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FLEXURE OF BEAMS WITH AN INTERLAYER — SYMMETRIC BEAMS WITH
ORTHOTROPIC ADHERENDS

K. S. ALFREDSSON, T. A. BOGETTI, L. A. CARLSSON, J. W. GILLESPIE, JR. AND A. YIOURNAS

Analysis of the three-point flexure loading of a symmetric beam configuration consisting of two identical
adherends joined by a flexible layer is presented. A closed-form solution is presented in the form of a
layer-wise approach, and shows excellent agreement with finite element results. Particular emphasis is
given to the global beam compliance. The results show that a thin, shear deformable layer may effectively
decouple the responses of the two beams. Furthermore, in contrast to ordinary beams, the presence of
an overhang reduces the beam compliance. These effects are quantified and discussed. Experiments
on aluminum adherends joined by a rubber layer were conducted over a range of overhang lengths in a
three-point flexure fixture, and very good agreement between measured and predicted beam compliance
was noted.

Introduction

Sandwich structures are commonly designed in an effort to mimic the I-beam concept where the web
supports shear loads and the flanges bending loads. In certain structural applications, however, it may be
desirable to utilize a highly shear deformable layer sandwiched between more rigid adherends, such as
in structures utilizing shear thickening fluids to control the vibration response; see [Fischer et al. 2006],
and in mechanical shielding of brittle layers; see for example [Mahdi et al. 2003].

The design of such structures is greatly benefited by an improved understanding of the role of the
thickness and stiffness of the rubber layer in its ability to interact with the upper and lower layers of the
structure. Most analysis of such structures to date is based on finite element analysis [Davila and Chen
2000; Mahdi and Gillespie 2004], because it is widely recognized that the large local shear deformation
of the layer prohibits the use of ordinary beam and plate theories [Timoshenko and Woinowsky-Kreiger
1959; Gere and Timoshenko 1984] and first order shear deformation theory [Whitney 1973]. Sandwich
beams and panels with shear-deformable compliant core materials have been considered by numerous
researchers since the pioneering work of Reissner [1947, 1948]; see, for example, [Zenkert 1997]. Such
analysis, however, is applicable to structures with thin faces over a thick core, while the present work
considers thick adherends over a thin flexible layer.

In this paper we will present a layer-wise analytical beam approach to the mechanics of symmetric
beam configurations with a flexible interlayer. Use of the simplest possible formulation that can capture
the global bending behavior allows us to obtain a closed form solution. The approach shares several
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Figure 1. Three-point flexure loading of a layered beam with symmetric overhangs.

elements with the layer-wise approach developed for sandwich beams with a flexible core by Frostig and
Baruch [1990], although they considered a thick core between thin faces and addressed local indentation
at load introduction and support regions, while the main focus of our approach is on the global beam
response and shear transfer effects. Alfredsson [2004] examined adhesively bonded end-notch flexure
(ENF) fracture test specimens, but his analysis is valid only for infinitely thin layers. The analysis will
be compared to finite element (FE) results and to experimental compliance data determined for beams
with a rubber layer tested in three-point flexure loading.

Problem description

A multilayer symmetric beam structure consisting of two stiff and thick orthotropic adherends separated
by a flexible isotropic interlayer loaded in three-point flexure is considered (Figure 1). In this initial study,
the adherends are assumed to be of identical thickness. The solution is simplified to isotropic adherends
to facilitate correlation with the experimental compliance data. A major objective here is to determine
the global beam deflection. As will be shown, the overhang length c influences the compliance, and the
role of this parameter will be examined.

For the symmetrical beam configuration considered (Figure 1), the loading may be divided into sym-
metric and antisymmetric parts (Figure 2), and each solution is superimposed to obtain the solution to the
original problem. It is recognized that the symmetric part of the loading produces extensional (tensile or
compressive) deformation of the interlayer, while the antisymmetric part produces shear deformation of
the interlayer and bending of the layered beam. The symmetric part of the loading will not contribute to
the global bending of the layered beam, and for this reason, only the antisymmetric part of the loading
is considered here.

Derivation of governing equations

The adherends are considered to be Euler–Bernoulli beams. Considering only the antisymmetric part of
the loading means that the resulting displacement field is also antisymmetric. Hence, the two adherends
will have equal deflection, which is denoted w. The longitudinal displacements of the midplanes of the
adherends are of equal magnitude, but of opposite sign. The displacement in the x direction (Figure 1)
of the midplane of the lower adherend is denoted by u; see Figure 3.
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SYMMETRIC ANTISYMMETRIC

Figure 2. Superposition of symmetric and antisymmetric loadings.

The deformation of the interlayer is defined as the relative displacements of the lower and upper
adherend/interlayer interfaces. According to classical beam theory, the cross sections of the adherends
are assumed to undergo translation and rotation only. Hence, the deformation of the interlayer is defined
with respect to the midplane of each adherend. As shown in Figure 3, both the axial displacement of
each adherend, u, and the rotation of the beam, w′, contribute to the total shear deformation v of the
flexible layer

v(x) = 2u(x) + (h + t)w′(x). (1)

Longitudinal equilibrium of the flexible interlayer is assumed to be fulfilled by a shear stress, τ , which
is constant throughout the thickness of the layer; see Figure 4. This means that the longitudinal normal
stress in the flexible layer is neglected, which is justified since it is much smaller than the longitudinal
normal stresses in the adherends and the shear stress in the flexible layer. The antisymmetric condition
implies that there are no transverse normal stresses at the symmetry line passing through the middle of
the interlayer. However, at the interface between the interlayer and the adherends, a normal stress σ may
be present; see Figure 4.

Vertical equilibrium of the flexible layer requires that

2σ(x) = tτ ′(x), (2)

where t is the thickness of the flexible layer; see Figure 1.
The adherends transmit normal forces, N , bending moments, M , and transversal shear forces, V . The

positive directions of these stress resultants are shown in Figure 4 for the antisymmetric loading case.

Figure 3. Shear deformation of a flexible layer due to longitudinal displacements, u
(left), and slope, w′ (right).
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Figure 4. Positive direction of adhesive stresses and sectional loads.

Equilibrium of the adherends requires that

N ′(x) = bτ [v(x)], (3a)

V ′(x) = − bσ(x), (3b)

V (x) = M ′(x) +
1
2

bhτ [v(x)], (3c)

where b is the specimen width and h is the adherend thickness.
Assuming that the adherends deform elastically according to the Euler–Bernoulli beam theory, the

normal force and the bending moment are given by

N (x) = Au′(x), (4a)

M(x) = −Dw′′(x), (4b)

where A = b
∫

E1(z)dz and D = b
∫

E1(z)z2 are the extensional and flexural stiffnesses of the adherends.
E1 is the Young’s modulus in the longitudinal direction of the adherends. Furthermore, z is a coordinate
in the thickness direction. For isotropic adherends with a Young’s modulus E , integration yields

A = Ebh and D = Ebh3/12.

In order to define a boundary value problem which involves only the shear deformation, the longi-
tudinal displacement and the deflection are eliminated from the governing equations. Combination of
Equations (2) and (3b) yields

2V ′(x) + btτ ′(x) = 0.
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Integration yields
2V (x) + btτ(x) = V̄ , (5)

where V̄ is the total shear force transmitted by the sandwich beam; see Figure 5. This equation can also
be obtained directly from Figures 4 and 5. Substitution of Equation (3c) into Equation (5) yields the
following differential equation:

2M ′(x) + b(h + t)τ [v(x)] = V̄ , (6)

where the shear stress in the layer, τ , is a function of the shear deformation, v. Next, τ is substituted
from Equation (3a) into Equation (6). With N and M expressed in terms of the displacements u and w

according to Equation (4), the result is,

2w′′′(x) −
A
D

(h + t)u′′(x) = −
V̄
D

. (7)

Differentiating Equation (1) twice and combining the result with Equation (7) yields a relation between
the second derivatives of u and v,[

2 +
A

2D
(h + t)2

]
u′′(x) = v′′(x) +

V̄
2D

(h + t). (8)

Substitution of the second derivative of u from Equation (8) into the equation obtained by combining
Equations (3a) and (4a), the following differential equation relating shear deformation and shear stress
is found:

v′′(x) =
b
A

[
2 +

A
2D

(h + t)2
]
{τ [v(x)] − τ̄ }, (9)

where

τ̄ =
V̄
bh

1 +
t
h

4D
Ah2 + (1 +

t
h )2

=
3
4

V̄
bh

1 +
t
h

1 +
3
2

t
h +

3
4( t

h )2
. (10)

Here, τ̄ is the constant shear stress in the interlayer predicted by ordinary beam theory, [Gere and Timo-
shenko 1984]. For a small deformation of the interlayer, a linear constitutive relation applies. Thus, for
the shear deformation,

τ(x) = kv(x), k =
G
t

, (11)

where G is the shear modulus of the layer. Due to the assumed antisymmetric loading (Figures 2, and 4),
no transverse deformation of the interlayer will take place since the transverse stress in the interlayer

Figure 5. Sectional loads for entire beam sections; N̄ , M̄ , and V̄ , and for adherends N ,
M , and V .
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varies linearly with a zero average. Substitution of Equation (11) into Equation (9) yields a linear
differential equation of second order:

v′′(x) − κ2v(x) = − κ2τ̄ /k, (12)

with

κ =

√[
2 +

A
2D

(h + t)2

]
bG
At

=

√
8G
Eht

[
1 +

3
2

t
h

+
3
4

( t
h

)2
]
. (13)

As will be further discussed in this paper, κ constitutes an inverse length scale of the solution. The
general solution to Equation (12) is

v(x) = A1eκx
+ A2e−κx

+
τ̄

k
, (14)

where A1 and A2 are integration constants determined by boundary conditions on v or v′.
The following relation, obtained from Equation (1) and Equation (4), can be used to transform bound-

ary conditions on N and M into boundary conditions on v′,

v′(x) =
2
A

N (x) −
h + t

D
M(x). (15)

From this equation it also follows that not only v but also v′ are continuous when no concentrated
longitudinal forces or moments are applied to the adherends. Specific solutions will be discussed for
beams without and with overhang.

Beams without overhang

Consider first a beam without overhang, that is, c = 0 in Figure 1. Due to symmetry, only one half of the
specimen, here the left part, 0 ≤ x ≤ L/2, must be analyzed. At the left end, x = 0, the adherends are
unloaded, with N (0) = 0 and M(0) = 0. From Equation (15), the boundary conditions on N and M can
be translated to a boundary condition on v′. Since the shear stress in the flexible layer is antisymmetric
with respect to the loading point, x = L/2, the shear deformation is zero at x = L/2. Thus, the boundary
conditions are:

v′(0) = 0, v(L/2) = 0. (16)

Subjecting the general solution, Equation (14), to these conditions, the shear stress takes the form

τ(x) = τ̄

[
1 −

cosh(κx)

cosh(κL/2)

]
, 0 ≤ x ≤ L/2, (17)

where τ̄ is given by Equation (10) with V̄ = P/2. The distribution of interlayer shear stress along the
beam is shown in Figure 6 for three span lengths. The results are normalized by τ̄ . For long beams
(L = 2.0 m) the shear stress is close to the ordinary beam theory result (τ̄ ) everywhere except near the
loading point where a sign change takes place. This can also be deduced from Equation (17); that is,
for large values of L the second term inside the parentheses is negligible except when x is close to L/2.
Hence, with respect to the shear stress distribution in the interlayer, the present theory degenerates into
ordinary beam theory for large span lengths. The shear stress decreases with decreasing span length.
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Figure 6. Shear stress distribution along the beam for three span lengths, L = .2, 1 and
2 m, E = 70 GPa, G = 3.1 MPa, h = 6.35 mm, t = 3 mm. The shear stress is normalized
by the value obtained from ordinary beam theory.

For a short span length (L = 0.2 m), the maximum shear stress is only about 20% of the ordinary beam
theory value.

The normal force in the adherends is determined by integration of Equation (3a),

N (x) = b

x∫
0

τ [v(x̃)]dx̃ =
bτ̄

κ

[
κx −

sinh(κx)

cosh(κL/2)

]
. (18)

The bending moment in the adherends is determined from the equilibrium of a free body element of the
beam cut at a distance x from the left end:

M(x) =
1
4

Px −
1
2
(h + t)N (x) =

bhτ̄

2κ(1 + t/h)

[
4D
Ah2 κx +

(
1 +

t
h

)2 sinh(κx)

cosh(κL/2)

]
,

where P = 2V̄ and Equations (10) and (18) have been used to obtain the final expression for M(x) above.
Notice that for isotropic adherends, Ah2/(12D) = 1.

The deflection, w(x), is determined by integrating Equation (4b) and using the boundary conditions,
w(0) = 0 and w′(L/2) = 0. The beam compliance, C = w(L/2)/P takes the form,

C
Cbt

= 1 +
Ah2

12D

(
1 +

t
h

)2
[

36
κ2L2 −

72
κ3L3 tanh

(κL
2

)]
, (19)

where Cbt is the compliance according to ordinary beam theory,

Cbt =
L3

96D + 24A(h + t)2 =
L3

32Ebh3

[
1 +

3
2

t
h

+
3
4

( t
h

)2
]−1

. (20)

It is seen from Equation (19) that for large values of L we have C ≈ Cbt , which implies that with respect
to the compliance, the present theory degenerates into ordinary beam theory for large span lengths.
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In an attempt to clarify the implications of Equation (19), two definitions referring to the effects of
introducing a flexible layer, thickness effect and flexibility effect, are introduced. The thickness effect
refers to the increase in flexural stiffness (decrease of compliance) due to the thickness of the flexible
layer. If only the thickness effect is accounted for, the compliance equals Cbt (Equation (20)), the
compliance predicted by ordinary beam theory.

The flexibility effect refers to the decoupling of the two adherends due to shear deformation of the
layer, but disregards the increased thickness. To isolate this effect, it is assumed that t/h � 1, and
Equation (19) becomes

C f

C0
= 1 +

Ah2

12D

[
36

κ̄2L2 −
72

κ̄3L3 tanh
( κ̄L

2

)]
,

t
h

� 1, (21)

where

κ̄ =

√[
2 +

Ah2

2D

]
bG
At

=

√
8G
Eht

, (22a)

C0 =
L3

96D + 24Ah2 =
L3

32Ebh3 , (22b)

in which C0 is the compliance when the two outer beams are fully coupled by an interlayer of zero
thickness.

Figure 7 illustrates the influences of the two effects on the beam compliance, here normalized by
C0 (Equation (22b)). The dotted curve shows the monotonic decrease of the compliance according to
ordinary beam theory, Cbt in Equation (20), due to the increased interlayer thickness. The dashed curve
shows the monotonic increase of C f (Equation (21)) due to the increase of the flexibility, k−1

= t/G,
with increasing interlayer thickness. The solid curve represents the actual compliance, C , predicted by

Figure 7. Compliance as a function of layer thickness. E = 70 GPa, G = 3.1 MPa,
h = 6.35 mm, L = 0.2 m.
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Equation (19). It is seen that the actual compliance C is bounded by Cbt and C f . That is, when only the
thickness effect is accounted for (ordinary beam theory) the compliance is underestimated, and when only
the flexibility effect is accounted for, the compliance is overestimated. It can be shown mathematically
that this is always the case, that is, Cbt ≤ C ≤ C f .

Figure 8 shows the compliance calculated from Equation (19), normalized by C0, as a function of
layer thickness for span lengths of .2, 1, and 2 m. For the shortest span (L = .2 m), the compliance
increases with increasing layer thickness over the entire interval studied. This means that for large layer
thicknesses, the two adherends are practically decoupled and bend independently of one another, that
is, the flexibility effect dominates. Such beams actually have two neutral planes with each plane on the
geometrical center of each adherend. For a beam with a large span (L = 2.0 m), the compliance decreases
with layer thickness, that is, the thickness effect dominates the behavior. For the intermediate span length
(L = 1.0 m), the compliance increases with layer thickness up to a critical value of tcr ≈ 3.5 mm. Below
this value the flexibility effect dominates. For layer thicknesses above 3.5 mm, the thickness effect
dominates and the compliance decreases with increasing layer thickness.

From the results shown in Figure 8, it becomes clear that for a specified choice of adherends and
a given interlayer material, there exists a critical span length, Lcr , above which the addition of a thin
flexible layer will not decouple the response—that is, the compliance will not increase when a thin
flexible interlayer is added. The critical span length is found by making C stationary with respect to t
for t → 0, which yields,

Lcr =

√
3Ah
bG

= h

√
3E
G

.

For the present geometry the critical span length is 1.65 m; see Figure 8. This equation should be useful
for the design of structures containing flexible interlayers.

Figure 8. Compliance as a function of layer thickness for span lengths of .2, 1 and 2 m
E = 70 GPa, G = 3.1 MPa, h = 6.35 mm.
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Equation (21) can also be used to examine the behavior for beams with a very thin (t/h � 1) layer. If
such a layer is very stiff, G → ∞, the compliance approaches that of a homogeneous beam, and C → C0.
On the other hand, if the thin layer is very flexible, G → 0, κ̄ → 0, then the compliance C → 4C0 for the
case of isotropic adherends. This case effectively corresponds to one beam sliding on top of the other.
The beams may be said to be fully decoupled if the compliance is more that 99% of the asymptotic value,
C = 4C0. The other extreme, fully coupled, may be defined when the compliance exceeds the lower
limit, C = C0, by less than 1%. These conditions can be quantified using Equation (21). The degree of
decoupling is characterized by introduction of the following dimensionless decoupling parameter,

β =
8

κ̄2L2 =
E
G

( h
L

)2 t
h
.

The variation of compliance with β is shown in Figure 9. The curve can be used to assess the level of
decoupling by calculating β for any particular beam configuration. The curve also shows that for a very
thin layer it is required that β < 0.0023 to achieve full coupling of the two beams (C/C0 < 1.01). On
the other hand, β > 59 gives full decoupling of the two beams (C/(4C0) > 0.99).

Beams with overhang

Consider a beam with symmetric overhang, that is, c > 0 in Figure 1. Due to symmetry, only the left
part, −c ≤ x ≤ L/2, is studied. The total shear force is discontinuous at the supports:

V̄ (x) =

{
0, for − c ≤ x < 0

P/2, for 0 < x < L/2.

Figure 9. Compliance as a function of decoupling parameter, β, for thin interlayers,
t/h � 1.
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According to Equation (14), and the procedure outlined for the c = 0 case, this implies that the general
solution for the shear deformation of the interlayer is given by

v(x) =


(A1eκx

+ A2e−κx)
τ̄

k
, for − c ≤ x ≤ 0

(A3eκx
+ A4e−κx

+ 1)
τ̄

k
, for 0 ≤ x ≤ L/2,

(23)

where τ̄ is given by Equation (10) with V̄ = P/2. The absence of a constant term for the overhang
portion in Equation (23) reflects the fact that the total shear force, V̄ , Figure 5, is zero in the overhang
part of the beam. The boundary conditions at the free left end, x = −c, and at the midspan, x = L/2,
are, similar to Equation (16),

v′(−c) = 0, (24a)

v(L/2) = 0. (24b)

Moreover, both v and v′ must be continuous at the support, x = 0. With these four conditions, the
integration constants become

A1 =
1
2

eκL/2
+ e−κL/2

− 2
eκL/2 + e−κ(4c+L)/2 , (25a)

A2 = A1e−2κc
=

1
2

eκ(L−4c)/2
+ e−κ(4c+L)/2

− 2e−2κc

eκL/2 + e−κ(2c+L/2)
, (25b)

A3 = A1 −
1
2

=
1
2

e−κL/2
− e−κ(4c+L)/2

− 2
eκL/2 + e−κ(4c+L)/2 , (25c)

A4 = A2 −
1
2

=
1
2

eκ(L−4c)/2
− eκL/2

− 2e−2κc

eκL/2 + e−κ(4c+L)/2 . (25d)

The longitudinal force, N (Figure 3), is obtained by integration of Equation (3a),

N (x) = b

x∫
−c

τ [v(x̃)]dx̃ . (26)

The bending moment in the adherends is determined from equilibrium:

M(x) =


−

1
2
(h + t)N (x), for − c ≤ x ≤ 0

1
4

Px −
1
2
(h + t)N (x), for 0 ≤ x ≤ L/2.

(27)

With the bending moment determined, the deflection, w(x), is determined by integration of Equation
(4b). With the boundary conditions, w(0) = 0 and w′(L/2) = 0, the compliance, Coh = w(L/2)/P , takes
the form,

Coh

Cbt
= 1 +

( Ah2

12D

) 36
κ3L3

(
1 +

t
h

)2[
A3{eκL/2(2 − κL) − 2} + A4{2 − e−κL/2(2 + κL)}

]
, (28)
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where A3, A4 and Cbt are given in Equations (25c), (25d), and (20). For zero overhang length, c = 0, it
can be shown that Coh degenerates into C according to Equation (19). When the overhang is infinitely
long, the limit compliance is given by

Coh

Cbt
= 1 +

( Ah2

12D

) 36
κ3L3

(
1 +

t
h

)2[
κL − 3 − e−κL

+ 4e−κL/2].
It will be demonstrated below that even though C∞ is an asymptotic value for infinitely long overhangs, it
is also a very good approximation for moderate values of the overhang. Figure 10 shows the compliance
for beams with overhang normalized by the limiting value of the compliance. The data are plotted against
the dimensionless parameter κc. It is noted that the overhang does not influence the compliance very
much at longer spans. Figure 10 also shows that for κc > 3 the limit value of the compliance, C∞,
is a very good approximation, regardless of the span length. Hence, from Equation (13) it follows that
compliance, Coh , is very close to the limiting value of the compliance, C∞, if the overhang length exceeds
the limiting overhang length, c∞,

c∞ = 3

√
At
bG

[
2 +

A
2D

(h + t)2
]−1

= 3

√
Eht
8G

[
1 +

3
2

t
h

+
3
4

( t
h

)2]−1
.

For isotropic adherends and a thin flexible layer (t/h � 1), the limiting overhang is given by

c̄∞ = 3

√
Eht
8G

.

This expression resembles the one for the decay length of end effects for composites according to
St. Venant’s principle ([Horgan 1972; Choi and Horgan 1977; Horgan and Knowles 1983; Bogetti et al.
1988]) in the sense that the square root of the ratio of the Young’s and shear moduli governs the length
scale.

Figure 10. Compliance as a function of overhang length (κc), for span lengths, of .2, 1
and 2 m. E = 70 GPa, G = 3.1 MPa, h = 6.35 mm, t = 3 mm.
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Figure 11. Compliance as a function of layer thickness for overhang lengths, c, of 0,
.127 m, and c∞. E = 70 GPa, G = 3.1 MPa, h = 6.35 mm, and L = 0.2 m. The open
squares represent results from FE analysis with Poisson’s ratio ν = 0.4999 for the rubber
and ν = 0.33 for the aluminum.

Figure 11 shows the compliance Coh/C0 as a function of the layer thickness for overhang lengths
c = 0, .127 m, and c∞. The reduction of the compliance by the overhang segments is quite substantial
for thick layers. A comparison with a two-dimensional continuum finite element model is also made
in Figure 11 for the case of c = .127 m. The adherends are assumed to deform under plane stress in
order to conform to the beam theory solution. The flexible interlayer is constrained in its plane by the
stiff adherends, and is thus assumed to deform under plane strain. The FE code [Mechanica 2007] is
used in the FE simulations. A ninth order polynomial is used for interpolation of displacements along
all element edges. Sixteen elements are used along the span. The elements in the overhang regions are
of the same lengths as those inside the span. One element through the thickness of each adherend and
the interlayer is used. This is sufficient due to the high degree of the interpolation polynomial. The FE
results are shown as squares in Figure 11. The correspondence to the analytical solution is very good.
For large interlayer thicknesses a small deviation is observed, and the FE solution gives a slightly higher
compliance. This is due to compression of the interlayer, an effect which is not accounted for in the
analytical solution. This effect could be accounted for by also considering the symmetric part of the
analytical solution; see Figure 2. For the present case however, this effect is small.

Figure 12 shows the compliance Coh/Cbt as a function of the span length, L , for two layer thicknesses,
t = .76 and 3 mm. For short span lengths, the overhang has a significant influence on the compliance.
For large span lengths, however, Coh/Cbt approaches unity for both layer thicknesses, which shows that
ordinary beam theory is recovered.

Figure 13 shows the shear stress distribution, τ/τ̄ , in the layer for three overhang lengths c = 0,
c = 0.127 m, and c = c∞ (0.506 m). It is seen that an overhang causes substantial changes in the shear
stress close to the supports. This will also affect the distribution of the normal force and bending moments
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Figure 12. Compliance as a function of span length for beams without overhang (con-
tinuous lines) and limiting overhang (dashed lines). E = 70 GPa, G = 3.1 MPa,
h = 6.35 mm, L = 0.2 m.

in the adherends and the deflection. For the beam with c = c∞ the shear stress in the layer decays to
zero at the left end of the beam. This case represents a limiting value of the overhang. If the overhang
is increased beyond this value, the stress distribution (and compliance) will not change.

Experiments

Rubber testing. The shear modulus, G, of the rubber layer was determined using the following equation
derived from the statistical theory of rubber elasticity [Aklonis and MacKnight 1983],

σ = G
(

λ −
1
λ2

)
,

where incompressibility has been assumed, and σ represents the tensile stress (calculated based on the
original cross sectional area), and λ is the extension ratio of the rubber (λ = l/ l0, where l and l0 are the
deformed and undeformed lengths of the rubber specimen). By constructing plots of σ versus λ − λ−2

the shear modulus, G, is the slope of the initially linear portion of the curve.
A rectangular specimen of 2.54 cm width and 3 mm thickness was cut from a flat EPDM rubber sheet.

The tensile tests were conducted on specimens using a gage length of 30.5 cm at a crosshead rate of
2.5 mm/min. The extension ratio, λ, was calculated from the crosshead displacement. The rubber shear
modulus was determined to be G = 3.11 ± .07 MPa.

Flexure testing. Three-point flexure tests were conducted on beams with aluminum adherends connected
by a rubber layer. The adherends were 6.53 mm thick and 51 mm wide, with a 3.0 mm thick rubber layer.
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Figure 13. Shear stress distribution for beams with overhang lengths c = 0, .127 m and
c∞. E = 70 GPa, G = 3.1 MPa, L = .2 m, h = 6.35 mm, t = 3 mm. The shear stress is
normalized by τ̄ given by Equation (10).

A critical test of the analytical model is to determine if the effect of the overhang on compliance is
borne out experimentally. For that purpose the experiments were conducted at a constant span length,
L = 20.3 cm, and at overhang lengths c = 2.54, 5.08, 7.62, 10.2, and 12.7 cm.

The bonding surfaces of the aluminum beams were grit blasted and treated with silane for adhesive
bonding to an EPDM rubber layer. The rubber layer was abraded and treated with a primer before bonding
to the adherends using a two-component epoxy adhesive (Applied Poleramic SC-11). Thin scrim cloth
layers were inserted between the rubber layer and the adherends to maintain a uniform bond line.

The beams were tested in an Instron 4484 load frame in a three-point flexure fixture with 19.1 mm
diameter cylindrical rollers at the supports and load introduction locations. Figure 14 shows a photo
of the actual test setup. To achieve a more uniform load introduction, 1.6 mm thick rubber pads were
inserted between the loading and support rollers and the beam. The displacement of the beams was
measured on the top surface above each support, and on the bottom surface under the central load
introduction line using LVDTs. The accuracy of the LVDTs was ±.0025 mm, or better. The actual
deflection of the lower beam surface at the center span (x = L/2) was determined by subtracting the
average displacement at the supports from that at the central load introduction. By this procedure, it
was possible to compensate for displacement contributions from the load cell and fixture as well as local
deformations in the support regions. By measuring the displacement of the lower surface under the
central load, local load introduction effects were eliminated.

The flexure tests were conducted at a cross head rate of 2.5 mm/min. The beam compliance was
determined from the corrected central beam deflection (δ) divided by the applied load (P), C = δ/P .

In order to satisfy the desired range of overhang lengths at a constant span length (L = 20.3 cm)
without introducing multiple beam specimens, the initially 45.7 cm long beam was loaded to very small
displacements in order to maintain linear elastic reversible response. Following this test, the beam was



60 K. S. ALFREDSSON, T. A. BOGETTI, L. A. CARLSSON, J. W. GILLESPIE, JR. AND A. YIOURNAS

Figure 14. Experimental setup for compliance determination of three-point flexure
loaded beams with rubber interlayer.

unloaded, removed from the fixture, and a 2.54 cm long section of each end was cut off in order to
achieve a beam with a shorter overhang length. This procedure was repeated until the shortest (2.54 cm)
overhang length was accomplished.

Figure 15 shows compliance of the beam versus overhang length. The solid circles represent experi-
mental test data determined as described above, while the continuous curve represents predictions from
Equation (28), with E = 70 GPa and G = 3.1 MPa. It is verified that the presence of an overhang reduces
the compliance, and the test data are in very good agreement with the analytical predictions, lending
confidence to the approach adopted in this study.

The squares in Figure 15 represent FE results according to the model used in connection with Figure
11. The comparison to the analytical solution is very good. Thus, the predicted reduction of compliance
with increasing overhang length, c, is confirmed by the FE results.

Concluding remarks

The beam analysis presented here shows that beams with a flexible interlayer behave quite differently
from ordinary homogeneous beams in the sense that a highly localized shear deformation substantially
adds to the flexibility and decoupling characteristics of the structure. These effects are quantified through
an analytical form of the compliance for the three-point flexure geometry. It is also shown and quantified
how an overhang portion of the beam reduces the beam compliance. Conditions for full coupling and
full decoupling are formulated for beams with thin interlayers, and expressed in the form of a dimen-
sionless decoupling parameter. The analysis is intended as a design tool that is simpler to use and more
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Figure 15. Compliance as a function of overhang length. E = 70 GPa, G = 3.1 MPa
h = 6.53 mm, b = 51 mm, t = 3 mm, and L = .203 m. Open circles represent experimental
data and the continuous line predictions using Equation (28). Solid squares represent
results from FE analysis with Poisson’s ratio ν = 0.4999 for the rubber and ν = 0.33 for
the aluminum.

computationally efficient than finite elements. Comparison of the analytical model to a continuum finite
element model shows excellent agreement. Experiments on three-point flexure loaded aluminum beams
with a rubber interlayer were in favorable agreement with the beam analysis predictions.
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