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This paper gives expressions for the overall average elastic constants and thermal expansion coefficients
of a polycrystal in terms of its single crystal components. The polycrystal is assumed to be statistically
homogeneous, isotropic, and perfectly disordered. Upper and lower bounds for the averages are easily
found by assuming a uniform strain or stress. The upper bound follows from Voigt’s assumption that
the total strain is uniform within the polycrystal while the lower bound follows from Reuss’ original
assumption that the stress is uniform. A self-consistent estimate for the averages can be found if it is
assumed that the overall response of the polycrystal is the same as the average response of each crystallite.
The derivation method is based on Eshelby’s theory of inclusions and inhomogeneities. We define an
equivalent inclusion, which gives an expression for the strain disturbance of the inhomogeneity when
external fields are applied. The equivalent inclusion is then used to represent the crystallites. For the
self-consistent model the average response of the grains has to be the same as the overall response of the
material, or the average strain disturbance must vanish. The result is an implicit equation for the average
polycrystal elastic constants and an explicit equation for the average thermal expansion coefficients.
For the particular case of cubic symmetry the results can be reduced to a cubic equation for the self-
consistent shear modulus. For lower symmetry crystals it is best to calculate the self-consistent bulk and
shear modulus numerically.

Introduction

A polycrystal, whose properties vary in a complicated fashion from point to point over a small micro-
scopic length scale, may appear on average to be uniform or perhaps, more generally, its properties appear
to vary smoothly. The determination of such overall properties from the properties and geometrical
arrangement of the constituent monocrystal grains is our aim. In the simplest case the polycrystal is
assumed to be statistically homogeneous, isotropic, and perfectly disordered. General expressions for
averages can then be derived. Many different properties can be averaged, such as dielectric constants, dif-
fusivity, elastic constants, electrical conductivity, magnetic permeability, magnetostriction, piezoelectric
constants, thermal conductivity, or thermal expansion. In this paper we treat the elastic constants, which
have already received more attention than most other physical properties, and the thermal expansion.
Elastic constants are fundamental physical data needed for the characterization of materials. In ad-
dition to their fundamental importance, elastic constants and properties derived from them are used as
the starting point for the mechanical design of almost all products. Theoretical averaging methods for
the calculation of the isotropic elastic constants of a polycrystal from the single crystal constants of

Keywords: bulk modulus, compliance, cubic, disordered, effective medium, elastic constants, homogeneous, inclusion,
inhomogeneity, isotropic, polycrystal, self-consistent, shear modulus, stiffness, thermal expansion.
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its grains go back more than 100 years. Voigt [1887] assumed that the strain is constant throughout
the polycrystal and he obtained a simple approximate solution. Many years later Reuss [1929] found a
solution by assuming that the stress is constant. Hill [1952] showed that these two solutions provided
upper and lower bounds of the possible average constants. In 1958 Kroner proposed a self-consistent
theory and derived the self-consistent shear modulus of a cubic polycrystal, and Tomé [1998] showed
how to incorporate the effect of thermal expansion into these models.

In this paper we develop a consistent intuitive notation to describe the concepts that have arisen in the
field. The above developments are reviewed in this framework and additional results are presented. We
try to keep the notation as clear as possible in the sometimes detailed calculations. Our major aim is to
show how the relevant equations can be used to calculate explicit results; we give only selected results
and refer to the literature for exhaustive listings. In this sense our paper has the character of a primer.

Relations for material properties are frequently expressed in terms of tensor equations, because tensors
have clear rules for coordinate transformations and rotations. However, the relations are also frequently
expressed in terms of matrices, because matrices allow straightforward mathematical calculations. The
two methods can be used in parallel and are related to each other. We use both in this paper and represent
them in symbolic form.

The analysis starts by defining the concept of an effective medium, which is a model that approximates
the average state of the polycrystal and describes its average properties. In terms of this effective medium
we can define effective elastic constants, which relate the average stress to the average strain in the
effective medium. We can also define an effective thermal expansion coefficient. Various theories then
derive effective properties as averages over crystallographic properties. The Voigt and Reuss models
provide special cases of such an effective medium and the resulting effective properties give upper and
lower bounds.

To get explicit scalar expressions for the effective properties from the symbolic equations we use
the linear tensor invariants. The fundamental property of a tensor invariant is that it is independent of
rotation in space and therefore isotropic. Hence the invariant is equal to its average. This method is used
to derive explicit expressions for the effective elastic constants and thermal expansion coefficient in the
simple theories.

Eshelby’s theory of elastic inclusions and inhomogeneities is used to derive a self-consistent model.
This is the method that was first used by Kroner [1958] to solve for the cubic polycrystal. There is,
however, a more powerful and fundamental method to derive self-consistent estimates called statistical
continuum mechanics, which we do not use in this paper. In an applied stress field, the inhomogeneity
looks like an inclusion. We introduce the equivalent inclusion to determine the stress disturbance of the
homogeneity by using the result of the inclusion. This allows us to solve for the strain disturbance of the
inhomogeneity in an applied field.

The self-consistent model lets the equivalent inclusion represent a grain of the polycrystal. The strain
disturbance then occurs because the local elastic and thermal properties of the grain differ from the
average values for the polycrystal. The condition for self-consistency is that the average grain response
is the same as the overall average of the polycrystal, or that the average disturbance vanishes. This leads
to an implicit equation for the self-consistent effective elastic constants and an explicit equation for the
self-consistent effective thermal expansion coefficient.



ELASTIC CONSTANTS AND THERMAL EXPANSION AVERAGES OF A NONTEXTURED POLYCRYSTAL 197

We next apply the results to crystals with cubic symmetry. For this case there are only three indepen-
dent components of the single crystal elastic constants. The analysis can then be simplified considerably
by using Walpole’s notation for the decomposition of unity. This approach leads to the logical choice of
the bulk modulus and shear modulus as the basic elastic constants to use in explicit calculations. When
written out explicitly the equation for the self-consistent elastic constants is complicated but straightfor-
ward. The bulk modulus is isotropic. The equation for the self-consistent effective shear modulus can
be reduced to a cubic equation, which was first obtained by Kroner [1958]. Finally, this equation can be
solved explicitly in closed form. It is easy to calculate average numerical results for cubic crystals.

For lower crystal symmetries the solution of the implicit equation leads to high-order equations for
the effective bulk and shear modulus. It is then best to continue the solution numerically. We present
some results of these calculations.

Hooke’s law

We start with a description of the elastic constants. For a single crystal, Hooke’s law can be written as
follows

0ij = Cijki€kis i j.k1=1,2,3), (1

where repeated indices are summed, o and e are the stress and strain, both second rank tensors, and c is
the elastic stiffness, a fourth rank tensor. Hooke’s law can also be written in matrix form as

0; =cije;, (i, j=1,...,6), (2

where o and e are the (6 x 1) stress and strain vectors and c is the (6 x 6) stiffness matrix. The two
notations, tensors and matrices, are completely equivalent. The relation between them has been discussed
in detail in [Nye 1960] and [Hearmon 1961]. The matrix form of the elastic stiffness or elastic moduli
was introduced by Voigt [1887] and is frequently referred to as the Voigt notation or reduced notation.
As in matrix theory, it is convenient to use the symbolic notation,

o =ce, 3)

to represent either of the foregoing equations. Equation (3) can be solved for the strain in terms of the
stress:

e=— =350,
c

where s, the elastic compliance, is the inverse of the stiffness c. We shall frequently use this divide
notation, 1/c, instead of the more common inverse notation, ¢~ 1. The elastic properties of stiffness and
compliance are usually referred to as the elastic constants of a material.

The effective medium

On a macroscopic scale a polycrystal may appear homogeneous or uniform, or perhaps, more generally,
its properties appear to vary smoothly. Therefore we shall represent it by an effective medium, which
is a model that approximately describes the overall average properties of the medium to some desired
degree of accuracy. This then represents a gross description of the polycrystal. We also assume that in



198 ROLAND DEWIT

the effective medium the average stress (o) and average strain (e) are related by the same simple form
as Hooke’s law for the single crystal

(o) = Cle), “)

where C is the effective stiffness. So the effective medium is homogeneous. We also assume that it
is isotropic and perfectly disordered. The latter means that there is no texture, no characteristic grain
shapes, no characteristic grain boundary geometry, no correlations between regions of the medium, such
as periodicity. The effective stiffness thus represents the average stiffness of the polycrystal. The bracket
notation stands for volume averages,

1 1
(a):v/.ad\/, (e)=V/edV,

\%4 \4

and so the average stress or strain can almost be regarded as applied fields or boundary conditions.
Equation (4) can now be solved for the average strain

(e) = — = S{o), (5

where S is the effective compliance. We have used the convention, suggested by Kroner [1958], that upper
case letters are used for isotropic tensors or matrices that are material properties of the homogeneous
effective medium. So upper case letters will represent the average properties of the polycrystal. Lower
case letters are used for tensors or matrices that vary locally through the heterogeneous medium or the
grains of the polycrystal and thus represent properties of the single crystal.

For an isotropic material there are only two independent elastic constants. Since the effective stiffness
is isotropic, its tensor components can be expressed in terms of the two elastic constants as follows

Cijii = K8 + G<5ik3jz + 810k — % 3ij5k1), (6)

where K is the effective bulk modulus, G the effective shear modulus, and § the Kronecker delta defined

as follows
1 ifi=j
8ij = oe
0 ifi##j

Skk = 3.

We can solve Equation (6) for K and G. If we calculate the two linear invariants of C we get
K=1cC:.
Ciijj = 9K 9 T

or | | @)
Cijij =3K +10G G =15 <Cijij_§ciijj>.
Thus we have expressed the two scalar elastic constants K and G in terms of the two linear invariants of
the stiffness tensor C. We can do the same manipulations with the effective compliance tensor

1 1
Sijkl = oK 3ij 6k + ic <3ik5jz + 81k — %51‘j3kl>-
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The linear invariants of S are

1 1
Siijj = % % = Siijj
or (8)
g..— L5 1_2(¢ 1o
il = 3¢ Y ag G~ 5 \"wu T3

So now we have expressed the two elastic constants also in terms of the two linear invariants of the
compliance tensor S.

The Voigt and Reuss models

To get actual expressions for the average elastic constants of a polycrystal in terms of the single crys-
tal elastic constants, the [Voigt 1887] and [Reuss 1929] models are frequently invoked, because they
provide an easy way to derive effective elastic constants. Furthermore, Hill [1952] showed that they
provide bounds on those constants. Voigt assumed that there is a homogeneous or constant strain in the
polycrystal, thus fulfilling compatibility, but not necessarily equilibrium. Reuss assumed a homogeneous
or constant stress, thus fulfilling equilibrium, but not necessarily compatibility. For the Voigt model the
actual strain is then equal to the average strain,

e = (e) = constant, )

and therefore we can decompose the average of the product of the stiffness and the strain into the product
of the average stiffness and the average strain (o) = (ce) = (c)(e). Comparing with Equation (4) we find
that for the Voigt model the effective stiffness is the average crystal stiffness,

Cy = {c), (10)
which provides an upper bound on C. In the Reuss model we have
o = (o) = constant, (11D

and so (e) = (so) = (s) (o). Comparing with Equation (5) we find that for the Reuss model the effective
compliance is the average crystal compliance,

Sk = (s) or Cr={(cH, (12)

which provides an upper bound on S and a lower bound on C. To proceed further and get more explicit
expressions for Equation (10) and Equation (12), we recall that fourth rank tensors have two linear
invariants, and the fundamental property of invariants is that they are scalars and therefore do not depend
on orientation in space. Therefore, each invariant is equal to its volume average. So we have

ciijj = (ciijj)  and  cijij = (cijij)- (13)
Combining Equation (7), (10), and (13) we get for the Voigt model the result

1
Ky =5 ciijj,

(14)
Gv =15 (Cijij - %cﬁj,-).
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In detail, we have both in tensor and matrix notation
9Ky = (c1111 + ¢2200 +¢3333) + 2(c1122 + 1133 + €2233) = (€11 + €22 +¢33) + 2(c12 + €13 + €23),
15Gy = (c1111 + 2202 + €3333) — (€1122 + €1133 + €2233) + 3(c1212 + 1313 + €2323)
= (c11 + 22 +¢33) — (c12 + 13+ ¢23) + 3(Ca4 + €55 + Co6) -

(15)
We also have for the compliance
siijj = (Siijj) and ;505 = (Sijij)- (16)
Combining Equation (8), (12), and (16) we get for the Reuss model the result
1 1 2 1
e = Sitiis Gr 5 \Suii = 3 5iij |- (7
In detail, we have
1
o= (s1111 + 52222 +53333) + 2(s1122 + 51133 +52233) = (511 + 522 +533) +2(512 + 513 + 523),
R
15 (13)
rer A(stinn + 52222 +53333) — 4(s1122 + 51133 +52233) + 3(s51212 + 51313 + 52323)
R

=4(s11 + 522 +533) — 4(s12 + 513 + 523) + 3(544 + 555 + S66)-

Hearmon [1961] has also derived these explicit equations, but by a different method. Hill [1952] showed
that the Voigt and Reuss averages formed the least upper bound and the greatest lower bound, respectively,
for the aggregate polycrystal.

Cubic polycrystal. For the special case of a cubic polycrystal, the Voigt relations (15) reduce to
3Ky =cq1 4+ 2cq2, 5Gy =cy1 —c12 4+ 3cy4. (19)

and the Reuss relations, Equation (18), become

1 5

3Kx =511+ 2512, Ga = 4(s11 — S12) + 3544. (20)
The Voigt and Reuss bulk moduli are identical in this case, Ky = Kg, and also equal to the single
crystal and effective polycrystal bulk modulus. This is only true for cubic symmetry; for other crystal

symmetries, the various estimates of the effective bulk modulus differ from each other.

Thermal expansion

Tomé [1998] showed how thermal expansion can be incorporated into the elastic equations. The stress in
Hooke’s law is related to the elastic strain, so in this case the total strain must be adjusted for the effects
of the thermal expansion in order to get the elastic strain. Equation (3) for the single crystal is therefore
modified to

o=cle—adT), (21)
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where « is the single crystal thermal expansion coefficient, a second rank tensor or a (6 x 1) vector, and
8T is a small temperature change that takes place uniformly throughout material. Equation (4) for the
effective medium is modified to

(o) = C((e) — AdT), (22)
where A is the average thermal expansion coefficient of the effective medium. We emphasize the fact

that « and A are tensors or (6 x 1) vectors by writing them boldface to distinguish them from the scalars
below. Equation (21) can be solved for the local strain in the single crystal,

e=s0+adT, (23)
and Equation (22) for the average strain in the effective medium,
(e) = S{o)+ AST. (24)

The stress or strain and the temperature change in these equations can be applied arbitrarily and therefore
these quantities will be treated as independent variables.

The Voigt model. With Voigt’s assumption of constant strain, Equation (9), Equations (21) and (22) lead
to Cy(e) —CyAydT = (c)(e) — (ca)dT. Since this equation holds for an arbitrary average strain (e)
and an arbitrary temperature change 7', we can equate their coefficients. The first equality gives the
relation Equation (10), which we already found without taking the influence of a temperature change
into account. The second equality is

(ca)

CvAV = (CO() or AV = —
Cy

— Sy (ca). (25)

Tomé [1998] also found this result. Since the effective thermal expansion coefficient is isotropic, it can
be expressed as A;; = Ad;;, where A is the scalar effective thermal expansion coefficient. With the help
of Equation (6), we can derive the relation

1
A=—CiiniAu. 26
ox CiiktAu (26)

We now take the linear invariant of Equation (25) and substitute it into Equation (26), remembering that
the invariant is equal to its average, to get the effective thermal expansion coefficient for the Voigt model

1
Ay = 9Ky CiikiOll - (27)

In detail we have in both tensor and matrix notation
9Ky Ay = (cr111 +cr122 +cr133)ann + (€122 + 2222 + €2233)22
+(c1133 + 2233 + €3333) 033 + 2(C1112 + 1222 + C1233) X 12

+2(c1113 + €1333 + c2213) 0013 + 2(c1123 + €2223 4 €2333) 023,

= (c11 +cip+cz)ag + (c12 + 2+ c23)an + (€13 + €23 +c33)3
+2(c14 + 24 + c3a)0s + 2(c15 + €25 + c35)as5 + 2(c16 + €26 + C36)6.  (28)
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Note that the effective thermal expansion coefficient of a polycrystal is coupled to the elastic constants in
the Voigt model. For crystal structures where the off-diagonal terms of the elastic constant matrix vanish,
such as cubic, hexagonal, tetragonal, and orthorhombic, the second line of Equation (28) vanishes and
the equation simplifies considerably.

The Reuss model. With Reuss’ assumption of constant stress, Equation (11), Equations (23) and (24)
lead to Sg{o) + ARST = (s){(o) + (a)é6T. Since this equation holds for arbitrary average stress (o) and
arbitrary temperature change §7', we can equate their coefficients. The first equality gives the relation
Equation (12), which we already found without the influence of temperature. The second equality is

AR = (a). (29)
Tomé [1998] also found this result. The linear invariant of this equation is
Ap =3 (30)
In detail, we have the simple result
AR =3 (a1 + o +a33) = H(1 +az + a3). 31

So in the Reuss model the overall thermal properties are independent of the elastic properties.

Eshelby’s theory

To obtain a self-consistent estimate of the effective properties we use Eshelby’s theory of elastic inclu-
sions and inhomogeneities [Eshelby 1961]. That is the method Kroner [1958] first used to get a solution
for the cubic polycrystal. Kroner [1972] later used statistical continuum mechanics to derive the same as
well as additional results. The subject of inclusions, inhomogeneities, and the equivalent inclusion has
been treated in detail by Mura [1982]. In the present treatment we also include Tomé’s contribution for
thermal expansion [Tomé 1998].

The inclusion. Consider an infinitely extended homogeneous material in domain D with elastic con-
stants C everywhere, containing a domain  with a stress-free strain e, which is called the transformed
inclusion. This inclusion causes a local stress o’ and strain ¢’, which are related by Hooke’s law

o'=C—-ef), inQ,

o' =C¢, in D —Q.

If e” is uniform and € is an ellipsoid, then the stress o’ and strain ¢’ are also uniform in  and related
to e by

¢ =Eef, inQ, (32)
where E is the Eshelby tensor, which is a constant. Let us apply a stress o at infinity with a corresponding
strain e, and a temperature change 67 . The bar is used to denote that these quantities will be overall
average values. They are related by Hooke’s law ¢ = C(e — A3T). The resulting total stress o is then
given by
o'=C(e+e —el —AST), inQ,

+
_ _ . (33)
=040 =C(e+e —AST), in D—Q.
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The prime represents deviations from the average value.

The inhomogeneity. Consider an infinitely extended material in domain D with the elastic constants C
and thermal expansion A containing a domain 2 with the elastic constants ¢ and thermal expansion «,
which is called an inhomogeneity. We investigate the disturbance in an applied stress and temperature
increment caused by the presence of this inhomogeneity. Let us again denote the applied stress at infinity
by ¢ and the corresponding strain by e, and the temperature increment by §7', while the stress disturbance
and the strain disturbance are denoted by ¢’ and ¢’, respectively. The total stress (actual stress) is o, and
the total strain is e. Hooke’s law is written as

oc=0+0" =cle—adT)=c(e+e —adT), in Q,

_ _ . (34)

c0=0+0 =C(e—AST)=C(e+e — AST), in D — Q.
The equivalent inclusion. The equivalent inclusion is a method to determine the stress disturbance of
the inhomogeneity using the result of the inclusion. So the inclusion has been introduced arbitrarily in
order to simulate the inhomogeneity problem. In an applied stress or strain field, the inhomogeneity
looks like an inclusion. The necessary and sufficient condition for the equivalency of the stresses and
strains in the above two problems of inhomogeneity and inclusion is

c@+e —adT)=C@e+e —ef — AST), in Q. (35)

This equation can solved for ¢’ when the transformed inclusion problem, Equation (32), in the homo-
geneous material is solved for E. After obtaining ¢’, the stress o can be found from Equation (34) or
Equation (33). If & is a uniform stress and 87 a uniform temperature change, e’ is also uniform in £
and Eshelby’s Equation (32) can be used. Substitution of Equation (32) into Equation (35) gives

/
c(e+¢ —asT) =c(é+e’— % —AST), in .

The solution of this equation for the strain disturbance is

—dce —CA)ST
o = g dcet (ca = CANT (36)
ScE+C

where we have defined 6c = ¢ — C. So Equation (36) represents the local strain disturbance at the
inhomogeneity when a uniform strain e and temperature change 67 is applied to the domain.

The self-consistent model

We now take the equivalent inclusion to represent a grain in the polycrystal. The interpretation of Equa-
tion (36) is then as follows. The applied strain e and temperature change §7 cause a strain disturbance
¢’ in the grain because the local elastic and thermal properties of the grain differ from the average elastic
and thermal properties of the polycrystal. The condition for self-consistency is that the average grain
response is the same as the overall average for the polycrystal, or that the average disturbance vanishes:
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(€'Y = 0. Since e and 8T are independent and E is constant, we then get from Equation (36)

éc
(se55c)=" a7
<M> —0. (38)
ScE+C

These equations are consistent with those of Tomé [1998]. Equation (37) is an implicit equation for
the self-consistent effective elastic stiffness C. For cubic crystal symmetry it leads to a cubic equation
for the self-consistent effective shear modulus, discussed below. It can also be solved for lower crystal
symmetries, but then leads to a pair of high-order coupled equations for the effective bulk and shear
modulus. For example, for hexagonal symmetry it leads to one equation that is quadratic in both K and
G, and another equation that is quadratic in K and sixth order in G. In general, the simpler equation can
be solved for K in terms of G and the result substituted into the other equation. It is then best to solve
this latter equation numerically rather than symbolically. There are many solutions, but usually there is
only one real positive one. The expression Equation (38) can be solved as

A= <(SCE+C> (39)

C b
<80E +C )
once the stiffness C has been obtained. For numerical purposes, this equation is rather tedious and
lengthy. The calculation can be simplified as follows. If we define the (6 x 1) vector

cao
V= —,
ScE+C
and the (6 x 6) matrix
C
ulsec)
ScE+C
then the scalar effective thermal expansion coefficient is given by
_ V1 +vytus . (40)
3(Myy +2M12)

Upper limit. 1If we assume that the inhomogeneity is very soft, that is, E = 0, then Equations (37) and

(39) reduce to

c—C)=0, and A :<%>

which reduce to the Voigt solutions, Equation (10) and Equation (25).

Lower limit. 1If we assume the inhomogeneity is very hard, E = I, then Equation (37) and Equation (39)

reduce to c Cioi
<C— >:0, A:<—> (o). (41)
c c
which reduce to the Reuss solutions, Equation (12) and Equation (29), when we note that from Equation
(41) we have
C\-1
(=) =1 (42)
c
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The Walpole notation

Walpole [1981] introduced a notation that greatly simplifies symbolic manipulations for isotropic and
cubic materials. A fourth-order tensor will generally have a structure that reflects some underlying
geometric symmetry, like that of a crystal. An appropriate decomposition of the structure of a tensor can
reflect valuable physical insight while offering to simplify greatly the calculation of various inverses and
inner products. Isotropic tensors are the principal ones to be prepared for in detailed calculations and
there is a smaller role for anisotropic tensors that reflect the symmetry of cubic crystals.

Isotropic case. Walpole decomposed unity as I = J 4+ K. In terms of fourth rank tensors these symbols
are defined as

liju = %(31'143]‘1 + 818k, Jijr = %3ij5k1,

Kiju = %(31'143]‘1 + 810k — _%(Sij&d)-

In terms of (6 x 6) matrices we have the definitions

100000 353 000) 211 0 0 0
010000 11roo00 L2190 0 0
,_|001000 . 333000 c|"i-F 3000
~looot1o00]| 000000} oo 0o 1 0 0
000010 000000 0O 0 0 0 1 O
00000 1 000000 0 0 0 0 0 1)
The decomposition is idempotent and orthogonal:
JJ=1J, KK =K, JK=KJ=0.
The linear invariants are
liijj =3, Jiijj=3, Kiijj =0,
l;jij =6, Jijij=1, Kijij =5. (43)

In the matrix notation the first invariant is the sum of all elements in the upper left quadrant, and the second
invariant is the sum of all the diagonal elements. With this notation the effective stiffness, Equation (6),
can now be written in symbolic notation

C=3KJ+2GK. (44)

We see that decomposition reflects a split into an isotropic or dilatational part and a deviatoric or shear
part. The Eshelby tensor for a spherical inclusion can be found in many texts [Kroner 1958; Eshelby
1961; Kroner 1972; Walpole 1981; Mura 1982; Tomé 1998] and in this notation it can be written

3K 6 2G+K

E=—— J4_——~T-
1613k T53643K
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Cubic symmetry. For a cubic crystal, Walpole further decomposed K as K = K’ + K”. For the tensor
definitions of these symbols see Walpole. In terms of (6 x 6) matrices,

(%—%—% 0 0 0 (000000
-3 3-% 0 0 0 000000
K= -1-1 2 0 0 0’ 000000
00 0 0 0 0 000100
00 0 0 0 0 000010
00 0 0 0 0 \ 000001

This decomposition is also idempotent and orthogonal:

K'K' =K’
K//K// — K//
K'K"=K"K' =0, (45)
JK'=K'J =0,
JK//=KNJ=0.

The linear invariants are

K .. =2, Kl./}ij:& (46)
With this notation the cubic crystal elastic stiffness can be written in a form that resembles the isotropic
case

c=3kJ+2u'K +2u"K", (47)

where « is the bulk modulus. Here u’ and u” are the {001}(110) and {001}(100) shear resistance of
the crystal, respectively. For cubic crystals these moduli can be regarded as more fundamental elastic
constants than the stiffness and compliance. They are related as follows

1 1
Kk=—-(cn1+2c1n) =",
3 en ) 3(s11+2s12)
1 1
/
w==(n—cp)=——"7, (48)
2 2(s11 — s12)
1
M” =C44 = —.
S44
The relations Equation (45) make it simple to calculate inverses, such as the elastic compliance
1 K/ K//
§=- J (49)

c:§+2u’+2,u//'

To prove this relation, take the matrix product of Equations (47) and (49) and show that it is unity.
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Cubic crystal symmetry

We next apply some of the foregoing equations to the special case of cubic symmetry. For cubic symmetry,
the results are much simpler than for all the lower crystal structures.

Voigt model. We illustrate the application of the concepts first to the Voigt model. From Equations (14),
47), (43), and (46) we have Ky = «, and

Gy = g/JL’JrEM”- (50)
5 5

These results are the same as Equation (19). Furthermore, Equation (50) illustrates a general rule for
averaging the cubic shear components, that is, take two fifths the coefficient of K’ plus three fifths the
coefficient of K”.
Reuss model. For the Reuss model, we have from Equations (49), (43), and (46) Kg = « and
> 2 + ) (51)
Gr - w :
These results are the same as Equation (20). Equation (51) illustrates the general rule mentioned above.

Self-consistent model. In terms of the Walpole notation we have from Equation (44) and Equation (47)
Sc=c—C=3k—-K)J+2(uW —G)K' +2(u" —G)K".

Using this we can also write

c__ K J+ G K'+ K"
S¢ k—K w—G w' -G
Therefore
éc 1 J K’ K’
ScE+C  E+C T 3K K~ T § 261K G T 56tk G_- (52)
5% do3k Tk 53643k T w—G 53643k T =G
Setting the average equal to zero, Equation (37), we have
J 2 K n 3 K 0
3K K 56 2G+K G 5 6 2G+K G~
ek Tor 2 sicuk Tt O sicurktioc

Since J and K are independent, their coefficients must vanish separately

1 2 3

3K =0, 6 2G1K ¢ T 526K ¢ =0

4G+3K +i—x 54G13K + w—G 54G+3K + -G

The first equation can also be obtained by setting the first invariant of Equation (52) equal to zero, and
has the solution

K =«. (53)
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The second equation can also be found by setting the second invariant of Equation (52) equal to zero,
and can be reduced to the form

8G> 4+ (Y +4u)G* —3(k + 4 )1 G — 6k 1" = 0. (54)

This is a cubic equation for the self-consistent effective shear modulus G of a cubic polycrystal that is
statistically homogeneous, isotropic, and perfectly disordered. It was first obtained by Kroner [1958].
Hershey [1954] previously obtained a quartic equation that included Equation (54) as a factor.

The solution. There are general closed form solutions for cubic equations. If we write Equation (54) as
follows

3G’ + 712G+ 71G + =0, (55)
with the coefficients
y3 =8, v2 =9 +4u/, (56)
vi=-=3@k+4uHn",  yo=—6cp'n’,
and define

then the only nonnegative solution of Equation (55) for the effective self-consistent shear modulus of a
cubic polycrystal is
G = 2£ cos[l arccos(i)] — ﬁ (58)
Y3 3 2p3 3y
It is now straightforward to calculate the average cubic polycrystal shear modulus from the single crystal
elastic constants. Ledbetter calls this approach the Hershey—Kroner—Eshelby model. He measured elastic
constants for copper [Ledbetter 1981] and stainless steel [Ledbetter 1984] and found that among nine

different averaging models this model works best.

Thermal expansion. For a cubic crystal the thermal expansion coefficient is isotropic: o;; = ad;;.
Therefore all cases, that is the Voigt model Equation (27), the Reuss model Equation (30), and the
self-consistent model Equation (38), reduce to A = «. Since the thermal expansion is isotropic in cubic
crystals there is no difference between the polycrystal and the single crystal.

Some numerical results for cubic crystals. Table 1 shows the single crystal elastic constants of several
cubic crystals at room temperature. The values are obtained from the handbook by Simmons and Wang
[1971] except that those for calcium are from [Ledbetter and Kim 2001].

We have chosen a set of materials covering a wide range of anisotropy, where the Zener anisotropy
factor is given from the formula [Zener 1948]

w 2ean 2(s11 —s12)
c1—ci2 544

Table 2 shows values of the average bulk and shear modulus for cubic polycrystals calculated from the
data in Table 1, using Equations (48), (53), (50), (51), (56), (57), and (58). The Voigt and Reuss values
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Material cii ci C44 Anisotropy
Aluminum 1.073 0.609 0.283 1.22
Calcium 1.076 0.125 0.5758 1.21
Calcium Fluoride 1.628 0.433 0.334 0.56
Copper 1.684 1.214 0.754 3.21
Diamond 9.5 3.9 4.3 1.54
Gold 1.7893 1.4863 0.4367 2.88
Lead 0.466 0.392 0.1441 3.89
Lithium 0.135 0.1144 0.0878 8.52
Silver 1.24 0.934 0.461 3.01
Silver Chloride 0.601 0.362 0.0625 0.52
Sodium 0.0526 0.0404 0.0426 6.98
Sodium Chloride 0.487 0.124 0.126 0.69

Table 1. Single crystal elastic constants for several cubic crystals in units of Mbar.

Material K Gy Gr Gyry Gg

Aluminum 0.764 0.263 0.260 0.261 0.261
Calcium 0.442 0.536 0.531 0.533 0.533
Calcium Fluoride 0.831 0.439 0.406 0.423 0.422
Copper 1.371 0.546 0.400 0.473 0.482
Diamond 5.767 3.700 3.541 3.621 3.625
Gold 1.587 0.323 0.249 0.286 0.292
Lead 0.416 0.101 0.067 0.084 0.087
Lithium 0.121 0.057 0.022 0.039 0.040
Silver 1.036 0.338 0.255 0.297 0.302
Silver Chloride 0.442 0.085 0.077 0.081 0.081
Sodium 0.045 0.028 0.013 0.020 0.021
Sodium Chloride 0.245 0.148 0.144 0.146 0.146

Table 2. Average elastic constants for several cubic polycrystals in units of Mbar. The
bulk modulus is denoted by K and the shear modulus by G. The subscripts denote Voigt
(V), Reuss (R), Hill (VRH), and self-consistent (S).

always bracket the self-consistent value. The Hill average is defined as the arithmetic mean of the Voigt
and Reuss average [Hill 1952]:

Gvru = 3 (Gv + Gp).

It is often close to the self-consistent value, G s. More exhaustive listings are given in [Kroner 1972] and
[Ledbetter and Kim 2001].
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Other crystal symmetries

For symmetries lower than cubic, Equation (37) is better solved numerically. Tables 3 and 4 give the
single crystal elastic constants and thermal expansion coefficients of several different crystal structures
at room temperature [Simmons and Wang 1971; Krishnan et al. 1979].

The anisotropy factor for these crystal structures is a generalization of the Zener factor and is given by

A — 2(ca4 + 55 + Co6)
Ci1+cn+c33—Ccrp—C13 —C23

To obtain the self-consistent values, Equation (37) is solved simultaneously for the bulk modulus, K, and
the shear modulus, G, which are then denoted by K and G . The results are given in Table 5. The Voigt
and Reuss values are given by Equations (15) and (18). As before, the Hill values are the arithmetic
mean of the Voigt and Reuss averages, and lie close to the self-consistent values.

Material Crystal cii c ci3 3 Ci4 c»
Titanium | hexagonal 1.624 0.92 0.69 0.69 0.0 1.624
Zirconium | hexagonal 1.434 0.728 0.653 0.653 0.0 1.434
Indium tetragonal 0.445 0.395 0.405 0.405 0.0 0.445
Tin tetragonal 0.86 0.35 0.3 0.3 0.0 0.86
Calcite trigonal 1.4626 0.597 0.5076 0.5076 —0.2076 1.4626
Quartz trigonal 0.8501 0.0696 0.1412 0.1412 0.1678 0.8501
Aragonite | orthorhombic | 1.5958 0.3663 0.0197 0.1591 0.0 0.8697
Uranium | orthorhombic 2.148 0.465 0.218 1.076 0.0 1.986
Table 3. Single crystal elastic constants for several crystals in units of Mbar.
Material c33 C44 Cs5 Ce6 Anisotropy o o) o3
Titanium 1.807 0.467 0.467 0.352 0.93 9.55 9.55 10.65
Zirconium | 1.648 0.32 0.32 0.353 0.80 5.7 5.7 11.4
Indium 0.444 | 0.0655 | 0.0655 0.122 3.92 1.2 1.3 —0.81
Tin 1.33 0.49 0.49 0.53 1.44 14.64 | 14.64 | 28.14
Calcite 0.8531 | 0.3405 | 0.3405 | 0.4328 1.03 —-56 | —5.6 25
Quartz 1.0535 | 0.5722 | 0.5722 | 0.39025 1.28 13 13 8
Aragonite | 0.8503 | 0.4132 | 0.2564 | 0.4274 0.79 35 17 10
Uranium 2.671 1.244 0.734 0.743 1.08 2541 | 0.65 20.65

Table 4. Single crystal elastic constants in units of Mbar and thermal expansion coeffi-
cients in units of 107°K ~! for several crystals.



ELASTIC CONSTANTS AND THERMAL EXPANSION AVERAGES OF A NONTEXTURED POLYCRYSTAL

211

Material Ky K Kyry Kg Gy Gr GyrHu Gg

Titanium 1.073 1.073 1.073 1.073 0.441 0.426 0.434 0.434
Zirconium | 0.954 0.952 0.953 0.953 0.364 0.356 0.360 0.360
Indium 0.416 0.416 0.416 0.416 0.0592 0.0372 0.0482 0.0491
Tin 0.550 0.535 0.543 0.542 0.442 0.410 0.426 0.428
Calcite 0.778 0.716 0.747 0.750 0.367 0.269 0.318 0.315
Quartz 0.384 0.377 0.381 0.381 0.467 0.405 0.436 0.433
Aragonite 0.490 0.447 0.468 0.464 0.404 0.367 0.385 0.383
Uranium 1.147 1.114 1.131 1.128 0.881 0.807 0.844 0.842

Table 5. Average elastic constants for several polycrystals in units of Mbar. The bulk
modulus is denoted by K and the shear modulus by G. The subscripts denote Voigt (V),

Reuss (R), Hill (VRH), and self-consistent (S).

Table 6 shows the effective thermal expansion coefficients calculated from Equations (28), (31), and

(40).

Summary

The concept of effective medium and effective material properties has been described, in particular for
elastic constants and thermal expansion. The effective properties are used to represent the overall average
properties of a polycrystal. The concept is then applied to the particular cases of the Voigt, Reuss, and
self-consistent models to obtain expressions for the overall average properties of a polycrystal in terms
of the single crystal components. The self-consistent model is derived by invoking Eshelby’s theory of
inclusion and inhomogeneities. It gives an implicit equation for the self-consistent elastic constants and
an explicit equation for the self-consistent thermal expansion coefficient. A brief description is given of
the Walpole notation for isotropic and cubic materials. For the particular case of cubic symmetry the

Material Ay AR AvRrH Ag Crystal
Titanium 9.913 9.917 9.915 9.915 hexagonal
Zirconium 7.662 7.600 7.631 7.629 hexagonal
Indium 0.527 0.530 0.528 0.527 tetragonal
Tin 19.90 19.14 19.52 19.52 tetragonal
Calcite 2.564 4.60 3.582 3.440 trigonal
Quartz 11.07 11.33 11.20 11.20 trigonal
Aragonite 23.46 20.67 22.06 21.79 orthorhombic
Uranium 15.12 15.57 15.34 15.39 orthorhombic

Table 6. Average thermal expansion coefficients in units of 107®K ~! for several poly-
crystals of different crystal symmetries.
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bulk modulus and thermal expansion are isotropic and the self-consistent shear modulus satisfies a cubic
equation, which can be solved explicitly. Some numerical results calculated from the solution are listed.
For lower crystal symmetries, the equations are solved numerically. Results are given for the average bulk
modulus, shear modulus, and thermal expansion coefficients of various hexagonal, tetragonal, trigonal,
and orthorhombic polycrystals. In general, it is found that the Hill average is close to the self-consistent
value.
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