Vol. 3, No. 4, 2008

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 4, 541–572
Issue 3, 303–540
Issue 2, 157–302
Issue 1, 1–156

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 8 issues

Volume 7, 10 issues

Volume 6, 9 issues

Volume 5, 6 issues

Volume 4, 10 issues

Volume 3, 10 issues

Volume 2, 10 issues

Volume 1, 8 issues

The Journal
About the journal
Ethics and policies
Peer-review process
Submission guidelines
Submission form
Editorial board
ISSN (electronic): 1559-3959
ISSN (print): 1559-3959
Author index
To appear
Other MSP journals
Effects of layer stacking order on the $V_{50}$ velocity of a two-layered hybrid armor system

Pankaj Kumar Porwal and Stuart Leigh Phoenix

Vol. 3 (2008), No. 4, 627–639

We develop a theoretical and computational model to investigate the ballistic response of a hybrid two-layered flexible armor system. In particular, we study the effects of stacking order of the two fibrous layers, which have distinctly different mechanical properties, on the V 50 limit velocity. A system consisting of Kevlar and Spectra fabrics is studied in detail. For this system, previous experimental results of Cunniff show nearly a factor of two difference in the V 50 velocities for the two possible stacking orders. The new model presented here extends our previous multilayer model by directly addressing interference effects between the two layers, treated here using length and tension compatibility along the radial direction away from the projectile. The primary task is to calculate strains in the individual layers in the presence of constraining interference that forces the nested layers to have a common impact cone shape different from what would be generated by the impact if the layers were allowed to deform freely. We show that this interference, together with relative areal densities of the layers, have a significant effect on the strain evolution in the layers, particularly near the edge of the projectile where failure initiates. As observed experimentally by Cunniff, our model predicts a large decrease in the V 50 velocity of the hybrid armor system when Spectra is the strike layer. However, to achieve this reduction it is necessary to use a lowered normalization velocity in multilayered Spectra systems than the theoretical value obtained from basic fiber properties. Besides matching the experimental results of Cunniff, the model reveals many subtle transitions in the onset and effects of interference between the layers. Somewhat surprising and contrary to conventional wisdom is the observation that layer interference can sometimes be beneficial depending on the relative mechanical properties and areal densities of the two layers.

multilayered hybrid armor systems, stacking order, thermal effects, layer interference, $V_{50}$ velocity, impact velocity versus residual velocity
Received: 28 March 2007
Revised: 31 July 2007
Accepted: 1 August 2007
Published: 1 June 2008
Pankaj Kumar Porwal
227 Department of Civil Engineering
Indian Institute of Technology
Powai, Mumbai 400076
Stuart Leigh Phoenix
Department of Theoretical and Applied Mechanics
321 Thurston Hall
Cornell University
Ithaca, NY 14853
United States