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A rigid, perfectly-plastic model of solids is applied to study the dynamic behavior of simply supported
or clamped, arbitrarily shaped plates on visco-elastic foundation. The role of membrane forces and trans-
verse shear forces in the yield condition and the influence of geometry changes are neglected. The plate
is subjected to explosive loads uniformly distributed over the surface. Several mechanisms of dynamic
deformation of the plate are considered. For each mechanism, equations of the dynamic behavior are
obtained. Operating conditions of these mechanisms are analyzed. Analytical expressions for the limit
and high loads and for the maximum final deflections are obtained. Detailed analyses are given for an
astroid-shaped plate, for a plate with a contour consisting of two arcs and for a plate with an internal free
hole or a rigid insert.

1. Introduction

The issues involved in calculating structural deformation under the action of intensive short-time loads
are important in modern solid mechanics. To solve such problems, the model of a rigid-plastic body
is widely used [Komarov and Nemirovsky 1984]. The model is based on the assumption that the body
starts deforming if the stress reaches the limiting value and plastic deformations become possible. Elastic
deformations are neglected. For thin-walled elements of structures, this simplification allows solving nu-
merous important practical problems. Nevertheless, all well-known solutions concern only axisymmetric
and rectangular plates.

The method proposed in the present work allows, on the basis of the theory of a rigid, perfectly-plastic
body, calculating any supported plates of an arbitrary piecewise smooth curvilinear contour, subjected to
short-time intensive dynamic loads. The method can be useful in engineering practice.

Notation

P intensity of load
Pmax maximum value of load
P0, P̄0 limit loads
P1 load defining high loads
p0, p1, Pm dimensionless loads
t, t0 current and initial times
K1, K2 factors of elastic and viscous resistance

Keywords: rigid-plastic plate, arbitrarily shaped plate, dynamic load, limit load, final deflection.
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Z1, Z2, Sp regions in plate
l contour of plate
dl element of contour l
l1, l2 plastic hinge curves
(x, y), (x1, y1),
(x2, y2), (xh, yh) Cartesian coordinates

ϕ, ϕh parameters
ϕi , ϕ j , ϕD , ϕhi , ϕb, ϕb

h boundary values of parameter ϕ
ϕ0 initial value of parameter ϕD

Dh , Dmin, Dmax, D,
D0, Da , di , d1, d2 distances

K , A, N powers of inertial, external and internal forces
S area of plate
ds element of area
u, wc deflections
wmax maximum of final deflection
ρ, ρa surface density of plate material and insert material
lm lines of discontinuity of angular velocity
m quantity of lines of discontinuity of angular velocities
[∂θm/∂t] discontinuity of angular velocities on lm

dlm element of line lm

κ1, κ2 main curvatures of surface of deflection rate of plate
α̇ rate of change of angle of rotation
∗ index denoting admissible velocities
Mm bending moment on lm

M0 limit bending moment
n normal to the contour l
AB, AC normals to the contour l
η parameter of supported contour
β parameter of internal contour
i, j indexes
(ν1, ν2) curvilinear orthogonal coordinates
ν2h parameter corresponding to ν2

ν2 j boundary value of parameter ν2

a1, b1 semiaxes of semiellipse
a parameter of astroid-shaped plate
L function designated in Equation (2)
Lh function designated in Equation (15)
61,62,63,64,65,66,G,G1,F factors
T time of removing of load
t1 time of end of first phase of deformation
t f time of stop of plate
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R, γ radius and half of central corner of arc of circle
I, I∗ integral characteristics of load
l̄, l̄2 polygonal contours
δ, δ0 dimensionless functions
r radius of curvature of curve l
r1 radius
ξ, ς coordinates of center of curvature of curve l
ρ1, ρ2 radiuses of curvature
N1, N2, N3, N4 components of power of internal forces in plate
l3 tangent to curve l1

AB E , B E D1, AE D1, AD2 E planes
ψ1, ψ2, β1, β2 angles in Figure 3

2. Model, assumptions and equations of motion

We consider a thin rigid perfectly-plastic simply supported or clamped plate of an arbitrary piecewise
smooth curvilinear contour l (Figure 1). The plate is subjected to a uniformly distributed short-time
intensive dynamic load of high intensity P(t). We consider explosive load characterized by the instan-
taneous reaching of the maximum value Pmax = P(t0) at the initial time t0 with the subsequent rapid
decrease. The plate rests on a viscoelastic foundation (K1 and K2 are the coefficients of elastic and
viscous resistance). The deflections are small. The role of membrane forces and transverse shear forces
in the yield condition and the influence of geometry changes are ignored.

Let the equations for the contour l of the plate be written in a parametric form

x = x1(ϕ), y = y1(ϕ), with 0 ≤ ϕ ≤ 2π.

Except for singular points, the radius of curvature of the contour l is equal to

r(ϕ)=
L3

x ′

1 y′′

1 − y′

1x ′′

1
, (1)

L(ϕ)=

√
x ′2

1(ϕ)+ y′2
1(ϕ), (·)′ = ∂(·)/∂ϕ. (2)

To be specific, we assume that the x-size of the plate is not smaller than its geometric size along the y
axis. We have two assumptions about the shape of the deformable plate.

Assumption 1. Under the loads slightly higher than the limit load P0, a plastic hinge line l1 is formed
in the internal area of the plate (Figure 1). As a result, the plate is deformed into parts of certain ruled
surfaces. The normal bending moment on the line l1 is equal to the limit bending moment M0. The line
l1 can consist of several parts (Figure 1 bottom) or degenerate into a point (for a circular plate). The
parts of the plastic hinge line l1 can be either rectilinear or curvilinear. If there are singular points on the
contour l then the line l1 intersects them (the top left and bottom of Figure 1).

We assume that the rate of variation of the angle of plate-surface rotation with respect to the horizontal
plane at the contour l is independent of the parameter ϕ and that the position of the line l1 is determined
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Figure 1. Mechanism 1 for the plates of different shapes.

from the condition of equality of the distances measured along the normal to the external contour l
from the line l1 to the contour l. This assumption is substantiated for a sector plate by Nemirovsky and
Romanova [2004], based on the condition of minimum of the limit load. This assumption is obviously
valid for a circular plate [Hopkins and Prager 1953].

Figure 2. Mechanism 2 and 3 for the plates of different shapes (the positions of the
coordinate axes are the same as those in Figure 1).



DYNAMIC RIGID-PLASTIC DEFORMATION OF ARBITRARILY SHAPED PLATES 317

Assumption 2. Under rather high loads, a region Sp of an intense plastic deformation is formed in the
internal area of the plate (Figure 2). The region Sp moves translationally. The contour of the region Sp

is the plastic hinge line l2, and the normal bending moment on the line l2 is equal to M0.

Let the equations for the line l1 have the form x = xh(ϕ), y = yh(ϕ). The distance Dh measured along
the normal to the contour l from the line l to l1 is

Dh(ϕ)=

√
[x1(ϕ)− xh(ϕ)]2 + [y1(ϕ)− yh(ϕ)]2. (3)

From the Assumption 1, it follows that the line l1 is defined by the system of equations

x ′

1(ϕ)[xh(ϕ)− x1(ϕ)] + y′

1(ϕ)[yh(ϕ)− y1(ϕ)] = 0,

x ′

1(ϕh)[xh(ϕ)− x1(ϕh)] + y′

1(ϕh)[yh(ϕ)− y1(ϕh)] = 0,

Dh(ϕ)= Dh(ϕh), xh(ϕ)= xh(ϕh), yh(ϕ)= yh(ϕh). (4)

Here ϕh corresponds to ϕ parameter of the contour l, for which the relation |AB| = |AC | holds (AB,
AC are the perpendiculars to the contour l in Figure 1). The plates of different shapes and the positions
of the lines l1 in the plates are presented in Figure 1.

The normal to the contour curve l directed inward the region occupied by the plate gets either on
the line l1, or on the line l2: x = x2(ϕ), y = y2(ϕ). We denote by Zi the region of the plate that does
not involve the region Sp in which the normal from any point to the contour l gets on the line li for
i = 1, 2 (Figures 1–2). The number of the regions Zi depends on the shape of the support counter l of
the plate. In Appendix A, it is shown that the normal to the curve l2 is also the normal to the contour
l. In Appendix B, it is shown that, in any smooth part of the contour l, the distance between curves l2

and l is independent of the parameter ϕ and the equation for the curve l2 looks like Equation (B.5) if
the region Sp is nonsingular. From the definition of the line l1, it follows that at the boundaries of the
regions Z1 and Z2 the relations D(t)= Dh(ϕ

b(t))= Dh(ϕ
b
h(t)) where ϕb, ϕb

h are the parameters of the
boundaries of the regions Z1 and Z2. Consequently, the distance between curves l2 and l in all regions
Z2 is the same and is equal to D(t) (Figure 2).

Depending on the value of Pmax, three mechanisms of deformation are possible in the dynamics of
a rigid-plastic plate. Under the loads lower than the limit load (low loads, 0 < Pmax ≤ P0), the plate
remains at rest. For the loads slightly higher than the limit load (moderate loads, P0< Pmax ≤ P1) as in the
cases of a bending of beams [Mazalov and Nemirovsky 1975; Komarov and Nemirovsky 1984], circular
and annular plates [Hopkins and Prager 1953; 1954; Perzyna 1958; Florence 1965; 1966; Youngdahl
1971], rectangular and polygonal plates [Jones et al. 1970; Virma 1972; Mazalov and Nemirovsky 1975;
Nemirovsky and Romanova 1987; 1988], the plastic hinge line l1 is formed in the internal area of the
plate (see Assumption 1). Let us call this mechanism of deformation mechanism 1 (Figure 1). For the
values of Pmax(Pmax > P1) high enough, the dynamics of the plate as the dynamics of all above-listed
structures yields the emergence of the intense plastic deformation region Sp that moves translationally
(see Assumption 2). Thus, two situations are possible: that the line l1 is present (mechanism 2 is presented
in the top left, top right and the bottom right of Figure 2 for high loads) and that the line l1 does not
present (mechanism 3 is presented in the bottom left of Figure 2 for super high loads).



318 TATIANA PAVLOVNA ROMANOVA AND YURI VLADIMIROVICH NEMIROVSKY

Let us denote
max
ϕ

Dh(ϕ)= Dmax and min
ϕ

Dh(ϕ)= Dmin.

For the curve l2 that has no mutually intersected segments, the following conditions must be satisfied.

D < Dmax and y2(ϕ)≥ yh(ϕ), y2(ϕh)≤ yh(ϕh),

(see the plates presented in the top left and top right of Figure 2 for example). Therefore, the curve l2

presented in (B.5) is not determined for all values of ϕ. The case D ≥ Dmax corresponds to mechanism
1 that the region Sp and the curve l2 are absent (Figure 1); the case Dmin ≤ D < Dmax corresponds to
mechanism 2 (top left, top right and the bottom right of Figure 2); the case D < Dmin corresponds to
mechanism 3. For the plates with singular points on the supporting contour l, equality Dmin = 0 carries
out. Therefore, such plates are not deformed according to mechanism 3 (Figure 2, top left and bottom
right) and they have plastic hinge line l1 present in deformation with any action of the loads exceeding
the the limit load. Mechanism 3 is realized only for plates with a smooth contour l (Figure 2, bottom
left).

Mechanism 2 corresponds to a general case of deformation of the plate. In the absence of the region
Sp, it corresponds to mechanism 1. If the line l1 is absent then it corresponds to mechanism 3. Let us
consider mechanism 2 in detail.

According to mechanism 2, the equations of motion of the plate, that we obtain from the virtual power
principle and d’Alembert principle [Erkhov 1978], are

K = A − N , (5)

K =

∫∫
S

ρ
∂2u
∂t2

∂u∗

∂t
ds, A =

∫∫
S

[
P(t)− K1u − K2

∂u
∂t

]
∂u∗

∂t
ds, (6)

N =

∑
m

∫
lm

Mm

[∂θ∗

∂t

]
lm

dlm + M0

∫∫
S

(|κ∗

1 | + |κ∗

2 |)ds. (7)

Here K , A, N are the powers of inertial, external and internal forces in the plate, respectively; S is the
area of the plate; u is the deflection; ρ is the surface density of the plate material; t is the current time;
ds is the element of area of the plate; m is the index of the lines of discontinuity of angular velocity;
lm are the lines of discontinuity in angular velocity including the contour of the plate; [∂θ/∂t]lm is the
discontinuity in angular velocity on lm ; Mm is the bending moment on lm ; dlm is the element of line
for lm ; κ1 and κ2 are the main curvatures of surface of deflection rate of plate. The upper index “∗”
denotes the admissible velocities. If there is no resistance foundation, Equation (5) coincides with the
equation of motion of [Jones 1971a], the axial forces being assumed to equal zero, which means that
geometrical changes are ignored. Note that Jones [1971a] suggests using this equation for plates of an
arbitrary contour and arbitrary edge conditions; however, it has been used in the literature up to now for
circular and rectangular plates only [Jones 1971b; Jones and Shen 1993; Jones 1973; Zhu et al. 1994].

Let us denote the deflection and the velocity of the deflection in the region Sp by wc(t) and ẇc(t),
where ḟ = ∂ f/∂t for function f . Let us denote the angle of rotation of the region Z2 from the horizontal
plane at the supported contour by α. Because of the continuity of velocities at the boundaries of the
regions Sp and Z2, the rate of variation of this angle α is independent of the parameter ϕ. Taking into
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account of the continuity of velocities at the boundary of the regions Z1 and Z2 and Assumption 1, we
obtain that the rate of variation of the angle of rotation of the region Z1 at the supported contour is equal
to α̇(t). The deflection rate in the different regions of the plate is given by

(x, y) ∈ Zi : u̇(x, y, t)= α̇(t)di (x, y), i = 1, 2,

(x, y) ∈ Sp : u̇(x, y, t)= ẇc(t), (8)

where di (x, y) is the distance from a point (x, y) to the supported contour of the region Zi (Figure 1–2).
We introduce the curvilinear orthogonal coordinate system (ν1, ν2) related to the Cartesian coordinate

system by the relations

x = x1(ν2)− ν1
y′

1(ν2)

L(ν2)
, y = y1(ν2)+ ν1

x ′

1(ν2)

L(ν2)
. (9)

The curves ν1 = const are at the distance ν1 from the contour l and have the radius of the curvature
ρ1 = r(ν2)− ν1. The straight lines ν2 = const are the perpendiculars to the external contour l of the plate.
Their radius of the curvature is ρ2 = ∞. The element of area is ds = L(1 − ν1/r)dν1dν2. Then the
equation of the supported contour l has the form ν1 = 0 for 0 ≤ ν2 ≤ 2π . If the line l1 consists of one
part then its equation has the form ν1 = Dh(ν2) for 0 ≤ ν2 ≤ ϕ1, ϕ2 ≤ ν2 ≤ π . The equation of the line l2

has the form ν1 = D(t) for ϕ1 ≤ ν2 ≤ ϕ2, ϕh2 ≤ ν2 ≤ ϕh1 where, for i = 1, 2, ϕi , ϕhi are boundary values.
Then the deflection rate of the plate (8) is given by:

(x, y) ∈ Zi : u̇(ν1, ν2, t)= α̇(t)ν1, i = 1, 2,

(x, y) ∈ Sp : u̇(ν1, ν2, t)= ẇc(t).
(10)

With the introduced denotations and (10) taken into account, the expressions (6) become

K = ρ

[
α̇∗α̈

2∑
i=1

∫∫
Zi

ν2
1ds + ẇ∗

c ẅc

∫∫
Sp

ds

]
,

A = α̇∗

2∑
i=1

∫∫
Zi

[P(t)− K1αν1 − K2α̇ν1]ν1ds + ẇ∗

c

∫∫
Sp

[P(t)− K1wc − K2ẇc]ds.

(11)

We represent the expression (7) for the power of internal forces in the plate in the form

N =

4∑
i=1

Ni (12)

where N1, N2, N3, N4 are the powers of internal forces on the contour l, in the regions Z1 and Z2, on
the line l2 and on the line l1, respectively:

N1 = (1 − η)M0

∮
l
[θ̇∗

]ldl, N2 = M0

∫∫
Z1∪Z2

(|κ∗

1 | + |κ∗

2 |)ds,

N3 = M0

∮
l2

[
θ̇∗
]

l2
dl2, N4 = M0

∫
l1

[
θ̇∗
]

l1
dl1. (13)
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Figure 3. Supplementary construction for the calculation of the discontinuity of angular
velocity on l1.

Here η = 0 for the clamped contour l and η = 1 for the simply supported contour.
From (10) and the normal to the line l2 is the normal to the contour l, it follows that

[θ̇∗
]l = [θ̇∗

]l2 = α̇, κ1 =
∂2u̇
∂ν2

1
= 0, κ2 =

1
ρ1

∂ u̇
∂ν1

=
α̇(t)

r − ν1
.

Then we have

N1 = (1−η)M0α̇
∗

∫ 2π

0
Ldν2,

N2 = M0α̇
∗

∫∫
Z1∪Z2

1
r−ν1

ds

= M0α̇
∗

[ ϕ1∫
0

L Dh

r
dν2+

( ϕ2∫
ϕ1

L
r

dν2

)
D(t)+

ϕh2∫
ϕ2

L Dh

r
dν2+

( 2π−ϕh1∫
2π−ϕh2

L
r

dν2

)
D(t)+

2π∫
ϕh1

L Dh

r
dν2

]
,

N3 = M0α̇
∗

∮
l2

dl2 = M0α̇
∗

{ ∫ ϕ2

ϕ1

L
[
1−

D(t)
r

]
dν2+

∫ ϕh1

ϕh2

L
[
1−

D(t)
r

]
dν2

}
.

(14)

To calculate N4 in (13), we have

dl1 = Lhdν2, where Lh =

√
x ′2

h + y′2
h . (15)

We consider a case where the line l1 consists of one part. For the calculation of [θ̇∗
]l1 with ν2 ∈ [0, ϕ1]

at point A = (Dh(ν2), ν2) ∈ l1 of the undeformed plate, we draw the perpendiculars AB and AC that
they intersect the contour l at B = (0, ν2) and C = (0, ν2h) so AB⊥l, AC⊥l, |AB| = |AC | = Dh(ν2)

(Figure 1, 3). At point A, we draw the line l3 which is tangent to the line l1. Through the segment AB,
we draw the plane AB E which is perpendicular to an initial surface of the plate, where AE⊥AB (Figure
3). We draw the plane B E D1 which is tangent to the deformed surface of the plate along the straight
line B E . Then we have 6 AB E = α. Through point B, we draw the plane AE D1 which is perpendicular
to the line l3. Let us denote 6 AD1 E = β1. With the similar constructions for point C , we obtain point
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D2 such that the equality 6 AD2 E = β2 holds. Then we have [θ̇∗
]l1(ν2)= β̇1 + β̇2. From |AE | = |AB|α,

|AE | = |AD1|β1 and AB⊥B D1, it follows that

β̇1 = α̇ sinψ1, (16)

where ψ1 is the minimum angle between the segment AB and the line l3 such that

sinψ1 =
y′

1 y′

h + x ′

1x ′

h

L Lh
. (17)

In a similar manner, β̇2 = α̇ sinψ2 where ψ2 is the minimum angle between the segment AC and the line
l3. From (15)–(17), it follows that

β̇1dl1 = α̇
y′

1 y′

h + x ′

1x ′

h

L
dν2.

From (1), (3), (4), it follows that

y′

1 y′

h + x ′

1x ′

h

L
= L

[
1 −

Dh(ν2)

r

]
;

then we have

β̇1dl1 = α̇L
[

1 −
Dh(ν2)

r

]
dν2 for ν2 ∈ [0, ϕ1].

In a like manner, we obtain

β̇2dl1 = α̇L
[

1 −
Dh(ν2)

r

]
dν2 for ν2 ∈ [ϕh1, 2π ].

We have similar expression for ν2 ∈ [ϕ2, π] and ν2 ∈ [π, ϕh2]. Then the expression (13) for N4 looks like

N4 = M0α̇
∗

[ ∫ ϕ1

0
L
(

1 −
Dh

r

)
dν2 +

∫ ϕh2

ϕ2

L
(

1 −
Dh

r

)
dν2 +

∫ 2π

ϕh1

L
(

1 −
Dh

r

)
dν2

]
. (18)

Substituting the expressions (14), (18) into (12), we get the power of internal forces in the plate

N = M0(2 − η)α̇∗

∫
l
dl. (19)

The expression (19) for the cases of smooth or pyramidal shape of the deformable plate coincides with
the result obtained by Rzhanitsyn [1982]. It is possible to show that the expression (7) for the power of
internal forces has the form (19) also in the case that the line l1 consists of several parts.

Substituting equalities (11), (19) into (5) and taking into account that ẇ∗
c (t) and α̇∗(t) are independent,

we obtain the following equations of motion(
ρα̈+ K2α̇+ K1α

)∑
i

∫∫
Zi

ν2
1ds = P(t)

∑
i

∫∫
Zi

ν1ds − M0(2 − η)

∫
l
dl, (i = 1, 2) (20)

ρẅc + K2ẇc + K1wc = P(t). (21)
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The condition of the continuity of velocities at the boundaries of the regions Sp and Z2 yields the equality

α̇D = ẇc. (22)

At the boundaries of the regions Z1 and Z2, we have the following relations

D = Dh(ν2 j ) (23)

where j = 1, . . . and ν2 j (t) are the parameters of the boundaries of the regions Z1 and Z2.
At the initial time, the plate is at rest and undeformed as

α(t0)= α̇(t0)= wc(t0)= ẇc(t0)= 0. (24)

The initial value D0 = D(t0) depends on the value of Pmax. This is shown below for some special cases.
The system of Equations (20)–(23), for i = 1, 2 describes the plate motion according to mechanism

2. In the case of deformation according to mechanism 1, the regions Sp and Z2 are absent and the plate
motion is described by Equation (20) for i = 1. In the case of deformation according to mechanism 3,
the region Z1 does not present and the behavior of the plate is governed by Equations (20)–(22) for i = 2.

The method described in the present work is used to study the dynamic behavior of the following plates
in the absence of resistance foundation: elliptical plates [Nemirovsky and Romanova 2002a], a plate with
a contour consisting of a semicircle of radius a1 and a semiellipse with semiaxes a1 and b1 with b1 ≤ a1

(the top right of Figure 1, the top right , bottom left of Figure 2) [Nemirovsky and Romanova 2002b], a
plate with a contour consisting of straight-line and arbitrary smooth curvilinear parts [Nemirovsky and
Romanova 2002c], a plate with a contour consisting of two semicircles and two straight-line segments
[Nemirovsky and Romanova 2001b], sector plates [Nemirovsky and Romanova 2004] (the bottom of
Figure 1 and the bottom right of Figure 2).

Below we consider the examples of the dynamic behavior of plates of an arbitrary contour in the absent
of visco-elastic foundation. The method proposed in the present work allows to take into account resis-
tance foundation. The influence of visco-elastic foundation on final deflections and the opportunity of
the optimization of the process of pulsed forming of metal plates of sophisticated contour were discussed
by Nemirovsky and Romanova [1991; 2001a].

3. Dynamic behavior of a rigid-plastic astroid-shaped plate

We consider the dynamic behavior of the plates of an arbitrary contour by an example of the astroid-
shaped plate whose contour is written in a parametric form x1 =a cos3 ϕ and y1 =a sin3 ϕ with 0 ≤ϕ≤ 2π
(Figure 4 left). For this plate, we have

L(ϕ)= 3a|sinϕ cosϕ|, Dh(ϕ)= a|sin3 ϕ/ cosϕ|, Dmax = Dh(π/4)= a/2.

Depending on the value of Pmax, two mechanisms of deformation are possible for the plate being consid-
ered. Under moderate loads, the plate is deformed into four parts of a ruled surface with the formation of
four rectilinear plastic hinge lines located on the coordinate axes (mechanism 1 is presented in Figure 4,
left). Under high loads, the region Sp is formed in the central part of the plate. The region Sp moves
translationally (mechanism 2 is presented in Figure 4, right). Equation (B.5) for the contour of Sp
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becomes

x2 = a cos3 ϕ− D sinϕ sign(sin 2ϕ), y2 = a sin3 ϕ− D cosϕ sign(sin 2ϕ)

where

ϕD ≤ ϕ ≤ π/2 −ϕD, π/2 +ϕD ≤ ϕ ≤ π −ϕD,

π +ϕD ≤ ϕ ≤ 3π/2 −ϕD, 3π/2 +ϕD ≤ ϕ ≤ 2π −ϕD.

ϕD(t) is the parameter determining the size of the region Sp and 0< ϕD ≤ π/4. The regions Sp and Z2

are not present if ϕD = π/4.
Equations (20), (21), (23) for mechanism 2 of the astroid-shaped plate in the absence of resistance

foundation look like

ρα̈(61 +62)= P(t)(63 +64)− M0(2 − η)65, (25)

ρ(α̇D)· = P(t), (26)

D =66. (27)

Here

61(ϕD)=

∫∫
Z1

ν2
1ds = 8

∫ ϕD

0

[∫ Dh(ν2)

0
ν2

1 F(ν1, ν2)dν1

]
dν2

=
2a4

3

(sin11 ϕD

cos3 ϕD
+

sin9 ϕD

cosϕD
+

9
8

sin7 ϕD cosϕD +
63
48

sin5 ϕD cosϕD

+
315
192

sin3 ϕD cosϕD −
315
128

(ϕD − sinϕD cosϕD)
)
,

62(ϕD)=

∫∫
Z2

ν2
1ds = 8

∫ π/4

ϕD

[∫ D

0
ν2

1 F(ν1, ν2)dν1

]
dν2

Figure 4. Mechanism 1 (left) and 2 (right) for astroid-shaped plate (the positions of the
coordinate axes on the right are the same as those on the left).
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=
2a4 sin9 ϕD

cos3 ϕD

[
sin3 ϕD

cosϕD
(π/4 −ϕD)+ 1 − 2 sin2 ϕD

]
,

63(ϕD)=

∫∫
Z1

ν1ds = 8
∫ ϕD

0

[ ∫ Dh(ν2)

0
ν1 F(ν1, ν2)dν1

]
dν2

=
4a3

3

(
sin10 ϕD

cos2 ϕD
+ sin8 ϕD −

sin6 ϕD

6
−

sin4 ϕD

4
−

sin2 ϕD

2
− ln cosϕD

)
,

64(ϕD)=

∫∫
Z2

ν1ds = 8
∫ π/4

ϕD

[ ∫ D

0
ν1 F(ν1, ν2)dν1

]
dν2

=
2a3 sin6 ϕD

3 cos2 ϕD

[
4 sin3 ϕD

cosϕD
(π/4 −ϕD)+ 9

(1
2

− sin2 ϕD

)]
,

65 =

∫
l
dl = 8

∫ π/4

0
L(ϕ)dϕ = 6a,

66(ϕD)= a sin3 ϕD/ cosϕD,

where F(ν1, ν2)= ν1 + 3a sin ν2 cos ν2.
If 0 < Pmax ≤ P0 (low loads), the plate remains undeformed. We determine the limit load P0 from

Equation (25) at the moment t0 of the beginning of the deformation (24) and from the condition α̈(t0)= 0,

P0 = min
0<ϕD≤π/4

M0(2 − η)65

63 +64
=

M0(2 − η)65

63(π/4)
≈ 32.55

M0(2 − η)

a2 .

Thus the region Sp degenerates into a point which is the center of the coordinates.
If P0 < Pmax ≤ P1 (moderate loads), where P1 is the load under which the region Sp appears, the plate

is deformed in accordance with mechanism 1. We determine the load P1 as follows. From (25), (26) we
eliminate α̈. As a result, we have

−
ρα̇ Ḋ

D
(61 +62)= P(t)

[
63 +64 −

61 +62

D

]
− M0(2 − η)65. (28)

Taking into account that the relations

α̇(t0)= 0, P1 = P(t0), ϕD(t0)= π/4, D(t0)= a/2

hold if the region Sp appears at the initial time t0 whereas the regions Sp and Z2 are absent, we obtain
from (28) that

P1 =
M0(2 − η)65

63(π/4)− 2
a61(π/4)

≈ 63.33
M0(2 − η)

a2 .

For moderate loads, the plate motion is governed by the Equation (25) for ϕD = π/4, which becomes

α̈(t)= G[P(t)− P0] (29)
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where G =63(π/4)/[ρ61(π/4)]. The initial conditions have the form (24). The load is removed at the
time t = T , and the plate moves inertially for certain time.

For t0 ≤ t ≤ T , integrating Equation (29), we have

α̇(t)= G

[ ∫ t

t0
P(τ )dτ−P0(t − t0)

]
, α(t)= G

[ ∫ t

t0

∫ m

t0
P(τ )dτdm−P0

(t − t0)2

2

]
.

At T < t ≤ t f , the motion of the plate occurs due to inertia until the plate stops at the time t f and it
is governed by the equation α̈(t) = −G P0 with the initial conditions α̇(T ), α(T ). The moment t f is
determined by the condition

α̇(t f )= 0. (30)

Integrating the equation of motion, we obtain

α̇(t)= α̇(T )− G P0(t − T ),

α(t)= α(T )+ α̇(T )(t − T )− G P0(t − T )2/2.
(31)

It follows Equations (30), (31) that

t f = t0 +

∫ T

t0
P(t)dt

/
P0. (32)

The deflections are calculated from (8) or (10). The maximum final deflection is in the center of the plate
and it is

wmax = Dmax G

[( ∫ T

t0
P(t)dt

)2/
(2P0)−

∫ T

t0
(t − t0)P(t)dt

]
. (33)

If Pmax > P1 (high loads), the plate motion begins with the developed region Sp and ϕ0 = ϕD(t0)
which is less than π/4. The initial value ϕ0 is determined by Equation (28) with the equality α̇(t0)= 0
and the relation (27):

Pmax

[
63(ϕ0)+64(ϕ0)−

61(ϕ0)+62(ϕ0)

66(ϕ0)

]
= M0(2 − η)65. (34)

In the first phase (t0 < t ≤ t1) of deformation, the plate motion occurs according to mechanism 2 and is
described by Equations (22), (25)–(27) with the initial conditions (24) and (34). In this phase, the region
Sp decreases by the law described by Equation (28). The time t1 corresponding to the disappearance of
the region Sp is determined by the equality ϕD(t1)= π/4. At the end of this phase, the values of α̇(t1)
and α(t1) are determined.

The second phase (t1 < t ≤ t f ) of the plate motion occurs according to mechanism 1 until the stop at
the time t f . The deformation is governed by Equation (29) subject to the initial conditions determined
at the end of the first phase. The time t f is determined by (30). All deflections in the plate are calculated
from (8) or (10) and (22) with allowance for all phases of motion.

In the case of high load represented by a rectangular pulse (P(t)= Pmax for t0 ≤ t ≤ T and P(t)= 0
for t > T ), the motion occurs with the constant region Sp during the action of the load (t0 ≤ t ≤ T ) and is
described by Equations (22), (25)–(27) for ϕD = ϕ0 determined from (34) with the initial conditions (24).
After removal of the load, the second and the third phases of motion (T < t ≤ t1 and t1 < t ≤ t f ) occur.
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They are described by the same equations in the first and second phases of motion of the plate under
explosive loading but for the condition P(t)= 0.

The results of the deflections w = ua2ρ/(M0T 2) of the simply supported astroid-shaped plate in
the cross section y = x are shown in Figure 5. Curves 1–3 correspond to the deflections of the plate
under a high load of a rectangular pulse with Pmax = 135.27M0/a2 at the times t = T , t = t1 = 2.14T ,
t = t f = 4.16T , respectively. Curves 4–6 refer to the deflections of the plate under a high load with a
linear decreasing ramp time (P(t)= 310.28(T − t)M0/a2 for 0 ≤ t ≤ T and P(t)= 0 for t > T ) at the
times t = T , t = t1 = 2.5T , t = t f = 4.77T , respectively. The numerical calculations show that

t1 = I/P1, t f = I/P0, (35)

where I =
∫ T

0 P(t)dt is the full pulse of the load.

4. Dynamic behavior of a plate whose contour consists of two arcs of circle

As another example, we consider the dynamic behavior of the plate with a contour consisting of two arcs
of circle of the radius R and the central corner 2γ (Figure 1, top left; Figure 6). For this plate, ν1 = R −r1,
ν2 = φ where (r1, φ) is the polar coordinate system with the pole located in the point x = 0,y = − R cos γ .
We have

Dh(ϕ)= R[1 − cos γ / cos(γ −ϕ)], Dmax = Dh(γ )= R(1 − cos γ )

with 0 ≤ ϕ ≤ γ and 0< γ ≤ π/2. Depending on the value of Pmax, two mechanisms of deformation are
possible for this plate. Under moderate loads, the plate is deformed into two parts of a cone surface with
the formation of the rectilinear plastic hinge line locating on the x-axis (mechanism 1 is presented in
Figure 1, top left). Under high loads, the region Sp is formed in the central part of the plate. The region
Sp moves translationally (mechanism 2 is presented in Figure 6). The contour of the region Sp consists
of two arcs of circle of the radius R − D and the central corner 2(γ −ϕD), where ϕD(t) is the parameter
determining the size of the region Sp(0< ϕD ≤ γ ). At ϕD = γ , the regions Sp and Z2 are not present.

Figure 5. Deflections of a simply supported astroid-shaped plate in the cross section x = y.
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Figure 6. Mechanism 2 for the plate with a contour consisting of two arcs of a circle.

The equations of motion (20)–(23) for mechanism 2 of the plate being considered in the absence of
resistance foundation look like (22), (25)–(27) where

61(ϕD)=

∫∫
Z1

d2
1 ds =4

∫ ϕD

0

[ ∫ R

R cos γ
cos(γ−ϕ)

r1(R − r1)
2dr1

]
dϕ

=
R4

3

{
ϕD − 2 cos2 γ (3 + cos2 γ )[tgγ − tg(γ −ϕD)]

+4 cos3 γ

[
tgγ

cos γ
−

tg(γ −ϕD)

cos(γ −ϕD)
+ ln

cos γ [1 − sin(γ −ϕD)]

cos(γ −ϕD)(1 − sin γ )

]
+ cos4 γ

[
sin(γ −ϕD)

cos3(γ −ϕD)
−

sin γ
cos3 γ

]}
,

62(ϕD)=

∫∫
Z2

d2
2 ds = 4

∫ γ−ϕD

0

[ ∫ R

R−D
r1(R − r1)

2dr1

]
dϕ

=
(γ −ϕD)R4

3

[
1 −

cos γ
cos(γ −ϕD)

]3[
1 +

3 cos γ
cos(γ −ϕD)

]
,

63(ϕD)=

∫∫
Z1

d1ds = 4
∫ ϕD

0

[ ∫ R

R cos γ
cos(γ−ϕ)

r1(R − r1)dr1

]
dϕ =

2R3

3

{
ϕD − cos2 γ [2tgγ − 3tg(γ −ϕD)]

+ cos3 γ

[
ln

cos γ [1 − sin(γ −ϕD)]

cos(γ −ϕD)(1 − sin γ )
−

tg(γ −ϕD)

cos(γ −ϕD)

]}
,

64(ϕD)=

∫∫
Z2

d2ds = 4
∫ γ−ϕD

0

[ ∫ R

R−D
r1(R − r1)dr1

]
dϕ

=
2(γ −ϕD)R3

3

[
1 −

cos γ
cos(γ −ϕD)

]2[
1 +

2 cos γ
cos(γ −ϕD)

]
,
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Figure 7. Dimensionless loads p0 (curve 1) and p1 (curve 2) for plate with a contour
consisting of two arcs of a circle.

65 =

∫
l
dl = 4γ R,

66(ϕD)= R[1 − cos γ / cos(γ −ϕD)].

The analysis of the dynamic behavior of the plate being considered is similar to the analysis performed
above for the astroid-shaped plate. We present some results. The limit load is calculated by the formula

P0 = min
0<ϕD≤γ

M0(2 − η)65

63 +64
=

M0(2 − η)65

63(γ )

=
M0(2 − η)

R2

6γ
γ − sin 2γ + cos3 γ ln[cos γ /(1 − sin γ )]

.

(36)

The load P1 under which the region Sp appears is found by the formula

P1 =
M0(2 − η)65

63(γ )−61(γ )/Dmax

=
12M0(2 − η)γ

R2

/[
2
(
γ − sin 2γ + cos3 γ ln

cos γ
1 − sin γ

)
−

γ − 3 sin γ cos γ + 2 cos3 γ
(
2 ln cos γ

1−sin γ − sin γ
)

1 − cos γ

]
.

(37)

For the central corner γ = π/2, the plate being considered becomes a circular plate of the radius R.
The limit load for it from the formula (36) is P0 = 6M0(2 − η)/R2. In the simply supported case, this
value is equal to the exact value of the limit load P̄0 obtained by Hopkins and Prager [1954]. For the
clamped contour, the limit load from the formula (36) is equal to 2P̄0. In [Florence 1966], it is obtained
as a result of the approached decision using the Tresca yield criterion and is equal to 1.875P̄0. For a
circular plate, the formula (37) gives P1 = 2P0. In the simply supported case, this result coincides with
those obtained by Hopkins and Prager [1954] and Perzyna [1958]. In the clamped case, Florence [1966]
obtained that P1 = 1.998×1.875P̄0 = 3.746P̄0. Figure 7 shows the dimensionless loads p0 and p1 versus
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Figure 8. Deflections of a simply supported plate with a contour consisting of two arcs
of a circle in the cross section x = 0.

the geometrical parameter γ (pi = Pi R2/[(2 − η)M0], i = 0, 1). The curves 1, 2 correspond to the loads
p0, p1, respectively.

For moderate loads, the final deflection in the center of the plate being considered is calculated from
the formula (33) G =63(γ )/ [ρ61(γ )].

The results of the deflections w= u R2ρ/(M0T 2) of the simply supported plate being considered in the
cross section x = 0 are in Figure 8. The plate is subjected to a high load represented by rectangular pulse
P(t)= Pm M0/R2 for 0 ≤ t ≤ T and P(t)= 0 for t > T . Curves 1–3 correspond to the deflections of the
plate with γ = 1, 2, Dmax = 0.638R and Pm = 38.37 at the times t = T , t = t1 = 1.48T , t = t f = 3.22T ,
respectively. Curves 4–6 correspond to the deflections of the plate with γ = π/4, Dmax = 0.293R and
Pm = 152.22 at the times t = T , t = t1 = 1.38T , t = t f = 3.13T , respectively. As in the case of the
astroid plate, the numerical calculations show that the equalities (35) are valid.

For circular simply supported plate (γ = π/2, η = 1), the final deflection and the duration of response
obtained by the offered method coincide with the result obtained by Perzyna [1958] and Youngdahl
[1971].

By the method described in the present work, we analyzed an astroid-shaped plate and a plate with
a contour consisting of two arches of circle under explosive loads represented by the various form of
a pulse in the absence of resistance foundation. All calculations show that the equalities (35) are valid.
In addition, it is established that the plates have the equal final deflections if different loads have two
equal integral characteristics I and I∗ =

∫ T
0 t P(t)dt . This property for the maximum final deflection

is obtained analytically for rigid-plastic circular plates by Youngdahl [1971] and for regular polygonal
plates by Nemirovsky and Romanova [1995].

5. Dynamic behavior of a plate with an internal free hole or a rigid insert

The previous result is easy to modify for the determination of the dynamic deformation of the plates of
a smooth curvilinear convex contour l, having an internal hole l2 which can be either free or clamped by
an absolutely rigid insert, which is located at the identical distance Da from the external contour. We
assume that Da ≤ Dmin. The equation of the internal contour l2 has the form (B.5) for D = Da (see
Appendix B). We consider the following. By the action of the load P(t), the plate is deformed into
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a cone-shaped surface without the formation of the region of intense plastic deformation whereas the
rigid insert and the points of the internal contour l2 move translationally with the identical velocity ẇc(t).
Consequently, the angle of rotation of the plate surface around of the contour l is identical for all ϕ. Let
us denote this angle by α(t).

Since, on the internal contour l2, the normal bending moment is equal to zero for the free contour and
equal to M0 for the case of a rigid insert, the power of internal forces is

N = α̇∗M0

[
(2 − η)

∫
l
dl −β

∫
l2

dl
]
, (38)

where β = 1 for the case of a free hole and β = 0 for the plate with a rigid insert. We have∫
l
dl =

∫ 2π

0
L(ϕ)dϕ,

∫
l2

dl =

∫ 2π

0

√
x ′2

2 + y′2
2dϕ,

where L(ϕ) is determined in (2). Taking into account the expression (B.5) for l2, we get∫
l2

dl =

∫ 2π

0
L(ϕ)dϕ− Da

∫ 2π

0

L(ϕ)
r(ϕ)

dϕ.

Then the expression (38) for N becomes

N = α̇∗M0

[
(2 − η−β)

∫ 2π

0
L(ϕ)dϕ+ Daβ

∫ 2π

0

L(ϕ)
r(ϕ)

dϕ

]
.

The expressions (6) look like

K = ρα̇∗α̈

∫∫
Z2

ν2
1ds + (1 −β)ρaẇ

∗

c ẅc

∫∫
Sp

ds,

A = α̇∗

[
P(t)

∫∫
Z2

ν1ds − (K1α+ K2α̇)

∫∫
Z2

ν2
1ds

]

+ (1 −β)ẇ∗

c
[
P(t)− K1wc − K2ẇ2

] ∫∫
Sp

ds,

where ρa is the surface density of the insert material. Substituting the expressions K , A, N into (5) and
taking into account the condition (22) of continuity of the velocities at the contour l2 for D = Da , we
obtain the equation of motion of the plate under consideration:(
ρα̈+ K1α+ K2α̇

) ∫∫
Z2

ν2
1ds + (1 −β)D2

a
(
ρaα̈+ K1α+ K2α̇

) ∫∫
Sp

ds

= P(t)

[∫∫
Z2

ν1ds + (1 −β)Da

∫∫
Sp

ds

]
−M0

[
(2 − η−β)

∫ 2π

0
L(ϕ)dϕ+ Daβ

∫ 2π

0

L(ϕ)
r(ϕ)

dϕ

]
.

(39)

The initial conditions look like (24).
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We determine the limit load P0 from (39), (24) and α̈(t0)= 0. Then, we have

P0 = M0

[
(2 − η−β)

∫ 2π

0
L(ϕ)dϕ+ Daβ

∫ 2π

0

L(ϕ)
r(ϕ)

dϕ
]/[∫∫

Z2

ν1ds + (1 −β)Da

∫∫
Sp

ds
]
.

In the case of an annular plate of radius R with a free internal contour (β = 1), the limit load is

P0 =
6M0(1 − η+ Da/R)

D2
a(3 − 2Da/R)

.

For the simply supported external contour, this result coincides with that obtained by Grigoriev [1953].
For the clamped external contour, this limit load for various Da/R exceeds the result calculated by
Grigoriev [1953] by approximately 7%.

Equation (39) is an ordinary differential equation of 2-nd order with constant coefficients and a variable
right part. Methods of solution of the Cauchy problem for such equations are well-known.

We determine the solution of the problem in the case of a free internal hole (β = 1) and in the absence
of resistance foundation (K1 = K2 = 0). Then Equation (39) becomes (29) for G = G1 where

G1 =

∫∫
Z2

ν1ds
/(

ρ

∫∫
Z2

ν2
1ds

)
.

Therefore, the analysis of the behavior of the plate being considered is similar to the analysis of the
behavior of the plate under a moderate load, which is performed above in the part 3, for G = G1 and
Dmax = Da . The moment that the plate comes to rest is determined by (32). The final deflection on the
contour l2 is calculated from (33). For an annular plate with the simply supported external contour, this
result coincides with that obtained by Mroz [1958] for a moderate load.

6. Conclusions

A rigid-plastic model is applied to study the dynamic behavior of simply supported or clamped plates of
arbitrary piecewise smooth curvilinear contour under uniformly distributed short-time intensive loads on
visco-elastic foundation. Several mechanisms of the dynamic deformation of the plates are considered.
For each mechanism, equations of the dynamic deformation are derived. Operating conditions of these
mechanisms are analyzed. The equations for the plastic hinge lines in the plate are obtained. A curvilinear
orthogonal coordinate system in which double integrals in the equations of motion can be conveniently
calculated is proposed. Analytical expressions for the limit and high loads and the maximum final
deflections are obtained. Detailed analyses are given for an astroid-shaped plate and for the plate with a
contour consisting of two arcs of circle. The calculations show that the fact that different explosive loads
having two equal integral characteristics I and I∗ is responsible for the identical final deflections of the
plates. The governing equations for the behavior of a plate with an internal free hole or a rigid insert are
obtained on analytically solvable form and details of the behavior are studied.
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Appendix A

We show that the line normal to the curve l2 is also the normal to the contour l. We approximate the
curvilinear contour l by polygonal contour l̄. For the polygonal plate obtained, the contour of the internal
region which moves translationally becomes a polygonal contour l̄2. Nemirovsky and Romanova [1987;
1988] showed that segments of the internal contour l̄2 are parallel to the corresponding segments of an
external contour l̄ and line normal to any segments of l̄2 is also normal to corresponding side of l̄. Hence,
as the number of segments of the polygonal contour l̄ tends to be infinity, the contour l̄2 comes closer
and closer to l2, and the normal to the curve l2 at any point of l2 is also a normal to the contour l.

Appendix B

Let us consider any smooth part of the contour l. We draw the normal to the curve l2 from point (x2, y2)∈

l2 so that it intersects l at point (x1, y1) ∈ l. The distance between curves l and l2 is written as D = δr ,
where r(ϕ) is the radius of curvature of the curve l and δ = δ(ϕ, t)≥ 0 is a dimensionless function. The
equation for the curve l2 has the form

x2 = x1 − δ(x1 − ξ), y2 = y1 − δ(y1 − ς).

Here ξ, ς are the coordinates of the center of curvature of the curve l:

ξ = x1 −
y′

1L2

x ′

1 y′′

1 − y′

1x ′′

1
, ς = y1 +

x ′

1L2

x ′

1 y′′

1 − y′

1x ′′

1
,

where L(ϕ) is given in (2)
Then the equations for the curve l2 look like

x2 = x1 − δ
y′

1L2

x ′

1 y′′

1 − y′

1x ′′

1
, y2 = y1 + δ

x ′

1L2

x ′

1 y′′

1 − y′

1x ′′

1
. (B.1)

As the normal to the contour l is also the normal to l2 (Appendix A), we obtain

x ′

2(x2 − x1)+ y′

2(y2 − y1)= 0, x ′

1(x1 − x2)+ y′

1(y1 − y2)= 0.

These relations yield

x ′

2 y′

1 = y′

2x ′

1. (B.2)

Differentiating (B.1) and substituting the resulting relations into (B.2), we arrive at the differential equa-
tion for the function δ(ϕ, t)

δ′
L4

x ′

1 y′′

1 − y′

1x ′′

1
+ δ

{
x ′

1

[
x ′

1L2

x ′

1 y′′

1 − y′

1x ′′

1

]′

+ y′

1

[
y′

1L2

x ′

1 y′′

1 − y′

1x ′′

1

]′
}

= 0.
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Taking into account the following relations

x ′

1

[
x ′

1L2

x ′

1 y′′

1 − y′

1x ′′

1

]′

+ y′

1

[
y′

1L2

x ′

1 y′′

1 − y′

1x ′′

1

]′

= (x ′

1x ′′

1 + y′

1 y′′

1 )
L2

x ′

1 y′′

1 − y′

1x ′′
+ (x ′2

1 + y′2
1)

[
L2

x ′

1 y′′

1 − y′

1x ′′

1

]′

= L L ′
L2

x ′

1 y′′

1 − y′

1x ′′
+ L2

[
L2

x ′

1 y′′

1 − y′

1x ′′

1

]′

= L
[

L3

x ′

1 y′′

1 − y′

1x ′′

1

]′

,

we obtain the solution of the equation for the function δ(ϕ, t):

δ = δ0(x ′

1 y′′

1 − y′

1x ′′

1 )/L3, δ0 = δ0(t)≥ 0. (B.3)

The radius of curvature r(ϕ) of the curve l has the form (1); then, it follows (B.3) that

D = δ(ϕ, t)r(ϕ)= δ0(t). (B.4)

Consequently, the distance D between the curves l and l2 is independent of the parameter ϕ. With
(B.3), (B.4), (B.1) for l2 becomes

x2 = x1 − Dy′

1/L , y2 = y1 + Dx ′

1/L . (B.5)
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