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This work derives internal pressure induced stresses in material imbedded with square-shaped microchan-
nels. The first part provides background on microchanneled materials at micro and nanoscale to motivate
investigating the stress and deformation states. The second part develops a simplified model to charac-
terize the plastic flow and/or motion of dislocations within crystalline, microchanneled materials. The
model helps identify slip bands around the channels under plane strain deformation conditions. The
third part derives solutions to the stress states around the microchannels, obtaining closed form solu-
tions which hold for regions containing and away from the channel boundary. Figures depict the stress
solutions in both physical and stress space. The results predict nonuniform deformation states around
the channels and also reveal the yield conditions associated with the plastic flow along different slip
bands. The work concludes with case studies on the stress states of microneedles containing square
microchannels for applications such as fluid injection, nanofiber growth, and cell registration.

1. Introduction

Microchannels and arrays of channels function as important components in many microscale and nano-
scale systems [Allen 2005]. For example, microchannels and their arrays can be fabricated for molecular
sieves, particle filters, capillary pores, or nutrient delivery units. Microchannels have also been used for
chemical reaction flow beds, nanoimprinting molds, ink jets, and templates for synthesis of nanofibers.
Fabrication technology for microfluidic channels has been extensively studied [Franssila 2004]. To make
a microchannel, it is very common to sandwich a sacrificial photoresist layer between two layers. Support-
ing posts may be added into the photoresist to allow larger embedded features, as shown by Hwang and
Song [2007]. After photolithography, microchannels form from selective dissolution of the photoresist
[Senturia 2001].

Many publications explore new technology for fabricating microchannels. A three dimensional manu-
facturing process has been developed to make embedded microchannels using scanning laser systems, as
shown by Lee et al. [2003], Li et al. [2004], Yu et al. [2004], Yu et al. [2006a], and Yu et al. [2006b]. The
authors discussed potential ways to manipulate and position cells using suction forces. Recently, Ziegler
et al. [2006] fabricated neural probes with built-in microfluidic channels by micromolding and thermal
bonding of Parylene without using a photoresist. The probes containing the fluidic channels were tested
for delivering small amounts of drugs into biological tissue as well as for neural recording.

Keywords: microchannel, anisotropic deformation, stress field, plastic flow, nanocrystalline material.
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One issue confronting microchannels is mechanical deformation. Engineers must ensure that the
channels maintain a constant size, even as they are put through the rigors of their various applications.
For microchannels used for inkjet printing, biofluid printing, fuel injection, drug delivery, or integrated
circuits (IC), dimensional stability requires good cooling. A constant size is also required to successfully
register a single cell in a microwell or channel. And, when using microchannels for bioparticle registra-
tion [Zhe et al. 2007] or microinjection [Lu et al. 2007], controlling their size is necessary for accurate
counting or medicine delivery.

Microchannels in devices such as microfluid droplet injectors are typically under under both thermal
and internal compressive loads, as addressed by Tseng et al. [2002a] and Tseng et al. [2002b]. These
loads can cause single channels to deform in a way the could significantly influence the performance of
the entire channel array structure, in view of hydraulic cross-talk, flow resistance and fluid accumulation.
In microfluidic devices, the stresses around the microchannels come from other sources, such as fluid
pressure, electric potential, van der Waals, and capillary forces. Sidewall contact friction, as described by
Timpe and Komvopoulos [2006], may also cause the stresses to redistribute around the microchannels.
Predicting the deformation state around a microchannel requires determining the stress field.

The problem of microcavities in isotropic plastic materials has caught much attention because of their
importance in fracture mechanics. For example, Tvergaard and Hutchinson [2002] analyzed numerically
a two-dimensional plane strain model with multiple discrete cavities and found that cavity interaction
determines the threshold for crack initiation and their resistance to growth. Lubarda et al. [2004] studied
how cavities grow by emitting dislocations and proposed an onset criterion for such events at the surface
of a cavity under remote tension. They also calculated, for any initial cavity size, the critical stress for
emitting a single dislocation or a dislocation pair. They found that the critical stress decreases with
increasing cavity size and also found that dislocations with a wider core are more likely to be emitted
than ones with a narrow core.

Many factors influence the growth of cavities in elastic-plastic crystalline solids, for example, plastic
anisotropy [O’Regan et al. 1997] and crystallographic orientation [Schacht et al. 2003]. The length-scale
effect in plastic deformation has also been found in the growth of microcavities [Fleck et al. 1994];
the nonlocal elastic-plastic material model reveals that the rate of cavity growth decreases significantly
when the cavities are shrunk to sizes approaching the characteristic length of the material [Tvergaard
and Niordson 2004]. The cavity size distribution also affects the crack growth rate [Needleman and
Tvergaard 1991]. Huang et al. [1991] and Tvergaard [1991] have addressed cavitation instabilities in
elastic-plastic solids.

Using the formalism of anisotropic slip line theory, Kysar et al. [2005] derived the stress state in a
cylindrical void due to far-field external compression. In recent work [Gan and Kysar 2007], we presented
the solutions to the stresses from both internal pressure and far-field loading. In addition, we obtained
experimental and simulation results to validate the theory predicting the deformed state in materials
containing microcavities [Gan et al. 2006]. In fabricating microelectromechanical systems (MEMS) and
nanoelectromechanical systems (NEMS) in single crystalline materials such as Si, Cu, Ni, Ag, Au, and
Pd, sharp-cornered channels may form because of anisotropic etching [Senturia 2001]. Understanding
the deformation of materials containing such channels — which will entail studying the anisotropic stress
states around them — will be helpful for MEMS and NEMS design.
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This work uses a simplified plastic flow model to derive stresses near square-shaped microchannels.
We determine slip bands around the channels in materials under plane strain deformation conditions and
establish different stress zones associated with the active slip of two systems. We derive closed-form
solutions in stress zones that either contain or are away from the channel inner boundary. The stress
solutions are plotted in both physical space and stress space. The results will be used to analyze the
deformation state around the microchannels. Finally, we give stress maps of microneedles containing
square shaped microchannels.

2. Plasticity analysis

2.1. Slip model. If the matrix material containing microchannels has a well defined yield point, the
plastic flow analysis of Nadai [1950] will determine the stress state in the infinitesimal control volume
containing the boundary point O shown in Figure 1a. Define x-y coordinates so that the x-axis is parallel
to the internal pressure. Also define local ξ -η coordinates so the ξ -axis follows the plastic flow. The ξ -η
coordinates define the principal stresses of the problem. The maximum normal stress σm is parallel to
the η-axis, and the maximum shear stress τm is along the ξ -axis.

Assuming that the angle between x and ξ is φ, the principal stress components are

σm = −
p
2

[1 − cos(2φ)] , τm = −
p
2

sin(2φ).

Define −εxx as the compressive plastic strain in the η direction. Assuming incompressibility, the mate-
rials expands in all other directions, and the magnitude of strain due to the expansion must be εxx/2. If
the pressure along the entire boundary NT is uniform, as shown in Figure 1b, the normal strain along the
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Figure 1. Schematic of a microchannel and the deformation state: (a) square microchan-
nel, (b) magnified region around point O showing the slip in the material under internal
pressure.
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η-axis, εm , and the shear strain along the ξ -axis, γm , are

εm =
εxx

4
[1 + 3 cos(2φ)] , γm =

3εxx

4
sin(2φ).

In this problem, we consider slip to be the major plastic deformation mechanism. The plastic flow along
the ξ -axis results in vanishing net normal strain, that is

εm =
εxx

4
[1 + 3 cos(2φ)] = 0,

from which cos(2φ) = − 1/3 and φ = 54.7◦. By symmetry, another solution φ = − 54.7◦ holds in the
quadrant with y < 0 and x > 0, as schematically shown in Figure 1b. Also by symmetry, we obtain the
distribution of all the slip bands around the microchannel, as shown in Figure 2. From Figure 2, only one
slip band exists in each half-quadrant, that is, only one slip system is active. For example, in the angular
region 0 ≤ θ ≤ π/4, slip system 1 is active, while in π/4 ≤ θ ≤ π/2, only slip system 2 is active, and
so forth. According to Rice [1973], if the single slip condition holds, the two families of slip lines form
mutually orthogonal nets. Slip lines parallel to the slip direction are defined as α-lines; and those normal
to the slip plane are called β-lines. In this case, the α-lines are along the ξ -axis, while the β-lines are
along the η-axis.

2.2. Yield surface. Schmid’s Law for a single split system describes the state just before it yields:

n · 6 · s = ±τ, (1)

54.7 o
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Figure 2. Illustration of the slip bands around the microchannel.
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Figure 3. Yield surface associated with the two active slip systems: (a) yield surface
without rotation, (b) rotated yield surface.

where τ is the shear strength, n is the surface normal of the slip plane, s is a unit vector along the slip
direction, and 6 is the stress tensor given in rectangular coordinates as

6 =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 . (2)

We denote the rectangular components of n and s by (sx , sy, sz) and (nx , ny, nz). Because we consider
here deformation under the plane strain conditions, the slip occurs within the x-y plane, and sz = 0. For
the plane strain state, σxz = σzx = 0 and σyz = σzy = 0. Also, because the stress tensor is symmetric,
σxy = σxy .

Fully written out in components, Equation (1) reads

nxσxx sx + nyσyx sx + nxσxysy + nyσyysy = ±τ,

or, rearranging,
nx sxσxx + nysyσyys + (nx sy + nysx)σyx = ±τ.

The components of s and n are expressed in the slip angle φ as

sx = cos φ, sy = sin φ,

nx = − sy = − sin φ, ny = sx = cos φ,

and the yield condition becomes either of

sin(2φ)
σxx − σyy

2
+ cos(2φ)σxy = ± τ or σxy = tan(2φ)

σxx − σyy

2
±

τ

cos(2φ)
. (3)

Let X = (σxx − σyy)/2 and Y = σxy . The yield functions as defined by Equation (3) can be plotted
in the stress space or 5-plane with X as the abscissa and Y as the axis. The function can be used to



296 YONG XUE GAN

Vertex A B C D

X
(

σxx − σyy

2τ

)
3
√

2
4

0 −
3
√

2
4

0

Y
(σxy

τ

)
0 3 0 −3

Table 1. Yield surface vertices on (left) X -Y plane and (right) the X∗-Y ∗ plane.

define a yield surface shown in Figure 3a and derived as follows. Obviously, two parallel lines define
the yield condition for the active slip of slip system 1 with the angle φ. The slope of the two lines is
tan(2φ), and the two lines intercept the Y -axis at ±τ/ cos(2φ). Similarly, for the slip system with the
slip angle −φ, slip system 2, the yield surfaces are represented by another two lines with slope − tan(2φ)

and intercepting the Y -axis at ±τ/ cos(2φ). Altogether, these four lines draw the diamond shape shown
in the figure. Table 1 lists the coordinates of the diamond’s vertices.

In a local ξ -η coordinate system with the ξ -axis along the slip direction s and the η-axis along the slip
plane normal n, the yield surface is obtained by rotating clockwise by 2φ the original yield surface in
the 5-plane. Figure 3b shows the rotated yield surface plotted on the 5∗-plane with X∗ as the abscissa
and Y ∗ as the axis. Table 2 lists the vertices.

We will use these results from the analysis of yielding for solving the stresses in Section 3.

3. Stress field solution

3.1. Boundary condition. Because the inner surface of the microchannel is under compression, we have
at point O that σxx = − p, where p is the internal pressure. As an approximation, we assume that this
boundary condition propagates into the inner vertical wall of the channel. We assume that σxy = 0 on
the inner wall because the free surface condition holds. However, σyy needs to be determined from the
yield conditions. We note that the sign before τ in the right hand sides of Equation (3) should be positive
because the compressive state inside the channel implies (σxx − σyy)/2 < 0. Thus, the stress state at
point O in the x-y physical space corresponds to point C in the X -Y stress space.

Vertex A∗ B∗ C∗ D∗

X∗

(
σxx − σyy

2τ

)
−

1

2
√

2
2
√

2
1

2
√

2
−2

√
2

Y ∗

(σxy

τ

)
−1 −1 1 1

Table 2. Yield surface vertices on the X∗-Y ∗ plane.
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Figure 4. Typical stress zones in the angular region 0 ≤ θ ≤ π/4.

Once the sign before τ in Equation (3) is known, the stress component σyy can be found from a
simplified yield condition, that is,

σxy = tan(2φ)
σxx − σyy

2
+

τ

cos(2φ)
.

Substituting σxx and σxy into this equation and solving for σyy yields

σyy =
τ

sin(2φ)
− p.

Therefore, the boundary conditions can be expressed as

σxx = − p, σyy =
τ

sin(2φ)
− p, σxy = 0.

In polar coordinates, the stress components on the boundary are

σrr = σxx cos2 θ + σyy sin2 θ + σxy sin(2θ) =
2τ sin2 θ

sin(2φ)
− p,

σθθ = σxx sin2 θ + σyy cos2 θ − σxy sin(2θ) =
2τ cos2 θ

sin(2φ)
− p,

σrθ = −
1
2
(σxx − σyy) sin(2θ) + σxy cos(2θ) =

τ sin(2θ)

sin(2φ)
.



298 YONG XUE GAN

Vertex x-position y-position

a 1 0
b 1 1

c 1 +
√

2/3 2/3

d 1 +
√

2 0

e 2 +
√

2 2 +
√

2

f 2 + 5
√

2/3 4/3 +
√

2

g 4 + 3
√

2 0

Table 3. Stress zone vertices.

3.2. Stress zones. The analysis of plastic flow and slip band in Section 2.1 implies the region around the
microchannel can be divided into discrete zones as shown in Figure 4. In each zone, the stresses show
similar properties. For example, in stress zone 1, the stresses are influenced by the boundary conditions
given in Section 3.1. Stress zone 2 is adjacent to stress zone 1, and all the points in the two zones share
the same β-line. Stress zone 3 is also adjacent to stress zone 1, but all the points in these two zones
share the same α-line. Stress zone 4 is bounded by two α-lines (ce and d f ) and two β-lines (cd and e f ).
Additional stress zones such as stress zone 5 and stress zone 6 can be defined, as illustrated in Figure 4.
For convenience, Table 3 lists the vertex coordinates in these stress zones.

3.3. Stress zone 1. Suppose that R1 is an arbitrary point within stress zone 1. The α-line passing through
R1 intercepts the inner boundary of the microchannel at point P1, while the β-line intercepts the inner
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Figure 5. Drawing for finding stress in stress zone 1.
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boundary at point Q1, as shown in Figure 5. At the boundary points P1 and Q2, the stress states are

at P1 :



σrr =
2τ sin2 θp1

sin(2φ)
− p,

σθθ =
2τ cos2 θp1

sin(2φ)
− p,

σrθ =
τ sin(2θp1)

sin(2φ)
,

at Q1 :



σrr =
2τ sin2 θq1

sin(2φ)
− p,

σθθ =
2τ cos2 θq1

sin(2φ)
− p,

σrθ =
τ sin(2θq1)

sin(2φ)
,

where θp1 and θq1 are defined as in Figure 5.
Now define a local ξ -η coordinate system with its ξ -axis along the α-line and the η-axis along the

β-line for the split system with slip angle φ = 54.7◦. By applying the slip line theory as developed
by Hill [1998] and Rice and Tracey [1969], the stress component σξξ in these coordinates is, at point
R1, the same as at point P1, while σηη at point R1 equals that at Q1. This is because the equilibrium
equations are satisfied just before yielding. If there is no body force, the equilibrium conditions in the
two dimensional Cartesian coordinate x-y system are

∂σxx

∂x
+

∂σxy

∂y
= 0,

∂σyx

∂x
+

∂σyy

∂y
= 0.

Because the equilibrium must be satisfied for the entire stress zone, it is possible to seek a solution
along the characteristics that are the anisotropic slip line traces, as mentioned before. Therefore, we are
ready to determine the relationship among stress components along the α-line or β-line. If a new ξ -η
coordinate system is chosen so that ξ and η coincide with the α-line and the the β-line, σξη = σηξ = τ

holds in the initial stage of yielding, with τ being the critical shear stress for the active slip system. This
ignores any strain hardening effect. The equilibrium conditions in the local ξ -η coordinate system are

∂σξξ

∂ξ
= 0,

∂σηη

∂η
= 0.

The solutions of characteristics are

σξξ = σξξ (ξ1, η1) along the α-line:
dy
dx

= tan φ,

σηη = σηη(ξ2, η2) along the β-line:
dy
dx

= − cot φ,

σξη = σηξ = τ along both the α- and β-lines,

(4)

where φ is the slip angle, (ξ1, η1) and (ξ2, η2) are boundary points, and P1 and Q1 are associated with
the α-line and β-line, respectively. Using this, the yield conditions, and the related boundary conditions,
the stress state in stress zone 1 at the initial stage of plastic deformation can be fully determined.

At point P1, the value of σξξ is found from the polar stress components, that is,

σξξ =
σrr + σθθ

2
+

σrr − σθθ

2
cos [2(φ − θ)] + σrθ sin [2(φ − θ)] .
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Substituting the values of polar stresses at point P1 from Section 3.3 yields

σξξ = − p +
τ

sin(2φ)
−

τ cos(2θp1)

sin(2φ)
cos [2(φ − θ)] +

τ sin(2θp1)

sin(2φ)
sin [2(φ − θ)] , (5)

where θp1, which is related to the position of R1(r, θ), can be expressed as

θp1 = arctan
[
r(sin θ −

√
2 cos θ) +

√
2
]
.

Similarly, at point Q1, the value of σηη can be expressed as

σηη =
σrr + σθθ

2
+

σrr − σθθ

2
cos [2(φ − θ)] − σrθ sin [2(φ − θ)] .

Substituting the polar stresses at point Q1 from Section 3.3 gives

σηη = − p +
τ

sin(2φ)
+

τ cos(2θq1)

sin(2φ)
cos [2(φ − θ)] −

τ sin(2θq1)

sin(2φ)
sin [2(φ − θ)] , (6)

where

θq1 = arctan
[

r
(

sin θ +
cos θ
√

2

)
−

1
√

2

]
. (7)

If the yield condition holds in stress zone 1, the stress component σξη = τ .

3.4. Stress zone 2. This stress zone shares its β-line with stress zone 1, as illustrated in Figure 6. Ac-
cording to the slip line theory, the stress component σηη in the two zones takes the same form, that is,
Equation (6). To find σξξ in stress zone 2, we use the yield condition along line θ = 0+ because the
α-line intercepts the abscissa.

The boundary line θ = 0+ in physical space maps to the rotated stress space point C∗. From the
rotated yield surface as shown in Figure 6, the relationship between σξξ and σηη at any boundary point,
P2 is

σξξ (r∗, 0+) − σηη(r∗, 0+)

2τ
=

1

2
√

2
. (8)
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Figure 6. Drawing for finding stress in stress zone 2.
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Rearranging this yields

σξξ (r∗, 0+) = σηη(r∗, 0+) +
τ

√
2
. (9)

σηη(r∗, 0+) can be found from Equation (6) by setting θ = 0+ and replacing θq1 by θq2 = θq1(r∗, 0+):

σηη(r∗, 0+) = − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq2) − τ sin(2θq2), (10)

where θq2 is related to r∗, which can be determined from Equation (7) as

θq2 = arctan
[

1
√

2
(r∗

− 1)

]
. (11)

Substituting Equation (10) into Equation (9) yields

σξξ (r∗, 0+) = − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq2) − τ sin(2θq2) +

τ
√

2
.

To find the stress state inside the entire region defined as stress zone 2, we apply the variation method.
This is done by expressing r∗ and θq2 as functions of r and θ . With respect to Figure 6, if the boundary
point P2(r∗, 0+) goes into stress zone 2, the law of sines requires

r∗
= r

sin(φ − θ)

sin φ
=

√
3r

√
2

sin(φ − θ). (12)

The general form of θq2 follows from Equation (11) and Equation (12), that is,

θq2 = arctan

[√
3r
2

sin(φ − θ) −
1

√
2

]
.

Therefore, the stress state in stress zone 2 is

σξξ = − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq2) − τ sin(2θq2) +

τ
√

2
,

σηη = − p +
τ

sin(2φ)
+

τ cos(2θq1)

sin(2φ)
cos [2(φ − θ)] −

τ sin(2θq1)

sin(2φ)
sin [2(φ − θ)] ,

σξη = τ.

3.5. Stress zone (3). According to Figure 7, stress zone 3 and stress zone 1 share the same α-line and
also the stress component σξξ . To find the stress component σηη, we use the yield condition along the
boundary line θ = π/4. The yield condition is mapped from the point D∗ on the rotated yield surface
and can be expressed as

σξ (r∗∗, π/4) − σηη(r∗∗, π/4)

2τ
= − 2

√
2.

From this and Equation (5), σηη(r∗∗, π/4) can be found by setting θ = π/4 and θp1 = θp3 as

σηη(r∗∗,
π

4
)=−p+

τ

sin(2φ)
−

τ cos(2θp3)

sin(2φ)
cos

[
2(φ −

π

4
)
]
+

τ sin(2θp3)

sin(2φ)
sin
[
2(φ −

π

4
)
]
+4

√
2τ, (13)
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where θp3 is θp1 at r = r∗∗ and θ = π/4, that is,

θp3 = arctan
[

r∗∗

(
1

√
2

− 1
)

+
√

2
]

. (14)

Noting that φ = 54.7◦, Equation (13) simplifies to

σηη(r∗∗,
π

4
) = − p +

τ

sin(2φ)
−

2
√

2τ cos(2θp3)

3 sin(2φ)
+

τ sin(2θp3)

3 sin(2φ)
+ 4

√
2τ.

To extend the stress solutions to the entire stress zone 3, r∗∗, as a function of r and θ , becomes, by the
law of sines,

r∗∗
=

√
2r

1 +
√

2
(cos θ +

√
2 sin θ). (15)

Therefore, the stress state in stress zone 3 is

σξξ = − p +
τ

sin(2φ)
−

τ cos(2θp1)

sin(2φ)
cos [2(φ − θ)] +

τ sin(2θp1)

sin(2φ)
sin [2(φ − θ)] ,

σηη = − p +
τ

sin(2φ)
−

2
√

2τ cos(2θp3)

3 sin(2φ)
+

τ sin(2θp3)

3 sin(2φ)
+ 4

√
2τ,

σξη = τ.

The general form of θp3 follows from substituting r∗∗ in (15) into (14):

θp3 = arctan
[√

2 − r(cos θ +
√

2 sin θ)(3 − 2
√

2)
]
.
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Figure 7. Drawing for finding stress in stress zone 3.
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Figure 8. Drawing for finding stress in stress zone 4.

3.6. Stress zone 4. The analysis of this zone (and the next) is very much like that of stress zone 3.
According to Figure 8, stress zone 4 and stress zone 2 share the same α-line and σξξ . Also, stress zone
4 and stress zone 3 share the same β-line, and thus σηη as well. Therefore, the stress state in stress zone
4 can be obtained as

σξξ = − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq2) − τ sin(2θq2) +

τ
√

2
,

σηη = − p +
τ

sin(2φ)
−

2
√

2τ cos(2θp3)

3 sin(2φ)
+

τ sin(2θp3)

3 sin(2φ)
+ 4

√
2τ,

σξη = τ.

(16)

3.7. Stress zone 5. From Figure 9, stress zone 5 and stress zone 4 share a β-line and σηη in the form
given by Equation (16). To find σξξ in stress zone 5, we use the same method as used for finding σξξ in
stress zone 2. We apply the yield condition along line θ = 0+, as shown in Equation (8), for establishing
the relationship between σξξ and σηη at any point on this boundary.

We define a new parameter θp5 = θp3(r∗, 0+) for deriving σξξ in this zone, that is,

θp5 = arctan
[√

2 − r∗(3 − 2
√

2)
]
.

A more general form of θp5 for points inside the stress zone is

θp5 = arctan

[
√

2 −
3 − 2

√
2

√
2

r(
√

2 cos θ − sin θ)

]
.
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The stress state in stress zone 5 is

σξξ = − p +
τ

sin(2φ)
−

2
√

2τ

3 sin(2φ)
cos(2θp5) +

τ sin(2θp5)

sin(2φ)
+

τ
√

2
+ 4

√
2τ,

σηη = − p +
τ

sin(2φ)
−

2
√

2τ cos(2θp3)

3 sin(2φ)
+

τ sin(2θp3)

3 sin(2φ)
+ 4

√
2τ,

σξη = τ.

3.8. Stress zone 6. The procedures for finding the stresses in stress zone 6 are the same those for stress
zone 3. Stress zone 6 and stress zone 4 share the an α-line and σξξ . The stress component σηη is found
from the yield condition along the boundary line θ = π/4, which is shown in Section 3.5.

For the points on the boundary θ = π/4, we define θq6, a function of r∗∗, as

θq6 = arctan

(√
2 − 1
2

r∗∗
−

1
√

2

)
.

For the points within stress zone 6, θq6 is a function of r and θ , that is,

θq6 = arctan

(
3
√

2 − 4
2

r(cos θ +
√

2 sin θ) −
1

√
2

)
.

Therefore, the stress state in stress zone 6 is given by

σξξ = − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq2) − τ sin(2θq2) +

τ
√

2
,

σηη = − p +
τ

sin(2φ)
+ τ cot(2φ) cos(2θq6) − τ sin(2θq6) +

τ
√

2
+ 4

√
2τ,

σξη = τ.

y

x
o a

b

c

θ

5P

Q

R

ξ

η

r

d

e

f

5

5

1

43

54.7 o

2

5

Extended to point “g”

r*

Figure 9. Drawing for finding stress in stress zone 5.
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4. Results and discussion

4.1. Stress along circumferential paths. The analytical solutions in the region 0 ≤ θ ≤ 45◦, as presented
in Sections 3.3 to Section 3.8, provide for obtaining the stress field around the microchannel through a
series of mapping operations along special symmetrical lines. The first mapping is that the solutions in
0 ≤ θ ≤ 45◦ can be reflected over the line θ = 45◦ to get the solutions in 45◦

≤ θ ≤ 90◦. The solution
from 0 ≤ θ ≤ 90◦ can be translated 90◦ for solving in 90◦

≤ θ ≤ 180◦. Once we know the stress around
the upper half of the channel, the values in lower half plane follow from reflection across x-axis.

In the following discussion, the half width of the microchannel is defined as w◦. To show the stress
solutions quantitatively and for simplicity, we set to unity the half width of the channel. We also set τ

to unity, and the internal pressure becomes

p =
τ

sin φ cos φ
=

3
√

2
,

which is the critical value for initiation yielding at the boundary point O of Figure 1.
Figure 10 and Figure 11 show the stress state along circumferential paths in the angular range 0 ≤

θ ≤ 180◦. Figure 10 depicts the stresses along the path r/w◦ = rb/w◦ =
√

2. There, the stresses
are normalized by the critical shear strength τ . Figure 10a shows the stress components in the local
ξ -η coordinate system. The normal stresses σξξ and σηη show jump abruptly θ = 45◦ and θ = 135◦.
Nevertheless, the most rapid change in the shear stress σξη occurs at θ = 90◦.
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Figure 10. Stress state around the circumferential path r/w◦ = rb/w◦ =
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ized stress components in the local ξ -η coordinates, (b) normalized stress components
in x-y Cartesian coordinates, (c) normalized stress components in r -θ polar coordinates,
(d) the normalized out-of-plane stress component.
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Figure 10b shows the stresses in the x-y Cartesian coordinates. The shear stress σxy is almost equal
to zero, which is reasonable because the circumferential path is very close to the inner wall of the
microchannel. On the inner wall of the channel, the nonshear boundary condition holds. By the same
logic, the numerical values of normal stresses σxx and σyy also recover the boundary conditions. For
example, in the angular ranges 0 ≤ θ ≤ 45◦ and 135◦

≤ θ ≤ 180◦, σxx ≈ −p = − 3/
√

2, and σyy ≈ 0,
which means that material near the two vertical walls of the microchannels is under a horizontal pressure
of about −p. Nevertheless, in the range 45◦

≤ θ ≤ 135◦, σxx ≈ 0 and σyy ≈ −p = −3/
√

2, indicating that
material close to the top horizontal wall of the microchannel undergoes a vertical compressive pressure
of about −p.

In polar coordinates, the shear stress σrθ changes abruptly at θ = 45◦ and θ = 135◦, as shown in Figure
10c. σrθ is a periodic function with period 90◦. The radial and hoop stress components, σrr and σθθ , are
also 90◦-periodic functions. In addition, they show mirror symmetry about the line θ = 90◦. Figure 10d
shows how the the trace of the stresses changes along the angular path. Under the assumed isochoric
condition, the trace of the stresses is equal to the out-of-plane stress.

We also examine the stress solutions along another two circumferential paths,

r/w◦ = (rb + rc)/(2w◦) ≈ 1.52 and r/w◦ = rc/w◦ =

√
5 + 2

√
2/

√
3 ≈ 1.62.

The stresses along these two constant-radius lines show the same trend, that is, the stress state is nonuni-
form, resulting in anisotropic deformation of material around the microchannel. Another common feature
which can be seen from the results is that all stress components except for σξη peak either along the lines
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Figure 11. Stress state around the circumferential path r/w◦ = rd/w◦ = 1 +
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θ = 45◦ and θ = 135◦ or close to these lines. Evidently, the regions containing the radial lines θ = 45◦

and θ = 135◦ experience higher loading than elsewhere, and we expect intense shear deformation along
these two lines. This agrees with the slip model shown in Figure 1.

Figure 11 shows the stress state along the path, r/w◦ = rd/w◦ = 1+
√

2. The stress field is not uniform
along this path, which indicates an anisotropic deformation state. Specifically, Figure 11d illustrates the
yield surface along the path. The plastic deformation there comes from the active slip of the two slip
systems marked (1) and (2). Obviously, Figure 11d recovers well the yield conditions from the analytical
model of plasticity in Section 2.2 and shown in Figure 3b. We note that the line θ = 45◦ is the boundary
for slip system 1 and slip system 2. Similarly, θ = 135◦ is also a slip sector boundary. These are the
places where stress concentrates before yielding due to the corner effect. Material on these boundaries
can flow along either slip system 1 or slip system 2. Thus, the yield surface bifurcates at the intercept
points on the vertical axis in Figure 11d.

4.2. Stress maps. In this section, we present the stress maps of microneedles containing square mi-
crochannels. These have potential applications for cell registration, fluid injection, and nanofiber synthe-
sis. As a case study, we choose a cylindrical microneedle with radius r/w◦ = re/w◦ = 2+2

√
2 ≈ 4.83. w◦

is the microchannel half-width, as defined in Section 4.1. The channel itself is centered in the cylindrical
needle. We assume here that internal pressure controls the deformation. Thus, the boundary conditions
for stresses on the inside wall propagate in material around the channel along the characteristics (slip-
lines). The assumption is reasonable for cases such as confined growth of nanofibers within the channel,
fluid injection from the channel, and cell registration under suction by internal pressure.

Figure 12 shows stress zones in the needle around the microchannel, which exhibit the expected
four-fold symmetry. Figures 13–16 show stress maps in different coordinate systems and various other
features, as discussed below.

Figure 13 maps the normalized radial stress σrr/τ ; the map reveals evenly distributed compressive
regions near the inner wall of the channel. These compressive regions propagate along the slip sector
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Figure 12. Contour plot showing the stress zones around the microchannel.
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Figure 13. Contour map showing the normalized polar stress σrr/τ around the microchannel.

boundaries, that is, along multiples of θ = π/4. The compressed regions are separate from the regions
under intense tension away from the channel. The normalized hoop stress σθθ/τ , shown in Figure 14,
shows a similar compressed region near the channel’s inner wall. However, close to the outer boundary
of the microneedle, the σθθ/τ implies a tension state. On the map of normalized polar shear stress (σrθ/τ

in Figure 15), we see neutral zones around the channel. Away from the channel and along circumferential
paths — for example, at r/w◦ = 1 +

√
2 — the stress state alternates between compression and tension.

We can also examine in the x-y global Cartesian coordinate system the stress maps for σxx/τ and
σyy/τ . They exhibit discrete tension and compression zones. The inner boundary conditions propagate
in the stress zones adjacent to the inner wall. For example, we find σxx = − p in 0 ≤ θ ≤ 45◦ within the
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Figure 15. Contour map showing the normalized polar stress σrθ/τ around the microchannel.

zone containing the channel’s vertical wall, while σyy = − p in 45◦
≤ θ ≤ 90◦ within the zone horizontal

wall. Tension stress states occupy the region near to the outer boundary of the microneedle. We note
that the map σyy/τ is just σxx/τ rotated by π/2. On the map for normalized shear stress σxy/τ , the inner
wall satisfies the nonshear condition. The nonshear zones are located along both the x- and y-axis. The
shear zones appear at multiples of θ = π/4.

Figure 16 shows, in the ξ -η local Cartesian coordinate system, the stress maps for σξξ/τ . Obviously,
the σηη/τ map can be obtained by rotating the figure by π/2. In this map, the normalized stress σξξ/τ is
constant along the characteristics, or α-lines. Similarly, σηη/τ is constant along β-lines. This agrees with
the predictions of slip line theory. In the local coordinate system, the normalized shear stress σξη/τ stays

Normalized x position

N
or

m
al

iz
ed

y
po

si
tio

n

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5 σξξ/τ

5.5
4.5
3.5
2.5
1.5
0.5

-0.5
-1.5
-2.5

Figure 16. Contour map showing the normalized stress σξξ/τ in the local ξ -η Cartesian coordinates.
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constant in each quadrant, revealing the anisotropic plasticity of the material. The results also indicate
the deformation behavior of global yielding without any strain hardening.

We can also look at the trace of the stresses. In the plane, the trace is related to pressure; out of the
plane, it represents stress under isochoric conditions. The trace results show the nonuniform distributions
in the in-plane pressure and the out-of-plane stress. Finally, we examine the normalized in-plane stress
difference (σxx − σyy)/(2τ), which is the stress measure on the stress space abscissa. This difference
shows symmetrically distributed zones. The stress maps of Figures 12–16 reveal the nonuniform stress
states to be as predicted by the analytical solutions in Section 3, namely, that materials containing mi-
crochannels under internal pressure exhibit anisotropic plastic deformation.

We stress that the model here is an idealized and simplified one which provides some preliminary
results. For more sophisticated material models, it is difficult to obtain closed form solutions, and only
numerical solutions may be available. Thus, subsequent finite element simulations should be imple-
mented to treat real world problems with different strain hardening laws. Because analytical solutions
can only be obtained from simplified models that assume an ideally rigid plastic solid, this work may be
considered as a good starting point for tackling more complicated cases. Already underway are system-
atic finite element simulations of microchannels with different geometrical configurations shaped like
as squares, circles, cylinders, and ellipses; these are based on material models with a prescribed elastic-
plastic constitutive relation. Using the preliminary results presented in this work, it may be possible to
compare the analytical predictions with numerical ones.

Another issue facing the practical applications is the stress concentration problem. Typically, stress
concentrates at sharp corners and cracks. In this model, stress will concentrate at the four microchannel
corners with θ = π/4, 3π/4, 5π/4, and 7π/4. Stress concentrations cause the material to yield at a
lower overall stress level. Thus, the yield surface will contract and the points B and D shown in Figure
3a will move towards the origin. Consequently, the yield surface will change from a diamond to a more
complex shape. The stress zones would need to be redefined and the processes for seeking the analytical
solutions to the stresses would be more complicated. In the end, finite element simulations may be the
proper way to deal with the stress concentration issue.

5. Conclusions

From our studies of the stress states around microchannels under internal compressive loading, the fol-
lowing conclusions can be made.

First, the simplified yielding model can be used to characterize the plastic flow in materials containing
microchannels. When the material is under strain deformation conditions, the model allows identification
of slip bands around the channels.

Second, we can obtain closed form solutions to stress fields around the microchannels. The solutions
hold in both the zones containing and those away from the inner boundary. The stress distributions are
nonuniform. The results predict anisotropic deformation states around the channels.

Third, we determine the yield conditions associated with the plastic flow along different slip bands.
From the yield surface along circumferential paths, it is found that, at the corner of the square-shaped
microchannel, two slip systems have the same chance of being activated.
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Finally, the stress maps of microneedles containing square microchannels reveal discrete isostress
zones and predict anisotropic plastic deformation of the material around the channels.
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