3): r=-0.4; (b3): r=-0.8]. 
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Figure 5. Variation of the RI I j value of the LT-AMTMD / a single LT-ATMD with the
actuator set at the mass block with respect to the α value with n = 5 and µT = 0.01 and
µ= 0.03. (a1) r = − 0.4; (b1) r = − 0.8 and the µ value with n = 5 and µT = 0.01 and
α = 0.3; (a2) r = − 0.4; (b2) r = − 0.8 and the µT value with n = 5 and α = 0.3 and
µ= 0.03; (a3) r = − 0.4; (b3) r = − 0.8. Legend: 2 = LT-ATMD1; 3 = LT-ATMD2;
4 = LT-ATMD3 × = LT-ATMD4; E = LT-ATMD5; # = LT-ATMD.

of the structures with the LT-AMTMD. For smaller NAFGF, the FRFs of the structures with the LT-
AMTMD are almost identical to each other for different µ values even though greater total mass ratio,
such as µT = 0.03. For greater NAFGF, the mass ratio (µ) has an effect on the FRFs of the structures
with the LT-AMTMD, but not significant as well. Figure 8 exhibits the effects of the actuator locations
(β) on the FRFs of the structures with the LT-AMTMD. It is seen that the actuator locations significantly
affects the FRFs of the structures with the LT-AMTMD. With the increase in the β value, the FRFs of
the structures with the LT-AMTMD are getting worse. Therefore, the LT-AMTMD with the actuator set
at the mass block will yield the best performance.
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(a)                                            (b) 

(c)                                            (d) 

Figure 6. FRFs of the structures with the LT-AMTMD with the actuator set at the mass block with n=5, 

P=0.01, and several D values (considering the changes of the support locations) and with (a): r=-0.4 and PT

=0.01; (b): r=-0.4 and PT=0.03; (c): r=-0.8 and PT=0.01; and r=-0.8 and PT=0.03.
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Figure 6. FRFs of the structures with the LT-AMTMD with the actuator set at the mass
block with n = 5, µ= 0.01, and several α values (considering the changes of the support
locations) and with (a) r = − 0.4 and µT = 0.01; (b) r = − 0.4 and µT = 0.03; (c)
r = − 0.8 and µT = 0.01; and (d) r = − 0.8 and µT = 0.03. Legend: —α = 0.1;
− −α = 0.3; - - - α = 0.5; — - - —α = 1.0
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Figure 7. FRFs of the structures with the LT-AMTMD with the actuator set at the mass block with n=5, 

D=0.4, and several P values (considering the changes of lever mass) and with (a): r=-0.4 and PT=0.01; (b): 

r=-0.4 and PT=0.03; (c): r=-0.8 and PT=0.01; and r=-0.8 and PT=0.03.
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Figure 7. FRFs of the structures with the LT-AMTMD with the actuator set at the mass
block with n = 5, α = 0.4, and several µ values (considering the changes of lever mass)
and with (a) r = − 0.4 and µT = 0.01; (b) r = − 0.4 and µT = 0.03; (c) r = − 0.8 and
µT = 0.01; and (d) r = − 0.8 and µT = 0.03. Legend: —µ= 0.01; − −µ= 0.05; - - -
µ= 0.10; — - - —µ= 0.20.



36 CHUNXIANG LI AND BINGKANG HAN

30

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

1.0

2.0

3.0

4.0

5.0

6.0

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

(a) (b)

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

(c)                                         (d) 

Figure 8. FRFs of the structures with the LT-AMTMD with n=5, D=0.4, P =0.01, and several E values 

(considering the changes of actuator locations) and with (a): r=-0.4 and PT =0.01; (b): r=-0.4 and PT =0.03;

(c): r=-0.8 and PT =0.01; and r=-0.8 and PT =0.03.
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Figure 8. FRFs of the structures with the LT-AMTMD with n = 5, α= 0.4, µ= 0.01, and
several β values (considering the changes of actuator locations) and with (a) r = − 0.4
and µT = 0.01; (b) r = − 0.4 and µT = 0.03; (c) r = − 0.8 and µT = 0.01; and (d)
r = − 0.8 and µT = 0.03. Legend: —β = 0.0; − − β = 0.36; - - - β = 0.86; — - - —
β = 1.0.

4.5. Estimating the performance of the LT-AMTMD / a single LT-ATMD with respect to the hanging-
type AMTMD / a single hanging-type ATMD. From Tables 2 and 3, the LT-AMTMD / a single LT-
ATMD has approximately the same performances as the hanging-type AMTMD / a single hanging-type
ATMD. The mass block stroke of the LT-AMTMD is slightly greater than that of the LT-MTMD, but
is significantly larger than that of a single ATMD. Thus, in comparison to a single LT-ATMD, this is a
disadvantage of the LT-AMTMD.

4.6. Estimating the performance of the LT-MTMD (passive counterpart of the LT-AMTMD) / a sin-
gle LT-TMD designed in terms of two hypotheses with respect to the hanging-type MTMD / a single
hanging-type TMD. Here, it is pointed out that in this research the natural frequency of each LT-TMD
in the LT-MTMD (that is, passive counterpart of the LT-AMTMD) takes the forms:

ωT j =
√

kT j/mT j

(designated in this paper as the hypothesis-1). If

ωT j =

√
α2

j kT j/mT j

(similarly designated as the hypothesis-2), which can be derived from the natural frequency expression
of the LT-AMTMD by setting both 1 −β j −α jβ j = 0 and r j = 0, then the optimum tuning frequency
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NAFGF (r) LT-ATMD1 LT-ATMD2 LT-ATMD3 LT-ATMD4 LT-ATMD5

Computational results with the total mass ratio (µT ) equal to 0.01

−0.2 158.67 153.22 149.81 144.34 140.82
−0.4 168.76 163.08 161.27 155.64 151.56
−0.6 204.26 197.14 195.25 185.55 177.80
−0.8 221.75 209.48 203.36 185.88 168.76

Computational results with the total mass ratio (µT ) equal to 0.03

−0.2 65.40 61.81 59.96 57.11 54.63
−0.4 68.81 65.64 64.59 61.27 58.42
−0.6 79.49 74.48 71.54 64.72 57.79
−0.8 80.93 72.42 67.56 59.82 51.51

NAFGF (r) Hanging-type
ATMD1

Hanging-type
ATMD2

Hanging-type
ATMD3

Hanging-type
ATMD4

Hanging-type
ATMD5

Computational results with the total mass ratio (µT ) equal to 0.01

−0.2 159.90 145.10 142.00 135.86 129.65
−0.4 166.42 160.18 155.99 149.60 143.67
−0.6 194.25 187.14 183.07 171.01 160.08
−0.8 204.57 194.07 184.63 165.02 144.54

Computational results with the total mass ratio (µT ) equal to 0.03

−0.2 64.43 60.93 59.05 55.83 52.93
−0.4 70.96 67.13 65.57 62.01 58.88
−0.6 76.09 70.92 68.94 64.73 61.15
−0.8 78.56 69.31 64.52 59.22 54.56

Table 2. The RI I j value, used for estimating the mass block stroke, of the LT-AMTMD
with the actuator set at the mass block / hanging-type AMTMD with n = 5, α = 0.4, and
µ= 0.01 and with different total mass ratio and NAFGF

ratio of the LT-MTMD can be approximately calculated by f opt
= α (that of the LT - MTMD computed

in terms of the hypothesis −1), whereas the optimum average damping ratio of the LT-MTMD can be
approximately determined by

ξ
opt
T =

[that of the LT - MTMD computed in terms of the hypothesis − 1]

α
,

from the computational results listed in Table 4.
Obviously, the LT-MTMD designed in terms of the two hypotheses practically maintains the same

optimum stiffness (kopt
T ) and optimum damping coefficient (copt

T ). Likewise, the computational results
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Total mass ratio Tuning frequency ratio Damping ratio RI value RI I value

Computational results of a single LT-ATMD
in the case of NAFGF (r)= − 0.40

0.010 0.76 0.064 8.1430 73.1342
0.015 0.76 0.071 6.9885 54.5700
0.020 0.75 0.089 6.1971 40.4935
0.025 0.75 0.094 5.7432 34.6001
0.030 0.74 0.107 5.2518 28.5802

Computational results of a single LT-ATMD
in the case of NAFGF (r)= − 0.80

0.010 0.43 0.067 5.3907 82.9899
0.015 0.43 0.074 4.5075 60.2846
0.020 0.42 0.086 3.8713 45.7221
0.025 0.41 0.101 3.5444 36.6465
0.030 0.41 0.105 3.3100 32.0467

Computational results of a single hanging-type ATMD
in the case of NAFGF (r)= − 0.40

0.010 0.76 0.061 8.0113 74.1981
0.015 0.76 0.080 7.0768 51.8164
0.020 0.75 0.089 6.1191 40.5152
0.025 0.74 0.102 5.7826 33.3100
0.030 0.74 0.104 5.2222 29.0629

Computational results of a single hanging-type ATMD
in the case of NAFGF (r)= − 0.80

0.010 0.43 0.063 5.2078 83.8189
0.015 0.42 0.078 4.4928 58.6995
0.020 0.42 0.085 3.9432 46.4770
0.025 0.41 0.095 3.4822 37.5096
0.030 0.40 0.110 3.2442 31.1189

Table 3. The optimum parameters and RI I value of a single LT-ATMD with the actuator
set at the mass block / a single hanging-type ATMD and the RI value of the structures
with the LT-ATMD / hanging-type ATMD with α = 0.4 and µ= 0.01 and with different
total mass ratio and NAFGF

also shows that the two hypotheses will practically provide the same optimum frequency spacing (iden-
tical to the same robustness), same RI value (identical to the same effectiveness), and same RI I j value
(identical to the same mass block stroke) (Refer to Tables 4 and 5). It is seen from Table 6 that a single
LT-TMD takes on the identical behaviors with the LT-MTMD for these two hypotheses. It is interesting
in observing Tables 4–6 to note that the LT-MTMD (passive counterpart of the LT-AMTMD) / a single



ESTIMATING LEVER-TYPE ACTIVE MULTIPLE TUNED MASS DAMPERS 39

Total mass ratio Tuning frequency ratio Average damping ratio Frequency spacing RI value

Computational results of the LT-MTMD in terms of the hypothesis −1

0.010 2.49 0.011 0.12 8.3019
0.015 2.48 0.011 0.15 7.1540
0.020 2.47 0.013 0.17 6.4203
0.025 2.47 0.014 0.19 5.8833
0.030 2.46 0.017 0.20 5.4793

Computational results of the LT-MTMD in terms of the hypothesis −2

0.010 0.99 0.029 0.12 8.4505
0.015 0.99 0.028 0.15 7.1852
0.020 0.99 0.033 0.17 6.4101
0.025 0.99 0.037 0.19 5.9350
0.030 0.99 0.039 0.21 5.5650

Computational results of the hanging-type MTMD

0.010 0.99 0.028 0.12 8.3754
0.015 0.99 0.035 0.14 7.1324
0.020 0.99 0.034 0.17 6.4332
0.025 0.99 0.039 0.19 5.9641
0.030 0.98 0.046 0.20 5.5414

Table 4. The optimum parameters of the LT-MTMD (the passive counterpart of the LT-
AMTMD) / hanging-type MTMD and the RI value of the structures with the LT-MTMD
/ hanging-type MTMD with n = 5, α = 0.4, and µ= 0.01 and with different total mass
ratio obtained in terms of the two hypotheses

LT-TMD designed in terms of the hypotheses-2 has approximately the same performances (including the
same mass block stroke) as the hanging-type MTMD / a single hanging-type TMD with equal total mass
ratio.

5. Conclusions

In the present paper, the location of the mass block is not movable; only the location of the support
is movable. The LT-AMTMD proposed herein is aimed to attenuate the vibration of long-span bridges
under the excitation directly acting on the structure, rather than through the base. The main purpose
of selecting this form of excitation is to offer guidelines for the buffeting control design of long-span
bridges under wind loads. Another important objective is to carry out the numerical estimations on the
LT-AMTMD / a single LT-ATMD with respect to the hanging-type AMTMD / a single hanging-type
ATMD as well as on the LT-MTMD (that is, passive counterpart of the LT-AMTMD) / a single LT-TMD
with reference to the hanging-type MTMD / a single hanging-type TMD. It is worth pointing out that
the locations of both the mass block and support in the MALTTMD proposed by [Li and Zhou 2004] are
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Total mass ratio LT-TMD1 LT-TMD2 LT-TMD3 LT-TMD4 LT-TMD5

Computational results in terms of the hypothesis −1

0.010 154.01 150.66 148.34 141.62 135.23
0.015 129.20 125.98 126.57 120.26 115.60
0.020 99.56 95.84 96.14 91.96 88.48
0.025 86.16 82.66 81.58 76.79 73.28
0.030 67.94 64.04 62.84 59.84 57.86

Computational results in terms of the hypothesis −2

0.010 140.87 141.62 143.71 140.86 137.63
0.015 125.99 123.84 124.82 119.04 115.12
0.020 99.46 95.82 95.19 90.15 85.94
0.025 82.98 79.55 78.28 72.89 68.50
0.030 73.88 70.42 69.08 63.78 58.75

Total mass ratio Hanging-type
TMD1

Hanging-type
TMD2

Hanging-type
TMD3

Hanging-type
TMD4

Hanging-type
TMD5

0.010 147.03 146.32 147.67 144.03 140.40
0.015 107.02 102.59 101.23 97.03 95.04
0.020 97.12 94.10 92.90 87.42 82.70
0.025 79.39 76.36 75.06 69.59 64.41
0.030 62.09 59.82 59.25 56.81 54.68

Table 5. The RI I j value, used for estimating the mass block stroke, of the LT-MTMD
(the passive counterpart of the LT-AMTMD) / hanging-type MTMD with n = 5, α = 0.4,
and µ= 0.01 and with different total mass ratio obtained in terms of the two hypotheses

all movable. Likewise, the MALTTMD is aimed to suppress the vibration of long-span bridges under
the ground motions, namely the excitation through the base. From the numerical results presented, the
following main conclusions can be drawn:

(1) The LT-AMTMD with the actuator set at the mass block can provide better effectiveness and higher
robustness in reducing the vibrations of long-span bridges with respect to the LT-AMTMD with
the actuator set at any other locations. The actuator locations significantly affect the FRFs of the
structures with the LT-AMTMD and the LT-AMTMD with the actuator set at the mass block will
render the best FRFs. The FRFs of the structures with the LT-AMTMD with the actuator set at the
mass block are very consistent with those of the hanging-type AMTMD. Likewise, changing the
support locations practically has no influence on the FRFs of the structures with the LT-AMTMD
with the actuator set at the mass block.

(2) A new basic result is that both the static and dynamic stretching of the spring in the LT-AMTMD
with the actuator set at the mass block may be freely adjusted in accordance with the practical
requirements through changing the locations of the support within the range from α = 0.3 to α = 0.7
while practically maintaining the same performance (including the same mass block stroke).
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Total mass ratio Tuning frequency ratio Damping ratio RI value RI I value

Computational results of a single LT-TMD in terms of the hypothesis −1

0.010 2.47 0.025 9.4510 67.7894
0.015 2.46 0.032 8.3178 47.7892
0.020 2.44 0.036 7.5204 37.7196
0.025 2.43 0.040 6.8651 31.3496
0.030 2.42 0.042 6.4355 27.4125

Computational results of a single LT-TMD in terms of the hypothesis −2

0.010 0.99 0.066 9.5663 66.5275
0.015 0.98 0.080 8.3924 47.6999
0.020 0.98 0.090 7.5680 38.0642
0.025 0.97 0.098 6.9489 31.6057
0.030 0.97 0.104 6.5137 27.6807

Computational results of a single hanging-type TMD

0.010 0.99 0.065 9.6623 67.0634
0.015 0.98 0.080 8.3198 47.5598
0.020 0.98 0.090 7.6252 38.1530
0.025 0.97 0.098 6.8943 31.5617
0.030 0.97 0.103 6.5625 27.8820

Table 6. The optimum parameters and RI I value of a single LT-TMD (the passive coun-
terpart of the LT-ATMD) / a single hanging-type TMD and the RI value of the structures
with the LT-TMD / hanging-type TMD with α = 0.4 and µ = 0.01 and with different
total mass ratio obtained in terms of the two hypotheses

(3) The LT-AMTMD with the actuator set at the mass block can largely enhance the robustness and
effectiveness of the LT-MTMD and can offer higher effectiveness in comparison to a single LT-
ATMD. The mass block stroke of the LT-AMTMD with the actuator set at the mass block is slightly
greater than that of the LT-MTMD, but is significantly larger than that of a single LT-ATMD.

(4) The LT-MTMD designed using the two hypotheses practically maintains the same optimum stiffness
and optimum damping coefficient. The two hypotheses will practically lead to the same robustness,
effectiveness, and mass block stroke. Likewise, a single LT-TMD possesses the identical behaviors
to the LT-MTMD corresponding to these two hypotheses.

In fact, any type of single-degree-of-freedom oscillators can be employed as the tuned mass dampers.
However, the major advantage of the LT-AMTMD is that the dynamic stretching of spring (spring stroke)
can be freely adjusted while practically maintaining the performance of the LT-AMTMD unchanged. The
present paper is concerned with wind-induced harmonic vibrations of long span bridges. The focus is on
the (vertical) flexural mode of the bridge deck. Usually under wind there are problems with the dominant
flexural and torsional modes of vibration of long span bridges. It may be necessary to reduce at least two
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or even more modes. Therefore, there is a need for further estimating the behaviors of the LT-AMTMD
for the dominant flexural and torsional modes of vibration of long span bridges.
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FLEXURE OF BEAMS WITH AN INTERLAYER — SYMMETRIC BEAMS WITH
ORTHOTROPIC ADHERENDS

K. S. ALFREDSSON, T. A. BOGETTI, L. A. CARLSSON, J. W. GILLESPIE, JR. AND A. YIOURNAS

Analysis of the three-point flexure loading of a symmetric beam configuration consisting of two identical
adherends joined by a flexible layer is presented. A closed-form solution is presented in the form of a
layer-wise approach, and shows excellent agreement with finite element results. Particular emphasis is
given to the global beam compliance. The results show that a thin, shear deformable layer may effectively
decouple the responses of the two beams. Furthermore, in contrast to ordinary beams, the presence of
an overhang reduces the beam compliance. These effects are quantified and discussed. Experiments
on aluminum adherends joined by a rubber layer were conducted over a range of overhang lengths in a
three-point flexure fixture, and very good agreement between measured and predicted beam compliance
was noted.

Introduction

Sandwich structures are commonly designed in an effort to mimic the I-beam concept where the web
supports shear loads and the flanges bending loads. In certain structural applications, however, it may be
desirable to utilize a highly shear deformable layer sandwiched between more rigid adherends, such as
in structures utilizing shear thickening fluids to control the vibration response; see [Fischer et al. 2006],
and in mechanical shielding of brittle layers; see for example [Mahdi et al. 2003].

The design of such structures is greatly benefited by an improved understanding of the role of the
thickness and stiffness of the rubber layer in its ability to interact with the upper and lower layers of the
structure. Most analysis of such structures to date is based on finite element analysis [Davila and Chen
2000; Mahdi and Gillespie 2004], because it is widely recognized that the large local shear deformation
of the layer prohibits the use of ordinary beam and plate theories [Timoshenko and Woinowsky-Kreiger
1959; Gere and Timoshenko 1984] and first order shear deformation theory [Whitney 1973]. Sandwich
beams and panels with shear-deformable compliant core materials have been considered by numerous
researchers since the pioneering work of Reissner [1947, 1948]; see, for example, [Zenkert 1997]. Such
analysis, however, is applicable to structures with thin faces over a thick core, while the present work
considers thick adherends over a thin flexible layer.

In this paper we will present a layer-wise analytical beam approach to the mechanics of symmetric
beam configurations with a flexible interlayer. Use of the simplest possible formulation that can capture
the global bending behavior allows us to obtain a closed form solution. The approach shares several

Keywords: flexure, interlayer, shear deformation.
The authors would like to acknowledge funding from the Army Research Laboratory (Cooperative Agreement # DAAD19-
01-2-0005) and the Composite Materials Center of Excellence program at the University of Delaware Center for Composite
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Figure 1. Three-point flexure loading of a layered beam with symmetric overhangs.

elements with the layer-wise approach developed for sandwich beams with a flexible core by Frostig and
Baruch [1990], although they considered a thick core between thin faces and addressed local indentation
at load introduction and support regions, while the main focus of our approach is on the global beam
response and shear transfer effects. Alfredsson [2004] examined adhesively bonded end-notch flexure
(ENF) fracture test specimens, but his analysis is valid only for infinitely thin layers. The analysis will
be compared to finite element (FE) results and to experimental compliance data determined for beams
with a rubber layer tested in three-point flexure loading.

Problem description

A multilayer symmetric beam structure consisting of two stiff and thick orthotropic adherends separated
by a flexible isotropic interlayer loaded in three-point flexure is considered (Figure 1). In this initial study,
the adherends are assumed to be of identical thickness. The solution is simplified to isotropic adherends
to facilitate correlation with the experimental compliance data. A major objective here is to determine
the global beam deflection. As will be shown, the overhang length c influences the compliance, and the
role of this parameter will be examined.

For the symmetrical beam configuration considered (Figure 1), the loading may be divided into sym-
metric and antisymmetric parts (Figure 2), and each solution is superimposed to obtain the solution to the
original problem. It is recognized that the symmetric part of the loading produces extensional (tensile or
compressive) deformation of the interlayer, while the antisymmetric part produces shear deformation of
the interlayer and bending of the layered beam. The symmetric part of the loading will not contribute to
the global bending of the layered beam, and for this reason, only the antisymmetric part of the loading
is considered here.

Derivation of governing equations

The adherends are considered to be Euler–Bernoulli beams. Considering only the antisymmetric part of
the loading means that the resulting displacement field is also antisymmetric. Hence, the two adherends
will have equal deflection, which is denoted w. The longitudinal displacements of the midplanes of the
adherends are of equal magnitude, but of opposite sign. The displacement in the x direction (Figure 1)
of the midplane of the lower adherend is denoted by u; see Figure 3.
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SYMMETRIC ANTISYMMETRIC

Figure 2. Superposition of symmetric and antisymmetric loadings.

The deformation of the interlayer is defined as the relative displacements of the lower and upper
adherend/interlayer interfaces. According to classical beam theory, the cross sections of the adherends
are assumed to undergo translation and rotation only. Hence, the deformation of the interlayer is defined
with respect to the midplane of each adherend. As shown in Figure 3, both the axial displacement of
each adherend, u, and the rotation of the beam, w′, contribute to the total shear deformation v of the
flexible layer

v(x)= 2u(x)+ (h + t)w′(x). (1)

Longitudinal equilibrium of the flexible interlayer is assumed to be fulfilled by a shear stress, τ , which
is constant throughout the thickness of the layer; see Figure 4. This means that the longitudinal normal
stress in the flexible layer is neglected, which is justified since it is much smaller than the longitudinal
normal stresses in the adherends and the shear stress in the flexible layer. The antisymmetric condition
implies that there are no transverse normal stresses at the symmetry line passing through the middle of
the interlayer. However, at the interface between the interlayer and the adherends, a normal stress σ may
be present; see Figure 4.

Vertical equilibrium of the flexible layer requires that

2σ(x)= tτ ′(x), (2)

where t is the thickness of the flexible layer; see Figure 1.
The adherends transmit normal forces, N , bending moments, M , and transversal shear forces, V . The

positive directions of these stress resultants are shown in Figure 4 for the antisymmetric loading case.

Figure 3. Shear deformation of a flexible layer due to longitudinal displacements, u
(left), and slope, w′ (right).
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Figure 4. Positive direction of adhesive stresses and sectional loads.

Equilibrium of the adherends requires that

N ′(x)= bτ [v(x)], (3a)

V ′(x)= − bσ(x), (3b)

V (x)= M ′(x)+
1
2

bhτ [v(x)], (3c)

where b is the specimen width and h is the adherend thickness.
Assuming that the adherends deform elastically according to the Euler–Bernoulli beam theory, the

normal force and the bending moment are given by

N (x)= Au′(x), (4a)

M(x)= −Dw′′(x), (4b)

where A = b
∫

E1(z)dz and D = b
∫

E1(z)z2 are the extensional and flexural stiffnesses of the adherends.
E1 is the Young’s modulus in the longitudinal direction of the adherends. Furthermore, z is a coordinate
in the thickness direction. For isotropic adherends with a Young’s modulus E , integration yields

A = Ebh and D = Ebh3/12.

In order to define a boundary value problem which involves only the shear deformation, the longi-
tudinal displacement and the deflection are eliminated from the governing equations. Combination of
Equations (2) and (3b) yields

2V ′(x)+ btτ ′(x)= 0.
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Integration yields
2V (x)+ btτ(x)= V̄ , (5)

where V̄ is the total shear force transmitted by the sandwich beam; see Figure 5. This equation can also
be obtained directly from Figures 4 and 5. Substitution of Equation (3c) into Equation (5) yields the
following differential equation:

2M ′(x)+ b(h + t)τ [v(x)] = V̄ , (6)

where the shear stress in the layer, τ , is a function of the shear deformation, v. Next, τ is substituted
from Equation (3a) into Equation (6). With N and M expressed in terms of the displacements u and w
according to Equation (4), the result is,

2w′′′(x)−
A
D
(h + t)u′′(x)= −

V̄
D
. (7)

Differentiating Equation (1) twice and combining the result with Equation (7) yields a relation between
the second derivatives of u and v,[

2 +
A

2D
(h + t)2

]
u′′(x)= v′′(x)+

V̄
2D

(h + t). (8)

Substitution of the second derivative of u from Equation (8) into the equation obtained by combining
Equations (3a) and (4a), the following differential equation relating shear deformation and shear stress
is found:

v′′(x)=
b
A

[
2 +

A
2D

(h + t)2
]
{τ [v(x)] − τ̄ }, (9)

where

τ̄ =
V̄
bh

1 +
t
h

4D
Ah2 + (1 +

t
h )

2
=

3
4

V̄
bh

1 +
t
h

1 +
3
2

t
h +

3
4(

t
h )

2
. (10)

Here, τ̄ is the constant shear stress in the interlayer predicted by ordinary beam theory, [Gere and Timo-
shenko 1984]. For a small deformation of the interlayer, a linear constitutive relation applies. Thus, for
the shear deformation,

τ(x)= kv(x), k =
G
t
, (11)

where G is the shear modulus of the layer. Due to the assumed antisymmetric loading (Figures 2, and 4),
no transverse deformation of the interlayer will take place since the transverse stress in the interlayer

Figure 5. Sectional loads for entire beam sections; N̄ , M̄ , and V̄ , and for adherends N ,
M , and V .
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varies linearly with a zero average. Substitution of Equation (11) into Equation (9) yields a linear
differential equation of second order:

v′′(x)− κ2v(x)= − κ2τ̄ /k, (12)

with

κ =

√[
2 +

A
2D

(h + t)2
]

bG
At

=

√
8G
Eht

[
1 +

3
2

t
h

+
3
4

( t
h

)2
]
. (13)

As will be further discussed in this paper, κ constitutes an inverse length scale of the solution. The
general solution to Equation (12) is

v(x)= A1eκx
+ A2e−κx

+
τ̄

k
, (14)

where A1 and A2 are integration constants determined by boundary conditions on v or v′.
The following relation, obtained from Equation (1) and Equation (4), can be used to transform bound-

ary conditions on N and M into boundary conditions on v′,

v′(x)=
2
A

N (x)−
h + t

D
M(x). (15)

From this equation it also follows that not only v but also v′ are continuous when no concentrated
longitudinal forces or moments are applied to the adherends. Specific solutions will be discussed for
beams without and with overhang.

Beams without overhang

Consider first a beam without overhang, that is, c = 0 in Figure 1. Due to symmetry, only one half of the
specimen, here the left part, 0 ≤ x ≤ L/2, must be analyzed. At the left end, x = 0, the adherends are
unloaded, with N (0)= 0 and M(0)= 0. From Equation (15), the boundary conditions on N and M can
be translated to a boundary condition on v′. Since the shear stress in the flexible layer is antisymmetric
with respect to the loading point, x = L/2, the shear deformation is zero at x = L/2. Thus, the boundary
conditions are:

v′(0)= 0, v(L/2)= 0. (16)

Subjecting the general solution, Equation (14), to these conditions, the shear stress takes the form

τ(x)= τ̄

[
1 −

cosh(κx)
cosh(κL/2)

]
, 0 ≤ x ≤ L/2, (17)

where τ̄ is given by Equation (10) with V̄ = P/2. The distribution of interlayer shear stress along the
beam is shown in Figure 6 for three span lengths. The results are normalized by τ̄ . For long beams
(L = 2.0 m) the shear stress is close to the ordinary beam theory result (τ̄ ) everywhere except near the
loading point where a sign change takes place. This can also be deduced from Equation (17); that is,
for large values of L the second term inside the parentheses is negligible except when x is close to L/2.
Hence, with respect to the shear stress distribution in the interlayer, the present theory degenerates into
ordinary beam theory for large span lengths. The shear stress decreases with decreasing span length.
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Figure 6. Shear stress distribution along the beam for three span lengths, L = .2, 1 and
2 m, E = 70 GPa, G = 3.1 MPa, h = 6.35 mm, t = 3 mm. The shear stress is normalized
by the value obtained from ordinary beam theory.

For a short span length (L = 0.2 m), the maximum shear stress is only about 20% of the ordinary beam
theory value.

The normal force in the adherends is determined by integration of Equation (3a),

N (x)= b

x∫
0

τ [v(x̃)]dx̃ =
bτ̄
κ

[
κx −

sinh(κx)
cosh(κL/2)

]
. (18)

The bending moment in the adherends is determined from the equilibrium of a free body element of the
beam cut at a distance x from the left end:

M(x)=
1
4

Px −
1
2
(h + t)N (x)=

bhτ̄
2κ(1 + t/h)

[
4D
Ah2 κx +

(
1 +

t
h

)2 sinh(κx)
cosh(κL/2)

]
,

where P = 2V̄ and Equations (10) and (18) have been used to obtain the final expression for M(x) above.
Notice that for isotropic adherends, Ah2/(12D)= 1.

The deflection, w(x), is determined by integrating Equation (4b) and using the boundary conditions,
w(0)= 0 and w′(L/2)= 0. The beam compliance, C = w(L/2)/P takes the form,

C
Cbt

= 1 +
Ah2

12D

(
1 +

t
h

)2
[

36
κ2L2 −

72
κ3L3 tanh

(κL
2

)]
, (19)

where Cbt is the compliance according to ordinary beam theory,

Cbt =
L3

96D + 24A(h + t)2
=

L3

32Ebh3

[
1 +

3
2

t
h

+
3
4

( t
h

)2
]−1

. (20)

It is seen from Equation (19) that for large values of L we have C ≈ Cbt , which implies that with respect
to the compliance, the present theory degenerates into ordinary beam theory for large span lengths.
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In an attempt to clarify the implications of Equation (19), two definitions referring to the effects of
introducing a flexible layer, thickness effect and flexibility effect, are introduced. The thickness effect
refers to the increase in flexural stiffness (decrease of compliance) due to the thickness of the flexible
layer. If only the thickness effect is accounted for, the compliance equals Cbt (Equation (20)), the
compliance predicted by ordinary beam theory.

The flexibility effect refers to the decoupling of the two adherends due to shear deformation of the
layer, but disregards the increased thickness. To isolate this effect, it is assumed that t/h � 1, and
Equation (19) becomes

C f

C0
= 1 +

Ah2

12D

[
36
κ̄2L2 −

72
κ̄3L3 tanh

( κ̄L
2

)]
,

t
h

� 1, (21)

where

κ̄ =

√[
2 +

Ah2

2D

]
bG
At

=

√
8G
Eht

, (22a)

C0 =
L3

96D + 24Ah2 =
L3

32Ebh3 , (22b)

in which C0 is the compliance when the two outer beams are fully coupled by an interlayer of zero
thickness.

Figure 7 illustrates the influences of the two effects on the beam compliance, here normalized by
C0 (Equation (22b)). The dotted curve shows the monotonic decrease of the compliance according to
ordinary beam theory, Cbt in Equation (20), due to the increased interlayer thickness. The dashed curve
shows the monotonic increase of C f (Equation (21)) due to the increase of the flexibility, k−1

= t/G,
with increasing interlayer thickness. The solid curve represents the actual compliance, C , predicted by

Figure 7. Compliance as a function of layer thickness. E = 70 GPa, G = 3.1 MPa,
h = 6.35 mm, L = 0.2 m.
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Equation (19). It is seen that the actual compliance C is bounded by Cbt and C f . That is, when only the
thickness effect is accounted for (ordinary beam theory) the compliance is underestimated, and when only
the flexibility effect is accounted for, the compliance is overestimated. It can be shown mathematically
that this is always the case, that is, Cbt ≤ C ≤ C f .

Figure 8 shows the compliance calculated from Equation (19), normalized by C0, as a function of
layer thickness for span lengths of .2, 1, and 2 m. For the shortest span (L = .2 m), the compliance
increases with increasing layer thickness over the entire interval studied. This means that for large layer
thicknesses, the two adherends are practically decoupled and bend independently of one another, that
is, the flexibility effect dominates. Such beams actually have two neutral planes with each plane on the
geometrical center of each adherend. For a beam with a large span (L = 2.0 m), the compliance decreases
with layer thickness, that is, the thickness effect dominates the behavior. For the intermediate span length
(L = 1.0 m), the compliance increases with layer thickness up to a critical value of tcr ≈ 3.5 mm. Below
this value the flexibility effect dominates. For layer thicknesses above 3.5 mm, the thickness effect
dominates and the compliance decreases with increasing layer thickness.

From the results shown in Figure 8, it becomes clear that for a specified choice of adherends and
a given interlayer material, there exists a critical span length, Lcr , above which the addition of a thin
flexible layer will not decouple the response—that is, the compliance will not increase when a thin
flexible interlayer is added. The critical span length is found by making C stationary with respect to t
for t → 0, which yields,

Lcr =

√
3Ah
bG

= h

√
3E
G
.

For the present geometry the critical span length is 1.65 m; see Figure 8. This equation should be useful
for the design of structures containing flexible interlayers.

Figure 8. Compliance as a function of layer thickness for span lengths of .2, 1 and 2 m
E = 70 GPa, G = 3.1 MPa, h = 6.35 mm.
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Equation (21) can also be used to examine the behavior for beams with a very thin (t/h � 1) layer. If
such a layer is very stiff, G → ∞, the compliance approaches that of a homogeneous beam, and C → C0.
On the other hand, if the thin layer is very flexible, G → 0, κ̄ → 0, then the compliance C → 4C0 for the
case of isotropic adherends. This case effectively corresponds to one beam sliding on top of the other.
The beams may be said to be fully decoupled if the compliance is more that 99% of the asymptotic value,
C = 4C0. The other extreme, fully coupled, may be defined when the compliance exceeds the lower
limit, C = C0, by less than 1%. These conditions can be quantified using Equation (21). The degree of
decoupling is characterized by introduction of the following dimensionless decoupling parameter,

β =
8

κ̄2L2 =
E
G

( h
L

)2 t
h
.

The variation of compliance with β is shown in Figure 9. The curve can be used to assess the level of
decoupling by calculating β for any particular beam configuration. The curve also shows that for a very
thin layer it is required that β < 0.0023 to achieve full coupling of the two beams (C/C0 < 1.01). On
the other hand, β > 59 gives full decoupling of the two beams (C/(4C0) > 0.99).

Beams with overhang

Consider a beam with symmetric overhang, that is, c > 0 in Figure 1. Due to symmetry, only the left
part, −c ≤ x ≤ L/2, is studied. The total shear force is discontinuous at the supports:

V̄ (x)=

{
0, for − c ≤ x < 0

P/2, for 0< x < L/2.

Figure 9. Compliance as a function of decoupling parameter, β, for thin interlayers,
t/h � 1.
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According to Equation (14), and the procedure outlined for the c = 0 case, this implies that the general
solution for the shear deformation of the interlayer is given by

v(x)=


(A1eκx

+ A2e−κx)
τ̄

k
, for − c ≤ x ≤ 0

(A3eκx
+ A4e−κx

+ 1)
τ̄

k
, for 0 ≤ x ≤ L/2,

(23)

where τ̄ is given by Equation (10) with V̄ = P/2. The absence of a constant term for the overhang
portion in Equation (23) reflects the fact that the total shear force, V̄ , Figure 5, is zero in the overhang
part of the beam. The boundary conditions at the free left end, x = −c, and at the midspan, x = L/2,
are, similar to Equation (16),

v′(−c)= 0, (24a)

v(L/2)= 0. (24b)

Moreover, both v and v′ must be continuous at the support, x = 0. With these four conditions, the
integration constants become

A1 =
1
2

eκL/2
+ e−κL/2

− 2
eκL/2 + e−κ(4c+L)/2 , (25a)

A2 = A1e−2κc
=

1
2

eκ(L−4c)/2
+ e−κ(4c+L)/2

− 2e−2κc

eκL/2 + e−κ(2c+L/2) , (25b)

A3 = A1 −
1
2

=
1
2

e−κL/2
− e−κ(4c+L)/2

− 2
eκL/2 + e−κ(4c+L)/2 , (25c)

A4 = A2 −
1
2

=
1
2

eκ(L−4c)/2
− eκL/2

− 2e−2κc

eκL/2 + e−κ(4c+L)/2 . (25d)

The longitudinal force, N (Figure 3), is obtained by integration of Equation (3a),

N (x)= b

x∫
−c

τ [v(x̃)]dx̃ . (26)

The bending moment in the adherends is determined from equilibrium:

M(x)=


−

1
2
(h + t)N (x), for − c ≤ x ≤ 0

1
4

Px −
1
2
(h + t)N (x), for 0 ≤ x ≤ L/2.

(27)

With the bending moment determined, the deflection, w(x), is determined by integration of Equation
(4b). With the boundary conditions, w(0)= 0 and w′(L/2)= 0, the compliance, Coh =w(L/2)/P , takes
the form,

Coh

Cbt
= 1 +

( Ah2

12D

) 36
κ3L3

(
1 +

t
h

)2[
A3{eκL/2(2 − κL)− 2} + A4{2 − e−κL/2(2 + κL)}

]
, (28)
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where A3, A4 and Cbt are given in Equations (25c), (25d), and (20). For zero overhang length, c = 0, it
can be shown that Coh degenerates into C according to Equation (19). When the overhang is infinitely
long, the limit compliance is given by

Coh

Cbt
= 1 +

( Ah2

12D

) 36
κ3L3

(
1 +

t
h

)2[
κL − 3 − e−κL

+ 4e−κL/2].
It will be demonstrated below that even though C∞ is an asymptotic value for infinitely long overhangs, it
is also a very good approximation for moderate values of the overhang. Figure 10 shows the compliance
for beams with overhang normalized by the limiting value of the compliance. The data are plotted against
the dimensionless parameter κc. It is noted that the overhang does not influence the compliance very
much at longer spans. Figure 10 also shows that for κc > 3 the limit value of the compliance, C∞,
is a very good approximation, regardless of the span length. Hence, from Equation (13) it follows that
compliance, Coh , is very close to the limiting value of the compliance, C∞, if the overhang length exceeds
the limiting overhang length, c∞,

c∞ = 3

√
At
bG

[
2 +

A
2D

(h + t)2
]−1

= 3

√
Eht
8G

[
1 +

3
2

t
h

+
3
4

( t
h

)2]−1
.

For isotropic adherends and a thin flexible layer (t/h � 1), the limiting overhang is given by

c̄∞ = 3

√
Eht
8G

.

This expression resembles the one for the decay length of end effects for composites according to
St. Venant’s principle ([Horgan 1972; Choi and Horgan 1977; Horgan and Knowles 1983; Bogetti et al.
1988]) in the sense that the square root of the ratio of the Young’s and shear moduli governs the length
scale.

Figure 10. Compliance as a function of overhang length (κc), for span lengths, of .2, 1
and 2 m. E = 70 GPa, G = 3.1 MPa, h = 6.35 mm, t = 3 mm.
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Figure 11. Compliance as a function of layer thickness for overhang lengths, c, of 0,
.127 m, and c∞. E = 70 GPa, G = 3.1 MPa, h = 6.35 mm, and L = 0.2 m. The open
squares represent results from FE analysis with Poisson’s ratio ν = 0.4999 for the rubber
and ν = 0.33 for the aluminum.

Figure 11 shows the compliance Coh/C0 as a function of the layer thickness for overhang lengths
c = 0, .127 m, and c∞. The reduction of the compliance by the overhang segments is quite substantial
for thick layers. A comparison with a two-dimensional continuum finite element model is also made
in Figure 11 for the case of c = .127 m. The adherends are assumed to deform under plane stress in
order to conform to the beam theory solution. The flexible interlayer is constrained in its plane by the
stiff adherends, and is thus assumed to deform under plane strain. The FE code [Mechanica 2007] is
used in the FE simulations. A ninth order polynomial is used for interpolation of displacements along
all element edges. Sixteen elements are used along the span. The elements in the overhang regions are
of the same lengths as those inside the span. One element through the thickness of each adherend and
the interlayer is used. This is sufficient due to the high degree of the interpolation polynomial. The FE
results are shown as squares in Figure 11. The correspondence to the analytical solution is very good.
For large interlayer thicknesses a small deviation is observed, and the FE solution gives a slightly higher
compliance. This is due to compression of the interlayer, an effect which is not accounted for in the
analytical solution. This effect could be accounted for by also considering the symmetric part of the
analytical solution; see Figure 2. For the present case however, this effect is small.

Figure 12 shows the compliance Coh/Cbt as a function of the span length, L , for two layer thicknesses,
t = .76 and 3 mm. For short span lengths, the overhang has a significant influence on the compliance.
For large span lengths, however, Coh/Cbt approaches unity for both layer thicknesses, which shows that
ordinary beam theory is recovered.

Figure 13 shows the shear stress distribution, τ/τ̄ , in the layer for three overhang lengths c = 0,
c = 0.127 m, and c = c∞ (0.506 m). It is seen that an overhang causes substantial changes in the shear
stress close to the supports. This will also affect the distribution of the normal force and bending moments
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Figure 12. Compliance as a function of span length for beams without overhang (con-
tinuous lines) and limiting overhang (dashed lines). E = 70 GPa, G = 3.1 MPa,
h = 6.35 mm, L = 0.2 m.

in the adherends and the deflection. For the beam with c = c∞ the shear stress in the layer decays to
zero at the left end of the beam. This case represents a limiting value of the overhang. If the overhang
is increased beyond this value, the stress distribution (and compliance) will not change.

Experiments

Rubber testing. The shear modulus, G, of the rubber layer was determined using the following equation
derived from the statistical theory of rubber elasticity [Aklonis and MacKnight 1983],

σ = G
(
λ−

1
λ2

)
,

where incompressibility has been assumed, and σ represents the tensile stress (calculated based on the
original cross sectional area), and λ is the extension ratio of the rubber (λ= l/ l0, where l and l0 are the
deformed and undeformed lengths of the rubber specimen). By constructing plots of σ versus λ− λ−2

the shear modulus, G, is the slope of the initially linear portion of the curve.
A rectangular specimen of 2.54 cm width and 3 mm thickness was cut from a flat EPDM rubber sheet.

The tensile tests were conducted on specimens using a gage length of 30.5 cm at a crosshead rate of
2.5 mm/min. The extension ratio, λ, was calculated from the crosshead displacement. The rubber shear
modulus was determined to be G = 3.11 ± .07 MPa.

Flexure testing. Three-point flexure tests were conducted on beams with aluminum adherends connected
by a rubber layer. The adherends were 6.53 mm thick and 51 mm wide, with a 3.0 mm thick rubber layer.
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Figure 13. Shear stress distribution for beams with overhang lengths c = 0, .127 m and
c∞. E = 70 GPa, G = 3.1 MPa, L = .2 m, h = 6.35 mm, t = 3 mm. The shear stress is
normalized by τ̄ given by Equation (10).

A critical test of the analytical model is to determine if the effect of the overhang on compliance is
borne out experimentally. For that purpose the experiments were conducted at a constant span length,
L = 20.3 cm, and at overhang lengths c = 2.54, 5.08, 7.62, 10.2, and 12.7 cm.

The bonding surfaces of the aluminum beams were grit blasted and treated with silane for adhesive
bonding to an EPDM rubber layer. The rubber layer was abraded and treated with a primer before bonding
to the adherends using a two-component epoxy adhesive (Applied Poleramic SC-11). Thin scrim cloth
layers were inserted between the rubber layer and the adherends to maintain a uniform bond line.

The beams were tested in an Instron 4484 load frame in a three-point flexure fixture with 19.1 mm
diameter cylindrical rollers at the supports and load introduction locations. Figure 14 shows a photo
of the actual test setup. To achieve a more uniform load introduction, 1.6 mm thick rubber pads were
inserted between the loading and support rollers and the beam. The displacement of the beams was
measured on the top surface above each support, and on the bottom surface under the central load
introduction line using LVDTs. The accuracy of the LVDTs was ±.0025 mm, or better. The actual
deflection of the lower beam surface at the center span (x = L/2) was determined by subtracting the
average displacement at the supports from that at the central load introduction. By this procedure, it
was possible to compensate for displacement contributions from the load cell and fixture as well as local
deformations in the support regions. By measuring the displacement of the lower surface under the
central load, local load introduction effects were eliminated.

The flexure tests were conducted at a cross head rate of 2.5 mm/min. The beam compliance was
determined from the corrected central beam deflection (δ) divided by the applied load (P), C = δ/P .

In order to satisfy the desired range of overhang lengths at a constant span length (L = 20.3 cm)
without introducing multiple beam specimens, the initially 45.7 cm long beam was loaded to very small
displacements in order to maintain linear elastic reversible response. Following this test, the beam was
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Figure 14. Experimental setup for compliance determination of three-point flexure
loaded beams with rubber interlayer.

unloaded, removed from the fixture, and a 2.54 cm long section of each end was cut off in order to
achieve a beam with a shorter overhang length. This procedure was repeated until the shortest (2.54 cm)
overhang length was accomplished.

Figure 15 shows compliance of the beam versus overhang length. The solid circles represent experi-
mental test data determined as described above, while the continuous curve represents predictions from
Equation (28), with E = 70 GPa and G = 3.1 MPa. It is verified that the presence of an overhang reduces
the compliance, and the test data are in very good agreement with the analytical predictions, lending
confidence to the approach adopted in this study.

The squares in Figure 15 represent FE results according to the model used in connection with Figure
11. The comparison to the analytical solution is very good. Thus, the predicted reduction of compliance
with increasing overhang length, c, is confirmed by the FE results.

Concluding remarks

The beam analysis presented here shows that beams with a flexible interlayer behave quite differently
from ordinary homogeneous beams in the sense that a highly localized shear deformation substantially
adds to the flexibility and decoupling characteristics of the structure. These effects are quantified through
an analytical form of the compliance for the three-point flexure geometry. It is also shown and quantified
how an overhang portion of the beam reduces the beam compliance. Conditions for full coupling and
full decoupling are formulated for beams with thin interlayers, and expressed in the form of a dimen-
sionless decoupling parameter. The analysis is intended as a design tool that is simpler to use and more
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Figure 15. Compliance as a function of overhang length. E = 70 GPa, G = 3.1 MPa
h = 6.53 mm, b = 51 mm, t = 3 mm, and L = .203 m. Open circles represent experimental
data and the continuous line predictions using Equation (28). Solid squares represent
results from FE analysis with Poisson’s ratio ν = 0.4999 for the rubber and ν = 0.33 for
the aluminum.

computationally efficient than finite elements. Comparison of the analytical model to a continuum finite
element model shows excellent agreement. Experiments on three-point flexure loaded aluminum beams
with a rubber interlayer were in favorable agreement with the beam analysis predictions.
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ENERGY-MINIMIZING INCLUSION IN AN ELASTIC PLATE UNDER REMOTE
SHEAR

SHMUEL VIGDERGAUZ

A single foreign inclusion perfectly embedded in an elastic plate is considered as a bimaterial setup
for finding the interface shape that minimizes the energy increment in a homogeneous shear stress field
given at infinity. While simple in concept, this optimization problem is very hard computationally. For
tractability, we limit our focus to a narrowed set of curves which can be conformally mapped onto a
circle by an analytic function with only one nonzero Laurent term. The resultant one-parameter shape
optimization problem with an integral objective functional is then accurately solved using an enhanced
complex variable approach. This scheme, though seemingly restrictive, provides good qualitative insight
into the optimal solution and bridges the gap between the limiting cases of the energy-minimal hole and
the rigid inclusion solved previously.

1. Introduction

Elastostatic analysis and optimization of fiber-reinforced composites is of current interest in various
fields of structural engineering, from the traditional mechanical industry [Ibrahim et al. 1991; Bull 1996]
to modern nanotechnology [Ovid’ko and Sheinerman 2005] and phononics [Gazonas et al. 2006]. The
fibers’ shape is of much less practical importance than their volume fraction, though they do significantly
influence the overall mechanical behavior. This results in an optimization problem: to maximize struc-
tural rigidity of a matrix, determine the shape of a fixed volume of fibers that minimizes the strain energy
increment induced in a given homogeneous stress state.

As in other branches of continuum mechanics, the stress-strain analysis of bimaterial structures has
advanced much further than the optimization of their mechanical properties. This is true even for the sim-
plest linear two-dimensional case considered here. Closed-form optima such as the equistress inclusion
shapes [Vigdergauz 1989] are extremely rare, whereas numerical schemes require a computationally dif-
ficult repetitive solution of the fourth-order elasticity equations in the phases domains with a successively
modified mutual boundary. The resulting chain of direct boundary value problems becomes especially
challenging in a multiconnected domain when a reinforcing phase is arranged into a set of interacting
inclusions. This manifests itself in unstable, inaccurate, and too time-consuming computations. It should
be pointed out that the difficulties emerge precisely from the computational repetitiveness of the opti-
mization process even though, for any given inclusion shape, the stresses and strains can be effectively
determined by a wide variety of methods.

Clearly, the optimization is simplified by neglecting fiber interaction. Motivated by this, we consider
here the relatively simple but nontrivial case of a single inclusion perfectly embedded into an unbounded

Keywords: plane elasticity problem, Kolosov–Muskhelishvili potentials, shape optimization, effective energy, extremal elastic
structures, genetic algorithm.
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and homogeneous medium that maintains at infinity the elastic fields σ∞
xx = P, σ∞

yy = Q, σ∞
xy = 0. The

exact formulation reads:
Given the single inclusion matrix topology, uniform static far-field loading, and the elastic properties

of both materials, find from among all admissible continuous curves the interface shape that minimizes
the ratio of the induced energy increment δW to the inclusion area.

For definiteness, the applied stresses are usually taken as either bulk load, that is, P = Q, or pure
shear, that is, P = − Q. The first case is much simpler than the second. For the bulk load, one may
use the principle of equistress boundary [Cherepanov 1974; Vigdergauz 1989] to reduce the matrix-
inclusion interaction along the optimal interface to a uniform normal pressure. The energy-minimizing
inclusion is then a circle regardless of elastic moduli of the phases. This principle does not apply to
anisotropy induced by shear loading. Instead, one may resort to a complex variable technique to perform
semianalytical optimization in the limiting cases of a hole [Vigdergauz and Cherkayev 1986; Vigdergauz
2006] and infinitely-rigid inclusion [Vigdergauz 2007]. Numerically, this approach leads to a resolving
system of linear algebraic equations with closed form coefficients obtained through the following steps:

(i) The biharmonic Airy function in the matrix region is equivalently replaced with a pair of complex-
valued holomorphic functions, the Kolosov–Muskhelishvili potentials [Muskhelishvili 1975].

(ii) This region is conformally mapped onto the exterior of a circle with the Laurent terms of the mapping
function serving as the optimizing design variables. In practice, they are necessarily truncated after
a small number of nonzero terms.

(iii) As a result, the KM potentials are transformed into new holomorphic functions which are then
expanded outside the circle into orthogonal Laurent series.

(iv) Finally, satisfying the boundary conditions (zero tractions for a hole, or zero displacements for
a rigid inclusion) gives the required system in the KM expansion coefficients. Due to the basis
orthogonality, a finite term mapping gives exactly a finite size system, with the closed form entries
linearly expressed through the Laurent mapping terms and integers [Vigdergauz and Cherkayev
1986; Vigdergauz 2006; 2007].

Both resulting shapes look like a slightly rounded square. For the optimal hole, the square is aligned
with the main stresses P, Q, whereas, for the optimal rigid inclusion, it is rotated from them by 45
degrees.

An elastic inclusion involves a second pair of the KM potentials, those inside the inclusion. Both pairs
are linked through the perfect contact conditions along the interface and hence are to be treated together.
It is well known, however, that no curve can have its inner and outer domains mapped simultaneously.
For this reason, the third step above becomes impossible and hence the whole scheme cannot be applied,
at least straightforwardly.

Shenfeld et al. [2005] proposed an alternative approach for use with a direct FEM solver with adaptive
meshing. They performed a reanalysis inside using a specially tailored conjugate gradient method. This
combination appears to perform well only for a hole or for a rather rigid inclusion; otherwise, the process
fails to converge. The genetic algorithm [Vigdergauz 2001], though highly effective for a hole, suffers
otherwise from the same drawback. Both schemes define the shape through a large number of equally
spaced nodal points, which are then taken as design variables.
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This suggests reconsidering the more economical representation achieved by the above mapping
scheme and adapting its third step for elastic inclusions. The untransformed potentials should be directly
expanded in their physical domains in a nonorthogonal basis, and the conformal mapping should serve
only to parameterize the shape. This modification alters the prior numerical performance in two ways,
both stemming from the allowed nonorthogonality. The resolving system remains infinite for a finite-term
mapping, but the closed forms for its coefficients now involve infinite sums. All other advantages of the
complex-variable approach remain. It permits developing a stable and sensitive optimization scheme that
is in line with the approach used for the limiting cases of a hole and a rigid inclusion. The corresponding
values of the energy minimum are used as a benchmark to control the computations. Importantly, both
cases converge rapidly after increasing the number of mapping terms: even the one term approximation
error is less than 0.36% (see Table 1 as extracted from [Cherkaev et al. 1998] and [Vigdergauz 2006]).
The error should decrease further for elastic inclusions having less contrast shear moduli. In other words,
the simplest possible configuration provides acceptable accuracy at rather low computational cost. For
these reason, we concentrate here on this one term scheme and obtain detailed optimization results for
all admissible values of the elastic parameters.

The paper is structured as follows. Section 2 formulates the elastostatic boundary value problem for
the matrix-inclusion layout. On this basis, the scheme for analytically assessing the energy increment
dependence of the inclusion shape is developed in Section 3 and Section 4 with some details moved
to Appendix A and Appendix B. Section 5 develops the optimization’s computational framework. In
Section 6, the proposed scheme is validated by comparing the simulation results with the limiting cases’
exact solutions. We present and discuss the numerical results in Section 7 and summarize the main
findings in Section 8.

2. Complex variable formulation of plane elasticity

2.1. The forward problem in a bimaterial structure. Figure 1 shows the two phase arrangement in
an infinite plate S with an interface L enclosing the origin of the Cartesian system (x, y). Here and
throughout, we use the indexes j = 1 and j = 2 to identify the inclusion the matrix, respectively. The
curve L divides the plate in two parts S1 and S2 = S−S1. To each we associate isotropic and homogeneous
phases with planar shear moduli µ j and Poisson ratios ν j .

To begin, remotely load the plane by an asymptotically uniform stress tensor σ∞ with components

σ∞

xx = P, σ∞

yy = Q, σ∞

xy = 0. (1)

Define z = x + iy to be the complex variable in the plane S. Then the inclusion distorted field σ =

{σxx , σyy, σxy} is linearly expressed at any point z ∈ S through the first two derivatives of the coupled
KM analytical potentials ϕ j (z) and ψ j (z), which are defined in the subdomains S j [Muskhelishvili 1975].
For z ∈ S j ,

Tr{σ(z)} = σxx(z)+ σyy(z)= 4<ϕ′

j (z),

Dev{σ(z)} = σyy(z)− σxx(z)= 2<[z̄ϕ′′

j (z)+ψ
′

j (z)],

σxy(z)= =[z̄ϕ′′

j (z)+ψ
′

j (z)].

(2)
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P

Q

L

S2

X

Y

S1

P

Q

Figure 1. The problem schematic: an infinite plate with a perfectly embedded elastic
inclusion under uniform stresses. The cases P = Q and P = − Q correspond to remote
bulk and shear. The piecewise smooth hole boundary has a discrete rotational symmetry
and may have a finite number of angular points.

Across the interface L , the assumed continuity of the tractions and the displacements links the boundary
values of the KM potentials as [Muskhelishvili 1975]

ϕ1(t)+ t̄ϕ′

1(t)+ψ1(t)= ϕ2(t)+ t̄ϕ′

2(t)+ψ2(t),

λ1ϕ1(t)− t̄ϕ′

1(t)−ψ1(t)= µ12[λ2ϕ2(t)− t̄ϕ′

2(t)−ψ2(t)],
(3)

where µ12 = µ1/µ2, µ2 6= 0, and t ∈ L . Here

λ j =
3 − ν

(stress)
j

1 + ν
(stress)
j

, ν
(stress)
j ∈ [0, 1], for plane stress, (4)

λ j = 3 − 4ν(strain)
j , ν

(strain)
j =

ν
(stress)
j

1 + ν
(stress)
j

∈ [0, 0.5], for plane strain. (5)

The unobservable negative values of ν j are excluded from the numerical simulations (see Section 7).
Then both cases j = 1, 2 share the interval 1 ≤ λ j ≤ 3. The λ j , together with the shear moduli ratio µ12,
serve as unified elastic parameters of the problem.

In the limiting cases of a hole (µ12 = 0) or an infinitely rigid inclusion (µ12 → ∞), the contact
relations Equation (3) degenerate to one condition of zero tractions or zero displacements, respectively
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[Muskhelishvili 1975]:

ϕ2(t)+ t̄ϕ′

2(t)+ψ2(t)= 0, for a hole,

λ2ϕ2(t)− t̄ϕ′

2(t)−ψ2(t)= 0, for a rigid inclusion.

For reference, we note that the second goes into the first by formally putting λ2 = − 1. This is the
Dundurs correspondence [Jasiuk 1995]. This fact makes it possible to express the matrix side stresses
on L in a form not involving the second potential ψ2(t) [Vigdergauz 2007], as

σρρ(t)= (λ2 + 1)<ϕ′

2(t),

σθθ (t)= (3 − λ2)<ϕ
′

2(t),

σρθ (t)= (λ2 + 1)=ϕ′

2(t)),

(6)

where t = ρeiθ
∈ L . The local von Mises equivalent stresses σ 2

M = (σρρ +σθθ )
2
+σ 2

ρθ −3σρρσρρ at t can
also be combined from Equation (6) in similar fashion, so that

σ 2
M(t)= D1(λ)(<ϕ

′

2(t))
2
+ D2(λ)(=ϕ

′

2(t))
2,

D1(λ)= 7 − 6λ+ 3λ2,

D2(λ)= 3(1 + λ)2.

(7)

Of course, at λ2 = −1 the above relations transform into the traction-free conditions σρρ(t)= σρθ (t)= 0.
Finally, homogeneous loads (1) yield the far field asymptotics

ϕ2(z)= Bz + a(2)1 z−1
+ O(|z|−2),

ψ2(z)= 0z + b(2)1 z−1
+ O(|z|−2),

4B = Tr{σ∞
} = P + Q,

20 = Dev{σ∞
} = Q − P.

(8)

At the chosen bimaterial topology, the initial problem of finding the local stresses and strains is equivalent
to the homogeneous boundary value problem (3) in the analytic functions ϕ j (z), ψ j (z) with a nonzero
right hand side given by Equation (8).

The normalized energy increment has the form (see for instance [Jasiuk 1995])

δW = 2π f −1
1

(
20a(2)1 + Bb(2)1

)
, (9)

where f1 is the inclusion area. Because the stresses are linear in the far loading parameters P and Q, we
have

a(2)1 = Bα12 +0α11, b(2)1 = Bβ22 +0β21,

and hence δW possesses a convenient bilinear form in B, 0 given by

δW = 2π f −1
1

(
202α11 + B0(2α12 +β21)+ B2β22

)
, (10)

where α12, β22 and α11, β21 are computed at the unit trial loadings: for bulk B = 1, 0 = 0, and for
pure shear B = 0, 0 = 1, respectively. Though they can be extracted only from the full-scale solution
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to Equation (3) and Equation (8), such extraction requires less accuracy than optimizing, say, the local
stresses. Next, we will exploit this numerical advantage further by developing a scheme for minimizing
δW .

3. Developing the optimization scheme: analytical preliminaries

In our notation, the problem takes the following form:
Given the phase moduli λ1, λ2, and µ12, find the interface shape L that globally minimizes the energy

increment of Equation (10) for pure shear (B = 0, 0 = 1):

δW (λ1, λ2, µ12, L)−−−−−−−−−−→
{L}

min ≡ δWmin(λ1, λ2, µ12). (11)

Its numerical treatment requires a nontrivial preliminary analysis which is performed below to the max-
imum extent.

3.1. Integral criterion for the analyticity of a function. The following development is based on the
analyticity of the KM potentials, which can be represented in several equivalent forms. Most relevant here
is the set of regular integrals along L as we derived previously in [Vigdergauz 2001]. For convenience,
the result is presented here.

Let φ1(z) and φ2(z) be arbitrary analytic functions of z in S1 and S2 with φ2(z) linearly growing at
infinity, that is, φ2(z)= C1z + O(z−1). Then their boundary values along L obey the following identities
in the complementary domains [Gamelin 2001]:

J1(z)≡

∫
L

φ1(t)
t − z

= 0, for all z ∈ S2; J2(z)≡

∫
L

φ2(t)− C1t
t − z

= 0, for all z ∈ S1. (12)

By construction, Cauchy-type integrals such as Equation (12) are always analytic [Gamelin 2001]. The
Cauchy identity is commonly used for transforming functions into a boundary form with a singularity

J1(t0)=
1
2
φ1(t0)+

1
2π i

∫
L

φ1(t)
t − t0

dt = 0,

J2(t0)=
1
2
(φ2(t0)− C1t0)−

1
2π i

∫
L

φ2(t)− C1t0
t − t0

dt = 0,
(13)

where t0 ∈ L , and L is traversed counterclockwise. When L satisfies some minimal smoothness require-
ments, Equation (12) and Equation (13) are equivalent [Gamelin 2001].

To avoid the boundary singularity, we can use alternatively the analyticity property that implies J1(z)
and J2(z) remain zero everywhere if they vanish in the circular subdomains |t/z| < 1 for z ∈ S2 and
|z/t |< 1 for z ∈ S1. We expand the Cauchy kernel (t − z)−1 in the convergent powers series

1
t − z

= −
1
z

∞∑
k=0

tk

zk ,

∣∣∣∣ tz
∣∣∣∣< 1, z ∈ S2, (14)

1
t − z

=
1
t

∞∑
k=0

zk

tk ,

∣∣∣ z
t

∣∣∣< 1, z ∈ S1,
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and substitute Equation (14) into Equation (12). Requiring each term vanish yields equivalent sets of
resolving identities: ∫

L

φ1(t)tkdt = 0,
∫
L

φ2(t)t−k−1dt = C1δk,1, (15)

where k = 0, 1, 2, . . . and δ j,k is the Kronecker delta.
These regular integrals have numerical advantages over their more frequently used singular counter-

parts of Equation (13).

3.2. Inclusion shape representation.

3.2.1. A circular inclusion. The elastostatic problem of Equation (3) and Equation (8) has a unique
solution [Muskhelishvili 1975], at least for any piecewise smooth inclusion shape L . The shape is
therefore the only factor influencing the overall numerical difficulty. For instance, a circle |t | = 1, f1 = π

gives a finite form solution

ϕ1(z)=
µ12(λ2 + 1)

2µ12 + λ1 − 1
Bz, ψ1(z)=

µ12(λ2 + 1)
1 +µ12λ2

0z,

ϕ2(z)= Bz +0α11z−1, ψ2(z)= 0z + Bβ22z−1
+0α11z−3,

α11 =
µ12 − 1

1 +µ12λ2
, β22 =

µ12(λ2 − 1)− λ1 + 1
2µ12 + λ1 − 1

,

α21 = β12 = 0,

with the energy increment of Equation (10) becoming

δWcircle = 2B2µ12(λ2 − 1)− λ1 + 1
2µ12 + λ1 − 1

+ 402 µ12 − 1
1 +µ12λ2

. (16)

It is worth noting that the inclusion potentials ϕ1(z) and ψ1(z) are linear in z, and hence, in view of
Equation (2), both trial loadings induce a similar constant stress tensor inside a circle |z| ≤ 1. For bulk
loading,

Tr{σ∞
} = B = 1, Dev{σ∞

} = 0 = 0, (17)

H⇒ Tr{σ(z)} = 4
µ12(λ2 + 1)

2µ12 + (λ1 − 1)
, Dev{σ(z)} = 0, σxy(z)≡ 0, (18)

whereas, for pure shear,

Tr{σ∞
} = B = 0, Dev{σ∞

} = 0 = 1, (19)

H⇒ Tr{σ(z)} = 0, Dev{σ(z)} = 2
µ12(λ2 + 1)
1 +µ12λ2

, σxy(z)≡ 0. (20)

The similarity between the remote and inclusion fields is important in the optimization context. Due
to the isotropy of σ(z) in Equation (17), a circle provides the global minimum for δW under isotropic
bulk loading [Vigdergauz 1989]. In contrast, it remains unknown whether the full anisotropy of σ(z) in



70 SHMUEL VIGDERGAUZ

Equation (19) provides the energy minimum under anisotropic pure shear. Numerical evidence relevant
to this question is discussed in Section 7.

3.2.2. A general shape. Other shapes can be treated only numerically. Within the complex variable
formulation, a typical numerical scheme consists of four consecutive steps:

(i) transforming the problem Equation (3) with (8) into singular integral equations for the complex-
valued density function χ(t), t ∈ L along the material’s interface. Discussed by Greengard and
Helsing [1998], the idea dates back to Sherman [1959];

(ii) converting the equation into an infinite system of linear algebraic equations in the Fourier amplitudes
of χ(t):

χ(t)=

∞∑
k=1

ak tk
+ bk t−k

;

(iii) solving numerically the truncated system;

(iv) restoring the finite-term approximation for the potentials by integrating χ(t) and related quantities
over L . Here, the difficulties are transferred to stage (ii) because the system coefficients involve
hard-to-compute integrals of rapidly oscillating functions along L .

For stage (ii), Greengard and Helsing [1998] use the fast multipole method, an adaptive quadrature
technique, and other advanced procedures to achieve impressive results in computing the stress field
for a generally shaped interface. Clearly, the algorithm works much faster for a smooth shape when the
time-consuming integration over singularities can be simplified without loss of accuracy to the trapezoidal
rule.

In numerical experiments, Greengard and Helsing [1998] parameterize the interface shape using a
Fourier series over a unit circle γ :

t =

∞∑
k=1

gkξ
k
+ hkξ

−k, (21)

where t ∈ L , ξ = eiη
∈ γ , and 0 ≤ η ≤ 2π . This is exemplified by the nine-armed contour:

t = 0.36(1 + 0.36 cos 9η)eiη
= g1ξ + g10ξ

10
+ h8ξ

−8,

g1 = 0.36, g10 = h8 = 0.18,
(22)

where all other gi and hi vanish. Greengard and Helsing [1998] calculated numerically the integral-type
coefficients of the resolving algebraic system in stage (ii). However, for on-circle parameterizations such
as Equation (22), we can obtain the coefficients analytically, using the residue technique [Gamelin 2001].
This feature could save time in analyzing structures modified repeatedly. However, computations (not
reported here) show the optimization process has an instability caused by the simultaneous presence of
high positive and negative powers of the polar angle Fourier series such as those in Equation (22).

Matters can be substantially improved by presenting the inclusion shape through the boundary values
of an analytic mapping function ω(ζ ) that behaves asymptotically as Cζ + o(1) and has only negative
powers:

t = ω(θ)= Cτ +

∞∑
k=1

dkτ
−k . (23)
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ω(ζ ) maps conformally the region 62 : |ζ | ≥ 1 outside the unit circle onto the matrix domain S2 outside
L , with correspondence of the infinity point. Without loss of generality, we suppose that C = 1 and the
coefficients {dk} are real.

In Equation (21) and (23) we use different notations for the circle points to clarify the following. At
first glance, (23) might appear to be a only subset of (21) narrowed by dropping the coefficients gk for
k > 1. On the contrary, the complex analysis implies that any closed continuous curve can be written in
either of the two forms even though there is no pointwise correspondence between them. Actually, both
parameterizations are linked through the identity

t =

∞∑
k=1

gkξ
k
+ hkξ

−k
= τ(ξ)+

∞∑
k=1

dkτ(ξ)
−k,

using the transformation function τ = τ(ξ) and requiring |τ | = |ξ | = 1. Unfortunately, such τ(ξ) is not
easy to find, even for only one nonzero coefficient gk, k > 1, as in Equation (22). However this is not
our aim here. Instead, we truncate the representation (23) after M terms:

ω(ζ )= ζ +

M∑
k=1

dkζ
−k,

where |ζ | ≥ 1. The expansion coefficients serve as design variables in our previous papers [Vigdergauz
2006; 2007] for the limiting cases of a hole or rigid inclusion. This leads to a novel direct problem solver
which is rather fast and stable and can be repetitively used in a successive shape optimization algorithm
over the set CM(d1, . . . , dM) of the M-term conformal images of γ . An additional computational option
is a p-fold rotational symmetry of the inclusion ω(exp(2iπ/p)ζ )= exp(2iπ/p)ω(ζ ) in which only the
coefficients {dpk−1, k = 1, 2, . . .} differ from zero. Here,

ω(ζ )= ζ +

M∑
k=1

dpk−1ζ
−(pk−1). (24)

In these design variables, the mapping terms possess several useful properties that diminish the problem’s
computational burden. First, they are subject to successfully narrowing bilateral estimations

−
1

√
m

≤ dm ≤
1

√
m
, m = 1, 2, . . . , (25)

that follow from the nonnegativeness of the area f1 inside γ [Gamelin 2001]

f1 = π
(

1 − d2
1 − 2d2

2 − . . .− nd2
n

)
≥ 0.

Second, they are naturally ordered, in that the higher the coefficient, the lesser its global impact on
the inclusion shape (see Table 1). This argument parallels the fact that the set CM contains a diverse
pool of closed continuous curves even at very small values of M . For instance, the one-term mapping
ω(ζ )= ζ + d1ζ

−1 presents the full family of axes-aligned ellipses with eccentricity |d1| ≤ 1, a widely
modeled inclusion shape in elasticity studies. Their square symmetric counterparts are exemplified in
Figure 2. Finally, as already mentioned, the residue technique routinely gives the integrals of Equation
(15) in closed form.
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Figure 2. Square symmetric shapes generated from a circle by the one-term mapping
ω(ζ )= ζ + d3ζ

−3 for d3 = 0 (a), d3 = ∓0.21 (b, d, respectively), d3 = ∓1/3 (c, e). The
latter curves present the limiting case of 4-cusped hypocycloids with entrant angles.

In concluding, we note that the first derivative of a single-valued mapping can vanish only inside γ
[Gamelin 2001]. For the one-term function ω(ζ )= ζ + dmζ

−m , that ω
′

(ζ )= 1 − mdmζ
−m−1

= 0 only
for |ζ |< 1 implies that the inequalities in Equation (25) are sharpened to

−
1
m

≤ dm ≤
1
m
.

To our knowledge, this has not yet been noticed in the literature.

Hole [Cherkaev et al. 1998] Rigid inclusion [Vigdergauz 2006]
λ2 = − 1 λ2 = 3 λ2 = 2 λ2 = 1.4 λ2 = 1

N=1 3.6E-03 1.0E-04 4.5E-04 1.5E-03 3.6E-03
N=2 7.7E-04 6.2E-06 5.3E-05 2.6E-04 7.7E-04
N=3 2.5E-04 6.9E-07 1.1E-05 7.1E-05 2.5E-04
N=4 9.6E-05 9.9E-08 2.8E-06 2.0E-05 9.6E-05
N=5 3.1E-05 1.5E-08 6.5E-07 1.7E-06 3.1E-05

Table 1. The limiting cases: the relative error
(
δW (N )/δW (6)− 1

)
of the minimum

energy increment versus the number of the first nonzero mapping terms, N . The value
δW (6) is nearly exact. The outside error columns coincide due to the Dundurs corre-
spondence.
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4. The one-potential solving scheme

We are now in a position propose a scheme for solving the forward elastostatic problem. First, we note
that the previous section’s stage (i) for deriving the singular integral equation is redundant. The contact
conditions Equation (3) can be directly transformed into an infinite set of regular integrals along L that
involve only the first potentials ϕ1,2(t). This set serves as a pattern for obtaining a resolving system
algebraic equations such as those in stage (ii).

Here we use that, in contrast to ϕ1,2(z), the second potentials ψ1,2(z) appear in the boundary conditions
of Equation (3), and they are neither conjugated nor differentiated. This makes it possible to separate the
potentials and hence to economically find them in sequence rather than in parallel. In doing so, we first
exclude ψ1,2(z) from consideration. Solving the algebraic relations of Equation (3) for them, we have

(1 −µ12) ψ1(t)= (λ1 +µ12) ϕ1(t)− (1 −µ12) t̄ϕ
′

1(t)−µ12 (1 + λ2) ϕ2(t), (26)

(1 −µ12) ψ2(t)= (1 + λ2) ¯ϕ1(t)− (1 −µ12) t̄ϕ
′

2(t)− (1 + λ2µ12) ¯ϕ2(t). (27)

Inserting the right-hand sides of Equation (26) as integrands for the analyticity conditions in Equation
(15) and making use of Equation (8), we arrive at an infinite set of identities in ϕ1,2(z). In the second
step, we evaluate the resultant integrals involving the boundary values of ϕ1,2(z) and their first derivatives
multiplied by powers of t . With Equation (8), we simply expand the sought-for functions in converging
series inside and outside L:

ϕ1(z)=

∞∑
m=1

a(1)m zm, ϕ2(z)= B +

∞∑
m=1

a(2)m z−m(z). (28)

Their substitution results finally in the infinite system of algebraic equations in a(1,2)m , where only the
unknown a(2)1 is required for finding the energy increment δW at pure shear when, in conformity with
Equation (10),

δW = 4π f 1
1 0

2α11. (29)

Here again, α11 = a(2)1 at B = 0 and 0 = 1.
Some local characteristics of the resultant stress field can be evaluated without the second potential

ψ1,2(z). For instance, in view of Equation (2), the trace Tr{σ(t)} along the inclusion-matrix interface has
a form involving only the potential ϕ1,2(t). However, in contrast to the integral relation of Equation (29)
for δW , here the remaining unknowns a(1,2)k also enter in the resultant expressions through Equation (28).
Numerically, this manifests in high frequency oscillations about the true values (the Gibbs phenomenon)
as exemplified in Section 6.

In the optional final step, the second potential ψ1,2(z) can be immediately computed through Equation
(26), if we are interested in the individual local stresses of Equation (2).

5. The computational framework

In computational practice, the infinite resolving system is truncated to a finite size as(
−(λ2µ12 + 1)A(0)11 − (1 −µ12)A

(1)
11 (λ1 +µ12)A12

−µ12(1 + λ2)A21 (1 + λ2)A
(0)
22 − (1 −µ12)A

(1)
22

)
X = B, (30)
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where the Ai j are N × N matrices whose elements are linear in the boundary integrals

J (1)m,n =
1

2π i

∫
L

tm t̄n dt, J (2)m,n =
1

2π i

∫
L

tm+n t̄ dt, (31)

where m, n = ±1,±2, . . . and there are no elastic constants involved. The (2N )-element vector of
unknowns takes the form

X = (a(2)1 , a(2)2 , . . . , a(2)N , a(1)1 , a(1)2 , . . . , a(1)N ).

For pure shear, the right-hand side B has zeroes in all places but the first, which is equal to (1 −µ12).
When µ12 = 1, the homogeneous system Equation (30) returns all unknowns as zero. Physically, this is
because the far-field shear stress is not disturbed by any inclusion shape if both materials have the same
shear modulus. Further, when the moduli are almost the same with µ2 = µ1 + ε, ‖ε‖ � 1, the first order
ε-approximation of δW is independent of the inclusion shape, as proven analytically in Appendix A.

In the general case, the system Equation (30) must be treated numerically. Though only the first
unknown a(2)1 is required for finding the energy increment, we prefer finding the full vector X for control
purposes. We solve the system using the standard LU -decomposition with iterative refinement. This
requires 8N 3/3 + 2N 2

+ N operations which are performed for better accuracy in double-precision
arithmetic.

However, in the entire computation, the most time-consuming stage is evaluating the integrals of
Equation (31). As already mentioned, this is done analytically by summing the residues at the integrand
poles. Deriving the needed expressions involves complicated algebra, especially if the mapping has
multiple terms. As a technical simplification, we consider here only a one-term mapping as Equation
(24) for the p-fold rotational symmetry: ω(ζ )= ζ + dp−1ζ

−p+1. The optimization problem of Equation
(11) then becomes

δW (λ1, λ2, µ12, dp−1)−−−−−−−−−−−−→
{dp−1}

δWmin(λ1, λ2, µ12), (32)

where

f1 = 1 − (p − 1)d2
p−1, −

1
p − 1

≤ dp−1 ≤
1

p − 1
. (33)

Single-term expressions for the integrals are given in Appendix B. The shape optimization over dp−1 in
the interval in Equation (33) is then performed by the standard GA scheme with a 32-bit representation
of random numbers.

At first glance, the problem Equation (32) with Equation (33) is disappointingly simple compared to
the initial formulation in the Introduction. We emphasize again that our choice is justified quantitatively
by the accurate one-term results displayed in Table 1 for the limiting cases with the most contrasting
shear moduli. Though it does not capture the optimum’s fine details, already this approximation leads to
nontrivial results not yet reported in the literature.

6. Numerical validation of the optimization scheme

In this section, we assess the performance of the proposed approach by comparing it against the one-term
exact solutions. They are known for the limiting cases of the hole and rigid inclusion [Vigdergauz 2007].
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Apparently, the optimal shapes differ from circles only for square symmetry (p = 4):

δW3 =
λ2

(λ2 + d3)(1 − 3d2
3 )
, d(min)

3 =

√
λ2

2 + 1 − λ2

3
,

min
d3
δW3 =

9λ2

2(2λ2 +

√
λ2

2 + 1)(1 − λ2
2 + λ2

√
λ2

2 + 1)
,

ϕ2(τ )= −
τ 2

(λ2 + d3)(1 − d3τ 4)
, where τ = eiθ

∈ γ,

(34)

and where the negative value of the radical
√
λ2

2 + 1 is taken for the hole with λ2 = − 1.
We first use these analytical results to choose a compromise value for N in the truncated system of

Equation (30)), so that a reasonably accurate energy assessment can be obtained at a moderate com-
putational cost. As N increases, Table 2 shows the convergence to the exact value of min δW3. We
take N = 24 for further computations. This relatively large number is the price paid for using the
nonorthogonal expansions of Equation (28).

As could be expected, the local von Mises stresses Equation (7) are computed less accurately than
the energy increment because of the oscillations around the exact values (see Figure 3, Figure 4). These
oscillations are caused not only by the nonorthogonal expansion basis Equation (28) but also by truncat-
ing the resolving infinite system to a finite size. The net effect of the truncation on the oscillations is
nicely shown in [Cherkaev et al. 1998], where the transformed KM potentials are orthogonally expanded
outside a unit circle. We note that the oscillations are not eliminated completely by increasing N . Only
the analytical solution of the infinite system by finite differences [Vigdergauz 2006; 2007] yields in
the limiting cases the exact results of the type in Equation (34). Alternatively, the oscillations can be
mitigated using filter techniques (see, for example, Laverty and Gazonas [2006]). This subject deserves
a separate study.

Hole Rigid inclusion
λ2 = − 1 λ2 = 2 λ2 = 1.4

δW Erel δW Erel δW Erel

0.931980515 0.980355859 0.962041131

N = 6 0.916266066 < 1.7×10−2 0.980330084 < 2.6×10−5 0.960521619 < 1.6×10−3

N = 12 0.931497017 < 5.2×10−4 0.980355816 < 4.4×10−9 0.962031339 < 1.0×10−5

N = 18 0.931913140 < 7.2×10−5 0.980355859 < 1.3×10−10 0.962040784 < 3.6×10−7

N = 24 0.931967450 < 1.4×10−5 0.980355859 < 8.9×10−11 0.962041116 < 1.6×10−8

N = 30 0.931977621 < 3.1×10−6 0.980355859 < 5.0×10−14 0.962041131 < 2.4×10−10

Table 2. The limiting cases of a hole and a rigid inclusion: the energy minima and
their relative deviations from the exact value of Equation (34), as computed for different
half-sizes of the resolving system (30) for the one-term square symmetric mapping.
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Figure 3. The angular distribution of the von Mises stresses σM(t) along a quarter of
the δW -optimal hole shown in the inset. The computed values stand against the exact
result (the dotted line).

7. Numerical results

In the main body of the numerical simulations we detail the dependence of the energy minimum on the
elastic parameters of both materials, as seen the in the right hand side of Equation (32). To this end, we
replace the problem Equation (32) by the three-parameter subproblems (1 ≤ λ1,2 ≤ 3)

δW (λ1, λ2, µ12, dp−1)−−−−−−−−−−−−−−−−−→
min{λ1}, min{λ2}, min{dp−1}

δWm(µ12),

δW (λ1, λ2, µ12, dp−1)−−−−−−−−−−−−−−−−−→
max{λ1}, max{λ2}, min{dp−1}

δWM(µ12),
(35)

which are solved separately over the discrete set of values 0 < µ12 < 1 when the inclusion is softer
than the matrix, and 0 < µ21 ≡ µ−1

12 < 1 when the inclusion is harder than the matrix. It is of interest
that the computed minima of Equation (35) are attained at the endpoints of the interval for λ1,2. This is
displayed in Table 3, together with the reference points δWm,M(λ2, µ12) for µ12 = 0, 1,∞, which are
already known from Equation (34). Recall that λ1,2 = 1 describes an incompressible material.

µ12 = 0 0< µ12 < 1 µ12 = 1 µ12 ≥ 1 µ12 = ∞

δWm 0.931980515 . . . λ1 = 3, λ2 = 1 0.0 λ1 = 1, λ2 = 1 0.931980515 . . .
δWM 0.931980515 . . . λ1 = 1, λ2 = 3 0.0 λ1 = 3, λ2 = 3 0.990987403 . . .

Table 3. The parameters λ1,2 at which the extrema of Equation (35) are attained versus µ12.
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Figure 4. The angular distribution of the matrix-side von Mises stresses σM(t) along
a quarter of the δW -optimal rigid inclusion (shown in the inset). The computed values
stand against the exact result (the dotted line).
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Figure 5. The attainable region of δWmin from Equation (36) bounded by δWM(µ12)(a)
and δWm(µ12)(b). The evolution of the optimal inclusion shape is also shown by discrete
examples.
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Figure 6. The angular distribution of the matrix-side (1) and inclusion-side (2) stress-
tensor trace along a quarter of the δW -optimal inclusion (shown in the inset) at µ12 =

3, ν1 = ν2 = 0.

The tabled information is graphed in Figure 5, which depicts the attainable region for
δWmin(λ1, λ2, µ12) in the (δWmin, µ12) plane:

δWm(µ12)≤ δWmin(λ1, λ2, µ12)≤ δWM(µ12), (36)

where µ12 ∈ [0,∞) and λ1,2 ∈ [1, 3]. It would be interesting to know whether each point inside the
bounds in Equation (36) at a given µ12 corresponds to a pair of Poisson ratios ν1 and ν2. This question
is still open, though the affirmative answer seems ‘obvious’.

Finally, Figure 6 shows the distribution of the stress-tensor trace Tr{σ(t)} along the optimal inclusion
shape. We note that the found local optima are extremely stable against multiple starts of the GA solver.

Three distinctive features seen in the figures support our assumption that the one-term mapping works
practically for elastic inclusions.

First, Figure 5 shows that the energy bounds δWm(µ12), δWM(µ12) grow rapidly near the limit points
µ12 = 0,∞. In other words, even slightly low contrast materials significantly reduce the energy opti-
mization gain.

Next, the gain is vanishingly small in a reasonably wide vicinity of the point µ12 = 1 of the same
shear moduli so that very good accuracy is achieved with the first-order approximation of Equation (A.6)
in the small parameter (µ12 − 1). We note that the proposed algorithm is here surprisingly stable and
accurate in computing small differences between the energy values.

Finally, Figure 6 shows no oscillations in the stress distributions, as opposed to the limiting cases in
Figure 3 and Figure 4. This is because the scheme converges faster for low contrast shear moduli. Hence,
the local results are sufficiently accurate to conclude that the stress state inside the shear-optimal elastic
inclusion has a nonzero trace, in contrast to the circular inclusion as given by Equation (19). However,
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we cannot rule out that the trace gradually vanishes for multiterm mappings not considered here. Finally,
we note that the optimal shape’s large curvature points become less distinctive for low contrast materials
(see Figure 5) and that the shape turns by 45 degrees when passing the point µ12 = 1.

8. Concluding remarks

We present a novel numerical scheme for solving the elastic equations for a single-inclusion composite
model. This scheme has distinctive features making it highly competitive against other known approaches
in assessing the global strain energy and the related quantities.

First, the material interface is presented by a finite-term conformal mapping rather than by nodal
points. Regardless of the elastostatic specifics, this expedient enables one to form the initial pool of
shapes with a very small number of design variables and hence can be used for optimizing other physical
processes in plane two-phase structures.

Next, the KM potentials are computed sequentially rather than in parallel. Finally, the boundary
integrals involved are computed analytically (by the residuals) rather than numerically. This stage, though
computationally effective, is the most time-consuming part of the algorithm, especially for a multiterm
mapping. For this reason, repetitive calculation of the forward problem within an optimization process
can be troublesome. Matters can be simplified by using the minimal one-term map which is nevertheless
informative enough to provide nontrivial results not previously reported in the literature.

Appendix A: Perturbations of the energy for nearly equal shear moduli

To advance the analytical derivations, we now suppose that µ1 ≈ µ2 or, equivalently

µ12 = 1 + εµ + ε2
µ + . . . , (A.1)

where |ε| � 1. The continuous K , µ-dependence of the KM potentials allows us expand them also as
perturbation series in εµ

ϕ j (z)= ϕ j,0(z)+ϕ j,1(z)εµ + . . .

ψ j (z)= ψ j,0(z)+ψ j,1(z)εµ + . . . ,
(A.2)

where z ∈ S j , j = 1, 2. Substituting (A.1) and (A.2) into Equation (3) and equating the coefficients of
equal powers of ε on the left and right hand sides gives:

(i) At zeroth order, two chained, homogeneous problems in sectionally holomorphic functions
((λ1 + 1)ϕ1(z), (λ2 + 1)ϕ2(z)) and (ψ1(z), ψ2(z)). For t ∈ L ,

(λ1 + 1)ϕ1,0(t)= (λ2 + 1)ϕ2,0(t)

ψ1,0(t)−ψ2,0(t)= ϕ2,0(t)+ tϕ′

2,0(t)−ϕ1,0(t)− tϕ′

1,0(t)
(A.3)

with nonzero shear-type asymptotics of Equation (8). As |z| → ∞,

ϕ2,0(z)= O(|z|−1), ψ2,0(z)= 0z + O(|z|−1). (A.4)
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(ii) At the successive inhomogeneous higher orders, we have, for t ∈ L ,

(λ1 + 1)ϕ1,l(t)− (λ2 + 1)ϕ2,l(t)= F (l)(t)≡ λ2ϕ2,l−1(t)− tϕ′

2,l−1(t)−ψ2,l−1(t)

ψ1,l(t)−ψ2,l(t)= ϕ2,l(t)+ tϕ′

2,l(t)−ϕ1,l(t)− tϕ′

1,l(t),
(A.5)

for l = 1, 2, . . . and with ϕ2,l(z), ψ2,l(z) vanishing at infinity.

In view of (A.4), the unique solution of the homogeneous problem of (A.3) is an identically vanishing
ϕ j,0(z)≡ 0, for z ∈ S1 + S2 and j = 1, 2. Hence

ψ j,0(z)= 0z

for the same z and j . Substituting (A.4) into (A.5) at l = 1 yields the first-order boundary value problem
for ϕ1,2(z). For t ∈ L ,

(λ1 + 1)ϕ1,1(t)− (λ2 + 1)ϕ2,1(t)= −0t̄,

which is immediately solved through the Cauchy-type integral

(λ j + 1)ϕ j,1(z)= −
0

2π i

∫
L

t̄dt
t − z

;

for z ∈ S j . This permits finding the first-order approximation for the coefficient a(2)1 entering into the
energy increment expression Equation (9) as

a(2)1,1 = lim
z→∞

zϕ2,1(z)= lim
z→∞

0

2π i(λ2 + 1)

∮
L

t̄dt
1 − t/z

=
0

2π i(λ2 + 1)

∮
L

t̄dt

=
0

2π(λ2 + 1)

∮
L

(ydx + xdy)=
0

λ2 + 1
f1.

Taking this expression into Equation (9), we see that the first-order energy increment

δW1 =
402

(λ2 + 1)
(µ12 − 1) (A.6)

depends neither on the inclusion shape L nor the elastic parameter λ1. As expected, identity (Equation
(A.6) is consistent with the asymptotic expansion δWcircle in Equation (16). The L-dependence of the
energy thus first appears at second-order in (µ12 − 1).

Appendix B: Analytical evaluation of the integrals

Our aim here is show the technique for obtaining in closed form the coefficients of Equation (31) for
the resolving algebraic system Equation (30). With a finite-term mapping function t = ωn(τ ), τ ∈ γ , it
can be done using the binomial identities [Abramonwitz 1965] to expand the integrands into convergent
powers series in τ and integrating them term-by-term over a unit circle γ where the residue theorem
[Gamelin 2001] gives ∫

γ

τmdτ = 2π iδm,−1, (B.1)
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where m = 0,±1,±2, . . .. For concreteness, we consider next the one-term square symmetric mapping
ω(τ) = τ + d3τ

−3. Employing the generating polynomials for a nonnegative integer m = 0, 1, . . .
[Abramonwitz 1965], we use, for |x |< 1,

(
1 + x

)m
=

m∑
i=0

(
m
i

)
x i ,

(
1 + x

)−m−1
=

∞∑
i=0

(
−m

i

)
x i ,

where (
m
i

)
=

m!

i !(m − i)!
,

(
−m

i

)
= (−1)i

(m + i)!
m!i !

. (B.2)

We arrive at the basic expansions in powers of τ

(
1 + d3τ

±4)m
=

m∑
i=0

(
m
i

)
d i

3τ
±4i ,

(
1 + d3τ

±4)−m−1
=

∞∑
i=0

(
−m

i

)
d i

3τ
±4i . (B.3)

With Equation (B.1), substitution of (B.2)–(B.3) into Equation (31) yields separately for positive and
negative indices m, n

J (1)−m,−n =

∫
L

dt
t̄4n−3t4m−2 =

∫
L

τ 4(n−m)(1 − 3d3τ
−4)dτ

τ(1 + d3τ 4)4n−3(1 + d3τ−4)4m−2

= 2π i
(
S0 − 3d3S1

)
,

Sp =

∑
i=0,...,∞
j=0,...∞

s.t. n−m+ j−i=p

(
−(4m − 3)

i

)(
−(4n − 4)

j

)
d i+ j

3 , where p = 0, 1.

(B.4)

Also,

J (2)−m,−n =

∫
L

t̄dt
t4(m+n−1) =

∫
L

(1 + d3τ
4)(1 − 3d3τ

−4)dτ
τ 4(m+n−1)+1(1 + d3τ−4)

= 2π id3δm+n,2.

The remaining integrals are written similarly

J (1)m,−n =

∫
L

t4m−2dt
t̄4n−3 = 2π i

(
T0 − 3d3T1

)
,

Tp =

∑
i=0,...,4m−2

j=0,...,∞
s.t. m+n−i+ j=p+1

(
4m − 2

i

)(
−(4n − 4)

j

)
d i+ j

3 , where p = 0, 1, 2,
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and

J (1)m,n =

∫
L

t̄4n−1t4m−2dt = 2π i
(
V0 − 3d3V1

)
,

Up =

∑
i=0,...,4m−2
j=0,...,4n−1

s.t. m−n−i+ j=p

(
4m − 2

i

)(
4n − 1

j

)
d i+ j

3 , where p = 0, 1, 2.

Finally,

J (2)m,n =

∫
L

t4(m+n+1) t̄dt = 2π i
(
(1 − 3d2

3 )W0 + d3(W−1 − 3W1),

Wp =

∑
i=0,...,4m−2
j=0,...,4n−2

s.t. m+n−i− j=p+1

(
4m − 2

i

)(
4n − 2

j

)
d i+ j

3 , where p = 0,±1.
(B.5)

Though seemingly cumbersome, identities (B.4)–(B.5) are easily programmed. The infinite sums in-
volved are truncated to their first 16 terms because after that the remainder appears to be below the
machine precision (16 bits). To avoid the rounding errors that can occur by using large integers, we
employ double precision arithmetic and alternate multiplication with division to compute the binomial
coefficients and d3 powers.
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HOMOGENIZATION RELATIONS FOR ELASTIC PROPERTIES OF TWO-PHASE
COMPOSITES USING TWO-POINT STATISTICAL FUNCTIONS

GHAZAL SAHELI, HAMID GARMESTANI AND ARUN GOKHALE

In this research we focus on studying the effect of anisotropy on the homogenization technique based on
two-point statistics. We will investigate how the one-point and two-point statistical information from the
microstructure can contribute in the calculation of elastic properties of isotropic and anisotropic compos-
ites. For this purpose, the homogenization relations will be studied in detail and the technique will be
applied to two samples of anisotropic Al-SiC composite that were fabricated through extrusion with two
different particle size ratios (PSR). The results show that two-point statistics is capable of capturing the
effect of clustering of SiC particles in evaluating elastic properties for anisotropic composites. Although
the two samples have the same volume fraction (difference less than 1%), the calculated elastic constants
for both samples are different. The validity of the results will be investigated by direct comparison with
experimental results.

1. Introduction

Materials science always looks for establishing a relationship between the internal structures of materials
and their properties. In polycrystals, internal structure refers to the size and shape of crystallites (grains),
the distribution of their crystallographic orientations (texture), and the spatial correlations between these
geometrical and crystallographic features. However, in composites, internal structure refers to spatial
correlations between geometrical features of the two phases.

The prediction of mechanical properties from details of the microstructure such as phase, crystalline
grain orientation distribution, and microstructural morphology has received a special attention in the
mechanics and materials community [Torquato and Stell 1982; Adams et al. 1987]. The mathematical
description of heterogeneity has received some breakthroughs in the last few decades with the works
[Beran 1968; Kröner 1972; 1977]. More progress has been achieved in calculating the effective proper-
ties by making simple assumptions about the microstructure distribution (random, isotropic, and periodic
microstructures) or the shape of the second phase (spherical, ellipsoidal, etc.). These studies have relied
primarily on the one-point probability functions (number or volume fractions of individual states within
the microstructure), which ignored shape and geometric characteristics of the microstructure. It was
realized that in order to use the measured materials’ heterogeneity it is necessary to incorporate two
and higher order probability functions. Progress was hindered due to lack of experimental techniques
to obtain two and three-point correlation functions. These techniques are now available, which makes

Keywords: statistical mechanics, microstructure, elastic moduli, composite.
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it possible to measure individual crystalline orientation in polycrystalline materials. Extension of this
effort to nonrandom microstructures requires proper definition of n-th degree statistical correlation func-
tions. For a detailed description of the theoretical discussion and the derivations please refer to [Adams
et al. 1987; 1989; Beran et al. 1996; Garmestani et al. 1998b; 2001; Garmestani and Lin 2000; Saheli
et al. 2004]. A statistical continuum mechanics approach for both elastic and inelastic deformation of
composites was introduced earlier [Garmestani et al. 1998b; 1998a; 2001; Garmestani and Lin 2000]. In
this research, the elastic formulation for the isotropic distribution will be extended to include anisotropy.

In this work a microstructure will be represented by a set of two-point correlation functions for a
variety of states. In a polycrystalline material, each orientation is considered a different state and an
n-dimensional space is then formulated for the homogenization relation [Garmestani et al. 2001; Adams
et al. 2002]. However, a two-phase composite that consists of only two phases and the n-dimensional
space is reduced to a two-dimensional state, assuming that the anisotropy within each phase is ignored. It
is clear that such a construction that uses volume fraction of the second phase can only present a limited
description of the composite. In this paper, two-point correlation functions are used as additional param-
eters for the description of a composite. Two-point statistics can incorporate not only the distribution
and interaction of the two phases but also information on the shape and morphology of each individual
phase.

The orientation distribution function (ODF) is a one-point statistical distribution function that only
considers volume fractions (or number fractions) of crystallites with the same orientation. Two-point
statistical functions can be used as a first order correction to the average (volume fraction) representa-
tion. Two-point correlation functions [Torquato and Stell 1982; Adams et al. 1987; Garmestani et al.
1998b; 1998a; 2001; Garmestani and Lin 2000; Lin et al. 2000] provide information about near neighbor
and far field effects and allow the defect sensitive properties to be incorporated in the analysis. The
composite formulation will be markedly enhanced by the use of empirical or spectral form of the two-
point correlations [Corson 1974a; 1974b; Torquato and Stell 1982; Garmestani et al. 1998b; 2001].

Recent improvements in electron microscopy and image analysis have led to new techniques for
analyzing the structure of polycrystalline materials at the scale of the crystalline grains. Orientation
imaging microscopy (OIM) provides information on the spatial arrangement of lattice orientations in
polycrystalline structures and is based on Kikuchi diffractometry [Garmestani et al. 1998a]. Measure-
ments of the local orientation and misorientation of polycrystalline materials are now possible. However,
for the composite, if the orientation of each phase is ignored, the correlation functions can be measured
using imaging techniques (optical, SEM, etc.). The use of OIM for the measurement of orientation for
a multiphase composite can introduce a large amount of detail and complexity. Higher order statistical
formulations will be needed to incorporate such information for each phase as well as the interaction of
the two phases.

For two-phase composite structures, the application of two-point statistics requires two different sets
of probability functions. The first set can be chosen to describe the probability distribution functions
for the interaction of the two phases. This reduces the problem to a composite formulation ignoring the
crystalline phase for each component. The two phases can then be taken as isotropic (or anisotropic)
phases, and the effect of texture can be incorporated in the anisotropy parameters in the constitutive
relations. The second set can consist of the probability distribution functions for the individual crystalline
phases. This means incorporating the effect of orientation for each phase.
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2. Two-point distribution functions

The statistical details of a microstructure can be represented by an n-point probability distribution func-
tion. Volume fraction vi is a one-point probability distribution function that is usually used to give an
estimate of the effective properties. The details of the shape and morphology of the microstructure, includ-
ing the interaction of the second phase in the composite and orientation distribution of crystallographic
grains (texture), can only be realized by using higher order distribution functions [Corson 1974a; 1974b;
Torquato and Stell 1982; Mason and Adams 1999]. A two-point distribution function can be defined as
a conditional probability function when the statistics of a three-dimensional vector r is investigated once
attached to each set of random points in a particular microstructure (One-point and two-point statistics
functions are defined in Appendix A).

The exponential form of the distribution function, as proposed by [Corson 1974a; 1974b], has been
shown to be appropriate for random microstructures. It is represented as

Pi j (r)= αi j +βi j exp(−ci jrni j ), (1)

where αi j and βi j are components including volume fraction of phases. For a polycrystalline microstruc-
ture, i and j can vary from 1 to M . M is the total number of grains (or states); for a two-phase composite
i and j correspond to phases 1 and 2. This reduces the number of two-point functions to four, P11(r),
P12(r), P21(r), and P22(r), in the case of two-phase composites where normality relations require that
only P11 be treated as an independent variable. The values of αi j and βi j are summarized for a two-phase
composite in Table 1.

In this equation r can generally be a vector which has been thrown in the microstructure to measure
two-point probability functions. The other constants ci j and ni j are also microstructure parameters:
ni j = 1 [Tewari et al. 2004], and ci j is a scaling parameter representing the correlation distance. These
empirical coefficients can be reformulated into an anisotropic form [Saheli et al. 2004],

ci j (θ, A)= c0
i j (1 + (1 − A) sinφ), (2)

where A is a material parameter that represents the degree of anisotropy in a microstructure, such that
A = 1 corresponds to an isotropic microstructure and c0

i j is the reference empirical coefficient. φ repre-
sents the angle of the vectors thrown in the microstructures to measure two-point probabilities in different
directions. The present form of Equation (1) is sufficient for a two-phase composite when the statistical
information is uniform in all directions. However, a three-dimensional form of the distribution can also
be introduced when the microstructure includes anisotropy. This requires data from a variety of sections
through the sample.

i = 1; j = 1 i = 1; j = 2 i = 2; j = 1 i = 2; j = 2

αi j v1v1 v1v2 v2v1 v2v2

βi j v1v2 −v1v2 −v2v1 v1v2

Table 1. The empirical coefficients in Corson’s equation for a two-phase composite.
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An alternative form of the probability function was suggested in [Torquato 2002] for random and
homogeneous systems of impenetrable spheres:

P11 = 1 − ρV (r)+ ρ2 M(r),

P12 = P21 = v1 − P11,

P22 = v2 − v1 + P11,

(3)

where ρ is the number density of spheres, v1 and v2 are the volume fractions of phases, r is the distance
between two points, and V (r) and M(r) are functions of r as defined in Appendix B.

In Figure 1 Corson’s equation and the Torquato equation are compared to real data of two-point
statistics for a random microstructure.

3. Homogenization relations for elastic properties of composites

In the following section, the full homogenization relations for an elastic medium are reviewed for a
representative volume element. The equilibrium equation is defined by

σi j, j = 0, (4)

where σi j (x) is the local stress field. The elastic constitutive relations are satisfied locally throughout the
heterogeneous medium as

σi j (x)= ci jkl(x)εkl(x); (5)

ci jkl(x), σi j (x), and εi j (x) are local values of stiffness, stress and strain respectively. Let us define an
effective elastic modulus Ci jkl such that [Beran et al. 1996; Garmestani and Lin 2000],

〈σi j 〉 = Ci jkl〈εkl〉. (6)

 
 
 
 
 
 
 
 
 
 
 
 

 

P11 

 

P12 

 

Figure 1. Comparison of different models for two-point probability functions for a two-
phase composite with random distribution of the second phase. Note that ci j and ni j are
fitted to the measured (real) data in Corson’s equation.
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Symbol 〈h〉 denotes the ensemble average over grains (phases, components, etc.) at state h. Assuming
ergodic hypothesis, the average of the local stiffness 〈ci jkl〉 is defined as [Kröner 1972]

〈ci jkl〉 = 〈ci jkl(x)〉 =
1
V

∫
V

ci jkl(x)dV . (7)

The same definition is applicable for stress, strain and compliance. The local moduli and compliance,
as well as the local stress and strain, can be defined as a perturbation from the average values 〈 · · · 〉 by
defining a new parameter

(
∼

···

)
as in [Beran et al. 1996; Garmestani and Lin 2000]

ci jkl(x)= 〈ci jkl〉 + c̃i jkl(x),

si jkl(x)= 〈si jkl〉 + s̃i jkl(x),
(8)

σi j (x)= 〈σi j 〉 + σ̃i j (x),

εi j (x)= 〈εi j 〉 + ε̃i j (x),
(9)

where c̃i jkl(x), s̃i jkl(x), σ̃i jkl(x), and ε̃i jkl(x) are, respectively, the deviation from the mean value at each
point of stiffness, compliance, stress and strain. Therefore, the following are satisfied:

〈c̃i jkkl(x)〉 = 0, 〈s̃i jkl(x)〉 = 0, (10)

〈σ̃i jkl(x)〉 = 0, 〈ε̃i jkl(x)〉 = 0.

In the following, statistical continuum mechanics analysis is applied to a two-phase composite for
the prediction of elastic properties. A theoretical framework has already been developed for isotropic
distributions in composites, by [Garmestani et al. 1998b; Garmestani and Lin 2000], and for a textured
polycrystalline material, by [Beran et al. 1996]. Here, a brief discussion is provided for the calculation of
the effective elastic constants for isotropic distribution and will be extended to anisotropic distributions
in later sections.

Substituting local moduli (Equation (9)) in the equilibrium equations (Equation (4)) and rewriting the
equation as a function of displacement, the following equations will be obtained:

〈ci jkm〉
∂2ũk

∂x j∂xm
+

∂

∂x j
[c̃i jkm(x)εkm(x)] = 0. (11)

The solution for this PDE can be written as an integral equation using the Green’s function, defined
by the PDE

〈ci jkm〉
∂2Gkp(x, x ′)

∂x j∂xm
+ δi pδ(x − x ′)= 0, (12)

where δ(x − x ′) is the Dirac’s delta function for the vector relating any two points in the microstructure,
and the term δi pδ(x − x ′) represents the i-th component of a unit force acting parallel to the direction
p for a fixed point, p [Kröner et al. 1987; Willis 1965]. Green’s function in the case of isotropy can be
defined by a closed form, and for the case of anisotropy has to be calculated numerically. The details
of the calculations of Green’s functions for both cases are presented in Appendix C [Bacon et al. 1980;
Mason and Adams 1999]. Substituting the values of local stress and strain in Equation (5), after some



90 GHAZAL SAHELI, HAMID GARMESTANI AND ARUN GOKHALE

manipulation, the effective elastic constants (in Equation (6)) can be calculated as (for details see paper
by [Garmestani and Lin 2000])

Ci jkl = 〈ci jkl〉 + 〈c̃i jmn(x)amnkl(x)〉, (13)

where amnkl is a matrix defined to show the heterogeneity in the strain field as [Garmestani and Lin 2000,
Equation (4)]

ε̃kl = amnkl〈εkl〉. (14)

By substituting local stress from Equation (5) into the equilibrium Equation (4) an equation for dis-
placement is obtained. Differentiating this equation and multiplying the result by ci jkl , the second term
in Equation (13) can be derived as [Saheli 2006], (details in Appendix D)

〈c̃i jku(x)akurs(x)〉 =

∫
V

∂
[
Kkpu(x, x ′)〈c̃i jku(x)c̃pmrs(x ′)〉

]
∂x ′

md X ′

−

∫
V

Kkpum(x, x ′)〈c̃i jku(x)c̃pmrs(x ′)〉d X ′, (15)

where x and x ′ are two different positions in the media, d X ′ is the volume integral on the volume element
around position x ′, and Kkpu and Kkpum are calculated through

Kkpu =
(Gkp,u + Gup,k)

2
,

Kkpum =
(Gkp,um + Gup,km)

2
.

(16)

Gkp,u and Gup,km are, respectively, the first and the second derivative of the Green’s function that solves
Equation (12).

The two-point correlation function is defined through the equation

〈c̃i jku(x)c̃pmrs(x ′)〉 =

∫∫
c̃i jku(x)c̃pmrs(x ′)P2(x |h, x ′

|h′)dhdh′, (17)

where P2 is a correlation function for two states of h and h′, and is defined in Appendix A. Equation
(17) can be derived for composites by the relationship

〈c̃i jku(x)c̃pmrs(x ′)〉 = c̃1
i jku c̃1

pmrs P11 + c̃1
i jku c̃2

pmrs P12 + c̃2
i jku c̃1

pmrs P21 + c̃2
i jku c̃2

pmrs P22, (18)

where c1, c2 are the local elastic moduli for the two individual phases.

4. Analytical procedure

It was shown earlier that the effective modulus C can be calculated through Equation (13), which includes
the correlation term (Equation (15)). This term will be analyzed analytically in this section to observe
the effect of one-point and two-point statistics. This term is composed of two parts, or

〈c̃i jku(x)akurs(x)〉 = I 1
i jrs + I 2

i jrs, (19)
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where the first term is

I 1
i jrs =

∫
V

∂
[
Kkpu(x, x ′)〈c̃i jku(x)c̃pmrs(x ′)〉

]
∂x ′

md X ′
, (20)

and can be converted to a surface integral by applying Gauss’ theorem (for additional information see
mathworld.wolfram.com/DivergenceTheorem.html). Gauss’ theorem converts the volume integral in a
sphere with infinite radius to a surface integral with the boundary of this sphere. The resulting surface
integral requires evaluation on a surface at infinity and on a surface enclosing the singularity of Kkpu at
x = 0.

Choosing both surfaces as spheres and applying Gauss’ theorem, the following integral is obtained:

I 1
i jrs =

(∫
〈c̃i jkl(x)c̃pmrs(x ′)〉Kkpud

_

Am

)
x−x ′→0

+

(∫
〈c̃i jkl(x)c̃pmrs(x ′)〉Kkpud

_

Am

)
x−x ′→∞

. (21)

To calculate the two surface integrals, the correlation term shown by 〈c̃i jku(x)c̃pmrs(x ′)〉 has to be
evaluated when x − x ′

→ 0 and x − x ′
→ ∞. When x − x ′

→ 0 , then the correlation will be a constant
and independent of x , and when x − x ′

→ ∞ there will be no correlation between two points. This can
be proven for the case of a two-phase composite using Equation (18)

x − x ′
→ 0 H⇒


P11 → v1

P12 → 0

P22 → v2

H⇒ 〈c̃i jku(x)c̃pmrs(x ′)〉 → constant,

x − x ′
→ ∞ H⇒


P11 → v2

1

P12 → v1v2

P22 → v2
2

H⇒ 〈c̃i jku(x)c̃pmrs(x ′)〉 → 0.

(22)

Therefore the second term in Equation (21) will be equal to zero, and the components of the first
integral, I 1

i jrs , can be calculated by

I 1
i jrs = (c̃1

i jku c̃1
pmrsv1 + c̃2

i jku c̃2
pmrsv2)K ckpum, (23)

where

K ckpum =

∫
Kkpud Âm, (24)

and is evaluated as

K ci i i i = −
(16/15K̄ )

8µ̄
,

K ci j i j = K c j i j i =
(4/3 − 4/5K̄ )

8µ̄
,

K ci j j i = K c j i i j = K ci i j j = K c j j i i = −
(2/3 + 2/15K̄ )

8µ̄
,

(25)
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where K̄ is the average property of two phases

K̄ =
λ̄+ µ̄

λ̄+ 2µ̄
. (26)

Note that i and j can vary from 1 to 3, but there is no summation on the indices in Equation (25).
Although a two-point correlation function shows up in the integral I 1

i jrs , this integral is the result of the
contribution of one-point statistics since the only variables contributed in the calculations of Equations
(25) and (26) are volume fractions of two phases.

The second term in Equation (19) can also be found using

I 2
i jrs = −

∫
V

Kkpum(x, x ′)〈c̃i jku(x)c̃pmrs(x ′)〉d X ′. (27)

This integral can be shown to be zero for isotropic composites. In isotropic composites the correlation
term will be only a function of r (F(r)). On the other hand, by assuming the definition of isotropic
Green’s function [Kröner et al. 1987], Kkpum is derived as

Kkpum =
1

8πµ̄

{[
K̄ δukδpm + (K̄ − 1)(δpuδkm + δumδpk)

]/
|r |

3

+
[
(3 − 3K̄ )(rmrkδpu + rmruδkp)δukδpm − 3K̄ (rmrpδku + rnrpδkm + rkrpδum + rkrnδpm)

]/
|r |

5

+
[
15K̄ (rprmrurk)

]/
|r |

7} . (28)

Therefore, the integrand of the Equation (27) can be integrated with respect to r , separately. Some
components of the integral of I 2

i jrs are evaluated here as an example:

I 2
1111 =

1
8πµ̄

∫
r

∫
θ

∫
φ

F(r)
[
(3K̄−2) sinφ+(6−18K̄ ) cos2 θ sin3 φ+15K̄ cos4 θ sin5 φ

]/
rdrdθdφ=0,

I 2
1212 =

1
8πµ̄

∫
r

∫
θ

∫
φ

F(r)
[

K̄ sinφ− 3K sin3 φ+ 15K̄ sin2 θ cos2 θ sin5 φ
]/

rdrdθdφ = 0,

I 2
1122 =

1
8πµ̄

∫
r

∫
θ

∫
φ

F(r)
[
(K̄ − 1) sinφ+ (3 − 3K̄ ) sin2 θ sin3 φ− 3K̄ cos2 θ sin3 φ

+15K̄ sin2 θ cos2 θ sin5 φ
]/

rdrdθdφ = 0.

For more details on the integration please refer to [Saheli 2006]. This can be shown in a general form

I 2
i i i i = I 2

i j i j = I 2
i i j j = 0, (29)

where i and j vary from 1 to 3, indicating the three directions in spherical coordinates. Note that there
is no summation on the indices in Equation (29). Therefore I 2

i jrs has been shown analytically to be
zero for isotropic distributions found in [Beran 1968] and [Kröner 1977]. This is in agreement with
the numerical results that Beran et al. [1996] obtained in their work. In this work, as the oxygen free
electronic (OFE) alloy 101 copper plates were nearly isotropic, it was observed numerically that the
contribution of the second integral is almost zero in the calculation of elastic properties. Hence the effect
of spatial arrangement of the crystals was not observed.
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Also note that in the previous works by Garmestani and Lin [2000] only an isotopic composite was
considered. Therefore the effect of morphology and spatial arrangement of the features in the microstruc-
ture on properties was not completely evident; however, in the following section of this research, it will
be shown that the contribution of two-point statistics is very significant in anisotropic composites.

5. Numerical analysis

In the last section it was shown that I 2
i jrs is zero for isotropic composites; however, it is nonzero and

should be evaluated by Equation (27) in anisotropic composites. The numerical integration has been done
using Simpson’s rule (see mathworld.wolfram.com/SimpsonsRule.html). For this purpose, a sphere is
divided into nr × nθ × nϕ units, where nr is the number of sections for variable r (radius) and nθ and nϕ
are the number of sections for variables 0< θ < 2π and 0< ϕ < π , respectively, in spherical coordinates.
The variable r also changes between 0 and ∞. There are two issues to be taken into account to perform
the integration. One is the singularity of the Green’s function at r = 0 and the other is the definition of
∞ for r in the integration. Empirical forms of the probability density functions were introduced earlier.
It can be shown that for all physically realizable forms of the probability density functions for a random
media, they merge to a constant value at large r (as shown schematically in Figure 2).

The correlation function defined in Equation (18) becomes zero when the probabilities P11, P12, P21,
and P22 reach their limits. Therefore the coherence radius, (Rc), is defined as the limiting value of the
probability functions. This value should be used as an upper limit (or ∞) for r in the volume integral
(I 2

i jrs). Since the Green’s function is undefined at r = 0, the integral can be divided into two parts with
respect to variable r , (0 to rmin) and (rmin to Rc). For infinitesimally small values of r (0 to rmin) the
correlation does not change, so the correlation term can be taken out of the integral, and therefore the
term ∫

V
Kkpum(x, x ′)d X ′
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Figure 2. Schematic representation of two-point probability functions (P11 and P12

merge to their limiting values as the dimension of vector r increases).
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has to be calculated. Similar to the case of isotropic composites, this integral can be shown to be zero.
Therefore the integral, I 2

i jrs , needs to be evaluated between rmin and Rc for anisotropic composites. On
the other hand, rmin should be chosen as a small nonzero value in such a way as to be small enough to
bring the contribution of two-point correlations for small radius and large enough to pass the singularity.
For this purpose, a numerical procedure should be adopted that calculates a rmin by reducing r until a
saturation is reached for the value of the integral, not reaching infinity. Therefore the volume integral
needs to be calculated from rmin to Rc. Furthermore, time of operation is another aspect that has to
be considered. For instance, in the case of Al-Pb composites [Saheli et al. 2004], if rmin = 0.03 and
1r = 0.1 it takes about 20 minutes for the codes to calculate one elastic constant in a Pentium IV
machine, 2.4 MHZ. However, if rmin is chosen the same and 1r = 0.01 then it takes about 2 hours and
35 minutes to calculate one elastic constant. The difference between the two results is about 0.04 percent.
In contrast, for rmin = 0.003, 1r = 0.01 it takes about 20 hours, where the difference in the calculation
compared to the first case is less than 0.5 percent.

6. Applications

It was shown that two-point statistics does not contribute in the evaluation of elastic properties of isotropic
composites. However, it has a considerable effect in the case of anisotropy. The key to this approach
is the correct representation of the microstructure. In the previous works [Garmestani and Lin 2000;
Saheli et al. 2004] a simplified empirical form of the two-point probability function was used for the
microstructure representation, whereas in this work the statistical information has been measured directly
from the microstructure and used as a database.

In this section, the statistical continuum mechanics model presented earlier as a homogenization
technique will be studied in anisotropic composite materials. For this purpose, elastic properties of
Al-SiC composite will be calculated by using the two-point statistical homogenization technique, and
the contribution of two-point statistics will be discussed. The results of the simulation will be compared
with experiments to validate the theory.

6.1. Al-SiC samples. An Al-SiC composite was fabricated by extrusion by varying the distribution of
two different sizes of Al particles mixed with SiC particles. The difference in the initial particle sizes
of SiC reinforcement phases and Al-alloy matrix results in the heterogeneity of the microstructure. The
micrographs of the two samples with different PSR are shown in Figures 3 and 4. The particles of SiC
are clustered in the sample with PSR = 8:1, therefore they introduce more anisotropy in the extrusion
direction. However, the microstructure with PSR = 2:1 seems to have a smaller anisotropy. The validity
of this interpretation will be studied by computing the elastic properties of the two samples. Note that
the anisotropy of the microstructure has been considered in 1-3 or 2-3 plane (Figure 5). The distribution
of the two-point correlation functions in these microstructures is symmetric with respect to the extrusion
axis (Figure 5). Therefore the extrusion axis is chosen as the vertical axis. The probability distribution
function changes with orientation ϕ and the magnitude of the vector r in each section. However, these
probabilities are the same for all planes with different θ which include extrusion (vertical) axis. Therefore
the measurements of this composite on any section including the vertical axis provides the same statistical
information within which the statistics may be anisotropic and would be sufficient for the simulation (θ
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Figure 3. Micrograph of Al-SiC composite, PSR = 2:1.

 
 
 
 
 
 

 

Figure 4. Micrograph of Al-SiC composite, PSR = 8:1.
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Figure 5. Representation of symmetry in samples of Al-SiC.

and ϕ are respectively the angles with axis 1 and axis 3 in spherical coordinates). Therefore the two-
point probability functions are measured directly from the microstructure for a different range of ϕ on
any plane including extrusion axis, which can be averaged as [Tewari et al. 2004]

〈Pi j (r)〉 =

∫ ϕ2
ϕ1

[Pi j (r, ϕ)]V dϕ∫ 2π
0 dϕ

. (30)

As an example the measured values of P11 are shown in Figure 6 as a function of r and ϕ in each section
containing extrusion (shown in Figure 5). In addition, Corson’s equation is used to measure values of P11

in Figure 7. It is observed that the measured values show an exponential trend which follows Corson’s
equation (Equation (1)), and empirical factor n in Corson’s equation is calculated near 1, in agreement
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Figure 6. Measurement of two-point statistics in a vertical section (P11) of two samples
for different angles.
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Figure 7. Fitted curve to the measured values of P11.

with results by Tewari et al. [2004]. P11 for two samples at 40 < ϕ < 45 are shown in Figure 8. The
value of P11 (defined in Equation (1)) reaches its limit v2

1 = 0.4761 for the case of PSR = 2:1 faster than
it reaches its limit v2

1 = 0.4489 for the case of PSR = 8:1.
Using the measured two-point probabilities and preparing the simulation code based on the homog-

enization relations described in previous sections, one can calculate elastic stiffness matrices for each
sample. The mechanical properties of each phase are assumed as (based on previous experimental data)

E(Al)= 69 GPa, ν(Al)= 0.33, (31)

E(SiC)= 393 GPa, ν(SiC)= 0.19. (32)

In this simulation both integrals in Equation (19) are calculated, as the samples are considered anisotro-
pic. Therefore the effect of anisotropy as introduced by clustering is studied in the estimation of elastic
properties of these two samples.

P11 (40-45)

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0 20 40 60 80

r (micron)

P
1
1

PSR:2:1

PSR:8:1

Figure 8. Measured P11 for two samples.
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C Upper Bound C (statistical model) One-point Two-point Lower Bound

C1111 229.86 205.08 −15.85 8.92 139.81
C1313 72.43 71.95 −2.70 −2.23 36.18

Table 2. Contribution of one-point (Equation (19)) and two-point (Equation (26)) statis-
tics in calculation (Equation (13)) of elastic constants of Al-SiC sample (PSR = 8:1).

6.2. Results. Calculating both integrals in Equation (19), the results show that the contribution of the
second integral is about 30 and 50 percent in the calculation of Ci i i i and Ci j i j respectively. 1 and 3
indicate transverse and longitudinal (extrusion) directions. For example, when i = 1, Ci i i i refers to
C1111. Some of the components of effective elastic constants for an 8:1 sample are shown in Table 2.

Using the simulated values of the longitudinal elastic modulus, the linear behavior of the stress-strain
curve in the elastic region is shown in Figures 9 and 10. The enlarged elastic region of stress strain curves
obtained through mechanical testing is also shown in the graphs. In addition, upper bound [Voigt 1889]
and lower bound [Reuss 1929], Hashin–Shritkman upper and lower bound [Hashin and Shtrikman 1962;
1963], and self-consistent approximation [Hill 1965] are calculated and shown in the figure as well as in
Table 3 for comparison to the simulation and experimental results. The linear elastic modulus calculated
from the statistical simulations represented the best slope for the experimental stress-strain curves in the
elastic region.
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Figure 9. Stress-strain curve for Al-SiC PSR = 2:1.
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E REUSS HS-LB Statistics Experiment SC HS-UB VOIGT

PSR = 2:1 95.67 175.2 143.12 151.51 102.99 175.61 176.72
PSR = 8:1 98.43 185.65 161.29 156.82 106.63 186.04 184.07

Table 3. Comparison of calculated longitudinal elastic modulus of two samples with
different models.

The error is estimated to be between 0.07% and 20%, where 20% error relates to the points that
have the largest deviation from experimental data in elastic region. The elastic moduli in two different
directions (longitudinal and transverse) are shown for two samples in Figure 11. It was observed from
the micrographs that clustering in the sample with PSR = 8:1 introduces more anisotropy in the elastic
modulus than the other sample. This verifies the results of the simulation in Figure 11.

The volume fraction of the second phase (SiC) in two microstructures with PSR = 2:1 and PSR = 8:1
is estimated to be 31% and 33%, respectively. Although the volume fractions are very close, it shows
a different degree of anisotropy (about 15% in the two samples). The upper Hashin–Shritkman bounds
for the two samples shown in this figure are not able to represent the anisotropy in the system properly.
It shows an identical slope for the two cases, whereas the statistical calculations predict different elastic
properties in the two directions.
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Figure 10. Stress-strain curve for Al-SiC PSR = 8:1.
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7. Summary

Statistical continuum mechanics modeling has been extended to include anisotropy in the calculation of
elastic properties of composites. The effect of one-point and two-point statistics on the calculation of
elastic properties of composites was studied in detail. It was shown analytically that two-point statistical
information does not contribute in the calculation of elastic properties of isotropic composites, whereas
it plays a major role for anisotropic materials. The homogenization technique was then applied to an Al-
SiC composite with two different PSR’s. In this simulation two-point statistical functions were measured
directly from the microstructures, and the statistical formulation uses the two-point probability functions
to incorporate the effect of the microstructure distribution. Applying statistical continuum mechanics
analysis, the effective properties of the two samples of Al-SiC composite were estimated and compared
with the experimental data, the upper (Voigt) and lower bounds (Reuss), Hashin–Shtrikman bounds, and
self-consistent approximations. Although the microstructures of the two composite samples have very
similar volume fractions, this analysis results in different values of the effective elastic properties and
predicts different anisotropy levels for them. Therefore the results show that the statistical analysis can
provide a good estimate for the elastic effective properties, considering the spatial distribution of the
phases.

Appendix A: Definition of one-point and two-point statistics functions

One-point probability functions. To measure a one-point probability function, a random number of
points (N ) have to be inserted in the microstructure (Figure 12). The number of points located in one
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Figure 12. Schematic representations of one-point statistics measurement in a two-
phase composite microstructure.

phase with respect to the total number of points (N ) indicates a one-point probability

P(φ1)= P1 =
n1

N
= v1

P(φ2)= P2 =
n2

N
= v2,

(A.1)

where phase one and phase two have been considered as matrix and particles respectively, and the nor-
malization relationship

P(ϕ1)+ P(ϕ2)= 1. (A.2)

is always satisfied.

Two-point probability functions. A two-point probability function can be defined as a conditional prob-
ability function when the statistics of a three-dimensional vector r are investigated once attached to each
set of the random points in a particular microstructure (Figure 13). Two-point statistics can be calculated
by the probability of a specific phase at the head of the vector given the phase at the tail of the vector,
and can be shown by P(r | {1, 2}, {1, 2}).

The following normalization relationship is valid for all the functions:

P11 + P12 = v1

P22 + P21 = v2

P11 + P12 + P21 + P22 = 1. (A.3)

As it is observed from the above normalization relationship, P11 is the only independent variable.
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Appendix B: Torquato probability functions

Functions V (r) and M(r) in Equation (3) are defined as

V (r)=
4π
3

[
1 +

3r
4

−
r3

16

]
, r < 2,

V (r)=
8π
3
, r > 2,

(B.1)

and

M(r)=

[
−

16
9

+
r3

3
−

r4

10
+

r6

1260

]
π2

+
16π2

9
, 0 ≤ r < 2,

M(r)=

[
256
35r

−
128
9

+
32r
5

−
5r3

9
+

r4

10
−

r6

1260

]
π2

+
16π2

9
, 2 ≤ r < 4,

M(r)=
16π2

9
, r ≥ 4.

(B.2)

Note that r in general is a vector; however, for an isotropic two-phase composite, r is considered to be
a scalar.

Appendix C: Green’s function definition

Green’s function for the case of isotropic materials is defined by the closed form equation as in [Kröner
et al. 1987]

Gkp(x, x ′)=
1

8µ̄π |r12|

{
2δkp −

λ̄+ µ̄

¯̄λ+ 2µ̄

(
δkp −

r12kr12p

|r12|2

)}
, (C.1)

where λ̄ and µ̄ are the average values of Lame’s Constants in the composite.

 
 
 
 
 
 
 
 
 

 

Figure 13. Schematic representations of two-point statistics measurement in a two-
phase composite microstructure.
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However in the case of anisotropy and texture, there is no closed form equation, and it can be written
in the numerical form [Bacon et al. 1980]

Gi j (x − x ′)=
1

8π2|x − x ′|

∮
|z|=1

(zz)−1
i j ds, (C.2)

where

(zz)i j = Cki jl zkzl, (C.3)

(zi j )
−1

=
εismε jrw(zz)sr (zz)mw

2εpgn(zz)1p(zz)2g(zz)3n
. (C.4)

T is the unit vector in the direction of the line connecting two position x and x ′. The general expression
for the n-th derivative of the Green’s function is given by

Gi j,s1···sn = (x − x ′)=
(−1)N Tk1 · · · TkN

8π2|x − x ′|N+1 ×

∮
|z|=1

∂N
[(zz)−1

i j zs1 · · · ZsN ]

∂Zk1 · · · ∂ZkN

ds, (C.5)

Gi j,s(x − x ′)=
1

8π2|x − x ′|2
×

∮
|z|=1

[Ts(zz)−1
i j − zs Fi j ]ds, (C.6)

Gi j,sr (x − x ′)=
1

8π2|x − x ′|3
×

∮ [
2Ts Tr (zz)−1

i j − 2(zs Tr + zr Ts)Fi j + zszr Ei j
]
ds, (C.7)

where

Fi j = (zz)−1
im (zz)−1

k j [(zT )mk + (T z)mk], (C.8)

Ei j = [(zT )mk + (T z)mk][Fim(zz)−1
k j + (zz)−1

im Fk j ] − 2(zz)−1
im (zz)−1

k j (T T )mk . (C.9)

The resulting integral is a line integral on a circle defined in a perpendicular plane to T with a unit radius
(Figure 14).
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Figure 14. Schematic representation of different vectors in calculating Green’s function
for anisotropic case ( ET ≡ Er).
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Appendix D: Derivation of homogenization relations

Substituting the stress definition from Equation (5) into Equation (4), using the definition of local stress
and strain, and finally substituting strain field by displacement field, the equilibrium equation can be
solved by Equation (10). For this purpose the Green’s function was used to solve the PDE. The strain
field is finally obtained as

ũk(x)=

∫
V

Gkp(x, x ′)
∂[c̃plrs(x ′)εrs(x ′)]

∂x ′

l
d X ′, (D.1)

where d X ′ is the volume integral on the volume element around position x ′,
By differentiating the above equation, ε̃ku(x) is calculated by

ũk,u(x)=

∫
V

Gkp,u(x, x ′)
∂[c̃plrs(x ′)εrs(x ′)]

∂x ′

l
d X ′

+

0︷ ︸︸ ︷∫
V

Gkp(x, x ′)
∂[c̃plrs(x ′)εrs(x ′)]

∂x ′

l∂xu
d X ′ . (D.2)

It is observed that the second term is zero, since the term [c̃plrs(x ′)εrs(x ′)] is just a function of x ′,
whereas the derivative is with respect to x . Therefore, the strain can be calculated as

ε̃ku =

∫
V

1
2
[Gkp,u(x, x ′)+ Gup,k(x, x ′)]

∂[c̃plrs(x ′)εrs(x ′)]

∂x ′

l
d X ′. (D.3)

Defining the first derivative of the Green’s function as

Kkpu =
(Gkp,u + Gup,k)

2
, (D.4)

multiplying the strain in Equation (D.3) by the value of the local moduli c̃i jku(x), and averaging with
respect to x ,

〈c̃i jku(x)ε̃ku(x)〉 =

∫
V

∫
V ′

Kkpu c̃i jku(x)
∂[c̃plrs(x ′)εrs(x ′)]

∂x ′

l
d X ′d X, (D.5)

is found, where d X is the volume integral on the volume element around position x . Substituting the
local strain field from Equation (8), the above equation can be rewritten by

〈c̃i jku(x)ε̃ku(x)〉 =

∫
V

∫
V ′

Kkpu
∂[c̃i jku(x)c̃plrs(x ′)]

∂x ′

l
d X ′ d X〈εrs(x)〉

+

∫
V

∫
V ′

Kkpu
∂
[
c̃i jku(x)c̃plrs(x ′)ε̃rs(x ′)

]
∂x ′

l
d X ′ d X. (D.6)

Showing the integral over the variable x as an ensemble average, the above equation is reduced to

〈c̃i jku(x)ε̃ku(x)〉 =

∫
V

Kkpu
∂〈c̃i jku(x)c̃plrs(x ′)〉

∂x ′

l
〈εrs〉d X ′

+

∫
V

Kkpu
∂
[
〈c̃i jku(x)c̃plrs(x ′)ε̃rs(x ′)〉

]
∂x ′

l
d X ′. (D.7)
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In the above equation 〈c̃i jku(x)c̃pmrs(x ′)〉 is called a two-point correlation function, and can be calculated
using Equation (18). It is observed that the second term is a three-point correlation function. At this time
the calculation is truncated up to a two-point probability function. For this research the second term is
neglected. Therefore to get the microstructural information and correlate them to properties, one needs
to calculate the first integral in Equation (D.7). A fourth ran tensor 〈a〉 was introduced as the deviation
in the strain field,

〈ε̃ku〉 = 〈akurs〉〈εrs〉. (D.8)

Substituting the above equation in Equation (D.7) and omitting 〈εku〉 from both sides, the equation is
reduced to

〈c̃i jku(x)akurs〉 =

∫
V

Kkpu
∂〈c̃i jku(x)c̃plrs(x ′)〉

∂x ′

l
d X ′. (D.9)

Applying integration by parts to the above equation, it can be rewritten as

〈c̃i jku(x)akurs(x)〉 =

∫
V ′

∂
[
Kkpu〈c̃i jku(x)c̃plrs(x ′)〉

]
∂x ′

l
d X ′

−

∫
V ′

Kkpul(x, x ′)〈c̃i jku(x)c̃plrs(x ′)〉d X ′.

(D.10)
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DYNAMIC ANALYSIS OF BANANA FIBER REINFORCED HIGH-DENSITY
POLYETHYLENE/POLY (ε-CAPROLACTONE) COMPOSITES

RAGHVENDRA KUMAR MISRA, SANDEEP KUMAR, KUMAR SANDEEP AND ASHOK MISRA

Banana fiber reinforced HDPE/PCL (high-density polyethylene/poly (ε-caprolactone)) composites have
been prepared in the laboratory for the evaluation of mechanical properties. The tensile strength and
Young’s modulus of the HDPE/PCL blend attains saturation at approximately 20% by weight of PCL
addition. Therefore, the 80:20 blend of HDPE/PCL has been selected as the matrix material. It has also
been observed that the ductility of the HDPE/PCL blend drops rapidly by addition of more than 15%
by weight of PCL. Reinforcement of the banana fiber in an 80:20 HDPE/PCL blend matrix shows im-
provement in ductility, tensile strength and Young’s modulus. In order to study the dynamic response of
this banana fiber reinforced HDPE/PCL composite plate, a multiquadric radial basis function (MQRBF)
is developed. MQRBF is applied for spatial discretization and a Newmark implicit scheme is used for
temporal discretization. The discretization of the differential equations generates a greater number of
algebraic equations than the unknown coefficients. To overcome this ill-conditioning, the multiple linear
regression analysis, based on the least square error norm, is employed to obtain the coefficients. Simple
supported and clamped boundary conditions are considered. Numerical results are compared with those
obtained by other analytical methods.

1. Introduction

Fiber reinforced composites are used extensively in various industries such as automobiles, aerospace,
and defence and are replacing various metallic structures because of many advantages, such as high
strength to weight ratio, enhanced corrosion resistance, and longer fatigue life. In this context, banana
fiber reinforced composites have recently gained importance. Banana fibers are mainly used for light-
weight composites and green composites in agricultural industries. These composites can also be used for
door panels, room partitions, wall cladding, food packaging, home appliances, automotive parts, building
and construction, and electrical housing.

Banana fibers are a waste product of banana cultivation, are easily available, and may be reinforced
in thermosets and thermoplastics. Fabrication of banana fiber reinforced low-density polyethylene/poly-
caprolactone composites has been reported recently by Sandeep and Misra [2007]. When the quantity of
banana fibers is increased, tensile and flexural properties of the resol matrix resin [Joseph et al. 2002] is
also increased. Addition of banana fibers to brittle phenol formaldehyde resin makes the matrix ductile.
The interfacial shear strength indicates a strong adhesion between the lignocellulosic banana fibers and
the phenol formaldehyde resin. Reinforcement of bamboo and sisal fibers in thermoplastic resin has also
been reported [Chen et al. 1998; Ali et al. 2003].

Keywords: banana fiber, multiquadric radial basis function, eigenvalue.
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However, the theoretical analysis of banana fiber reinforced composite plates by conventional methods
poses some problems. Generally, finite elements and finite difference methods are used for analysis of
composites. The finite element method is not very suitable as it consumes more time in mesh gener-
ation than in execution. The vast applications of composite plates in industries have emphasized the
development of new efficient numerical technique for the analysis of composite plates. Therefore, to
avoid these problems, new methods known as meshless methods have been developed recently. These
methods are the meshless local Petrov–Galerkin (MLPG) method [Atluri and Zhu 1998], partition of
unity method [Babuska and Melenk 1997], element free Galerkin method (EFGM) [Belystcho et al.
1994], method of finite spheres [De and Bathe 2000], and wavelet Galerkin method [Qian and Weiss
1993]. Kansa [1990] and Franke and Schaback [1997] developed the concept of solving PDEs using
radial basis functions (RBF). Fedoseyev et al. [2002] improved the accuracy of the solution by placing
the interior knots. Hardy [1971] used the multiquadric radial basis function method (MQRBF) for the
interpolation of geographically scattered data. The discretization process in MQRBF is based on the
employment of a set of randomly distributed boundary and internal nodes. Coleman [1996] employed
RBFs in the analysis of elliptic boundary value problems. Chen et al. [2004] studied the free vibration
analysis of circular and rectangular plates by employing the RBF in the imaginary-part fundamental
solution. Misra et al. [2007] have recently presented the static and dynamic analysis of anisotropic plates
by using the MQRBF method and the multiple linear regression analysis technique.

In light of the above discussion, it appears that some experimental and theoretical investigations on
banana fiber reinforced composites could offer some interesting results. This paper reports the fabrica-
tion, chemical treatment, and evaluation of properties of banana fiber reinforced high-density polyethy-
lene/polycaprolactone composites. High-density polyethylene (HDPE) and poly (ε-caprolactone) (PCL)
in 80:20 ratios were selected to make a matrix material. Since the melting point of PCL is 60◦ C, it
could help in the processing of HDPE. With the properties thus obtained, a collocation method based
on the MQRBF method is employed for the dynamic analysis of banana fiber reinforced HDPE/PCL
composites due to self-weight.

Notation

a, b Dimension of plates
h Thickness of plates
R Aspect ratio (a/b)
νLT Major Poisson’s ratio
ρ Mass density of plates
m Mass of the plate
C∗
ν ,Cν Viscous damping, dimensionless viscous damping

D11, D22, D12, D66 Flexural rigidity of plates
EL , ET Young’s modulus in x∗, y∗ direction respectively
GLT Shear modulus relative to x∗

− y∗ direction
q, Q Transverse load, dimensionless transverse load
t∗, t Time, dimensionless time
w∗ Displacement in z∗ direction
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w Dimensionless displacement in z direction
ω Natural frequency of vibration
ρ0 Surface density (ρ0 = ρh)
λ Eigen value

2. Materials and methods

2.1. Materials. The banana fibers were obtained from Regional Research Laboratory (CSIR) Jorhat,
India. Sodium hydroxide and HDPE (HD50MA 180) were obtained from Indian Petrochemicals Corpo-
ration Limited, Vadodara. PCL was obtained from Union Carbide Company, USA.

The melt flow index of HDPE was 17.3 (at 190◦ C/2.16 Kg), the density was 0.98 g/cm3 and the
melting temperature was 130◦ C. PCL is a low melting aliphatic polyester, which is biodegradable and
miscible with many polymers. The properties of PCL were as follows: melt flow index 2.2 gm/10 min
(at 125◦C/2.16 Kg), density 1.145 g/cm3, melting temperature 60◦ C.

2.2. Chemical treatment of banana fibers. Organic solvents were used to separate the fibers. Better
separation of fibers was achieved by using toluene followed by washing with petroleum ether. After sep-
aration, the fibers were dipped in sodium hydroxide for achieving better mechanical properties. Banana
fibers were pale yellowish brown. When treated with NaOH the color became dark brown.

2.3. Fabrication of composites. A Klockner Windsor single screw extruder having an L/D ratio of
21:1 and screw diameter of 30 mm was used for blending HDPE and PCL. For proper mixing of these
polymers, the following optimum parameters were used: screw speed, 35 rpm; barrel zone temperature,
135, 140 and 150◦ C; die zone temperature, 150◦ C. After mixing, the mixture was quenched in water.
Banana fibers were separated and dried in oven for 3 hours at 80◦ C. These banana fibers were used for
composite fabrication. The untreated and 10% alkali treated banana fibers are designated by UB and TB
respectively in the present paper. A prefix indicating the weight % of banana fibers is appended to these
letter designations. For example, 9 UB and 13 TB represent blends with 9 weight % untreated banana
fibers and 13 weight % alkali treated banana fibers respectively.

2.4. Evaluation of properties. A 10 KN capacity Zwick tensile testing machine model Z010 was used
to determine the mechanical properties of these banana fiber reinforced composites. The tex and denier
of the fibers were determined by measuring the weight of fibers of known length. The diameter of the
fibers was calculated from the density and denier of the fibers. Properties of the banana fibers have been

Treatment Designation % Wt. Loss Density Tex Denier Diameter
with (g/cm3) (g/1000 m) (g/9000 m) (mm)

Untreated UB — 1.4 14.2 127.8 0.113
5% NaOH AlB5 20.31 1.45 13.1 117.9 0.107
10% NaOH AlB10 25.4 1.48 13.0 117 0.105

Table 1. Properties of banana/modified banana fibers.
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Sample HDPE (g) PCL (g) Banana Fiber (g) Wt % of Banana
designation Fibers

M 160 40 0 0
5UB 160 40 10 (untreated) 4.76
5TB 160 40 10 (treated) 4.76
9UB 160 40 20 (untreated) 9.1
9TB 160 40 20 (treated) 9.1

13UB 160 40 30 (untreated) 13
13TB 160 40 30 (treated) 13

Table 2. Composition of the banana fiber reinforced composites.

shown in Table 1. The compositions of banana fiber reinforced composites are given in Table 2. The
resulting tensile strength, tensile modulus, and percentage elongation at tensile fracture are presented in
Table 3. The matrix (HDPE:PCL, 80:20) has been designated as M , while ML and MT represent the
longitudinal and transverse fibers composites respectively.

3. Theoretical analysis

3.1. The multiquadric radial basis function method. Consider a general differential equation:

Aw = f (x, y) in �, (1)

Bw = g(x, y) on ∂�. (2)

The governing equation for a free flexural vibration of a uniform thin plate is written as follows [Chen
et al. 2004]:

∇
4w = λ4w(x), x ∈�,

where w is the lateral displacement, λ4
= ω2ρ0h/D, λ is the frequency parameter, ω is the circular

frequency, ρ0 is the surface density, D is the flexural rigidity of the isotropic plate, and h is the thickness
of the plate.

In the present work, it is assumed that the banana fiber reinforced composite plate behaves as an
orthotropic plate because the diameter of each banana fiber is so small that its contribution to the strength
is predominantly along its longitudinal direction. In such a case, Equations (1) and (2) for a uniform thin

Sample Tensile strength Tensile modulus Elongation at
designation (GPa) (GPa) break (%)

M 21.4 11.41 4.50
ML 80.8 18.0 7.23
MT 32.9 8.0 6.78

Table 3. Mechanical properties of composites.
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orthotropic composite plate can be reduced to

Aw = λ4w, (3)

Bw = 0, (4)

where A is a linear differential operator, B is a linear boundary operator imposed on boundary conditions
for the orthotropic plate, and λ is an eigenvalue.

Let {Pi = (xi , yi )}
N
i=1 be N collocation points in the domain � of which {(xi , yi )}

NI
i=1 are interior

points and {(xi , yi )}
N
i=NI +1 are boundary points. In the MQRBF method, the approximate solution for

the differential Equation (1) with boundary conditions Equation (2) can be expressed as:

w(x, y)=

N∑
j=1

w jϕ j (x, y),

with a multiquadric radial basis:

ϕ j =

√
(x − x j )2 + (y − y j )2 + c2 =

√
r2

j + c2,

where {w j }
N
j=1 are the unknown coefficients to be determined, and ϕ j (x j , y j ) is a basis function. Other

widely used radial basis functions are:

ϕ(r)= r3, cubic,

ϕ(r)= r2 log(r), thin plate splines,

ϕ(r)= (1 − r)m + p(r), Wendland functions,

ϕ(r)= e−(cr)2, Gaussian,

ϕ(r)= (c2
+ r2)−1/2, inverse multiquadatrics.

Here r = ‖P − Pj‖ is the Euclidean norm between points P = (x, y) and Pj = (x j , y j ). The Euclidian
distance r is real and nonnegative, and c is a positive and constant shape parameter. c is smaller in the
domain and larger at the boundary [Ling and Kansa 2004].

3.2. Calculation of eigenvalues. Let NB be the total number of points on the boundary ∂�, NI is the
total number of points inside �, and N = NI + NB . Applying the RBF in Equation (3) gives

N∑
j=1

w j Aϕ‖Pi − Pj‖ = λ4
N∑

j=1

w jϕ‖Pi − Pj‖, (5)

where i = 1, 2, . . . , NI .
Define

L = [Aφ(‖Pi − Pj‖)]NI x N ,

M = [φ‖Pi − Pj‖)]NI x N .



112 RAGHVENDRA KUMAR MISRA, SANDEEP KUMAR, KUMAR SANDEEP AND ASHOK MISRA

Applying the multiquadric radial basis functions (MQRBF) in Equation (4) gives

N∑
j=1

w j Bφ(‖Pi − Pj‖)= 0,

where i = NI+1, NI+2, . . . , N , and

K = [Bφ(‖Pi − Pj‖)]NB x N ,

w = [w1w2w3 · · ·wN ]
T .

(6)

Equations (5) and (6) can be written as:

Lw = λ4 Mw,

Kw = 0.

The general eigenvalue problem becomes (in matrix form):[
L
K

]
w = λ4

[
M
0

]
w.

The algorithm of Ferreira et al. [2005] for solving this standard eigenvalue problem has been used in the
present analysis as follows:

L1w2
= λ4w2,

where

L1
= L D−1 [I N I x N I 0N B x N I

]
, w2

=
[
w1w2w3 · · ·wN

]T
, D =

[
M K

]
.

4. Results and discussion

The effect of PCL addition on the mechanical properties of the HDPE matrix is shown in Figures 1
and 2. It is apparent that both the tensile modulus and tensile strength increase with percent of PCL
addition, and attain almost saturation at about 20% PCL addition by weight. The modulus increases by
41% and the tensile strength by 29% on introducing 20% by weight of PCL into the HDPE matrix. This
may be attributed to the higher degree of crystallinity of PCL than HDPE, and better room temperature
mechanical properties. It was for this reason that HDPE/PCL blend in 80:20 ratios was selected for the
preparation of the banana fiber reinforced composite.

Figures 3 and 4 show the improvement of the tensile modulus and tensile strength of the NaOH treated
banana fiber reinforced HDPE/PCL (80:20) blend composite plates. There is an increase of 11% in the
tensile modulus and 15% in the tensile strength at 15% volume fraction of fibers.

Figure 5 offers an interesting result. There is a sharp drop in the percentage elongation between 15 and
20% of PCL addition in the HDPE/PCL blend. This shows that the characteristic of the blend changes
drastically from ductile to brittle in this interval. However, when the banana fibers were introduced into
this blend, the ductile characteristics were improved appreciably, as shown in Figure 6.
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Figure 1: Effect of PCL content on tensile modulus of HDPE/PCL blend

Figure 1. Effect of PCL content on tensile modulus of HDPE/PCL blend.
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Figure 3. Effect of weight fraction of NaOH treated banana fibers on tensile modulus
of HDPE/PCL (80:20) blend.
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Figure 4. Effect of weight fraction of NaOH treated banana fibers on tensile strength of
HDPE/PCL (80:20) blend.

Using the MQRBF method, the dynamic response and natural frequencies of banana fiber reinforced
HDPE/PCL composites are obtained. Parameters of the composite plate are as follows:

EL = 18 GPa, ET = 8 GPa, GLT = 6.6176 GPa, νLT = 0.36.

The subscripts L and T denote the normal and transverse directions of the fiber.

4.1. Case study 1: dynamic response of composites. Figure 7 shows the geometry, coordinate system,
and loading in banana fiber reinforced composites. Neglecting the transverse shear and rotary inertia, the
equation describing the banana fiber reinforced composites is expressed in nondimensional form as:(

wxxxx + 2R2ηwxxyy + R4ψwyyyy
)
+wt t + cvwt − Q(x, y, t)= 0, (7)
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Figure 5: Effect of PCL content on Elongation at break% of HDPE/PCL blend

Figure 5. Effect of PCL content on elongation at break of HDPE/PCL blend.
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Figure 6. Effect of weight fraction of NaOH treated banana fibers on elongation at break
of HDPE/PCL blend.

where the subscript denotes the partial derivative with respect to the variables. The nondimensional
quantities are defined by

w = w∗/h, Q = qa4/(D11h),

x = x∗/a, Cν = (C∗

ν /M)
√
(ρa4h)/D11,

y = y∗/b, M = ρabh,

R = a/b, η = (D12 + 2D66)/D11,

t = t∗

√
D11/(ρa4h), ψ = D22/D11.

                                                                       a               q 

         x*

                                                                                                                    y*   z*

                              b 

                        h 

Figure 7. Geometry of the Rectangular plate

Figure 7. Geometry of the rectangular plate.
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Figure 8. Damped response of a simple supported banana fiber reinforced square or-
thotropic plate for Cv = 1.25.

Boundary conditions for the plate simply supported at all four edges are:

x = 0, 1, w = 0,

x = 0, 1, wxx = 0, (8a)

y = 0, 1, w = 0,

y = 0, 1, wxx = 0.

Boundary conditions for the clamped edge plate are:

x = 0, 1, w = 0,

x = 0, 1, wx = 0, (9a)

y = 0, 1, w = 0,

y = 0, 1, wy = 0.

The governing Equation (7) is solved using the multiquadric radial basis function and boundary con-
ditions, Equations (8) and (9), for simply supported and clamped edge plates respectively, and has
been presented in Appendix A. In this collocation method, the domain is discretized into n × n grid
points. Inside the domain, there are (n − 2)× (n − 2) grid points and the remaining grid points are at
the boundaries. There are eight boundary conditions: four boundary conditions for x and four for y.
The governing equations generate (n − 2)2 equations and every boundary condition creates n equations.
Therefore, the total number of equations becomes (n − 2)2 + 8n. Since the total number of unknown
coefficients is n2, the number of equations is more than the number of unknown coefficients. Hence, this
method creates ill-conditioning. To overcome this ill-conditioning, multiple linear regression analysis
(Appendix B) based on least-square error norms is employed. A computer program based on the finite
difference method (FDM) proposed by Chandrashekhara [2001] is also developed.



DYNAMIC ANALYSIS OF HIGH-DENSITY POLYETHYLENE/POLY (ε-CAPROLACTONE) COMPOSITES 117

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0 1 2 3 4 5 6 7 8 9

Non-dimensional time,t

N
o

n
-d

im
e

n
s
io

n
a

l 
c
e

n
tr

a
l 
d

e
fl
e

c
ti
o

n
,w

10

Cv=1.25

Cv=6

Cv=11

Figure 9: Damped response of a simple supported banana fiber reinforced orthotropic plate for 

aspect ratio, R=1

Figure 9. Damped response of a smiple supported banana fiber reinforced orthotropic
plate for aspect ratio R = 1.

The damped response of the simple supported composite plates obtained by the present method and
finite difference method has been compared and shown in Figure 8 for nondimensional load Q = 100
and nondimensional viscous damping factor Cv = 1.25. There is good agreement within the results.
According to the present method, at an aspect ratio of 1.0 the maximum deflections at Cv = 1.25, 6.0, and
11.0 are 0.2992, 0.298, and 0.2946, respectively. However, the fluctuations in deflection with Cv = 6.0
and 11.0, decay rapidly after the nondimensional time 8.0, as shown in Figure 9. Furthermore, at an
aspect ratio of 2.0 the maximum deflections at Cv = 1.25, 6.0, and 11.0 are 0.0556, 0.0553, and 0.0549,
respectively (Figure 10). As aspect ratio increases from 1.0 to 2.0, nondimensional deflection decreases
as shown in Figures 9 and 10. Figure 11 shows the damped response of the simple supported pure
HDPE/PCL (80:20) blend orthotropic plate for R = 1 and Q = 100. The following features are observed
after analyzing Figures 9 and 11, and Table 4 for the simple supported boundary condition:
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Figure 10. Damped response of a simple supported banana fiber reinforced orthotropic
plate for aspect ratio R = 2.
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Material
Cv = 1.25 Cv = 6.0 Cv = 11.0

Maximum
Deflection

Stability
Time

Maximum
Deflection

Stability
Time

Maximum
Deflection

Stability
Time

Pure
HDPE/PCL
(80:20)
blend

0.9665 Did not
stabilize
after nondi-
mensional
time 10

0.9159 Stabilize
after 5.75

0.8602 Stabilize
after 3.75

Banana
fibers-
reinforced
high density
polyethylene
polycapro-
lactone
composites

0.2992 Did not
stabilize
after nondi-
mensional
time 10

0.298 Stabilize
after 10

0.2946 Stabilize
after 7.25

Table 4. Damped response of a simple supported orthotropic plate.

• When the damping coefficient increases from 1.25–11, nondimensional maximum deflection de-
creases in the banana fiber reinforced composite plate and HDPE/PCL blend orthotropic plate.

• At damping coefficients Cv = 1.25, 6 and 11, nondimensional maximum deflections are 0.2992,
0.298, 0.2946, and 0.9665, 0.9159, 0.8602 in the banana fiber reinforced composite plate and
HDPE/PCL blend orthotropic plate respectively.

• The HDPE/PCL blend orthotropic plate stabilized early compared to the banana fiber reinforced
composite plate.
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Figure 11. Damped response of a simple supported pure HDPE/PCL (80:20) blend or-
thotropic plate for R = 1 and Q = 100.
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Figure 12. Nondimensional stability time at various aspect ratios for a simple supported
banana fiber reinforced orthotropic plate.

It may be noted here that after introducing the banana fibers, the tensile strength of the composite in-
creases. Therefore, the maximum nondimensional deflection decreases in the banana fiber reinforced
composite plate compared to HDPE/PCL blend orthotropic plate.

Amash and Zugenmaier [2000] have reported that by incorporation of cellulose fiber, the damping
properties of a polypropylene/cellulose composite decreases and stiffness improves. Pothan et al. [2003]
reported that in a composite system, damping is affected through the incorporation of fibers. This is
due mainly to shear stress concentrations at the fiber ends in association with the additional viscoelastic
energy dissipation in the matrix material. Another contributing factor could be the elastic nature of the
fiber. When interfacial bonding improves, damping property decreases.
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Figure 13. Nondimensional stability time at various nondimensional viscous damping
ratios for a simple supported banana fiber reinforced orthotropic plate.
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Material
Cv = 1.25 Cv = 6.0 Cv = 11.0

Maximum
Deflection

Stability
Time

Maximum
Deflection

Stability
Time

Maximum
Deflection

Stability
Time

Pure
HDPE/PCL
(80:20) blend

0.2551 Did not
stabilize after
nondimen-
sional time
10

0.2548 Stabilize
after 8

0.254 Stabilize
after 6.75

Banana
fibers-
reinforced
high density
polyethylene
polycaprolac-
tone
composites

0.0908 Did not
stabilize after
nondimen-
sional time
10

0.0904 Stabilize
after 10.5

0.0899 Stabilize
after 10.25

Table 5. Damped response of a clamped edge orthotropic plate.

Figure 12 shows that as the aspect ratio increases, nondimensional stability time decreases. This may
be due to the fact that for a constant load per unit area, the stiffness of the plate increases with an increase
in the aspect ratio.

Figure 13 shows the variation of nondimensional stability time with nondimensional viscous damp-
ing factor for various aspect ratios. It is observed that as the nondimensional viscous damping factor
increases, nondimensional stability time decreases. Furthermore, the effect of Cv on the nondimensional
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Figure 14. Damped response for a clamped edges pure HDPE/PCL (80:20) blend or-
thotropic plate for R = 1 and Q = 100.
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aspect ratio, R=1

Figure 15. Damped response of a clamped supported banana fiber reinforced or-
thotropic plate for aspect ratio, R = 1.

stability time is more pronounced than the effect of the aspect ratio, as seen in Figures 12 and 13. Sim-
ilarly, Figures 14, 15 and Table 5 show the damped responses for the clamped edges pure HDPE/PCL
(80:20) blend and composite orthotropic plates, at R = 1 and Q = 100. The pure HDPE/PCL (80:20)
blend orthotropic plate behaves identically under the clamped edge boundary conditions and the simple
supported boundary conditions, but in the clamped edge boundary conditions the HDPE/PCL blend
orthotropic plate stabilizes more slowly than the simple supported boundary conditions. The maximum
deflections in the clamped edges composite plate are 0.0908, 0.0904, and 0.0899 at Cv = 1.25, 6.0,
and 11.0, respectively, as shown in Figure 15. It should be noted that the deflections in clamped edge
conditions are much less than those in simple supported edge conditions.

4.2. Case study 2: natural frequency of banana fiber reinforced with high-density polyethylene / poly-
caprolactone composites. The equation governing the free vibration of orthotropic plates is:

(D11/D22)wxxxx + 2(H/D22)wxxyy +wyyyy = λ4w(x, y), (10)

where λ4
= ω2ρ0h/D22 and H = (D12 + 2x D66). The natural frequency of the simply supported or-

thotropic plate is obtained by [Ashton and Whitney 1970] as:

ωmn =
π2

R2b2

1
√
ρ

√
D11m4 + 2(D12 + 2D66)m2n2 R2 + D22n4 R4,

where m and n are integers. Different natural frequencies are obtained at different combinations of m
and n. On the other hand, Hearmon [1959] has expressed the natural frequencies of a clamped supported
plate as:

ωmn =
1

a2√ρ

√
D11α

4
1 + 2(D12 + 2D66)α2 R2 +α34 D22 R4,

where α1, α2, and α3 are the coefficients, and their values have been given in Table 6. Substituting
the property values of banana fiber reinforced high-density polyethylene/polycaprolactone composites,
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α1 α3 α2 m n

4.730 4.730 151.3 1 1
4.730 (n + 0.5)π 12.30α3(α3 − 2) 1 2, 3, 4

(m + 0.5)π 4.730 12.30α1(α1 − 2) 2, 3, 4 1
(m + 0.5)π (n + 0.5)π (α1α3(α1 − 2)(α3 − 2)) 2, 3, 4 2, 3, 4

Table 6. Coefficients for natural frequency calculations.

The natural frequencies of free vibration at simple supported and clamped edge boundary conditions
have been evaluated by the present method and by the [Ashton and Whitney 1970] and [Hearmon 1959]
methods. The results are presented in Tables 7 and 8 respectively, which show a good agreement.

5. Conclusions

Preparation of banana fiber reinforced HDPE/PCL composite plates, evaluation of their mechanical prop-
erties, and theoretical dynamic analyses under self-weight of the composite plate have been presented
in this work. The tensile strength and Young’s modulus of the HDPE/PCl blend attain saturation at
approximately 20% by weight of PCL addition. Therefore, the 80:20 blend of HDPE/PCL has been
selected for the matrix materials. It has also been observed that the ductility of the HDPE/PCL blend
drops rapidly by addition of more than 15% by weight of PCL. Reinforcement of banana fibers into the
80:20 HDPE/PCL blend matrix shows improvement in ductility, tensile strength and Young’s modulus.

Furthermore, the MQRBF method is used to analyze the dynamic behavior of the HDPE/PCL blend
orthotropic plate and the banana fiber reinforced HDPE/PCL composite plate due to self-weight. This
method is more advantageous than the finite element and finite difference methods because it does not

a/b Mode m n k† k (Present)

1

1st 1 1 2.6624 2.6731
2nd 1 2 5.7968 5.8102
3rd 1 3 10.8533 10.8624
4th 2 1 7.2355 7.2541

2

1st 1 1 1.4492 1.4498
2nd 1 2 4.4698 4.4735
3rd 1 3 9.4751 9.4902
4th 2 1 2.6624 2.6731

3

1st 1 1 1.2059 1.2261
2nd 1 2 4.2111 4.2109
3rd 1 3 9.2123 9.2345
4th 2 1 1.7749 1.7830

Table 7. The normalized fundamental frequency ω =
kπ2

b2

√
D22
ρ

of a simple supported
banana fiber reinforced orthotropic plate. †[Ashton and Whitney 1970].
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a/b ωmn m n Hearmon k Present k

1

ω11 1 1 46.9840 48.1430
ω12 1 2 84.2114 85.4823
ω13 1 3 142.7529 142.8692
ω21 2 1 105.8893 106.9134
ω22 3 1 194.9038 195.6231
ω14 1 4 221.5417 223.4689

2

ω11 1 1 107.0414 108.0613
ω12 1 2 265.6229 266.8829
ω13 1 3 503.1788 503.6571
ω21 2 1 158.8229 158.9673
ω22 3 1 243.9031 245.0341
ω14 1 4 819.3282 820.5245

3

ω11 1 1 216.5571 217.6572
ω12 1 2 572.9067 572.8692
ω13 1 3 1106.70 1107.48
ω21 2 1 261.9165 261.4561
ω22 3 1 339.6262 341.3216
ω14 1 4 1817.40 1819.51

Table 8. The normalized fundamental frequency ω =
k
a2

√
D22
ρ

of a clamped supported
banana fiber reinforced orthotropic plate.

require generation of a mesh. In this collocation method, the number of equations generated is more than
the number of unknowns. Therefore, multiple regression analysis is used to overcome this incompatibility.
The present results are compared with those obtained by the finite difference method as well as the results
available in the literature. The banana fiber reinforced composite plate shows less deflection due to high
tensile strength but takes more time to stabilize compared to HDPE/PCL blend orthotropic plate. After
the incorporation of fibers, the damping properties of the banana fiber reinforced composite plate decrease
and stiffness increases. The natural frequencies are determined for the self-weight of the composite plate.
This method is found to be effective in the dynamic response studies of the composite plates.

Appendix A: Multiquadric method for governing differential equation

Substitution of the radial basis functions in Equation (9) gives

(
N∑

j=1

w j
∂4

∂x4ϕ j + 2λ2η

N∑
j=1

w j
∂4

∂x2 y2ϕ j +

n∑
j=1

λ4ψw j
∂4

∂y4ϕ j

)
+

N∑
j=1

w j
∂2

∂t2ϕ j − Cvw j
∂

∂t
ϕ j − Q = 0.
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Substitution of the radial basis functions in Equation (10) gives(
D11/D22

N∑
j=1

w j
∂4

∂x4ϕ j + 2H/D22

N∑
j=1

w j
∂4

∂x2 y2ϕ j +

N∑
j=1

w j
∂4

∂y4ϕ j

)
= λ4

N∑
j=1

w jϕ j .

Boundary conditions for simple supported edges:

x = 0, 1
N∑

j=1

w jϕ j = 0, y = 0, 1
N∑

j=1

w jϕ j = 0,

x = 0, 1
N∑

j=1

w j
∂2

∂x2ϕ j = 0, y = 0, 1
N∑

j=1

w j
∂2

∂y2ϕ j = 0.

Boundary conditions for clamped edges:

x = 0, 1
N∑

j=1

w jϕ j = 0, y = 0, 1
N∑

j=1

w jϕ j = 0,

x = 0, 1
N∑

j=1

w j
∂

∂x
ϕ j = 0, y = 0, 1

N∑
j=1

w j
∂

∂y
ϕ j = 0.

Appendix B: Multiple regression analysis

A · a = p, where A is an (l × k) coefficient matrix, a is a (k × 1) vector, and p is a (l × 1) load vector.
Approximating the solution by introducing the error vector e, one gets p = Aa + e, where e is an (l × 1)
vector. To minimize the error norm, function S is defined as S(a)= eT e = (p− Aa)T (p− Aa). The least-
square norm must satisfy (∂S/∂a)a =−2AT p+2AT Aa = 0. This can be expressed as a = (AT A)−1 AT P
or a = B · p. The matrix B is evaluated once and stored for subsequent usages.
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GRADIENT REPRODUCING KERNEL PARTICLE METHOD

ALIREZA HASHEMIAN AND HOSSEIN M. SHODJA

This paper presents an innovative formulation of the RKPM (reproducing kernel particle method) pio-
neered by Liu. A major weakness of the conventional RKPM is in dealing with the derivative boundary
conditions. The EFGM (element free Galerkin method) pioneered by Belytschko shares the same diffi-
culty. The proposed RKPM referred to as GRKPM (gradient RKPM), incorporates the first gradients of
the function in the reproducing equation. Therefore in three-dimensional space GRKPM consists of four
independent types of shape functions. It is due to this feature that the corrected collocation method can
be readily generalized and combined with GRKPM to enforce the EBCs (essential boundary conditions),
involving both the field quantity and its first derivatives simultaneously. By considering several plate
problems it is observed that GRKPM yields solutions of higher accuracy than those obtained using the
conventional approach, while for a desired accuracy the number of particles needed in GRKPM is much
less than in the traditional methodology.

1. Introduction

Boundary value problems (BVPs) often have essential boundary conditions (EBCs) that involve deriva-
tives, for example, in beams and plates, where slopes are commonly enforced at the boundaries. Such
problems are solved numerically using meshless techniques like the reproducing kernel particle method
(RKPM) and the element free Galerkin method (EFGM), pioneered by Liu et al. [1995] and Belytschko
et al. [1994b], respectively. However, both methods require an often awkward auxiliary method for
enforcing the EBCs. Li and Liu [2002] gives a useful review of the previous methodologies.

We summarize the major contributions specifically aimed at remedying the issue of EBCs. The method
of Lagrange multipliers is a classic approach [Belytschko et al. 1994b]. However, it is unattractive
because it increases the number of unknowns, causes a loss of positive definiteness, and leads to an
awkward system of linear equations. Another method is a modified variational principle [Lu et al. 1994]
that interprets the Lagrange multipliers and replaces them by physical quantities. Although it leads
to a banded set of equations, the coefficient matrix is not necessarily positive definite and the results
are less accurate than those obtained by using Lagrange multipliers. The penalty method [Belytschko
et al. 1994a; Zhu and Atluri 1998] is a very simple and effective approach which does not increase the
number of unknowns. However, it does not satisfy the EBCs exactly, and its accuracy depends on the
penalty factor. Yet another approach couples EFGM and finite element method (FEM) [Krongauz and
Belytschko 1996; Liu et al. 1997] by using FEM for the boundaries and their neighboring domains and
using EFGM elsewhere. This technique dramatically simplifies enforcing the EBCs. However, it loses
the advantage of the meshfree technology near the boundaries. Another idea uses the singular kernel
function to enforce the Kronecker delta property [Lancaster and Salkauskas 1981]. It enforces the EBCs

Keywords: meshfree, RKPM, gradient, mixed boundary conditions, plates.

127



128 ALIREZA HASHEMIAN AND HOSSEIN M. SHODJA

efficiently, but it works only when the dilation parameter falls within a limited range. When it is too
large, the convergence rate deteriorates rapidly. Finally, the transformation technique, first proposed by
Chen et al. [1996], can efficiently impose the EBCs for meshless methods. However, it cannot be applied
when the EBCs involve derivatives.

Liu et al. [1996a] took advantage of the Hermite polynomials and proposed the Hermite reproducing
kernel method (HRKM), which incorporates the derivative terms into the reproducing equation. In the
one-dimensional formulation, four admissible forms were presented for selecting the modified kernels
associated with the derivative terms. However, they claimed that the only form that can be generalized to
higher dimensions violates the second order reproducing condition. As a result, it reconstructs the func-
tion less accurately than the standard RKPM. Moreover, the EBCs were enforced by an auxiliary method
which was not stated explicitly. Atluri et al. [1999] extended the conventional moving least squares (MLS)
interpolant, first presented by Lancaster and Salkauskas [1981], to Hermite-type interpolation and called
it generalized MLS (GMLS). For illustration, Atluri et al. [1999] considered a one-dimensional thin
beam and imposed the EBC using the penalty method. Later, Tiago and Leitão [2004] used GMLS to
solve the isotropic Kirchhoff plate. They enforced the EBCs using Lagrange multipliers. Li et al. [2003]
and Lam et al. [2006] employed the Hermite theorem to construct the Hermite–Cloud method based on
the classical RKPM but used a fixed kernel instead of a moving one. They chose the strong form of
governing partial differential equations; that is, they used the point collocation technique to discretize
the governing partial differential equations. Liu et al. [2004] combined a meshfree and a finite element
interpolant by introducing a hybrid fundamental equation that incorporates the concepts of both RKPM
and FEM. In this manner, they generated a class of hybrid interpolation functions that may achieve a
higher order of smoothness in multiple dimensions. They called this technology the reproducing kernel
element method (RKEM) and pointed out that it has a great advantage over the traditional FEM. Li
et al. [2004] proposed that, by extending the RKEM interpolant to a Hermite-type interpolant, one can
obtain higher order Kronecker delta properties suitable for solving BVPs involving higher order partial
differential equations. It should be emphasized that RKEM is a mesh-based technique which requires
element defining and mapping.

In 1999, we were working on a Master’s thesis that studied solving beam-column problems by mesh-
less methods, particularly RKPM. During our work, we found it difficult to enforce the EBCs associated
with the deflection and rotation of beam-columns. As the work progressed, we realized that the usual
transformation method, however efficient, cannot apply to the derivative type of EBCs. We generalized
the transformation technique so that it could accommodate not only the function but also the derivative
type of EBCs. In so doing, we modified the RKPM formulation extensively and successfully linked it
to the generalized transformation technique. We added a gradient term to the reproducing equation, and,
for this reason, we called the new approach the gradient RKPM (GRKPM). The advantage of GRKPM
over RKPM is that, in addition to exactly enforcing the EBCs without resorting to the penalty method
or Lagrange multipliers, it gives more accurate results and converges faster. Moreover, it gives a banded
set of equations with a positive definite matrix [Hashemian 2000].

The one-dimensional formulation of GRKPM of [Hashemian 2000] is not extended straightforwardly
to multiple dimensions. In three dimensions, a major difficulty is in choosing the correction functions to
produce a well-conditioned system. However, once that has been done, the formulation can be reduced
easily back to one or two dimensions. In this work, we present GRKPM in three dimensions, and
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hence one and two as well. Besides affirming its accuracy and good convergence, we establish that
the approach enforces mixed EBCs by reexamining several thin plate problems solved previously by
other methods. Next, we further demonstrate the method’s efficacy by considering more complex and
physically important problems that are poorly solved by the existing meshless techniques (RKPM and
EFGM).

2. Formulating the GRKPM

2.1. Reproducing equation. The starting point for the conventional RKPM is that a given function u(x)
in the three-dimensional space (with coordinates xk) can be expressed by the reproducing formula

u R(x)=

∫
�

φ̄0
a(x; x − y)u( y)d�,

where u R(x) is the reproduced function, a is a dilation parameter, and φ̄0
a(x; x − y) is the modified kernel

function associated with the function. We propose expressing u R(x) as

u R(x)=

∫
�

φ̄0
a(x; x − y)u( y)d�+

3∑
k=1

∫
�

φ̄k
a(x; x − y)u,k( y)d�. (1)

In Equation (1), u,k( y)= ∂u( y)/∂yk and φ̄k
a(x; x − y) for k 6= 0 is the modified kernel function associated

with u,k( y). For k = 0, 1, 2, 3, we define

φ̄k
a(x; x − y)= Ck(x; x − y)φa(x − y),

where φa(x − y) is the kernel function and Ck(x; x − y) are correction functions, which are derived from
a reference function

C(x; x − y)= b0(x)+
3∑

i=1

bi (x)(xi − yi )+
1
2

3∑
i=1

3∑
j=1

bi j (x)(xi − yi )(x j − y j ),

by the relations

C0(x; x − y)= b0(x)+
3∑

i=1

bi (x)(xi − yi ),

Ck(x; x − y)= −
∂C(x; x − y)

∂yk
, k = 1, 2, 3.

(2)

In the reference function, bi and bi j (bi j = b j i ) are unknown coefficients to be determined by the com-
pleteness conditions. It should be noted that C0(x; x − y) is just the part of C(x; x − y) affine in y.
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Using the previous three equations, one obtains

φ̄0
a(x; x − y)=

[
b0(x)+

3∑
i=1

bi (x)(xi − yi )

]
φa(x − y),

φ̄k
a(x; x − y)=

[
bk(x)+

3∑
i=1

bki (x)(xi − yi )

]
φa(x − y), k = 1, 2, 3.

In this result, note that the forms chosen in Equation (2) for the correction functions assure the linear
independence of the modified kernels.

2.2. Completeness. Consider the Taylor’s series of u( y) around point x up to second order:

u( y)∼= u(x)−
3∑

i=1

(xi − yi )u,i (x)+
1
2

3∑
i=1

3∑
j=1

(xi − yi )(x j − y j )u,i j (x),

Upon substituting this into Equation (1), it follows that

u R(x)= u(x)R0(x)−
3∑

m=1

u,m(x)Rm(x)+
1
2

3∑
m=1

3∑
n=1

u,mn(x)Rmn(x)+ Err, (4)

where Err denotes the cumulative truncation error and

R0(x)=

∫
�

φ̄0
a(x − y)d�,

Rm(x)=

∫
�

(xm − ym)φ̄
0
a(x − y)d�−

∫
�

φ̄m
a (x − y)d�, m = 1, 2, 3,

Rmn(x)= Rnm(x)=

∫
�

(xm − ym)(xn − yn)φ̄
0
a(x − y)d�

−

∫
�

(xm − ym)φ̄
n
a (x − y)d�−

∫
�

(xn − yn)φ̄
m
a (x − y)d�, m, n = 1, 2, 3.

In view of Equation (4), the completeness condition on u R(x) leads to 10 independent conditions [Liu
et al. 1996b; Liu et al. 1996a]. Introducing the ijkth moment at the point x with respect to the kernel
function φa(x − y) as

mi jk(x)=

∫
�

(x1 − y1)
i (x2 − y2)

j (x3 − y3)
kφa(x − y)d�, (5)

it follows that

M(x)β(x)= H, (6)
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in which M(x) is

m000 m100 m010 m001 0 0 0 0 0 0
m100 m200 − m000 m110 m101 −m100 −m010 −m001 0 0 0
m010 m110 m020 − m000 m011 0 −m100 0 −m010 −m001 0
m001 m101 m011 m002 − m000 0 0 −m100 0 −m010 −m001
m200 m300 − 2m100 m210 m201 −2m200 −2m110 −2m101 0 0 0
m110 m210 − m010 m120 − m100 m111 −m110 −m020 − m200 −m011 −m110 −m101 0
m101 m201 − m001 m111 m102 − m100 −m101 −m011 −m200 − m002 0 −m110 −m101
m020 m120 m030 − 2m010 m021 0 −2m110 0 −2m020 −2m011 0
m011 m111 − m001 m021 m012 − m010 0 −m101 −m110 −m011 −m020 − m002 −m011
m002 m102 m012 m003 − 2m001 0 0 −2m101 0 −2m011 −2m002


,

the vector containing the unknown coefficients

βT (x)=
[
b0(x) b1(x) b2(x) b3(x) b11(x) b12(x) b13(x) b22(x) b23(x) b33(x)

]
,

and
HT

=
[
1 0 0 0 0 0 0 0 0 0

]
.

The unknown bi and bi j are readily determined by solving Equation (6). We compute the first derivatives
of β(x) by differentiating Equation (6)

M(x)β,m(x)= −M ,m(x)β(x), m = 1, 2, 3,

and compute the second derivatives by differentiating the above, as

M(x)β,mn(x)= −M ,mn(x)β(x)
− M ,m(x)β,n(x)
− M ,n(x)β,m(x), m, n = 1, 2, 3,

in the order shown above.

2.3. Shape functions. To extract the shape functions and their associated derivatives, one must discretize
the integral in Equation (1). In this paper, we use the trapezoidal rule, and the equation becomes

u R(x)=

NP∑
i=1

ψ0
i (x)u

i
+

3∑
k=1

NP∑
i=1

ψk
i (x)u

i
,k, (7)

where NP is the number of particles,1 ui
= u( yi ), ui

,k = ∂u( y)/∂yk | y= yi , and

ψ0
i (x)=

[
b0(x)+

3∑
j=1

b j (x)(x j − yi
j )

]
φa(x − yi )1 yi ,

ψk
i (x)=

[
bk(x)+

3∑
j=1

bk j (x)(x j − yi
j )

]
φa(x − yi )1 yi ,

(8)

1 Smooth particle hydrodynamics (SPH) is a meshfree method which was first proposed by Lucy [1977]. Utilizing this
method, he modeled the collective behavior of a discrete set of physical particles in astrophysics. For this reason, in RKPM
[Liu et al. 1995] and in the present work, the yi are called particles rather than nodes.
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in which ψk
i (x) is the kth shape function for the i th particle evaluated at x, and 1 yi is the area belonging

to the i th particle.
Many authors, for example Donning and Liu [1998] and Liu [2003], have extensively studied various

window functions and their effects. In the present work, we use the cubic spline

φ(z)=



2
3

− 4z2
+ 4z3, 0 ≤ |z| ≤

1
2
,

4
3

− 4z + 4z2
−

4
3

z3,
1
2
< |z| ≤ 1,

0, otherwise,

and construct the three-dimensional window function by multiplying the one-dimensional window func-
tions:

φa(x − y)=

3∏
i=1

1
ai
φ

(
xi − yi

ai

)
,

in which ai is the dilation parameter associated with the xi -direction.
Numerically evaluating the unknowns bi , bi j , and their derivatives requires discretizing the integral

in Equation (5) and subsequently calculating the moment mi jk(x). To satisfy the consistency condition,
the technique used for discretizing the reproducing equation must be used also for the moment equation
[Chen et al. 1996].

The first derivatives of the shape functions are obtained by differentiating Equation (8):

[
ψ0

i (x)
]
,m =

{
[b0(x)],m +

3∑
j=1

[b j (x)],m(x j − yi
j )+ bm(x)

}
φa(x − yi )1 yi

+

{
b0(x)+

3∑
j=1

b j (x)(x j − yi
j )

}[
φa(x − yi )

]
,m1 yi ,

[
ψk

i (x)
]
,m =

{[
bk(x)

]
,m +

3∑
j=1

[bk j (x)],m(x j − yi
j )+ bkm(x)

}
φa(x − yi )1 yi

+

{
bk(x)+

3∑
j=1

bk j (x)(x j − yi
j )

}[
φa(x − yi )

]
,m1 yi , k = 1, 2, 3,
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with i = 1, 2, . . . ,NP and m = 1, 2, 3. Differentiating again leads to the shape functions’ second deriva-
tives:

[
ψ0

i (x)
]
,mn =

{
[b0(x)],mn +

3∑
j=1

[b j (x)],mn(x j − yi
j )+ [bn(x)],m + [bm(x)],n

}
φa(x − yi )1 yi

+

{
[b0(x)],n +

3∑
J=1

[b j (x)],n(x j − yi
j )+ bn(x)

}
[φa(x − yi )],m1 yi

+

{
[b0(x)],m +

3∑
j=1

[b j (x)],m(x j − yi
j )+ bm(x)

}
[φa(x − yi )],n1 yi

+

{
b0(x)+

3∑
j=1

b j (x)(x j − yi
j )

}
[φa(x − yi )],mn1 yi ,

[
ψk

i (x)
]
,mn =

{
[bk(x)],mn +

3∑
j=1

[bk j (x)],mn(x j − yi
j )+ [bkn(x)],m + [bkm(x)],n

}
φa(x − yi )1 yi

+

{
[bk(x)],n +

3∑
j=1

[bk j (x)],n(x j − yi
j )+ bkn(x)

}
[φa(x − yi )],m1 yi

+

{
[bk(x)],m +

3∑
j=1

[bk j (x)],m(x j − yi
j )+ bkm(x)

}
[φa(x − yi )],n1 yi

+

{
bk(x)+

3∑
j=1

bk j (x)(x j − yi
j )

}
[φa(x − yi )],mn1 yi , k = 1, 2, 3,

with i = 1, 2, . . . ,NP and m, n = 1, 2, 3.

3. Presenting the shape functions: departure from the conventional type

The aim of this section is to present the shape functions that follow from the proposed reproducing
equation, and for this purpose we consider two-dimensional shape functions.

In two dimensions, Equation (8) yields three different types of shape functions ψ0
i (x), ψ

1
i (x) and

ψ2
i (x):

ψ0
i (x)=

[
b0(x)+

2∑
j=1

b j (x)(x j − yi
j )

]
φa(x − yi )1 yi ,

ψk
i (x)=

[
bk(x)+

2∑
j=1

bk j (x)(x j − yi
j )

]
φa(x − yi )1 yi , k = 1, 2,
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with i = 1, 2, . . . ,NP. We emphasize that the conventional RKPM has only one shape function ψi (x),
regardless of the dimension of the problem, whereas the present method gives rise to k additional shape
functions, ψk

i (x), for k-dimensional Euclidean space.
Figure 1 shows the shape functions for the conventional RKPM, and Figures 2 and 3 depict the shape

functions corresponding to GRKPM. In these figures, the region [0, 5]
2 contains 11 × 11 uniformly

distributed particles. The dilation parameter is chosen to be twice the particle spacing in each direction.
For illustration, Figures 1–3 display the shape functions associated with certain particles. Specifically
selected are the corners located at (0, 0), (5, 0), (5, 5), and (0, 5); the mid-edge points (2.5, 0), (5, 2.5),
(2.5, 5), and (0, 2.5); and the center (2.5, 2.5). From Figures 1 and 2, the ψ0

i (x) from GRKPM are,
modulo amplitude, the same as the ψi (x) from RKPM. Comparing within Figure 3 reveals that the
ψ2

i (x) are simply the ψ1
i (x) rotated 90◦ counterclockwise about the region’s center. We point out that

ψ1
i (x) and ψ2

i (x) are the shape functions associated with the first derivative of the function in the x1 and
x2-direction.

4. Applying essential boundary conditions

In the meshfree methods (RKPM/EFGM), enforcing EBCs has been a controversial issue among inves-
tigators. The basic shortcoming of the methods is that the shape functions do not possess the Kronecker
delta property. For this reason, enforcing the EBCs is not as convenient as in FEM.

4.1. Statement of the problem. Consider a three-dimensional domain � with the boundary 0 and the
associated BVP

Lu(x)= f (x), x ∈�, (9)

in which L is a linear differential operator. Natural boundary conditions may have arbitrary form, whereas
EBCs may prescribe the field quantity and/or its first derivatives

u,k(x)= gk(x), x ∈ 0k
eb, k = 0, 1, 2, 3, (10)

where 00
eb and 0k

eb are the set of all points x at which u(x) and u,k(x) are prescribed. Thus the essential
boundary is

0eb =

3⋃
k=0

0k
eb.

It is interesting to note that 0i
eb ∩0

j
eb may not be empty for i 6= j . Suppose S is the space of all H (2)

2 (�)

functions that satisfy the boundary conditions (10), and define V to be the space of all H (2)
2 (�) functions

that satisfy the homogeneous EBCs. The spaces S and V may be expressed as

S ≡
{
u | u ∈ H (2)

2 (�), u,k(x)= gk(x) on 0k
eb, k = 0, 1, 2, 3

}
, (11a)

V ≡
{
w | w ∈ H (2)

2 (�),w,k(x)= 0 on 0k
eb, k = 0, 1, 2, 3

}
, (11b)

where H (2)
2 (�) is a Sobolev space. The governing Equation (9) is cast into the weak form∫

�

w(x)[Lu(x)− f (x)]2d�= 0. (12)
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Figure 1. Conventional RKPM shape functions plotted at the corners, mid-edges, and
center of the 11 × 11 uniformly distributed particles with dilation parameter a = 21 y.
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Figure 2. The first type of GRKPM shape functions plotted at the corners, mid-edges,
and center of the 11×11 uniformly distributed particles with dilation parameter a = 21 y.
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Figure 3. The second and third types of GRKPM shape functions plotted at the cor-
ners, mid-edges, and center of the 11 × 11 uniformly distributed particles with dilation
parameter a = 21 y.
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Employing the shape functions developed in Section 2.3, u R(x) and wR(x) may be written as

u R(x)= ψ(x)d, (13a)

wR(x)= ψ(x)c, (13b)

with

ψ(x)=
[
ψ1(x) ψ2(x) · · · ψNP(x)

]
, (14a)

ψ i (x)=
[
ψ0

i (x) ψ1
i (x) ψ

2
i (x) ψ

3
i (x)

]
, (14b)

where ψk
i (x), k = 0, 1, 2, 3 is given by Equation (8). The vector d contains the unknowns associated

with the degrees of freedom (DOF) u and u,k , k = 1, 2, 3. We prefer to represent d as

d =
[
d1

T d2
T

· · · dNP
T ] , (15a)

di
T

=
[
d0

i d1
i d2

i d3
i

]
. (15b)

The unknown vector c pertains to the test function wR(x), which we arrange to have the same structure
as d. In view of Equations (13)–(15), Equation (12) may be written as

cT r = 0, (16)

where

r = K d − f , K =

∫
�

ψT (x)Lψ(x)d�, f =

∫
�

ψT (x) f (x)d�.

The matrix K depends on the operator L . In the next section, we show that the set problem (16) can be
rigorously solved for d by extending the corrected collocation method.

4.2. Extending the corrected collocation method to GRKPM. In collocation methods, the EBCs are
enforced exactly at the boundary particles. A number of collocation methods have been developed. The
traditional collocation methods, including direct [Lu et al. 1994] and modified [Zhu and Atluri 1998],
lead to some inconsistencies when applied to the conventional RKPM [Wagner and Liu 2000]. These in-
consistencies exist because the conventional RKPM’s shape functions do not possess the Kronecker delta
property. Wagner and Liu [2000] give a remedy. Their work is based on the transformation technique
[Chen et al. 1996] and is limited to enforcing the EBCs for the function itself. Moreover, the conventional
RKPM deals with only one type of shape function. Therefore, in the present situation, where the EBCs
involve the function and/or its first derivatives and there are four types of shape functions, the collocation
given in [Wagner and Liu 2000] is not applicable and must be modified appropriately.

The starting point is to partition each of the vectors d, c, and r into two subvectors

r =

[
reb

r∼eb

]
, c =

[
ceb

c∼eb

]
, d =

[
deb

d∼eb

]
. (17)

The subscript eb labels the neb parameters that pertain to the EBCs of Equation (10), whereas ∼ eb labels
the remaining n∼eb parameters. (Hence neb + n∼eb counts the total DOF of the system.) Note that each
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particle is allowed to have four DOF in u and u,k, k = 1, 2, 3. Once the shape function ψ(x) in Equation
(14a) and its first derivatives are evaluated for the i th particle xi , we may define the matrix

ψ̂
T
(xi )=

[
ψT (xi ) ψT

,1(xi ) ψT
,2(xi ) ψT

,3(xi )
]
.

The square matrix containing the shape functions and their derivatives for a system with NP particles
may written as

9̂
T

=

[
ψ̂

T
(x1) ψ̂

T
(x2) · · · ψ̂

T
(xNP)

]
. (18)

Defining
ûT
(xi )=

[
u(xi ) u,1(xi ) u,2(xi ) u,3(xi )

]
,

we replace Equation (13a) by
û(xi )= ψ̂(xi )d,

and, with the aid of Equation (18), we have

Û = 9̂d, (19)

where
Û

T
=

[
ûT
(x1) ûT

(x2) · · · ûT
(xNP)

]
.

Next, we define the vector

Ŵ
T

=

[
ŵ

T
(x1) ŵ

T
(x2) · · · ŵ

T
(xNP)

]
,

where
ŵ

T
(xi )=

[
w(xi ) w,1(xi ) w,2(xi ) w,3(xi )

]
,

so that, from Equation (18), we have
Ŵ = 9̂c. (20)

Repeating for the vectors Ŵ and c the partition scheme in Equation (17), Equation (20) takes the form[
Ŵ eb

Ŵ∼eb

]
=

[
Ê F̂
Ĝ Ĥ

][
ceb

c∼eb

]
. (21)

This, in conjunction with Equation (11b), implies that Ŵ eb = 0 and Ŵ∼eb is arbitrary, hence[
Ê F̂

] [ ceb

c∼eb

]
= 0,

and c∼eb is arbitrary.
Let

T =

[
Ê F̂
0 I

]
, and c̄ = T c,

then

c̄eb = 0, (22a)

c̄∼eb = c∼eb = Arbitrary. (22b)
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Likewise, letting d̄ = T d, then, in view of Equation (19),

d̄eb = Ûeb, d̄∼eb = d∼eb, (23)

which relates the elements of d̄eb to the prescribed function gk(x), as defined in Equation (10). Following
the procedure given by Wagner and Liu [2000],

[
c̄T

eb c̄T
∼eb

] ([ K̄ eb,eb K̄ eb,∼eb

K̄∼eb,eb K̄∼eb,∼eb

] [
d̄eb

d̄∼eb

]
−

[
f̄ eb

f̄ ∼eb

])
= 0,

where

K̄ = (T−1)T K T−1, f̄ = (T−1)T f ,

and, using Equation (22) and Equation (23), we have

K̄∼eb,∼eb d∼eb = f̄ ∼eb − K̄∼eb,ebÛeb.

This equation can be readily solved for d∼eb.

5. Kirchhoff plate

Consider a symmetric laminated composite plate on an elastic foundation of varying stiffness k f (x1, x2),
as shown in Figure 4. The boundary conditions and the transverse applied loading q(x1, x2) are arbitrary.
The plate is also subjected to edge forces Ni j , i, j = 1, 2. According to the classical plate theory known
as Kirchhoff theory, the governing partial differential equation associated with the deflection u3 becomes
[Reddy 1984]

(−N11u3,1 + N12u3,2),1 + (−N22u3,2 + N12u3,1),2 + M11,11 + M22,22 + 2M12,12 + k f u3 = q, (24)

Figure 4. Schematic of a rectangular laminated composite plate with arbitrary loading
and boundary conditions.
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and the admissible boundary conditions for the present experiments consist of

on x1 = 0, l1 :

{
either − N11u3,1 + N12u3,2 + M11,1 + 2M12,2 = 0 or u3 specified,

either M11 = 0 or u3,1 specified,

on x2 = 0, l2 :

{
either − N22u3,2 + N12u3,1 + M22,2 + 2M12,1 = 0 or u3 specified,

either M22 = 0 or u3,2 specified,

at the corners: either M12 = 0 or u3 specified.

(25)

In relations (24) and (25), M11

M22

M12

=

D11 D12 0
D12 D22 0
0 0 D66

 u3,11

u3,22

2u3,12

 , (26)

where the Di j are called the bending stiffnesses; see [Reddy 1997] for details. For a single isotropic
layer with Young’s modulus E and Poisson ratio ν, the Di j become

D11 = D22 = D, D12 = νD, D66 =
1 − ν

2
D, (27)

in which D = Eh3/(12 − 12ν2) is called the flexural rigidity of the plate.
The discretized weak form of Equation (24), employing the shape functions for two-dimensional space,

ψ(x1, x2), yields

cT r = 0,

r = K d − f ,

K =

∫ l2

0

∫ l1

0
dx1 dx2

[
N11ψ

T
,1ψ ,1 + N22ψ

T
,2ψ ,2 + N12(ψ

T
,1ψ ,2 +ψT

,2ψ ,1)

+ D11ψ
T
,11ψ ,11 + D22ψ

T
,22ψ ,22 + 4D66ψ

T
,12ψ ,12

+D12
(
ψT
,22ψ ,11 +ψT

,11ψ ,22
)
+ k fψ

Tψ
]
,

f =

∫ l2

0

∫ l1

0
qψT dx1dx2.

(28)

For studying the stability of the plate, we put f = 0. This and Equation (28) give

cT (K L
− λK G)d = 0, (29)
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(a) (b)

(c)

Figure 5. Midplane of an isotropic plate subjected to (a) uniaxial compression, (b) bi-
axial compression, and (c) uniform shear.

where

K L
=

∫ l2

0

∫ l1

0
dx1 dx2

[
D11ψ

T
,11ψ ,11 + D22ψ

T
,22ψ ,22 + 4D66ψ

T
,12ψ ,12

+ D12
(
ψT
,22ψ ,11 +ψT

,11ψ ,22
)
+ k fψ

Tψ
]
,

K G
=

∫ l2

0

∫ l1

0
dx1 dx2

[
N̂11ψ

T
,1ψ ,1 + N̂22ψ

T
,2ψ ,2 + N̂12(ψ

T
,1ψ ,2 +ψT

,2ψ ,1)
]
,

λ= −
N11

N̂11
= −

N22

N̂22
= −

N12

N̂12
.

(30)

Equation (29) is an eigenvalue problem, in which λ is the eigenvalue corresponding to the critical load
and d is the eigenvector associated with the DOF. The eigenvector is normalized to have Euclidean length
one. Therefore, the displacement obtained from Equation (13a) is dimensionless.

Standard Gaussian quadratures carry out the numerical integrations in Equations (28) and (30). For
this, a background mesh is needed, and we set the nodes of the background mesh to coincide with the
meshless particles and compute a 4 × 4 quadrature in each cell.

6. Numerical experiments

In this section, we demonstrate the applicability and efficacy of the proposed method in treating various
boundary conditions encountered in plate problems. We compare the accuracy of the results with analyt-
ical solutions, whenever they are available. We investigate the method’s advantages over conventional
meshfree methods by considering several examples.
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6.1. GRKPM versus RKPM. Consider a clamped square plate with elastic modulus and Poisson ratio
of E = 2×109 N/m2 and ν = 0.3. For each of the loading conditions in Figure 5, we solve for the critical
load and the corresponding mode shape.

The expression for the critical load is

Ni j = λ
π2 D

l2 , i, j = 1, 2,

in which the analytical values for λ [Timoshenko and Gere 1961] are

λAnal. =


10.07, Uniform uniaxial compression,

5.30, Uniform biaxial compression,

14.71, Uniform shear.

(31)

For numerical calculations, we set the plate dimensions to l = 5 m and h = 0.05 m, distribute the
particles distributed uniformly in the x1 and x2-directions, and employ the linear correction function. We
set the dilation parameter in the x1 and x2-directions to 1.8 times the corresponding interparticle distance
1yi .

Each loading condition in Figure 5 leads to an eigenvalue problem, with analytical solutions given
in Equation (31). Numerically, we solve each by RKPM combined with the penalty method, and also
by our GRKPM. For RKPM, Table 1 displays the required CPU time and the percent error for selected
numbers of particles; Table 2 does the same for GRKPM.

The GRKPM gives fair accuracy in all cases, even for relatively small numbers of particles. In the
very worst case — in shear loading with a 5 × 5 distribution of particles — the error is only 5.8%. In
comparison, the best result (in biaxial loading) for conventional RKPM has 22.5% error, and that was
for a considerably larger 16 × 16 number of particles. In that case, the GRKPM already gives an error of
0.0% (to two-digit accuracy) with the smallest 5 × 5 number of particles. The GRKPM does cost more in
CPU time for a fixed number of particles, but, because it achieves better accuracy using smaller number
of particles, the GRKPM significantly outperforms RKPM at fixed CPU time.

We have computed the critical mode shapes using our method with an 8 × 8 distribution of particles;
these are shown in Figure 6. Note that the symmetric loading conditions shown in Figure 5a and b allow
us to consider only one-quarter of the plate. For the unsymmetric loading conditions of Figure 5c, the
entire plate must be modeled.

Particles 11 × 11 13 × 13 14 × 14 16 × 16

Loading λAnal. Time Error Time Error Time Error Time Error
(s) (%) (s) (%) (s) (%) (s) (%)

Figure 5a 10.07 2.3 34.5 3.5 28.8 4.5 26.7 7.6 23.4
Figure 5b 5.30 2.3 33.0 3.6 27.5 4.5 25.7 7.8 22.5
Figure 5c 14.71 2.6 39.0 3.8 31.3 4.8 28.7 7.8 24.7

Table 1. CPU time and percent error of the buckling parameters using RKPM, with a = 1.81 y.
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Particles 5 × 5 6 × 6 7 × 7 8 × 8

Loading λAnal. Time Error Time Error Time Error Time Error
(s) (%) (s) (%) (s) (%) (s) (%)

Figure 5a 10.07 2.4 0.2 3.4 0.1 4.8 0.1 7.2 0.0
Figure 5b 5.30 2.4 0.0 3.4 0.0 4.9 0.0 7.3 0.0
Figure 5c 14.71 2.4 5.8 3.3 1.6 4.8 1.3 7.1 1.1

Table 2. CPU time and percent error of the buckling parameters using GRKPM, with
a = 1.81 y.

6.2. GRKPM and effects of the dilation parameter. Zhao et al.[2003; 2004] and Liew et al. 2005 have
investigated how the dilation parameter and particle distribution influence the convergence of meshless
approaches such as RKPM; these studies have proved useful. This section performs such studies for
GRKPM. To this end, we consider the clamped square plate defined in the previous section. The problem
is solved with uniform distributions of particles and various values for the ratio of the dilation parameter
to the interparticle distance, ai/1yi = 1.75, 2.00, 2.25, 2.5. For uniaxial and biaxial compression, only
one quarter of the plate is modeled, due to symmetry, and the region of the plate is [0, 2.5]

2. The number
of particles along each edge varies from 5 × 5 to 9 × 9. Figure 7 shows how the buckling factor λ varies
with the number of particles along each edge for uniaxial and biaxial cases. This figure show monotonic
convergence and remarkably accurate results for all the dilation parameters. The most accurate outcomes
obtain when ai/1yi = 1.75. For larger dilation parameters, the results are less accurate, but the accuracy
quickly approaches that of smaller parameters as the number of particles increases.
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Figure 6. Critical buckling mode shapes of the isotropic square plate of Figure 5a, b,
and, at right, from the uniform shear of the clamped square isotropic plate. At left, the
plate is under uniaxial/biaxial compression; at right it is under uniform shear. See
Figure 5.
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Figure 7. Convergence of the buckling parameter λ with increasing number of particles
along each edge and for various dilation parameters. At left, the clamped square plate is
under uniaxial compression; at right, it is under biaxial compression. See Section 6.1.

For the uniform shear test, we model the entire plate, and the region of analysis is [0, 5]
2. We consider

various uniform distributions of paricles ranging from 6 × 6 to 10 × 10. (The number of particles varies
from 36 to 100.) Figure 8 displays how the buckling factor λ varies with the number of particles along
each edge. The results converge monotonically and, for any distribution of particles, are always closest
when ai/1yi = 1.75. Because we reached the same conclusion before in uniform uniaxial and biaxial
compression tests, we adopt the value ai/1yi = 1.75 for further experiments.
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Figure 8. Convergence of the buckling parameter λ with increasing number of particles
along each edge and for various dilation parameters. The clamped square plate is under
uniform shear. See Section 6.1.
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6.3. GRKPM versus EFGM. Consider a thin rectangular plate of thickness h and dimensions l1 and l2

in x1 and x2. To compare the performance of EFGM and GRKPM, we compute the critical buckling
load for various aspect ratios l1/ l2 and different types of boundary conditions by both methods. The
edge load is applied in the x1-direction, as shown in Figure 5a. In the numerical calculations, we use
l2 = 10 m and h = 0.06 m and assume the plate to be isotropic with E = 2.45 × 106 N/m2 and ν = 0.23.
The buckling load N and the buckling factor λ are related as

N = λ
π2 D

l2
2
.

Table 3 tabulates the analytical [Timoshenko and Gere 1961] and computed values of λ for simply
supported boundary conditions along all the edges and for different aspect ratios l1/ l2. The numerical
calculations used a 13 × 13 uniform distribution of particles. The results of EFGM in conjunction with
the penalty method are cited from [Liu 2003]. There, Liu [2003] notes that the optimal dilation parameter
is somewhere between 3.5 to 3.9 times the interparticle distance. Accordingly, for each l1/ l2, the dilation
parameter is tuned within this rather tight range [Liu 2003]. Moreover, this particular EFGM uses the
second-order base function instead of the first. In contrast, the GRKPM here employs the first-order base
function. Moreover, for each l1/ l2, we examine two rather different dilation parameters, ai = 1.721yi

and ai = 3.51yi . Even though these dilation parameters differ by more than a factor of two, the results
in either case are much better than those given by the EFGM with restricted dilation parameters. We
conclude that the GRKPM is somewhat indifferent to the dilation parameter.

Method Analytical EFGM GRKPM

ai/1yi − 3.5–3.9 1.72 3.5

I1/I2 λ Percent error

0.20 27.00 0.33 0.15 0.15
0.30 13.20 0.15 0.00 0.00
0.40 8.41 0.12 0.00 0.00
0.50 6.25 0.00 0.00 −0.16
0.60 5.14 −0.19 0.00 0.00
0.70 4.53 0.00 0.00 0.00
0.80 4.20 0.00 0.00 0.00
0.90 4.04 0.00 0.00 0.00
1.00 4.00 1.00 0.00 0.00
1.10 4.04 0.25 0.00 0.00
1.20 4.13 0.00 0.00 0.00
1.30 4.28 0.00 0.00 0.00
1.40 4.47 0.22 0.00 −0.45

Table 3. Buckling factor for the simply supported rectangular plate.
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Method Analytical EFGM GRKPM

ai/1yi − 3.5–3.9 1.72 3.5

I1/I2 λ Percent error

0.4 9.44 0.42 0.00 0.00
0.5 7.69 0.39 0.00 0.00
0.6 7.05 0.85 0.00 0.00
0.7 7.00 0.71 −0.14 0.00
0.8 7.29 1.23 0.14 0.14
0.9 7.83 1.66 0.26 0.26
1.0 7.69 1.04 0.00 0.00

Table 4. Buckling factor for the rectangular plate with simply supported, and clamped edges.

Table 4 displays the analytical [Timoshenko and Gere 1961] and computed values of λ when the
edges x1 = 0, l1 are simply supported and the edges x2 = 0, l2 are fixed. All the other conditions and
parameters are kept from the previous case. Again, for a given particle distribution, GRKPM allows
more flexibility in choosing the dilation parameter and yields more accurate results. As before, EFGM
uses the second-order base function, while the GRKPM uses first-order base function.

6.4. GRKPM and various types of boundary conditions. Figure 9 shows a schematic of a cross-ply
laminate (90/0/90). The mark × locates the origin of the Cartesian coordinate system. The edges x2 = 0, l
are assumed to be simply supported and under a uniform compressive load along the x2-direction. For
the other two edges, x1 = 0, l, we consider various combinations of free, simply supported, and clamped
boundary conditions, denoted respectively by F, S, and C. We put l = 5 m and the thickness of each
lamina to 0.05 m. We assume that each lamina is made of carbon-epoxy with the material properties
E1 = 40E2, G12 = 0.6E2 and ν12 = 0.25.

Figure 9. Square cross-ply laminate (90/0/90) subjected to uniform compressive load
along the x2 axis.
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Levy GRKPM

BC λ Particles λ % Err. Particles λ % Err.

FF 31.76 5 × 5 31.41 −1.10 9 × 9 31.66 −0.33
FS 32.34 9 × 5 31.85 −1.49 17 × 9 32.22 −0.37
FC 32.81 9 × 5 32.18 −1.92 17 × 9 32.65 −0.48
SS 36.16 5 × 5 35.97 −0.52 9 × 9 36.12 −0.11
SC 39.43 9 × 5 39.36 −0.17 17 × 9 39.41 −0.05
CC 45.06 5 × 5 44.78 −0.63 9 × 9 45.02 −0.10

Table 5. Buckling factor for the cross-ply (90/0/90) square plate with mixed boundary conditions.

For this problem, the buckling load N and the buckling factor λ are related as

N = λ
l2

E2h3 . (32)

The Levy method [Reddy 1997] is used to calculate the analytical values of λ. In our GRKPM, we find λ
using a uniform distribution of particles and a dilation parameter of 1.75 times the interparticle distance.
For SS, CC, and FF boundary conditions, we model only one quarter of the plate, whereas, for FS, FC,
and SC conditions, we model half the plate. Table 5 compares the results with the analytical solutions.
The BVPs associated with FF, SS and CC boundary conditions are solved for 5 × 5 and 9 × 9 particles,
whereas, for the cases FS, FC and SC, we use 9 × 5 and 17 × 9 particles. Table 5 shows that the GRKPM
yields satisfactory results even with the smallest number of particles. The maximum error obtains with
the FC boundary conditions; the error is −1.92% for 9 × 5 particles and −0.48% for 17 × 9 particles.
The SC boundary conditions, on the other hand, minimize the error; it is −0.17% for 9 × 5 and −0.05%
for 17 × 9 particles. Table 5 shows clearly that the results improve as the number of particles increases.

6.5. Symmetric laminated composite plate under the most general conditions via GRKPM. To imple-
ment the proposed approach, we have developed a powerful program we call ALCP-GRKPM (analysis
of laminated composite plates via GRKPM) for analyzing symmetric laminated composite plates with
arbitrary loading and boundary conditions. For example, consider the laminated composite (70/− 20)S

shown in Figure 10, in which the thicknesses of the layers are (0.02 m/0.03 m)S . Each lamina is made of
carbon-epoxy (AS4/3501-6) with E1 = 148 GPa, E2 = 10.5 GPa, G12 = G13 = 5.61 GPa, G23 = 3.17 GPa,
ν12 = ν13 = 0.3 and ν23 = 0.59. The edge x2 = 0 is free and the remaining edges are clamped. A roller
type support is placed in the middle of the plate, and part of the plate is placed on elastic foundation. We
solve this set problem for two different cases: (1) uniform spring constant and distributed load; and (2)
variable spring constant and distributed load. For both cases, a concentrated load of P = 50 kN is applied
at the location marked � in Figure 10. In this computation, we intend to find the location and value of
the maximum deflection. We use 9 × 5, 17 × 9, 33 × 17, and 65 × 33 uniformly distributed particles. We
set the dilation parameter equal to 1.75 times the interparticle distance.

Case 1: Uniform spring constant and uniformly distributed load. In this case the spring constant and
distributed load are k f = 105 kN/m3 and q = 80 kN/m2. For reference, we analyze the problem by
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Figure 10. An example of a rectangular symmetric laminate (70/− 20)s under a set of
complex loadings and boundary conditions.

Method Particles (u3)max (cm) x1 (m) x2 (m)

GRKPM

9 × 5 −2.002 5.6250 0.000
17 × 9 −2.003 5.6250 0.000
33 × 17 −2.005 5.6250 0.000
65 × 33 −2.006 5.6250 0.000

ANSYS 65 × 33 −2.072 5.6250 0.000

Table 6. Location and value of the maximum deflection for the plate shown in Figure 10
with a uniform elastic constant and a uniformly distributed load.
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Figure 11. ALCP-GRKPM result for the deflection corresponding to the example
shown in Figure 10 with uniform elastic constant and a uniformly distributed load.

ANSYS using 65 × 33 uniformly spaced nodes. In employing ANSYS, we use the 8-node ‘Shell 99’
element. Appendix A gives its interpolation functions, assumptions, and restrictions. At each node, the
element has three displacement and three rotational DOF. Because of this, the DOF per node in ANSYS
is twice the DOF per particle GRKPM. Table 6 shows the maximum deflection of the plate and where
it occurs. GRKPM with 45 particles already gives a satisfactory result, and making more particles only
affects the third decimal digit in the maximum deflection. The small discrepancy between the results of
ANSYS and GRKPM for the maximum deflection arises because ANSYS applies the first-order shear
deformation laminated plate theory (FSDT) [Reddy 1997] which considers shear deflections, whereas
we use the classical plate theory which disregards these deflections. To suppress the shear deflections
in FSDT, the lateral shear moduli G13 and G23 should be assigned significantly larger than G12. Ansys
[1997] recommends taking G13 = G23 = 1000G12. By doing so, the computed maximum deflection
equals 2.006, which agrees with the GRKPM result to within three decimal places. The deflection,
u3(x1, x2), is computed by GRKPM with 65 × 33 particles, and its variation is shown in Figure 11.

Case 2: Variable spring constant and variably distributed load. The program ALCP-GRKPM can accept
q(x1) and k f (x1, x2) as functions. For example, consider the plate shown in Figure 10 with the spring
constant and distributed load assigned to vary as

k f =
106

x1 + x2
kN/m3, q = 55(x1 − 4)(x1 − 7) kN/m2.

Table 7 gives the corresponding results for 9 × 5, 17 × 9, 33 × 17 and 65 × 33 uniformly distributed
particles. As in the previous example, increasing the number of particles only affects the third decimal
digit in the maximum displacement.

7. Conclusions

We have demonstrated that our method is robust by considering plate boundary value problems. The
results demonstrate that the method succeeds in treating different kinds of EBCs including those with
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Method Particles (u3)max (cm) x1 (m) x2 (m)

GRKPM

9 × 5 −2.363 5.5625 0.000
17 × 9 −2.366 5.6250 0.000
33 × 17 −2.368 5.6250 0.000
65 × 33 −2.370 5.6250 0.000

Table 7. Location and value of the maximum deflection for the plate shown in Figure
10 for variable elastic constant and a variably distributed load.

derivatives of the field function. The examples compute buckling load and analyze deflection under
various types of loading and support, including elastic foundation with variable stiffness as explored in
Section 6.5.

In the example of Section 6.1, comparing the performance of GRKPM and conventional RKPM reveals
that using GRKPM with much smaller numbers of particles leads to results of excellent accuracy. In
Section 6.2, from studying how the number of particles and the dilation parameter affect the performance
of GRKPM, we conclude the GRKPM converges well as the number of particles increases. In Section
6.3, we conclude that for GRKPM the base function of order one suffices for obtaining better accuracy
than from EFGM with the second-order base function. Moreover, for the cross-ply laminate with various
types of EBCs considered in Section 6.4, the GRKPM solution converges rapidly with growing number
of particles.

The presently formulated GRKPM achieves high performance because it expands the degrees of free-
doms to include slopes and because it enforces EBCs by generalizing the corrected collocation method.
Hence, the advantages become more pronounced for plates clamped at the boundaries. Given its so-far
excellent features, GRKPM may hold promise for other problems of engineering science.

Appendix A

‘Shell 99’ is an 8-node quadrilateral element in 3-dimensions with rotational DOF and shear deflection
[Ansys 1997]. It is suitable for laminate composites and can accept up to 100 different layers. This
element is discussed by Yunus et al. [1989]. A planner view of this element is given in Figure 12.

Let define the shape functions for each node as

ψ1 =
(1 − s)(1 − t)(−s − t − 1)

4
, ψ2 =

(1 + s)(1 − t)(s − t − 1)
4

,

ψ3 =
(1 + s)(1 + t)(s + t − 1)

4
, ψ4 =

(1 − s)(1 + t)(−s + t − 1)
4

,

ψ5 =
(1 − s2)(1 − t)

2
, ψ6 =

(1 + s)(1 − t2)

2
,

ψ7 =
(1 − s2)(1 + t)

2
, ψ8 =

(1 − s)(1 − t2)

2
.
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Figure 12. A planner view of the ‘Shell 99’ element used by ANSYS.

Subsequently, the interpolation functions areu1

u2

u3

=

8∑
i=1

ψi

ui
1

ui
2

ui
3

+

8∑
i=1

ψi
r ti
2

âi
1 b̂i

1
âi

2 b̂i
2

âi
3 b̂i

3

[θ i
1
θ i

2

]
, (A.1)

where ui
1, ui

2, and ui
3 are motions of node i , r is the coordinate along the thickness, and ti is the thickness

at node i . â is the unit vector in the s direction and b̂ is the unit vector in the plane of element and normal
to â. θ i

1 and θ i
2 are the rotations of node i about vector â and b̂, respectively. An interesting observation

is made by comparing the interpolation functions (A.1) with those of GRKPM given by Equation (7).
The latter gives four different types of shape functions for the displacements and rotations of each node,
whereas Equation (A.1) gives only one.

There are some assumptions and restrictions for this element:

• Normals to the center plane are assumed to remain straight after deformation, but not necessarily
normal to the center plane.

• Each pair of integration points in the r direction is assumed to have the same material orientation.

• There is no significant stiffness associated with rotation about the element r axis. However, a
nominal value of stiffness is present to prevent free rotation at the node.
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ON THE ELASTIC MODULI AND COMPLIANCES OF TRANSVERSELY
ISOTROPIC AND ORTHOTROPIC MATERIALS

VLADO A. LUBARDA AND MICHELLE C. CHEN

The relationships between the elastic moduli and compliances of transversely isotropic and orthotropic
materials, which correspond to different appealing sets of linearly independent fourth-order base tensors
used to cast the elastic moduli and compliances tensors, are derived by performing explicit inversions
of the involved fourth-order tensors. The deduced sets of elastic constants are related to each other and
to common engineering constants expressed in the Voigt notation with respect to the coordinate axes
aligned along the directions orthogonal to the planes of material symmetry. The results are applied to a
transversely isotropic monocrystalline zinc and an orthotropic human femural bone.

1. Introduction

There has been a significant amount of research devoted to tensorial representation of elastic constants
of anisotropic materials, which are the components of the fourth-order tensors in three-dimensional
geometrical space, or the second-order tensors in six-dimensional stress or strain space. This was par-
ticularly important for the spectral decompositions of the fourth-order stiffness and compliance tensors
and the determination of the corresponding eigenvalues and eigentensors for materials with different
types of elastic anisotropy. The spectral decomposition, for example, allows an additive decomposition
of the elastic strain energy into a sum of six or fewer uncoupled energy modes, which are given by
trace products of the corresponding pairs of stress and strain eigentensors. The representative references
include [Rychlewski 1984; Walpole 1984; Theocaris and Philippidis 1989; Mehrabadi and Cowin 1990;
Sutcliffe 1992; Theocaris and Sokolis 2000]. A study of the fourth-order tensors of elastic constants, and
their equivalent matrix representations, is also important in the analysis of the invariants of the fourth-
order tensors and identification of the invariant combinations of anisotropic elastic constants [Srinivasan
and Nigam 1969; Betten 1987; Zheng 1994; Ting 1987; 2000; Ting and He 2006]. Furthermore, a
study of the representation of the fourth-order tensors with respect to different bases can facilitate tensor
operations and the analytical determination of the inverse tensors [Kunin 1981; 1983; Walpole 1984;
Lubarda and Krajcinovic 1994; Nadeau and Ferrari 1998; Gangi 2000].

The objective of the present paper is to derive the relationships between the elastic moduli and compli-
ances of transversely isotropic and orthotropic materials, which correspond to different appealing sets of
linearly independent fourth-order base tensors used to cast the elastic stiffness and compliance tensors.
In the case of transversely isotropic materials we begin the analysis with a stress-strain relationship
which follows from the representation theorem for transversely isotropic tensor functions of a symmetric
second-order tensor and a unit vector. This leads to the representation of the stiffness tensor in terms of

Keywords: algebra of tensors, elastic constants, human femur, orthotropic materials, transverse isotropy, zinc.
Research support from the Montenegrin Academy of Sciences and Arts is kindly acknowledged.

153



154 VLADO A. LUBARDA AND MICHELLE C. CHEN

6 linearly independent tensors (Ir ) forming a basis of an algebra of fourth-order tensors that are made
of the Kronecker delta and the unit vector. The corresponding elastic moduli are denoted by cr . Since
the multiplication table for Ir tensors is dense with nonzero tensors, and thus operationally less practical,
we introduce a set of new base tensors (Jr ) following the procedure developed by Kunin [1981] and
Walpole [1984]. The corresponding elastic moduli, denoted by c̄r , are related to the original moduli cr .
We then derive the explicit expressions for the elastic compliances tensor with respect to both bases, and
the relationships between the corresponding parameters sr and s̄r and the original moduli cr and c̄r . The
two sets of elastic constants are also expressed in terms of the engineering constants, defined with respect
to the coordinate system in which one of the axes is parallel to the axis of material symmetry.

Extending the analysis to orthotropic materials, three different representations of the elastic moduli
tensor are constructed by using three different sets of 12 linearly independent fourth-order base tensors.
This is achieved on the basis of the representation theorems for orthotropic tensor functions of a sym-
metric second-order tensor and the structural tensors associated with the principal axes of orthotropy
[Spencer 1982; Boehler 1987]. The three sets of different elastic moduli, denoted by cr , c̄rs and ĉrs (nine
of which are independent in each case) are related to each other. The tensor of elastic compliances is
then deduced by explicit inversion of the stiffness tensor expressed with respect to all three sets of base
tensors. The corresponding compliances, denoted by sr , s̄rs , and ŝrs , are related to each other and to the
moduli cr , c̄rs , and ĉrs . The three sets of elastic constants are then expressed in terms of engineering
constants, appearing in the Voigt notation as the entries of 6 × 6 matrices [Voigt 1928], which do not
constitute the components of the second-order tensor [Hearmon 1961; Nye 1964; Cowin and Mehrabadi
1995] and which are thus not amenable to easy tensor manipulations. The results are applied to calculate
the different sets of elastic constants for a transversely isotropic monocrystalline zinc and an orthotropic
human femur.

2. Elastic moduli of transversely isotropic materials

The stress-strain relationship for a linearly elastic transversely isotropic material, based on the represen-
tation theorems for transversely isotropic tensor function of a strain tensor and a unit vector [Spencer
1982], can be written as

σi j = λεkkδi j + 2µεi j +α(nknlεklδi j + ni n jεkk)+ 2(µ0 −µ)(ni nkεk j + n j nkεki )+βni n j nknlεkl . (1)

The rectangular components of the unit vector parallel to the axis of transverse isotropy are ni . The
elastic shear modulus within the plane of isotropy is µ, the other Lamé constant is λ, and the out-of-
plane elastic shear modulus is µ0. The remaining two moduli reflecting different elastic properties in the
plane of isotropy and perpendicular to it are denoted by α and β.

The elastic stiffness tensor 3 corresponding to Equation (1), and defined such that σi j =3i jklεkl , is

3=

6∑
r=1

cr Ir , (2)
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where the fourth-order base tensors Ir are defined by

I1 =
1
2 δ ◦ δ, I2 = δ δ, I3 = p δ, I4 = δ p,

I5 =
1
2 p ◦ δ, I6 = p p.

(3)

The second order tensor p has the components pi j = ni n j . The tensor products between the second-order
tensors p and δ are such that

(p δ)i jkl = pi jδkl, (p ◦ δ)i jkl =
1
2 (pikδ jl + pilδ jk + p jlδik + p jkδil). (4)

In the component form, the fourth-order tensors Ir are

I (1)i jkl =
1
2(δikδ jl + δilδ jk), I (2)i jkl = δi jδkl,

I (3)i jkl = ni n jδkl, I (4)i jkl = δi j nknl,

I (5)i jkl =
1
2(δikn j nl + δiln j nk + δ jlni nk + δ jkni nl), I (6)i jkl = ni n j nknl .

(5)

The material parameters (elastic moduli), appearing in Equation (2), are

c1 = 2µ, c2 = λ, c3 = c4 = α, c5 = 2(µ0 −µ), c6 = β. (6)

The set of linearly independent tensors Ir forms a basis of an algebra (of order 6) of the fourth-rank
tensors made up of the Kronecker delta and the unit vector, symmetric with respect to first and second
pair of indices, but not necessarily with respect to permutation of pairs. All such fourth-rank tensors can
be represented as a linear combination of the base tensors.

Since the multiplication table of the tensors Ir is dense with nonzero tensors (see the upper left corner
of Table 9 in the Appendix), and thus less convenient for tensor operations and the determination of the
inverse tensors, we recast the elastic stiffness tensor (2) in terms of an alternative set of base tensors Jr ,
which is characterized by a simple multiplication table, in which each product is equal to either zero
tensor or to one of the tensors from the basis. Thus,

3=

6∑
r=1

c̄r Jr , (7)

where the modified elastic moduli are

c̄1 = c1 + c2 + 2c3 + 2c5 + c6 = λ+ 4µ0 − 2µ+ 2α+β,

c̄2 = c1 + 2c2 = 2(λ+µ),

c̄3 = c̄4 =
√

2 (c2 + c3)=
√

2 (λ+α),

c̄5 = c1 = 2µ, c̄6 = c1 + c5 = 2µ0,

(8)
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with the inverse relationships

c1 = c̄5, c2 =
1
2 (c̄2 − c̄5), c5 = c̄6 − c̄5,

c3 = c4 =
1

√
2

c̄3 −
1
2 (c̄2 − c̄5),

c6 = c̄1 +
1
2 c̄2 −

√
2 c̄3 +

1
2 c̄5 − 2c̄6.

(9)

The base tensors Jr are defined by Walpole [1984], 1

J1 = p p, J2 =
1
2 q q,

J3 =
1

√
2

p q, J4 =
1

√
2

q p,

J5 =
1
2 (q ◦ q − q q), J6 = p ◦ q.

(10)

The second order tensor q is introduced such that

qi j = δi j − pi j , pi j = ni n j . (11)

When applied to an arbitrary vector v j , the tensors p and q decompose that vector into its components
parallel to ni , pi jv j = (v j n j )ni , and orthogonal to it, qi j n j = vi − pi jv j . It readily follows that

pik pk j = pi j ,

qikqk j = qi j ,

pi j pi j = 1,

qi j qi j = 2,

pi i = 1,

qi i = 2,
pikqk j = 0, qik pk j = 0. (12)

The two types of tensor products between the involved second-order tensors are defined by the type
Equation (4), that is,

(p q)i jkl = pi j qkl, (p ◦ q)i jkl =
1
2 (pikq jl + pilq jk + p jlqik + p jkqil). (13)

It can be easily verified that
p ◦ q = q ◦ p, p ◦ p = 2 p p. (14)

The trace products of the tensors Jr : Js of the type J (r)i jmn J (s)mnkl can be readily evaluated by using
Equation (12), with the results listed in Table 1. The symbol � indicates that the products are in the
order: a tensor from the left column traced with a tensor from the top row.

2.1. Elastic compliances of transversely isotropic materials. To derive the elastic compliances tensor,
it is more convenient to invert the elastic stiffness tensor 3 in its representation (7) than (2). Thus, by
writing

3−1
=

6∑
r=1

s̄r Jr , (15)

and by using Table 1 to expand the trace products appearing in

3 :3−1
=3−1

:3= I1, (16)

1An alternative set of base tensors was used by Kunin[1981; 1983] and Lubarda and Krajcinovic [1994].
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� J1 J2 J3 J4 J5 J6

J1 J1 0 J3 0 0 0

J2 0 J2 0 J4 0 0

J3 0 J3 0 J1 0 0

J4 J4 0 J2 0 0 0

J5 0 0 0 0 J5 0

J6 0 0 0 0 0 J6

Table 1. Table of products Jr : Js .

there follows

s̄1 = c̄2/c̄, s̄2 = c̄1/c̄, s̄3 = s̄4 = −c̄3/c̄, s̄5 = 1/c̄5, s̄6 = 1/c̄6, (17)

where
c̄ = c̄1c̄2 − c̄2

3. (18)

Note that the fourth-order identity tensor I1 can be expressed in terms of the base tensors Jr as

I1 = J1 + J2 + J5 + J6,

which was used in Equation (16).
The elastic compliances tensor can be expressed in the original basis Ir by using the connections

between the two bases, which are

I1 =
1
2 δ ◦ δ = p p + p ◦ q +

1
2 q ◦ q = J1 + J2 + J5 + J6,

I2 = δ δ = (p + q)(p + q)= J1 + 2J2 +
√

2(J3 + J4),

I3 = p δ = p p + p q = J1 +
√

2 J3,

I5 = p ◦ δ = 2p p + p ◦ q = 2J1 + J6,

I4 = δ p = p p + q p = J1 +
√

2 J4,

I6 = p p = J1.
(19)

Their inverse relationships are

J1 = I6, J2 =
1
2 (I2 − I3 − I4 + I6),

J3 =
1

√
2
(I3 − I6), J4 =

1
√

2
(I4 − I6),

J5 =
1
2 (2I1 − I2 + I3 + I4 − 2I5 + I6), J6 = I5 − 2I6.

(20)

The elastic compliance tensor is expressed in terms of the base tensors Ir by substituting (20) into (15).
The result is

3−1
=

6∑
r=1

sr Ir , (21)
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with the corresponding compliances

s1 = s̄5, s2 =
1
2 (s̄2 − s̄5),

s3 = s4 =
1

√
2

s̄3 −
1
2 (s̄2 − s̄5), s5 = s̄6 − s̄5,

s6 = s̄1 +
1
2 s̄2 −

√
2 s̄3 +

1
2 s̄5 − 2s̄6. (22)

The same type of relationships hold between the moduli c̄r and cr appearing in Equation (2) and (7). The
inverse expressions to (22) are

s̄1 = s1 + s2 + 2s3 + 2s5 + s6, s̄2 = s1 + 2s2,

s̄3 = s̄4 =
√

2 (s2 + s3), s̄5 = s1,

s̄6 = s1 + s5. (23)

2.2. Relationships to engineering constants in Voigt notation. The parameters cr are related to com-
monly used engineering moduli Ci j (in Voigt notation, with the axis of isotropy along the x3 direction)
by

c1 = C11 − C12 = 2C66, c2 = C12, c3 = c4 = C13 − C12,

c5 = 2(C55 − C66), c6 = C11 + C33 − 2C13 − 4C55,
(24)

which is in accord with [Boehler 1987]. The (symmetric) elastic moduli Ci j are defined such that

σ11

σ22

σ33

σ23

σ31

σ12


=



C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


·



ε11

ε22

ε33

2ε23

2ε31

2ε12


, (25)

where for transversely isotropic materials: C11 = C22, C23 = C31, C44 = C55, and C66 = (C11 − C12)/2.
The relationships between c̄r and Ci j are deduced from Equation (8) and (24). They are

c̄1 = C33, c̄2 = C11 + C12, c̄3 = c̄4 =
√

2C13, (26)

c̄5 = 2C66, c̄6 = 2C55. (27)

The compliance constants si are related to the engineering compliances Si j by

s1 = S11 − S12 = S66/2, s2 = S12, s3 = s4 = S13 − S12, (28)

s5 = (S55 − S66)/2, s6 = S11 + S33 − 2S13 − S55. (29)
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The compliances Si j are also defined with respect to the coordinate system in which the axis of isotropy
is along the x3 direction, so that, in Voigt notation,



ε11

ε22

ε33

2ε23

2ε31

2ε12


=



S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66


·



σ11

σ22

σ33

σ23

σ31

σ12


, (30)

where S11 = S22, S23 = S31, S44 = S55, and S66 = 2(S11 − S12). The well known connections between Si j

and Ci j are

S11 =
C11 − C2

13/C33

C11 − C12
S, S12 = −

C12 − C2
13/C33

C11 − C12
S,

S13 = −
C13

C33
S, S33 =

C11 + C12

C33
S,

S44 =
1

C44
, S66 =

1
C66

,

S =
1

C11 + C12 − 2C2
13/C33

. (31)

The inverse relationships are obtained by reversing the role of C’s and S’s in Equation (31). The rela-
tionships between s̄r and Si j are obtained by substituting (28) into (23), with the result

s̄1 = S33, s̄2 = S11 + S12, s̄3 = s̄4 =
√

2S13, (32)

s̄5 =
1
2 S66, s̄6 =

1
2 S55. (33)

Let E and E0 be the Young’s moduli in the plane of isotropy and in the direction perpendicular to
it; ν is the Poisson ratio characterizing transverse contraction in the plane of isotropy due to applied
tension in the orthogonal direction within the plane of isotropy; ν0 is the same due to applied tension
perpendicular to the plane of isotropy; µ is the shear modulus in the plane of isotropy, and µ0 in any
plane perpendicular to the plane of isotropy (see [Lekhnitskii 1981]). Then, the elastic compliances Si j

in Equation (30) are

S11 = S22 =
1
E
,

S23 = S31 = −
ν0

E0
,

S33 =
1
E0
,

S44 = S55 =
1
µ0
,

S12 = −
ν

E
,

S66 = 2(S11 − S12)=
1
µ

=
2(1 + ν)

E
.

(34)
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The matrices [Si j ] and [Ci j ] are inverse to each other, although their components are not the components
of the second-order tensors [Hearmon 1961; Nye 1964]. The substitution of (34) into (28) gives

s1 =
1 + ν

E
=

1
2µ
, s2 = −

ν

E
, s3 = s4 =

ν

E
−
ν0

E0
, (35)

s5 =
1
µ0

−
1
µ
, s6 =

1
E

+
1 + 2ν0

E0
−

1
µ0
. (36)

The inverse relations are

E =
1

s1 + s2
, ν = −Es2, µ=

1
2s1

,

E0 =
1

s1 + s2 + 2s3 + s5 + s6
, ν0 = −E0(s2 + s3), µ0 =

1
2s1 + s5

.

(37)

These expressions reveal the relationships between the original moduli appearing in Equation (6) and the
engineering moduli. For example, the Young’s modulus in the plane of isotropy is

E = 4
[

λ+ 4µ0 − 2µ+ 2α+β

(λ+µ)(λ+ 4µ0 − 2µ+ 2α+β)− (λ+α)2
+

1
µ

]−1

. (38)

If α = β = 0 and µ0 = µ this reduces to the isotropic elasticity result E = µ(3λ+ 2µ)/(λ+µ).

2.3. Elastic constants of a monocrystalline zinc. The elastic moduli Ci j of a transversely isotropic
monocrystalline zinc, in units of GPa and with x3 axis as the axis of isotropy, are [Landolt-Börnstein
1979] C11 C12 C13

C21 C22 C23

C31 C32 C33

=

160.28 29.04 47.84
29.04 160.28 47.84
47.84 47.84 60.28

 ,
C44

C55

C66

=

39.53
39.53
65.62

 .
The moduli ci and c̄i follow from Equation (24) and Equation (26) and are listed in Table 2. The moduli
µ, λ, µ0, α, and β, calculated from Equation (6), are listed in Table 3. The elastic compliances Si j (in
units of TPa−1), corresponding to elastic moduli Ci j given above, areS11 S12 S13

S21 S22 S23

S31 S32 S33

=

8.22 0.6 −7
0.6 8.22 −7
−7 −7 27.7

 ,
S44

S55

S66

=

 25.3
25.3

15.24

 .

c1 c2 c3 = c4 c5 c6

131.24 29.04 18.80 −52.18 −33.24

c̄1 c̄2 c̄3 = c̄4 c̄5 c̄6

60.28 189.32 67.66 131.24 79.06

Table 2. Elastic moduli ci and c̄i (in units of GPa).



ELASTIC MODULI AND COMPLIANCES OF TRANSVERSELY ISOTROPIC AND ORTHOTROPIC MATERIALS 161

µ= c1/2 λ= c2 α = c3 µ0 = µ+ c5/2 β = c6

65.62 29.04 18.80 39.53 −33.24

Table 3. Table of elastic moduli µ, λ, µ0, α, and β (in units of GPa).

s1 s2 s3 = s4 s5 s6

7.62 0.6 −7.6 5.03 24.62

s̄1 s̄2 s̄3 = s̄4 s̄5 s̄6

27.7 8.82 −9.9 7.62 12.65

Table 4. Elastic compliances si and s̄i (in units of TPa−1).

The compliance coefficients si and s̄i are readily calculated from Equation (28) and Equation (32), and
are listed in Table 4. Finally, the elastic constants E , E0, µ, µ0, ν, and ν0 are determined from Equation
(37), and are given in Table 5. Since s2 = 0.6> 0 and ν = −s2 E , the Poisson ratio in the (basal) plane
of isotropy is negative (ν = −0.073). This was first noted by Lubarda and Meyers [1999], who also
determined the range of the directions associated with negative values of the Poisson ratio.

3. Elastic moduli of orthotropic materials

Consider an orthotropic elastic material whose principal axes of orthotropy are along the directions a,
b, and c, arbitrarily oriented with respect to the reference coordinate system. From the representation
theorems for orthotropic tensor functions [Spencer 1982], it follows that the components of the stress
tensor σi j can be expressed in terms of the strain components εi j , and the vector components ai and bi ,
as

σ e
i j = (λεkk +α1εa +α2εb)δi j + 2µεi j

+ (α1εkk +β1εa +β3εb)ai a j + (α2εkk +β3εa +β2εb)bi b j

+ 2µ1(ai akεk j + a j akεki )+ 2µ2(bi bkεk j + b j bkεki ). (39)

The longitudinal strains in the directions of two of the principal axes of orthotropy are εa = akalεkl and
εb = bkblεkl . The nine elastic moduli are λ, µ,µ1, µ2, α1, α2, and β1, β2, β3. The elastic stiffness tensor

E E0 µ µ0 ν ν0

121.66 44.11 65.62 49.34 −0.073 0.309

Table 5. Elastic moduli E, E0, µ, µ0 (in units of GPa) and Poisson’s ratios ν and ν0.
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corresponding to Equation (39) is

3=

12∑
r=1

cr Ir , (40)

where the material parameters cr are

c1 = 2µ, c2 = λ, c3 = c4 = α1, c5 = c6 = α2,

c7 = 2µ1, c8 = 2µ2, c9 = β1, c10 = β2, c11 = c12 = β3.
(41)

The fourth-order tensors Ir are defined by

I1 =
1
2 δ ◦ δ, I2 = δ δ,

I3 = A δ, I4 = δA,
I5 = B δ, I6 = δ B,
I7 = A ◦ δ, I8 = B ◦ δ,

I9 = A A, I10 = B B,
I11 = A B, I12 = B A.

(42)

In these expressions the (idempotent) tensors A, B, and C have the components

Ai j = ai a j , Bi j = bi b j , Ci j = ci c j , (43)

which are related by the identity Ai j + Bi j + Ci j = δi j . Two types of tensor products are defined by the
formulas of the following type:

(A B)i jkl = Ai j Bkl,

(A ◦ B)i jkl =
1
2 (Aik B jl + Ail B jk + A jl Bik + A jk Bil). (44)

It can be easily verified that
A ◦ B = B ◦ A, A ◦ A = 2A A. (45)

The symmetric tensors such as A A, and A ◦ B are also idempotent.
The multiplication table for tensors Ir (Table 9 of the Appendix) is dense with nonzero entries, al-

though these are simple multiples of one of the Ir tensors, except for

I7 : I7 = I7 + 2I9, I8 : I8 = I8 + 2I10, (46)

and
I7 : I8 = I8 : I7 = A ◦ B. (47)

The latter can be expressed as a linear combination of Ir tensors, given by the tensor E66 introduced in
the sequel.

The elastic stiffness Equation (40) can be recast in terms of a more convenient set of base tensors Ers ,
such that

3=

3∑
r,s=1

c̄rsErs + c̄44E44 + c̄55E55 + c̄66E66. (48)
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The corresponding moduli are

c̄11 = c1 + c2 + 2c3 + 2c7 + c9 = λ+ 2µ+ 4µ1 + 2α1 +β1,

c̄22 = c1 + c2 + 2c5 + 2c8 + c10 = λ+ 2µ+ 4µ2 + 2α2 +β2,

c̄33 = c1 + c2 = λ+ 2µ,

c̄12 = c̄21 = c2 + c3 + c5 + c11 = λ+α1 +α2 +β3,

c̄23 = c̄32 = c2 + c5 = λ+α2,

c̄31 = c̄13 = c2 + c3 = λ+α1,

c̄44 = c1 + c8 = 2(µ+µ2),

c̄55 = c1 + c7 = 2(µ+µ1),

c̄66 = c1 + c7 + c8 = 2(µ+µ1 +µ2).

(49)

The base Ers are defined by

E11 = A A, E12 = A B, E13 = A C,
E21 = B A, E22 = B B, E23 = B C,
E31 = C A, E32 = C B, E33 = C C,

(50)

and

E44 = B ◦ C, E55 = C ◦ A E66 = A ◦ B. (51)

The ordering of the last three tensors is made to facilitate the later comparison with the classical moduli
given in the Voigt notation.

The trace products of the tensors Ers are specified by the following rules [Walpole 1984]

Epq : Eqr = Epr , (no sum on q),

Epq : Ers = 0, (q 6= r).
(52)

Furthermore, a zero trace product is obtained when any one of E44, E55, and E66 is traced with the other
two or any one of Ers (see Table 10 of the Appendix).

An alternative representation of the elastic stiffness tensor is obtained from the representation theorem
for orthotropic tensor functions, if the stress tensor σ is expressed in terms of the strain tensor ε and the
structural tensors A, B, and C [Boehler 1987]. This is

σ = ĉ1A + ĉ2B + ĉ3C + ĉ4(A · ε+ ε · A)+ ĉ5(B · ε+ ε · B)+ ĉ6(C · ε+ ε · C). (53)

To preserve the linear dependence on strain, the functions ĉr are

ĉr = ĉr1 A : ε+ ĉr2 B : ε+ ĉr3 C : ε, r = 1, 2, 3, (54)

where the parameters ĉrs , ĉ4 = ĉ44, ĉ5 = ĉ55, and ĉ6 = ĉ66 are the material constants. The dot (·) denotes
the inner tensor product, and : is used for the trace product. The elastic stiffness tensor associated with
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Equation (53) and (54) is

3=

3∑
r,s=1

ĉrsErs + ĉ44A ◦ δ+ ĉ55B ◦ δ+ ĉ66C ◦ δ. (55)

3.1. Elastic compliances of orthotropic materials. If the elastic moduli tensor Equation (48) is symbol-
ically written, with respect to the basis of Ers tensors, as

3=


c̄11 c̄12 c̄13

c̄21 c̄22 c̄23

c̄31 c̄32 c̄33

 , c̄44, c̄55, c̄66

 , (56)

then its inverse, the elastic compliances tensor, can be symbolically written as [Walpole 1984]

3−1
=


c̄11 c̄12 c̄13

c̄21 c̄22 c̄23

c̄31 c̄32 c̄33

−1

, c̄ −1
44 , c̄ −1

55 , c̄ −1
66

 . (57)

Thus,

3−1
=

3∑
r,s=1

s̄rsErs + s̄44E44 + s̄55E55 + s̄66E66, (58)

where

s̄11 = (c̄22c̄33 − c̄2
23)/c̄,

s̄23 = s̄32 = (c̄12c̄31 − c̄11c̄23)/c̄,

s̄44 = 1/c̄44,

s̄12 = s̄21 = (c̄31c̄23 − c̄12c̄33)/c̄,

s̄31 = s̄13 = (c̄12c̄23 − c̄31c̄22)/c̄,

s̄55 = 1/c̄55,

s̄22 = (c̄11c̄33 − c̄2
31)/c̄,

s̄33 = (c̄11c̄22 − c̄2
12)/c̄,

s̄66 = 1/c̄66,

(59)

and

c̄ = c̄11c̄22c̄33 + 2c̄12c̄23c̄31 − c̄11c̄2
23 − c̄22c̄2

31 − c̄33c̄2
12. (60)

The results for transversely isotropic materials can be recovered from the above results by taking
c̄22 = c̄11, c̄23 = c̄31, and c̄55 = c̄44 = c̄11 − c̄12.

The compliances tensor can also be derived by the inversion of the elastic moduli tensor expressed
with respect to the set of base tensors used in Equation (55). This gives

3−1
=

3∑
r,s=1

ŝrsErs + ŝ44A ◦ δ+ ŝ55B ◦ δ+ ŝ66C ◦ δ, (61)

with the corresponding compliances

ŝ11 = s̄11 − s̄66 + s̄44 − s̄55,

ŝ12 = s̄12,

ŝ44 =
1
2 (s̄55 + s̄66 − s̄44),

ŝ22 = s̄22 − s̄44 + s̄55 − s̄66,

ŝ23 = s̄23,

ŝ55 =
1
2 (s̄44 + s̄66 − s̄55),

ŝ33 = s̄33 − s̄44 + s̄66 − s̄55,

ŝ31 = s̄31,

ŝ66 =
1
2 (s̄44 + s̄55 − s̄66).

(62)
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3.2. Relationships to engineering constants in Voigt notation. The elastic moduli cr are related to com-
monly used engineering moduli Ci j , appearing in Equation (25), by

c1 = 2(C44+C55−C66),

c5 = c6 = C23−c2,

c9 = C11+C33−2C31−4C55,

c2 = C33−c1,

c7 = 2(C66−C44),

c10 = C22+C33−2C23−4C44,

c3 = c4 = C31−c2,

c8 = 2(C66−C55),

c11 = c12 = c2+C12−C23−C31.

(63)

The relationships between c̄i j and Ci j are

c̄11 = C11,

c̄12 = C12,

c̄44 = 2C44,

c̄22 = C22,

c̄23 = C23,

c̄55 = 2C55,

c̄33 = C33,

c̄31 = C31,

c̄66 = 2C66.

(64)

To derive the relationship between the moduli ĉi j appearing the stiffness representation Equation (55)
and the moduli c̄i j or Ci j , we first note that

C ◦ δ = (δ− A − B) ◦ δ = 2I1 − I7 − I8. (65)

It then readily follows that

ĉ11 = c̄11 − c̄66 + c̄44 − c̄55,

ĉ22 = c̄22 − c̄44 + c̄55 − c̄66,

ĉ33 = c̄33 − c̄44 + c̄66 − c̄55,

ĉ12 = c̄12,

ĉ44 =
1
2 (c̄55 + c̄66 − c̄44),

ĉ31 = c̄31,

ĉ23 = c̄23,

ĉ55 =
1
2 (c̄44 + c̄66 − c̄55),

ĉ66 =
1
2 (c̄44 + c̄55 − c̄66),

(66)

in agreement with the corresponding expressions derived by other means in [Boehler 1987].
The compliance coefficients s̄i j are related to the usual engineering constants of orthotropic materials

(defined with respect to its principal axes of orthotropy a, b, and c) by

s̄11 =
1

Ea
,

s̄22 =
1

Eb
,

s̄44 =
1

2Gbc
,

s̄12 = −
νab

Ea
,

s̄23 = −
νbc

Eb
,

s̄55 =
1

2Gac
,

s̄13 = −
νac

Ea
,

s̄33 =
1
Ec
,

s̄66 =
1

2Gab
.

(67)

The compliances s̄i j are actually equal to Si j , except for the shear compliances which are related by the
coefficient of 2 (that is, S44 = 2s̄44, S55 = 2s̄55, and S66 = 2s̄66).
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To express the elastic compliances tensor in terms of the original base tensors, we first express the
tensors Ir in terms of the tensors Ers . The connections are

I1 = E11 + E22 + E33 + E44 + E55 + E66,

I2 = E11 + E12 + E13 + E21 + E22 + E23 + E31 + E32 + E33,

I3 = E11 + E12 + E13, I4 = E11 + E21 + E31,

I5 = E21 + E22 + E23, I6 = E12 + E22 + E32,

I7 = 2E11 + E55 + E66, I8 = 2E22 + E44 + E66,

I9 = E11, I10 = E22, I11 = E12, I12 = E21,

(68)

with the inverse expressions

E11 = I9, E12 = I11, E13 = I3 − I9 − I11,

E21 = I12, E22 = I10, E23 = I5 − I10 − I12,

E31 = I4 − I9 − I12, E32 = I6 − I10 − I11,

E33 = I2 − I3 − I4 − I5 − I6 + I9 + I10 + I11 + I12,

E44 = I1 − I2 + I3 + I4 + I5 + I6 − I7 − 2I10 − I11 − I12,

E55 = I1 − I2 + I3 + I4 + I5 + I6 − I8 − 2I9 − I11 − I12

E66 = −I1 + I2 − I3 − I4 − I5 − I6 + I7 + I8 + I11 + I12.

(69)

The substitution of Equation (69) into (58) then gives

3−1
=

12∑
r=1

sr Ir . (70)

The corresponding elastic compliances are

s1 = s̄55 + s̄66 − s̄44,

s3 = s4 = s̄13 − s̄33 − s̄44 + s̄55 + s̄66,

s7 = s̄44 − s̄55,

s9 = s̄11 − 2s̄31 + s̄33 − 2s̄66,

s2 = s̄33 + s̄44 − s̄55 − s̄66,

s5 = s6 = s̄23 − s̄33 − s̄44 + s̄55 + s̄66,

s8 = s̄44 − s̄66,

s10 = s̄22 − 2s̄23 + s̄33 − 2s̄55,

s11 = s12 = s̄21 − s̄23 − s̄31 + s̄33 + s̄44 − s̄55 − s̄66. (71)

Since s̄rs are specified in terms of c̄rs by Equation (59), and c̄rs in terms of cr by Equation (49), the
compliances sr in Equation (71) are all expressed in terms of the elastic moduli cr .

The relationships Equation (71) reveal the connections between the original moduli appearing in
Equation (41) and the engineering moduli. The resulting expressions in an explicit form are lengthy, but
their numerical evaluations are simple. For example, the Young’s modulus in the direction of principal
orthotropy a is

Ea =
1

s̄11
=

c̄
c̄22c̄33 − c̄2

23
, (72)
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c1 c2 c3=c4 c5=c6 c7 c8 c9 c10 c11=c12

14.64 12.96 −2.86 −2.26 −3.42 −2.18 2.96 1.48 2.14

Table 6. Elastic moduli ci (in units of GPa).

where c̄i j are given by Equation (49) and c̄ by (60). In the case of transverse isotropy, with the axis of
isotropy parallel to c (c̄22 = c̄11, c̄23 = c̄31, and c̄55 = c̄44 = c̄11 − c̄12), this reduces to Equation (72),
while in the isotropic case (α1 = α2 = β1 = β2 = β3 = 0 and µ1 = µ2 = µ), we recover the result
E = µ(3λ+ 2µ)/(λ+µ).

3.3. Elastic constants of a human femur. Elastic moduli Ci j of a human femural bone, determined by
ultrasound measurement technique, were reported in Ashman and Buskirk (1987) asC11 C12 C13

C21 C22 C23

C31 C32 C33

=

 18 9.98 10.1
9.98 20.2 10.7
10.1 10.7 27.6

 ,
C44

C55

C66

=

6.23
5.61
4.52

 (GPa).

The corresponding moduli c̄i j and ĉi j follow from (64) and (66). In units of GPa, they arec̄11 c̄12 c̄13

c̄21 c̄22 c̄23

c̄31 c̄32 c̄33

=

 18 9.98 10.1
9.98 20.2 10.7
10.1 10.7 27.6

 ,
c̄44

c̄55

c̄66

=

12.46
11.22
9.04

 ,
ĉ11 ĉ12 ĉ13

ĉ21 ĉ22 ĉ23

ĉ31 ĉ32 ĉ33

=

10.2 9.98 10.1
9.98 9.92 10.7
10.1 10.7 12.96

 ,
ĉ44

ĉ55

ĉ66

=

 3.9
5.14
7.32

 .
The moduli ci , calculated from Equation (63), are listed in Table 6.

The elastic compliances Si j (in units of TPa−1), corresponding to elastic moduli Ci j given above, areS11 S12 S13

S21 S22 S23

S31 S32 S33

=

 83.24 −31.45 −18.27
−31.45 74.18 −17.25
−18.27 −17.25 49.60

 ,
S44

S55

S66

=

 160.52
178.26
221.24

 .
The compliances s̄i j and ŝi j follow from (59) and (62). In units of TPa−1, they ares̄11 s̄12 s̄13

s̄21 s̄22 s̄23

s̄31 s̄32 s̄33

=

 83.24 −31.45 −18.27
−31.45 74.18 −17.25
−18.27 −17.25 49.60

 ,
s̄44

s̄55

s̄66

=

 80.26
89.13

110.62

 ,
ŝ11 ŝ12 ŝ13

ŝ21 ŝ22 ŝ23

ŝ31 ŝ32 ŝ33

=

−36.24 −31.45 −18.27
−31.45 −27.57 −17.25
−18.27 −17.25 −9.16

 ,
ŝ44

ŝ55

ŝ66

=

59.74
50.87
29.38

 .
The above results show that for human femur Si j and s̄i j are negative for i 6= j , while ŝi j are nega-
tive for all i , j = 1, 2, 3. The compliance coefficients si , calculated from Equation (71), are listed in
Table 7. The longitudinal and shear moduli and the Poisson ratios, with respect to the principal axes of
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s1 s2 s3=s4 s5=s6 s7 s8 s9 s10 s11=s12

119.49 −69.88 51.61 52.63 −8.87 −30.36 −51.85 −19.97 −65.81

Table 7. Elastic compliances si (in units of TPa−1).

Ea Eb Ec Gab Gbc Gac νab νbc νac

12.01 13.48 20.16 4.52 6.23 5.61 0.378 0.233 0.219

Table 8. Longitudinal and shear moduli (in units of GPa) and the Poisson ratios.

orthotropy, follow from Equation (67) and are given in Table 8. The remaining three Poisson’s ratios
are determined from the well known connections νba = νab Eb/Ea = 0.424, νcb = νbc Ec/Eb = 0.348,
and νca = νac Ec/Ea = 0.368.

4. Conclusion

In this paper we have derived the relationships between the elastic moduli and compliances of transversely
isotropic materials, which correspond to two different sets of linearly independent fourth-order base
tensors used to cast the tensorial representation of the elastic moduli and compliances tensors. The two
sets of elastic constants are related to engineering constants defined with respect to the coordinate system
in which one of the axes is parallel to the axis of material symmetry. Extending the analysis to orthotropic
materials, three different representations of the elastic moduli tensor are constructed by choosing three
appealing sets of twelve linearly independent fourth-order base tensors. This was accomplished on
the basis of the representation theorems for orthotropic tensor functions of a symmetric second-order
tensor and the structural tensors associated with the principal axes of orthotropy. The three sets of the
corresponding elastic moduli are related to each other. The compliances tensor is deduced by an explicit
inversion of the stiffness tensor for all considered sets of the base tensors. The different compliances are
related to each other, and to classical engineering constants expressed in the Voigt notation. The formulas
are applied to calculate the elastic constants for a transversely isotropic monocrystalline zinc and an
orthotropic human femural bone. Apart from the analytical point of view, the derived results may be of
interest for the analysis of anisotropic elastic and inelastic material response (with an elastic component
of strain or stress) in the mechanics of fiber reinforced composite materials [Hyer 1998; Vasiliev and
Morozov 2001], creep mechanics [Drozdov 1998; Betten 2002], damage-elastoplasticity [Lubarda 1994],
mechanics of brittle materials weakened by anisotropic crack distributions [Krajcinovic 1996; Voyiadjis
and Kattan 1999], and biological materials (membranes or tissues) with embedded filament networks
[Evans and Skalak 1980; Fung 1990; Humphrey 2002; Lubarda and Hoger 2002; Asaro and Lubarda
2006].
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� I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

I1 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

I2 I2 3I2 I2 3I4 I2 3I6 2I4 2I6 I4 I6 I6 I4

I3 I3 3I3 I3 3I9 I3 3I11 2I9 2I11 I9 I11 I11 I9

I4 I4 I2 I2 I4 0 I6 2I4 0 I4 0 I6 0

I5 I5 3I5 I5 3I12 I5 3I10 2I12 2I10 I12 I10 I10 I12

I6 I6 I2 0 I4 I2 I6 0 2I6 0 I6 0 I4

I7 I7 2I3 2I3 2I9 0 2I11 I7 + 2I9 A ◦ B 2I9 0 2I11 0

I8 I8 2I5 0 2I12 2I5 2I10 A ◦ B I8 + 2I10 0 2I10 0 2I12

I9 I9 I3 I3 I9 0 I11 2I9 0 I9 0 I11 0

I10 I10 I5 0 I12 I5 I10 0 2I10 0 I10 0 I12

I11 I11 I3 0 I9 I3 I11 0 2I11 0 I11 0 I9

I12 I12 I5 I5 I12 0 I10 2I12 0 I12 0 I10 0

Table 9. Table of products Ir : Is .

� E11 E12 E13 E21 E22 E23 E31 E32 E33 E44 E55 E66

E11 E11 E12 E13 0 0 0 0 0 0 0 0 0

E12 0 0 0 E11 E12 E13 0 0 0 0 0 0

E13 0 0 0 0 0 0 E11 E12 E13 0 0 0

E21 E21 E22 E23 0 0 0 0 0 0 0 0 0

E22 0 0 0 E21 E22 E23 0 0 0 0 0 0

E23 0 0 0 0 0 0 E21 E22 E23 0 0 0

E31 E31 E32 E33 0 0 0 0 0 0 0 0 0

E32 0 0 0 E31 E32 E33 0 0 0 0 0 0

E33 0 0 0 0 0 0 E31 E32 E33 0 0 0

E44 0 0 0 0 0 0 0 0 0 E44 0 0

E55 0 0 0 0 0 0 0 0 0 0 E55 0

E66 0 0 0 0 0 0 0 0 0 0 0 E66

Table 10. Table of products Ers : Epq .
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Appendix: Multiplication tables for tensors Ir and Ers

The trace products Ir : Is are listed in Table 9. The tensors Ir are defined in Equation (42). The symbol
� indicates that the products are in the order: a tensor from the left column traced with a tensor from the
top row. The products Ers : Epq , where the tensors Ers are defined in Equation (50) and (51), are listed
in Table 10.
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EXPERIMENTAL INVESTIGATIONS OF SPONTANEOUS BIMATERIAL
INTERFACIAL FRACTURES

KAIWEN XIA, CARL-ERNST ROUSSEAU AND ARES ROSAKIS

Following our innovative experimental spontaneous fracture models for frictional fractures (compression
and shear) and mixed-mode fractures (tension and shear) in identical materials, we designed a laboratory
model to investigate the effects of material contrast on mixed-mode spontaneous fracture along a bimate-
rial interface. A series of interesting phenomena are observed, including asymmetry of crack propagation,
with different speeds and levels of fracture parameters. Crack tips fracture parameters are observed to
depend on crack speeds, on far-field loading, and on far-field mode-mixity. A strong dependence is
also identified between mode-mixity and crack length. Most importantly, the fracture parameters are
found to exhibit a strong dependence upon crack length and only a weak dependence on crack speed as
is commonly thought. These observations are discussed in details in relation to material contrast. It is
expected that these observations will have a profound influence on engineering practice involving the
application of materials and structures with bimaterial interfaces.

Introduction

Interfacial fracture has long been identified as one of the primary causes of failure in layered materials
and adhesive joints, and has therefore received much scrutiny [Hutchinson and Suo 1992]. Interfacial
fracture spans length scales from submicrons in multiphase nanomaterials to thousands of kilometers in
geological faults. Among various scenarios, two situations can be commonly recognized under dominant
tensile loading conditions [Kitey and Tippur 2005]. First, when an interface is stronger than the weaker
constituent material, cracks tend to kink into the weak material and grow nearly parallel to the interface
[Hutchinson et al. 1987]. Thus, failure is controlled by the properties of the weak material constituent.
The second scenario appears when the interface is the weakest component in the bimaterial system, and
crack initiation and propagation occurs along the interface. In the latter case, which will be elaborated
upon in this paper, the weakness pertinent to such multimaterial systems arises from the inherent disad-
vantage present at interfaces that can be no stronger than the weaker of the two adjacent materials. The
physical nature of such composites is further complicated by a discrepancy in elastic properties that gives
rise to inbuilt mode-mixity in stress states.

Although the resulting cracks can initiate and propagate in either the quasistatic or the dynamic regime,
the latter is more catastrophic and is also more difficult to evaluate experimentally and theoretically.
Consequently, direct measurements of dynamic stress states for bimaterial cracks were initiated only a
decade ago, utilizing optical methods combined with high speed photography. Pioneering experimental

Keywords: spontaneous dynamic fracture, bimaterial interfacial fracture, stress intensity factor, photoelasticity.
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investigation in dynamic bimaterial fracture includes the works of Tippur and Rosakis [1991], Lambros
and Rosakis [1995], and Singh and Shukla [1995].

Modeling of dynamic interfacial fracture, however, started earlier, dating back to the 1967 work by
Goldshte [1967]. This work predicted the possibility of attaining wave speeds in excess of the lower
of the two Rayleigh wave speeds of the material constituents. This was subsequently confirmed by
Lambros and Rosakis [1995], by means of optical measurements. Several new experiments have since
been conducted to further reinforce these findings.

Analytical developments have also emerged to assist in the interpretation of these experimental de-
velopments. Yang et al. [1991] have formulated expressions that describe the crack tip field for steadily
growing interfacial cracks between two different isotropic materials. Through their work, the velocity
dependence of the universal bimaterial oscillatory index was for the first time ascertained. Further,
Deng [1993] performed a steady-state asymptotic analysis for interfacial cracks that resulted in the
establishment of higher-order terms associated with the bimaterial crack tip stress field. Similar re-
sults for nonsteady-state crack growth soon followed. Indeed, Liu et al. [1993] uncovered the requisite
analytical expressions along with the associated higher-order terms. The work was also accompanied by
experimental investigation.

Although the historical context of this problem has focused on material decohesion, the associated
concepts are applicable also to the modeling of earthquakes [Andrews and Ben-Zion 1997; Cochard
and Rice 2000] and to the spontaneous rupture of unbonded but otherwise joined materials in relatively
firm contact. The latter case, also called laboratory earthquakes, is intended to understand earthquakes
resulting from disturbances to natural faults and was explored by Xia et al. [2005b]. Recently, the idea
of spontaneous fracture experiments was extended to the study of coherent interfacial fractures between
identical and dissimilar materials under far-field mixed-mode loading [Rosakis et al. 2006]. As will
be discussed later, there are several advantages to using spontaneous experimental fracture setups over
traditional interfacial experimental designs inherited from standard static fracture experiments such as
three-point bent, compact tension, and wedge driving cracks. Another reason to investigate spontaneous
fractures is that spontaneous fracture is the main dynamic crack failure mode in engineering materials
and engineering structures. The present work expands upon the interfacial fracture under mixed-mode
far-field loading [Rosakis et al. 2006] to establish a comprehensive and more complete understanding of
dynamic interfacial failure in bimaterial systems.

Experimental design of spontaneous interfacial fracture

The bimaterial system consists of two adjoined birefringent materials, Homalite-100 and polycarbonate
(9.5 mm in thickness), that exhibit different elastic and constitutive properties as shown in Table 1. The
wave speeds listed in the table are measured using a 10 MHz ultrasonic sensor, while the remaining
properties are obtained from the literature [Dally and Riley 1991]. The two equally sized plates are
joined to form a complete square specimen with each side measuring 150 mm. Before bonding the two
halves of the specimen, a small groove, 0.15 mm in depth, is machined on the interface of one of the two
half plates through its thickness. A thin metal wire of diameter 0.1 mm is then placed in the groove and
the plates are bonded using an adhesive with elastic properties similar to those of Homalite-100. However,
the adhesive possesses a much lower fracture toughness than either of the base materials, which constrains
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Material Property Homalite-100 Polycarbonate

Young’s Modulus E (MPa) 3860 2480
Poisson’s Ratio ν 0.35 0.38
Stress fringe value fσ (kN/m) 23.6 7.0
P Wave Speed CP (km/s) 2.104 1.724
S Wave Speed CS (km/s) 1.200 0.960
Density ρ (kg/m3) 1230 1192

Table 1. Summary of optical and dynamic mechanical properties of photoelastic materials.

any possible propagating rupture to the interfacial corridor. An average interface thickness of 0.1 mm is
achieved. The static mode-I fracture toughness of the bonding is 0.46 MPa-m1/2 [Rosakis et al. 2006].

Figure 1 describes the configuration used in this study. The explosion box, which constitutes the most
critical aspect of this experiment, provides the electric energy to transform the metal wire into a high
pressure, high temperature plasma within 10µs. The expansion of the plasma results in a controlled
isotropic line loading pulse across the sample thickness [Xia et al. 2005a]. Upon ignition, the exploding
wire creates a small incipient crack that propagates along the interface only because the toughness of the
adhesive is lower than that of either of the constituents of the bimaterial system. If the far-field loading
is large enough, this initial small crack is unstable and propagates dynamically.

The interface is inclined at an angle α to the horizontal direction. Therefore, the nature of the far-field
loading provided through the uniaxial tension in the vertical direction is mixed-mode with respect to
the fracture path (bonding line). Upon sending the ultra high electric voltage (several kilovolts) to the
exploding wire, the explosion box simultaneously provides a low voltage level triggering signal to the
high speed camera. The camera system (Cordin 220) is able to capture the images at a framing rate of 100
million frames per second with exposure times as low as 10 nanoseconds. In this specific study, the high
speed camera is operated at a much slower speed, around 0.2–0.4 million frames per second. A uniquely
designed tensile fixture is used to maintain a static far-field load in the vertical direction, which applies
the load to the sample through two compressed springs by a hydraulic press. The sample is attached on
two sides, top and bottom, to two steel plates, which are fixed to the loading fixture to apply different
levels of tensile loading.

The spontaneous fracture setup has several advantages over traditional dynamic fracture experimental
techniques. First, the flawless sample is loaded statically before the dynamic initiation and propagation of
the fracture. This results in increased accuracy of the foreknowledge of the stress field. This is especially
important for exacting stress intensity factors with the full-field optical diagnostics (photoelasticity in
this study). Second, the load is time independent throughout the duration of the crack propagation. Thus,
theoretically, the dynamic stress intensity factor is related to the equivalent static stress intensity factor
through a universal function of crack speed [Yang et al. 1991; Freund 1990]. Third, the sudden initiation
of the small incipient crack in the center of the specimen enables treatment of the problem, dynamically,
as that of a finite crack extending in an infinite domain before the waves get reflected from the boundaries
of the sample. This technique circumvents edge effects that are generally unavoidable in other designs
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Interface
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Material 1

Material 2

Metal

Wire

Figure 1. Specimen geometry of spontaneous fracture along bimaterial interface with
the triggering mechanism.

of dynamic fracture experiments. Thus, existing exact analytical solutions may be used with confidence.
Finally, the methodology used for initiating the crack provides an easy and reliable way to synchronize
the diagnostic system (optical method combined with high speed photography) with the fracture process
[Xia et al. 2004].

Extraction of stress intensity factor

A. Crack tip stress field at a bimaterial interface. Consider a crack propagating spontaneously and
nonuniformly along a line defining the interface of two homogeneous, isotropic, and linearly elastic solids,
at speeds bounded by the lowest Rayleigh wave speed pertaining to either material. The state of stress
describing the ambient conditions surroundings such a two dimensional crack has been established by Liu
et al. [1993], via asymptotic higher-order analysis. Relations necessary to the immediate and complete
understanding of this experimental effort are reproduced below. Thus, individual stress components are
given by:

σ
(m)
11 = µ<

{
(1 + 2α2

l −α2
s )F

′′

m(zl; t)+ 2αs G
′′

m(zs; t)
}
,

σ
(m)
22 = −µ<

{
(1 +α2

s )F
′′

m(zl; t)+ 2αs G
′′

m(zs; t)
}
,

σ
(m)
12 = −µ=

{
2αl F

′′

m(zl; t)+ (1 +α2
s )G

′′

m(zs; t)
}
.

(1)
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Figure 2. Schematic of dynamic growth of a crack along a bimaterial interface.

Each prime symbol denotes a derivative of the corresponding complex arguments, and R and I are
the real and imaginary parts of the complex argument. The variable µ is the shear modulus of material
1 (see Figure 2).

Designating the longitudinal and shear wave speeds of the material by cl and cs , respectively, and the
instantaneous crack speed by v, one can define the angle of inclination, α, as follows:

α2
l,s(t)= 1 −

v2(t)
c2

l,s
. (2)

Further, a modified coordinate system is introduced such that zl,s = η1 + iαl,sη2, where ηi = (ξi/ε
′) and

i ∈ {1, 2}, with ε′ is a small arbitrary positive number. The complex functions F(zl; t) and G(zs; t) are
defined as follows:
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and
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s
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)
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In the above equations, several new variables are introduced. However, they are all universal to the
field of linear elastic fracture mechanics and their complete definition can be found in [Liu et al. 1993]
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and in [Freund 1990]. Am(z, t) and Bm(z, t) are entire function to be expanded into Taylor series, such
that:

Am(z, t)=

∞∑
n=0

A(n)m (t)zn,

Bm(z, t)=

∞∑
n=0

B(n)m (t)zn.

(5)

In the present work, only the terms for which m = 0 are used in the expansions. In this case, the
dynamic stress intensity factor is readily derived from the complex expression:

A(0)0 (t)= −
1

2
√

2π

K d(t)
(3/2 + iε)(1/2 + iε)

. (6)

Evaluation of the energy release rate follows directly from the stress intensity factor:

G =
K 2

1 + K 2
2

[4 cosh(επ)]2

[{
αl(1 −α2

s )

µD(v)

}
1
+

{
αl(1 −α2

s )

µD(v)

}
2

]
, (7)

where K1 and K2 are the real and imaginary arguments, respectively, of the complex bimaterial stress
intensity factor. Finally, the mode-mixity inherent to all bimaterial systems is derived from the arctangent
of the ratio of the imaginary to the real arguments of the stress intensity factor, or:

ψ = tan−1
(

K2

K1

)
. (8)

B. Extraction of fracture parameters. The fundamental relation pertaining to photoelasticity is repre-
sented by the stress-optic law:

N fσ
2h

= τmax, (9)

where N is the observed fringe order number, fσ is the fringe constant of the photoelastic material, and h
is the material thickness. The relation between these various parameters results in a visual representation
of the contours of constant maximum shear stress in the material. Substitution of the dynamic bimaterial
stress field equations into the above expression relates the isochromatic fringe patterns surrounding the
advancing crack tip to dynamic stress intensity factor, crack tip speed, and other nonsingular higher-order
terms, through:(

N fσ
2h

)2

= µ2
{[
(1 +α2

l )<F
′′

0 (zl; t)+ 2αs<G
′′

0(zs; t)
]2
+
[
2αl=F

′′

0 (zl; t)+ (1 +α2
s )=G

′′

0(zs; t)
]2}
. (10)

In the present work inference of the dynamic stress intensity factor is conducted through an over
deterministic method in which up to six higher-order terms are used. The unknown coefficients Am and
Bm appear as nonlinear terms in Equation (10). The solution is obtained by first designating the real and
imaginary expressions of the above equation as D and T respectively. Subsequently, for each digitized
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fringe data point, the following relation is established:

gk = D2
k + T 2

k −

(
Nk fσ

2h

)2

= 0. (11)

The set of k nonlinear equations is solved simultaneously using a least-squares analysis based on initial
estimates of Am and Bm . Correction factors are subsequently introduced, and the process is iterated until
Equation (11) is satisfied to within an error upper bound of 0.0001. Further comprehensive details of the
solution scheme can be found in the original work of Sanford and Dally [1979].

Experimental results and discussions

Experiments featuring spontaneous interfacial fractures between polycarbonate and Homalite-100, which
were bonded along their common interface, were conducted. Each specimen possessed a different angle
of inclination, α, and was loaded at a different level of uniaxial tension. The results of these experiments
revealed that each specimen responded identically to the loading environment. First, the bilaterally
propagating spontaneous fracture occurs at two different speeds. Second, shortly following fracture
initiation, a constant speed level is established in both directions, with negligible variation. Finally,
larger far-field load levels induce faster crack propagation.

A. Asymmetry of crack speeds and the variations of energy release rate. Figure 3 shows three typical
isochromatic fringe patterns displayed with accompanying plots that identify crack-tip location and en-
ergy release rate histories featuring the different levels of uniaxial tension (7.5 MPa in (a) and (b), and
5.6 MPa in (c)). In Figures 3a and 3c, the inclination angle is 27.5◦, while in Figure 3b, the inclination
angle is 17.5◦. Within each frame, the appearance of each set of fringes associated with each of the
moving faults is clearly asymmetric. For instance the fringes coupled with the left moving cracks in the
first two figures are larger than those pertaining to the right moving ones. This indicated greater stress
levels, and therefore higher values of crack parameters. Also striking is the higher level of distortion
pertaining to the right moving cracks in those same frames, a fact generally attributed to crack speeds
approaching limiting values of the materials. The inverse is true for the third figure in the sequence.

Other observations can be drawn from these figures. First, the two crack tips propagate essentially
at constant speeds with one end faster than the other. If the particle motion is resolved to coincide
with the direction of the interface, propagation of the faster side is in the direction of the resolved shear
particle motion of the more compliant constituent of the bimaterial system (polycarbonate). For the cases
corresponding to Figures 3a and 3b, the lower material is more compliant, resulting in faster propagation
to the right. In Figure 3c, the upper material is more compliant, causing the velocity trend to reverse. This
asymmetry in speed is attributed to the existence of material contrast across the interface and the coupling
between shear and tension resulting from this contrast [Cochard and Rice 2000; Weertman 1980]. For
the case of shear fractures in frictionally held interfaces with combined shear and compressive loading, a
configuration very different from the one tested here, similar phenomena have been predicted theoretically
[Qian and Sun 1998] and have been observed experimentally [Xia et al. 2005b]. The shear induced
compression may result in frictional contact of crack surfaces in both static and dynamic interfacial
cracks in bimaterials [Sun and Qian 1997; Rosakis et al. 1998]. In the cases discussed here, however, the
presence of the tensile load prevents any frictional contact behind the crack tip from interfering with crack
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(a)

(b)

(c)

Figure 3. Isochromatic fringe patterns with plots of energy release rate and crack tip
time history (The black dot on the top plate of each isochromatic picture is a 6.25 mm di-
ameter length scale.). (a) Inclination angle is 27.5◦, top is Homalite-100. (b) Inclination
angle is 17.5◦, top is Homalite-100. (c) Inclination angle is 27.5◦, top is polycarbonate.

propagation. Indeed, from the isochromatic fringe patterns shown in Figure 3, no evidence of contact like
those observed in stress wave induced dynamic shear crack propagation in bimaterial interfaces [Rosakis
et al. 1998] can be identified. The observations here of asymmetric crack propagation further validate
the theory of material contrast induced coupling between shear and normal motions.
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It is noted that fracture energy, and equivalently energy release rate, increases linearly with the crack
length at both crack locations. The fracture parameters are calculated using Equation (7), with stress
intensity factors obtained by using the inversion scheme discussed above. A similar phenomenon, directly
relating larger fracture parameters to increasing crack length, has also been identified for spontaneous
mode I [Xia et al. 2006] and mixed-mode interfacial fracture in identically bonded materials [Rosakis
et al. 2006]. As is the case for these earlier results, this increase of fracture energy with crack length
is consistent with the observation of constant crack speeds and time independent loading, which im-
plies that the dynamic energy release rate is related to the equivalent static energy release rate through
the multiplication of a universal function depending only on the fracture velocity [Yang et al. 1991].
Consequently, for a given speed of spontaneous fracture, the energy release rate is proportional to the
square of the equivalent static stress intensity factor. Since the equivalent static stress intensity factor
is proportional to the square root of the crack length, the energy release rate is then proportional to the
crack length. If, instead, the fracture energy remains constant during the crack propagation, the crack
will accelerate to its limiting speed at which the energy release rate tends to zero and most of the released
strain energy will be converted into kinetic energy [Freund 1990; Broberg 1999]. This observation of a
constant speed crack thus casts doubt on the validity of using the fracture energy concept as a material
parameter to describe crack propagation resistance. Crack propagation resistance, or, more precisely,
the nominal crack propagation resistance that may involve damage of the crack path, might be more
appropriately attributed to loading conditions and geometry [Broberg 2002]. It should also be noted that
at the slower propagating end, the energy release rate is always larger than that of the faster end for the
same length crack. This can be explained by the decreasing nature of the universal function dependence
on the crack speed [Yang et al. 1991; Freund 1990; Broberg 1999].

B. Stress intensity factors and variations of mode-mixity. Figure 4 presents the crack tip history, en-
ergy release rate, stress intensity factors (K1 for mode I and K2 for mode II), and the mode-mixity
(ψ = tan−1(K2/K1) as in Equation (8)) for an experiment featuring 7.5 MPa far-field loading and 27.5◦

inclination angle. This test was performed under identical conditions as the one shown in Figure 3a.

(a) (b)

Figure 4. (a) Energy release rate (G), crack tip time history (T ) and (b) the evolution
of stress intensity factors (K1, K2) and mode-mixity (ψ) for a typical experiment.
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(a) (b)

Figure 5. Figure 5. Energy release rate and crack tip time history. (a) Inclination angle
is 25◦ and far-field load is 6.8 MPa. (b) Inclination angle is 25◦ and far-field load is
7.5 MPa.

Note that the crack speeds of the two experiments are very similar (Figure 4a), which demonstrates the
repeatability of the experimental design.

As shown in Figure 4b, the mode-mixities of both ends are smaller than the far-field mode-mixity
of 27.5◦. The mode-mixity of the slower end is smaller than that of the faster end for the same length
of propagation. The asymmetry is a result of the mode coupling discussed earlier. The fast crack tip
has more mode II component than the slow crack tip. This result is consistent with that reported in
the numerical simulation study of mixed-mode interfacial fracture propagation in identical materials
[Geubelle and Kubair 2001]. The result is to be expected because the limiting speed of mode II cracks
(longitudinal wave speed) is higher than that of mode I cracks (Rayleigh wave speed) [Freund 1990;
Broberg 1999]. From a material response point of view, the result demonstrates that the debonding
process is facilitated by greater prominence of mode II stress components. In other words, it is easier for
a mixed-mode crack to propagate at fast speeds when it has higher levels of mode II components.

C. Dependence of crack speeds on far-field load. Figure 5 presents the crack tip history and energy
release rate for two experiments featuring the same inclination angle (25◦) and different load levels
(7.5 MPa and 6.8 MPa respectively). Again it can be seen clearly that for both tests the energy release
rate increases with the crack length. In the case where the load level is higher (Figure 5b), the speed of
the left crack is faster than that corresponding to the case where the load level is lower (Figure 5a). The
same conclusion holds for the right propagating crack. Detailed analytical study is needed to obtain the
dependence of the crack speeds on far-field load. For self-similar mode I cracks, a theoretical relationship
was proposed by Broberg [2002].

Conclusions

The experiments conducted herein feature bimaterial systems composed of polycarbonate and Homalite-
100, bonded along an interface. Symmetric and central spontaneous initiation of a dual crack through
plasma explosion resulted in asymmetric propagation, with the faster side proceeding in the direction of
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the resolved shear particle motion of the more compliant constituent. This is the first published set of
experiments where two opposing propagating cracks have been set to propagate simultaneously along a
bimaterial interface. It is noted that the magnitude of the fracture parameters are always correlated to
crack length. Surprisingly also, energy release rate is shown to be more weakly dependent on the crack
speed than to the crack length, an observation that will undoubtedly stimulate theoretical discussions
on the subject of crack propagation in general, and more specifically on crack propagation in bimaterial
systems. It is also observed that higher load results in faster crack propagation.
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A GLOBAL COLLOCATION METHOD FOR TWO-DIMENSIONAL
RECTANGULAR DOMAINS

CHRISTOPHER G. PROVATIDIS

This paper proposes the use of a global collocation procedure in conjunction with a previously developed
functional set suitable for the numerical solution of Poisson’s equation in rectangular domains. We
propose to expand the unknown variable in a bivariate series of monomials x i y j that exist in Pascal’s
triangle. We also propose the use of the bivariate Gordon–Coons interpolation, apart from previous intu-
itive choices of the aforementioned monomials. The theory is sustained by two numerical examples of
Dirichlet boundary conditions, in which we find that the approximate solution monotonically converges
towards the exact solution.

1. Introduction

The use of collocation methods for the solution of partial differential equations (PDE) has become a
subject of intensive interest in the past [Lanczos 1938; Ronto 1971; Russell and Shampine 1972; Fin-
layson 1972; De Boor and Swartz 1973; Diaz 1977; Houstis 1978; Botha and Pinder 1983]. While most
research has focused on the local interpolation of a variable, not many works have appeared concerning
the global collocation in two-dimensional problems [Frind and Pinder 1979; Hayes 1980; Van Blerk
and Botha 1993]. In contrast, global approximations have been successfully applied in conjunction with
the standard Galerkin–Ritz procedure either using the Gordon–Coons bivariate interpolation [Cavendish
et al. 1976] or higher order p-methods [Szabó and Babuška 1991].

Moreover, closely related to the abovementioned p-methods [Szabó and Babuška 1991], an alternative
Gordon–Coons method has been proposed for the static and dynamic analysis of structures [Provatidis
2006a; 2006b; 2006c; 2006d]. In these works, the standard Galerkin–Ritz procedure was applied, thus
leading to stiffness and mass matrices in the form of integrals over the entire domain. This method has
been called the Coons patch macroelement (CPM) approach [Provatidis 2006a; 2006b; 2006c; 2006d].
Although CPM works perfectly well, and can deal with even 5-shaped domains [Provatidis 2006a;
2006d], one could say that it has the disadvantage of fully populated matrices particularly when Lagrange
polynomials (with no compact support) are used.

This paper contributes to overcoming the abovementioned shortcoming and modifies the previous
CPM methodology first by preserving the global functional space, and second by moving from the
Galerkin–Ritz to a collocation procedure in which no integral is needed. Quite recently, as a pilot study,
this idea has been successfully applied to one-dimensional eigenvalue problems [Provatidis 2007].

It should be noted that the proposed collocation method could be formulated in terms of the global car-
dinal shape functions of the CPM approach, which are applicable even to curvilinear domains [Provatidis
2006a; 2006b; 2006d]. However, the aforementioned shape functions are derived through a numerical

Keywords: global collocation, Coons interpolation, Poisson’s equation.
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procedure in which the original information is lost. It is therefore preferable to work instead in conjunc-
tion with the basis functions. It has recently been shown that when the Gordon–Coons interpolation is
applied to the reference ξη-square (0 ≤ ξ, η ≤ 1), it leads to the functional space, ξ iη j , which consists of
the well known monomials of Pascal’s triangle [Provatidis 2006a; 2006b; 2006d]. Obviously, in the case
of a rectangular domain, these monomials correspond to the usual x i y j monomials that appear in the
classical Taylor’s series expansion. It is important to mention here that while an intuitively selected part
(that is, relevant indices i , j) of a Taylor’s series expansion may lead to a noninvertible equation matrix
[Zienkiewicz 1977, p.151], the Gordon–Coons interpolation [Gordon 1971] always ensures a smooth
approximation because it is based on the solid foundations of Computational Geometry [Farin 1990]. It
is remarkable that the ideas just described can be extended to three-dimensional domains, that is, to the
reference ξηζ -cube [Provatidis 2006c].

In brief, this paper utilizes the advantage of the abovementioned complete functional set, and applies
a global collocation that achieves solutions to boundary value problems in rectangular domains. In this
work, the performance of the proposed method is shown in two examples under the Dirichlet boundary
conditions.

2. The proposed global functional set

Let us consider a rectangular domain � = (ABC D) = [0, a] × [0, b] in R2. The axis origin is chosen
to be the corner A, and the Cartesian axes x and y lie on the sides AB and AD, respectively. The
sides (AB,C D) and (BC, D A) are divided into p and q segments, respectively, thus leading to (p + 1)
nodes along AB or C D, as well as (q + 1) nodes along BC or D A. As a result, the univariate function
u(x, 0) along the side AB can be interpolated through a polynomial of p-th degree in x (thus including
the set {1, x, x2, . . . , x p

}), while the function u(0, y) along the side DA can be interpolated through a
polynomial of q-th degree in y (thus including the set {1, y, y2, . . . , yq

}).

2.1. Boundary functions. Given the univariate polynomial degrees p and q, one of the most apparent
extensions in the two-dimensional approximation is perhaps the use of Coons’ interpolation [Farin 1990],
which assumes a linear blending of the aforementioned univariate polynomials. If u ∈ C2,2(�st) where
�st = [0, 1] × [0, 1] is the standard reference square, then in terms of normalized coordinates, ξ and
η (0 ≤ ξ, η ≤ 1), Coons interpolation can be written as:

ũ(ξ, η)= (1 − ξ)u(0, η)+ ξu(1, η)+ (1 − η)u(ξ, 0)+ ηu(ξ, 1)− ˜̃u(ξ, η), (1)

where

˜̃u(ξ, η)= (1 − ξ)(1 − η)u(0, 0)+ ξ(1 − η)u(1, 0)+ (1 − ξ)ηu(0, 1)+ ξηu(1, 1).

For the rectangular domain, it holds that x = aξ and y = bη, and hereafter we replace the normalized coor-
dinates by the Cartesian ones. Therefore, the polynomial set {1, x, x2, . . . , x p

} along AB(η= 0, y = 0) is
projected by the blending function (1− y/b) towards the y-axis, thus including the monomials involved in
the product {1, x, x2, . . . , x p

}(1 − y/b). In an analogous way, the interpolation along D A (ξ = 0, x = 0)
leads to the terms involved in the product {1, y, y2, . . . , yq

}(1 − x/a). In summary, for the case of nodal
points arranged along the boundary of the rectangular domain ABC D, the variable u(x, y) is expanded
in a series (Equation (3)) comprising the aforementioned 2(p + q) monomials that compose a set, here
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denoted as S0, which constitutes the ‘legs’ of Pascal’s triangle with a surplus (‘thickness’) of two layers
of terms. The particular case of this scheme for p = q can be found in standard textbooks such as
[Zienkiewicz 1977, p.160].

The above justified choice constitutes a subset of the space S p(�
(q)
st ) of polynomials on the unit

reference square, �(q)st , which was introduced by Szabó and Babuška in their pioneering works concern-
ing higher-order p-methods [Szabó and Babuška 1991]. The space S p(�

(q)
st ) is spanned by the set of

monomials
x i y j , i, j = 0, 1, . . . , p, i + j = 0, 1, . . . , p,

supplemented by the following monomials:

(a) in the case p = 1, the monomial xy;

(b) in the case p ≥ 2, the monomials x p y and xy p [Szabó and Babuška 1991, p.97].

In the particular case that p = q, it is trivial to verify that the proposed set of equations (Equation (1))
does not coincide with that proposed by Szabó and Babuška [1991]. For example, in the case of p = 4,
the proposed Coons-based functional set misses the term x2 y2 (it belongs to the third layer parallel to
the ‘legs’ of Pascal’s triangle), which can, however, easily be obtained in the sequence by considering
one internal node (see Section 2.2).

2.2. Internal functions. In order to get full polynomials, it is necessary to use internal nodes where
the PDE will be collocated. One extreme case is to use (p − 1)× (q − 1) internal nodes, a choice that
corresponds to the well known Lagrange type finite element. The corresponding space is denoted by
S p,q(�

(q)
st ) [Szabó and Babuška 1991, p.97] and it is spanned by the set of all monomials

x i y j , i = 0, 1, 2, . . . , p, j = 0, 1, 2, . . . , q.

Alternatively, the author has recently presented a general systematic and automatic procedure to deal with
any number of internal nodes, preferably distributed at equidistant locations, and the number of these
nodes may be smaller or even larger than those in the Lagrange type element that occupies the entire
domain � [Provatidis 2006a]. In more detail, the Gordon–Coons transfinite interpolation is applied so
that the boundary (and interboundary) data are blended through higher order functions, thus leading to
monomials outside the ‘legs’ of Pascal’s triangle with a surplus of two. For reasons of simplicity, in this
paper we proceed in a slightly different but equivalent way. Apart from the monomials mentioned in
Section 2.1, we consider up to nine additional monomials as follows. The first subset,

S1 = {x2 y2
}

is related to a central node (x = a/2, y = b/2); the second set,

S2 = S1 ∪ {x3 y2, x2 y3, x3 y3
}

to a tensor product of 2 × 2 (four) points, while the third set,

S3 = S1 ∪ S2 ∪ {x4 y2, x2 y4, x4 y3, x3 y4, x4 y4
},

is related to a tensor product of 3 × 3 (nine) points in the interior. Finally, as an extreme case, for a
certain boundary discretization through p segments per side, the abovementioned space of Lagrange-type
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finite elements, S p,q(�
(q)
st ), is also considered as a candidate approximation (in the proposed collocation

method) of which the performance will be validated.

3. The proposed global collocation procedure

3.1. General. In any collocation method, for a given PDE:

D(u)− f (x, y)= 0, in �= [0, a] × [0, b], (2)

we generally seek an approximate solution to Equation (2) which is a linear combination of the global
basis functions {φi (x, y)}, i = 1, 2, . . . , n:

ũ(x, y)=

n∑
j=1

α jφ j (x, y). (3)

For the sake of simplicity, in this work we deal with the Dirichlet conditions that hold along the entire
boundary ∂�.

For a given number of uniform boundary subdivisions, that is, p and q towards the x and y axes
respectively, the boundary includes nb = 2(p + q) nodes. In order to achieve a complete numerical
solution we also use n I internal nodes [Provatidis 2006a; 2006b]. Then, we solve for both the nb unknown
fluxes (∂u/∂n) along ∂� and for the unknown variable u at the n I internal nodes, a total of n = nb + n I

unknowns. Therefore, we need to form n linearly independent equations, one for each node of the
boundary and the interior. Afterwards, the n coefficients α j , j = 1, 2, . . . , n, which appear in Equation
(3), are determined.

Without loss of generality, the proposed methodology below refers to Poisson’s equation,

(D(u)− f = ∇
2u − f = 0).

3.2. Matrix formulation. Because the basis functions do not fulfill any special condition, regardless of
whether the Dirichlet boundary conditions are or are not homogeneous, Equation (3) is written for all
boundary nodes:

ū = C0α, (4)

where ū is a vector of nb elements, including the nodal values of the prescribed variable u along ∂�, C0

is a nb × n matrix with elements [C0]i j = φ j (xi , yi ), i = 1, . . . , nb, j = 1, . . . , n, and α is the vector of
the n unknown coefficients appearing in Equation (3).

By taking the Laplacian of both parts in Equation (3), one arrives at the following approximation:

∇
2ũ(x, y)=

n∑
j=1

α j∇
2φ j (x, y).

The collocation method enforces the residual

r(x, y)= ∇
2ũ(x, y)− f (x, y), (5)

to become zero at specific points (xi , yi ). In the proposed method, it is suggested that these points be
chosen so as to coincide with the abovementioned n I internal nodes. Therefore, by applying Equations
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(5) and (6) at the internal nodes, one obtains:

r = C2α − f̄ = 0, (6)

where C2 is an n I × n matrix with elements [C2]i j = ∇
2φ j (xi , yi ), i = 1, . . . , n I , j = 1, . . . , n, r is the

vanishing vector of residuals, and f̄ is a vector of n I elements that consists of the values of the functions
f (x, y) at the collocation points (xi , yi ) in the interior.

Obviously, Equations (4) and (6) constitute a linear system of n equations with n unknowns,[
C0

C2

]
α =

{
ū
f̄

}
,

which can be easily solved in α.

3.3. Numerical implementation. A FORTRAN-77 code was developed on a usual PC Pentium IV. A
subroutine was written for the automatic determination of the abovementioned 2(p + q) monomials
involved in the boundary discretization, Equation (1). Then, two choices are available as follows. The
first concerns the use of Lagrange-type interpolation ((p − 1)× (q − 1) terms: x i y j

; i = 0, 1, . . . , p, j =

0, 1, . . . , q), and the second, the sequence of previously defined S1, S2 and S3 sets (see Section 2.2). As
we are concerned with second order problems, (Poisson’s equation) we have limited this subroutine only
to the second derivatives in x and y.

4. Numerical results

The theory is elucidated by two examples taken from literature [Elansari et al. 2001], in which the exact
solution is not of polynomial form. The quality of the numerical solution is evaluated in terms of an
L2-norm, which is defined as follows:

L2 =

√∫
�

(ũ − uexact)
2d�√∫

�

u2
exactd�

× 100%.

Both examples are defined on the square domain �=[0, 2]2 in R2, and refer to the Poisson’s equation:

∇
2u = f (x, y).

Example 1.
f (x, y)= −2 sin(x) sin(y).

In this case, the exact solution is
u(x, y)= sin(x) sin(y). (7)

The Dirichlet boundary condition is calculated using Equation (7) and prescribed on the entire boundary.
In the beginning, the solution is approximated by applying Coons interpolation in conjunction with
only boundary data (Equation (1)). Then, one (S1-space), four (S2-space) and nine (S3-space) internal
nodes were introduced. For the case of four internal nodes, two options were tested: the first using
equidistant positions and the second using the locations occupied in the usual Gaussian quadrature (the
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latter was initially suggested in one-dimensional problems [De Boor and Swartz 1973]). For the case of
nine internal nodes, only equidistant locations were tested. In addition, for each boundary discretization
(p), the corresponding (p − 1)2 internal nodes, which also exist in a Lagrange-type finite element (that
occupies the entire domain), are tested. The results of this example are shown in Table 1 and suggest the
following:

• The bivariate Coons interpolation (Equation (1)) is incapable of approximating the solution and
converges to an error norm L2 about 13.2%.

• The introduction of only one internal node at the center of the domain induces severe improvement
in the solution (L2 reduces to about 2.2%).

• The introduction of four internal nodes causes a further reduction of L2 to about 0.6%. In contrast
to prior observations [Carey and Finlayson 1975; Carey and Oden 1983; Elansari et al. 2001], when
the internal points are distributed in equal distances, the solution becomes slightly better than that
using locations of Gaussian quadrature.

• The introduction of nine equidistantly distributed internal points causes a further improvement
(0.04%).

• The locations of uniformly distributed points according to the Lagrange-type finite element lead to
the best approximate solution tested.

• In the abovementioned case of using the set of monomials found in the Lagrange-type finite element,
it was not possible to use more than nine segments per side (p = q= 9), due to truncation errors
involved.

• When p > 7, the L2-norm does not further decrease. This finding is consistent with the practice of
Szabó and Babuška [1991, p.355], who reduce the use of Legendre polynomials up to the seventh
degree.

Example 2.
f (x, y)= 2ex+y .

Now, the exact solution is
u(x, y)= ex+y

+ ey sin x . (8)

The Dirichlet boundary condition is calculated using Equation (8) and prescribed on the entire boundary.
In an analogous way with Example 1, the results are shown in Table 2 and indicate a very similar quality.
All remarks in the bullets of Example 1 are also valid here.

5. Discussion and conclusions

The global collocation method has been previously applied mainly to one-dimensional problems in con-
junction with trigonometrical, Chebyshev, Legendre, and similar polynomials used in spectral methods.
In the last cases, a complete space of monomials is hidden. For example, it was recently shown that either
of Lagrange, Chebyshev, or Berstein polynomials led to the same results with those obtained through
the Taylor’s series expansion [Provatidis 2007]. Moreover, the finite element method has intuitively
used monomials related to truncated Taylor’s series expansion and Pascal’s triangle. Therefore, it is an
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p

L2-norm (in %)

Number of monomials related to internal nodes (n I )

0 1 4 9 Lagrange-type
Equation (1) (S1) (S2) (S3) S p,q(�

(q)
st )

Equidistantly At Gauss
points

1 57.29 98.22 683.29 123.29 61.77 —
2 13.32 5.49 3.21 3.42 23.36 5.49
3 13.09 3.56 1.58 3.08 0.54 1.58
4 13.18 2.18 0.63 1.28 0.10 0.10
5 13.19 2.19 0.62 1.29 0.06 2.86E-02
6 13.18 2.17 0.63 1.24 0.04 1.31E-03
7 13.18 2.17 0.63 1.24 0.04 2.94E-04

8 13.18 2.17 0.63 1.24 0.04 5.06E-04
9 13.18 2.17 0.63 1.24 0.04 1.44E-02

Table 1. Example 1: accuracy of the proposed method for several boundary dicretiza-
tions (p = q) and several monomials.

p

L2-norm (in %)

Number of monomials related to internal nodes (n I )

0 1 4 9 Lagrange-type
Equation (1) (S1) (S2) (S3) S p,q(�

(q)
st )

Equidistantly At Gauss
points

1 49.58 12.27 208.18 63.08 67.70 —
2 6.95 5.39 2.91 2.93 9.41 5.39
3 5.45 1.39 1.11 1.91 3.19E-01 1.11
4 5.58 1.25 0.34 0.69 1.05E-01 1.05E-01
5 5.58 1.27 0.33 0.69 3.43E-02 1.51E-02
6 5.58 1.26 0.34 0.64 2.83E-02 1.17E-03
7 5.58 1.26 0.34 0.64 2.92E-02 1.92E-04

8 5.58 1.26 0.34 0.64 2.93E-02 2.60E-04
9 5.58 1.26 0.34 0.64 2.93E-02 9.11E-03

Table 2. Example 2: accuracy of the proposed method for several boundary dicretiza-
tions (p = q) and monomials.
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old idea used to approximate the solution within a domain through monomials. However, difficulties
in inverting the matrix of coefficients C0 (see Equation (4)) have been extensively discussed in the
1960s. Zienkiewicz [1977, p.151] writes that “occasionally an inverse of C0 may not exist and always
considerable algebraic difficulty is experienced in obtaining an inverse in general terms suitable for all
element geometries”.

Unlike the previous work mentioned above, we show here that instead of an intuitive choice of mono-
mials, the well known bivariate Gordon–Coons transfinite interpolation can be used. Since this method
reflects the extension of linear interpolation from a one- to a two-dimensional field, and it is based on
the solid background of Computational Geometry, in the case of a smooth patch such as a rectangle, the
invertability of C0 is always anticipated.

We have shown here that a complete solution requires the use of internal nodes that should be generally
located at equidistant locations like an imaginary uniform mesh. For a certain number of boundary
discretizations, when progressively increasing the number of internal nodes up to p = 7 subdivisions,
the solution monotonically improves. For p > 7, probably due to truncation errors, the solution becomes
ill-conditioned and gives rise to a slightly increasing error norm (see, for example, the bottom of Table 1
and Table 2).

As mentioned in Section 1, the proposed collocation method can be applied also to nonrectangular
domains. However, ongoing research shows that the method should be reformulated by replacing mono-
mials with the global cardinal shape functions of which closed form expressions have been previously
reported [Provatidis 2006a; 2006b; 2006c; 2006d]. In case of a boundary under partially Dirichlet and
partially Neumann conditions, the procedure is straightforward, and analogous one-dimensional appli-
cations can be found in [Provatidis 2007] (both ends fixed, one fixed the other free). Finally, it is well
known that one weakness of a global interpolation method is its inability to handle problems having
discontinuous boundary conditions. Indeed, the proposed method is no exception.

In conclusion, the proposed method is a global collocation technique in which no domain or boundary
integrals need to be computed and no least-squares procedure is required (at least for the Dirichlet con-
ditions tested). Obviously, the extension of the proposed approach to other types of partial differential
operators and/or three-dimensional problems is straightforward.
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