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ON LONG-WAVE MOTION IN AN ELASTIC LAYER

SVETLANA R. AMIROVA AND GRAHAM A. ROGERSON

Long wave dispersion in an incompressible elastic layer subject to an initial static simple shear de-
formation is investigated. Long wave approximations of the dispersion relation associated with zero
incremental traction on the faces are derived for both low and high-frequency motion. Comparison of
approximate and numerical solutions is shown to provide excellent agreement over a surprisingly large
wave number range. Within both the low and high-frequency regimes, the approximations are employed
to establish the relative asymptotic orders of the displacement components and hydrostatic pressure. In
the high-frequency case, the in-plane component of displacement is shown to be asymptotically larger
than the normal component; motion is, therefore, essentially that of thickness shear resonance. The
influence of this specific form of initial deformation is, therefore, seemingly minor in respect of long-
wave high-frequency motion. However, in the long-wave low-frequency case, considerable differences
are noted in comparison with both the classical and previously published prestressed cases. Specifically,
both the normal and in-plane displacement components are of the same asymptotic order, indicating the
absence of any natural analogue of either classical bending or extension.

1. Introduction

The theory of infinitesimal time-dependent motion, superimposed upon a large static primary defor-
mation, has been used by a number of authors to study infinitesimal wave propagation in elastic bodies
subject to an initial pure homogeneous strain. Within this present study, our concern is long-wave motion
in a layer of finite thickness and infinite lateral extent. The layer is composed of incompressible elastic
material and subject to a simple shear primary deformation. Wave propagation in homogeneously pre-
stressed rectangular plates has been discussed in detail by a number of authors — see for example [Ogden
and Roxburg 1993; Rogerson 1997; Rogersion and Fu 1995] — in regard to incompressible elastic plates,
[Roxburgh and Ogden 1994] and [Nolde et al. 2004] for compressible elastic plates, and [Rogerson 1998]
for anisotropic plates. All these studies concern scenarios for which one of the principal axes of primary
deformation is normal to the surface of a plate or half-space. In the context of SH waves, Bar and Pal
[1985] investigated the possibility of Love waves under initial shear stress. Connor and Ogden [1995]
investigated the influence of simple shear on the existence of surface waves and later [1996] discussed
its influence on dispersion in a plate. In the latter of these two references, they derived the dispersion
relations associated with incrementally traction-free and traction-fixed faces, investigated questions of
stability, and provided numerical solutions for the dispersion and bifurcation relations in the traction-free
case for plates composed of neo-Hookean material. In the case of a simple shear primary deformation,
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no principal axis of deformation is normal to the plane of the plate or half-space. We remark that a
similar phenomenon is also possible with anisotropy and with the specific orientation of the principal
axes relative to a free surface; see for example [Fu 2005; Triantafyllidis and Abeyarante 1983].

Shear-type deformations may occur in a number of scenarios and are commonly encountered in ge-
omechanics. As examples, we cite the Earth’s crust, for which the influence of hydrostatic pressure is
significant; see for example [Gessner et al. 2007]. Natural mechanisms also exist within layered systems
whereby movements over long timescales may cause shear-type deformations; see [Ide et al. 2007].

In our present study, an asymptotic long-wave analysis of the dispersion relation associated with
infinitesimal wave propagation in a layer with an initial simple shear deformation and incrementally
traction-free faces is carried out. An asymptotic methodology has previously been exploited in a number
of papers, see for example [Kaplunov et al. 2002] and [Kaplunov et al. 2000]. Our specific aim is
to carry out a long-wave asymptotic investigation of the dispersion relation and use it to establish the
relative asymptotic orders of the field variables, thereby providing the theoretical framework for long-
wave asymptotic models to be derived.

We begin this paper with a review of basic dynamic equations in Section 2. In Section 3, the dispersion
relation, derived using traction-free boundary conditions, is established and numerical results concerning
a Varga material are presented. In Section 4, long-wave low-frequency approximations for dispersion
relations are derived up to, and including, second order. These expansions are derived for the most
general appropriate strain energy function. For neo-Hookean materials, a constitutive simplification is
exploited, and higher-order approximations are established. The approximations are shown to agree well
with a number of numerical solutions.

In Section 5, long-wave high-frequency motion is investigated. In the most general constitutive case,
the general form of the cut-off frequencies is established, with second- and third-order corrections estab-
lished for materials of neo-Hookean type. Again, good agreement between asymptotic and numerical
solutions is demonstrated. Finally, in Section 6 the relative asymptotic orders of the displacement com-
ponents and hydrostatic pressure are established for both long-wave high- and low-frequency motion.
Regarding high-frequency motion, the results were very similar to those previously established for pre-
stresses for which one principal axis is normal to the free surface; see [Kaplunov et al. 2002]. However,
in respect of low-frequency motion, the results were quite different, with both the in-plane and normal
displacement components having the same asymptotic orders. It is then the case that the prestressed
analogs of classical bending and extension, as discussed in [Kaplunov et al. 2000], are not possible. This
notwithstanding, we show that as the amount of shear tends to zero the relative asymptotic orders of dis-
placement components and incremental pressure do all in fact concur with those of [Kaplunov et al. 2000].

2. Governing equations

In this section, we summarize the basic equations which govern infinitesimal motion superimposed upon
a finite static deformation in an incompressible elastic solid. For further details of the basic equations,
the reader is referred to [Ogden 1984]. Our ultimate aim is to investigate infinitesimal wave propagation
in a layer of finite thickness and infinite lateral extent, composed of incompressible elastic material. The
layer is subject to an initial finite simple shear deformation parallel to its incrementally traction free faces.
Initially, the layer occupies the unstressed natural isotropic state Bu , upon which the primary simple shear
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deformation is imposed, resulting in the finitely deformed equilibrium configuration Be. Finally, a small
time-dependent motion is superimposed on Be, with the ultimate current configuration denoted by Bt .
The position vectors of a representative particle, relative to a common Cartesian coordinate system, are
denoted by X A, xi (X A), and x̃i (X A, t) in Bu , Be, and Bt , respectively. These position vectors may be
related through

x̃i (X A, t) = xi (X A) + ui (x j , t), (2-1)

where ui (x j , t) denotes the infinitesimal time-dependent superimposed motion.
In this paper, we specifically consider two-dimensional, two-component infinitesimal motions, with

u3 = 0 and u1 and u2 independent of x3. In view of incompressibility, λ1λ2λ3 = 1, where λi > 0,
i = 1, 2, 3, are the principal stretches of the primary deformation. The particular simple shear primary
deformation concerned may be defined by

x1 = X1 + εX2, x2 = X2, x3 = X3, (2-2)

where ε is the finite amount of shear. The equations of motion may be represented in the component
form

B j ilkuk, jl − pt,i = ρüi , (2-3)

with Bi jkl components of the fourth-order elasticity tensor, pt a time dependent pressure increment, ρ

the material density, a comma indicating differentiation with respect to the indicated spatial coordinate
component and a dot differentiation with respect to time. As was shown in [Destrade and Ogden 2005],
within the so-called Eulerian coordinate system, coincident with the principal axes of the primary de-
formation there are 6 nonzero components of the elasticity tensor entering our equations of motion. In
contrast, within what might be regarded as the plate’s natural coordinate system, with one axis normal to
the free surfaces, there are 10. An important feature of this simple shear deformation is that no principal
axis is normal to the incrementally traction-free faces of the plate, with the Eulerian and natural axes
noncoincident. The natural (x1, x2) and Eulerian (x ′

1, x ′

2) coordinate systems are connected via the
relations

x = Rx′, x′
= RT x, x =

(
x1

x2

)
, x′

=

(
x ′

1
x ′

2

)
, R =

(
cθ −sθ

sθ cθ

)
,

sθ = sin θ, cθ = cos θ, (2-4)

where the origin is located on the plate’s upper face and occupies −∞ ≤ x1 ≤ ∞, −h ≤ x2 ≤ 0.
With respect to Eulerian axes, with displacement components u′

1 and u′

2, the governing equations are
provided by

(B1111 − B1122 + p0)u′

1,11 − p′

t,1 + B2121u′

1,22 + (B2121 − σ2)u′

2,12 = ρü′

1,

(B2222 − B1122 + p0)u′

2,22 − p′

t,2 + B1212u′

2,11 + (B2121 − σ2)u′

1,21 = ρü′

2. (2-5)

Within these equations, a comma indicates differentiation with respect to a spatial component of Eulerian
coordinates, and p0 is a static pressure brought into play by incompressibility. Before proceeding, we
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note the following definitions, symmetries, and a connection between σ2 and p0:

p0 = B2121 − B2112 − σ2, Bi i j j = B j j i i , Bi j j i = B j i i j ,

α = B1212, γ = B2121, 2β = B1111 + B2222 − 2B1122 − 2B1221. (2-6)

We adopt a comma convention whereby the indicated spatial derivatives of u′ are always with respect
to x′, and u always with respect to x. Within this spirit, although the pressure is a scalar, we utilize the
notation p′

t and pt to distinguish between which coordinate system the implied differentiation refers to.
In view of the plane strain nature of the problem, we assume also that λ3 ≡ 1, and note for future use
that

αλ2
2 = γ λ2

1, λ1 = λ, λ2 = 1/λ, α = γ λ4. (2-7)

Recalling that the spatial derivatives in Equation (2-5) are with respect to Eulerian coordinates, we will
perform appropriate changes to express these equations within the plate’s natural coordinate system and
introduce

K1 = B2112 + B1122 − B1111, K2 = B2112 + B1122 − B2222, K1 + K2 = −2β, (2-8)

noting also that the properties of the simple shear deformation dictate that

cot θ = λ, sθ =
1

√
λ2 + 1

, cθ =
λ

√
λ2 + 1

, 2λ = ε +

√
ε2 + 4. (2-9)

The equations of motion, within the natural system, are therefore representable in the form

− λ(1 + λ2)pt,1 − (1 + λ2)pt,2 − ρλ(1 + λ2)ü1 − ρ(1 + λ2)ü2

+ λ
(
(γ − K1 − σ2)λ

2
+ 2γ − σ2

)
u1,11 − λ

(
K1 − γ λ2)u1,22

−
(
(2 K1 + σ2 + γ )λ2

+ σ2 − γ
)
u1,12 −

(
K1λ

2
− γ

)
u2,11

−
(
(σ2 − 2 γ )λ2

− γ + K1 + σ2)
)
u2,22 − λ

(
(σ2 − γ )λ2

+ 2K1 + σ2 + γ
)
)u2,12 = 0, (2-10)

(1 + λ2)pt,1 − λ(1 + λ2)pt,2 + ρ(1 + λ2)ü1 − ρλ(1 + λ2)ü2

−
(
(α − σ2 + γ )λ2

− σ2 − K2 + γ
)
u1,11 −

(
α − K2λ

2)u1,22

− λ
(
(σ2 − γ )λ2

+ 2K2 + 2α + σ2 − γ
)
u1,12 + λ

(
αλ2

− K2
)
u2,11

− λ
(
(σ2 + K2 − γ )λ2

− α + σ2 − γ
)
u2,22 +

(
(2K2 + 2α + σ2 − γ )λ2

− γ + σ2
)
u2,12 = 0. (2-11)

These equations of motion are supplemented by the incremental incompressibility condition

u1,1 + u2,2 = 0. (2-12)

Solutions of the three governing equations are sought in the form

(u1, u2, pt) = (U1, U2, k P)eikqx2eik(vt−x1), (2-13)

where k is the wave number, v the phase speed and q is a parameter which will be determined from
the governing equations. From the incompressibility condition, we first establish that U1 = qU2, which
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when used within the two equations of motion provides a system of two homogeneous equations in two
unknowns, representable in the form

c11U2 + c12 P = 0, c21U2 + c22 P = 0 (2-14)

with

c11 = k2(C (3)
1 q3

+ C (2)
1 q2

+ C (1)
1 q + C (0)

1 ), c12 = k3v (−cθ + qsθ ) ,

c21 = k2(C (3)
2 q3

+ C (2)
2 q2

+ C (1)
2 q + C (0)

2 ), c22 = k3v (qcθ + sθ ) ,

where

C (3)
1 = −cθ

(
γ cθ

2
− K1sθ

2), C (3)
2 = sθ

(
−K2cθ

2
+ α sθ

2),
C (2)

1 = −sθ

(
−K1sθ

2
+ (3 γ + 2K1) cθ

2
+ 2 cθ

2K1
)
,C (2)

2 = −cθ

(
−K2cθ

2
+ (3 α + 2K2) sθ

2),
C (1)

1 = cθ

(
cθ

2K1 − (3 γ + 2K1) sθ
2
+ ρv2), C (1)

2 = sθ

(
−sθ

2K2 + (3 α + 2 K2) cθ
2
− ρv2),

C (0)
1 = sθ

(
−γ sθ

2
+ cθ

2K1 + ρv2), C (0)
2 = −cθ

(
α cθ

2
− sθ

2K2 − ρv2).
This system possesses a nontrivial solution provided the determinant of its coefficients is equal to zero;
this leads, after use of (2-7), to the quartic equation

q4
− 2 ε q3

+
(
4 δ + 2 + ε2

− (1 + δ) v̂
)

q2
− 2 (1 + 2 δ) ε q + 1 + (1 + δ) ε2

− (1 + δ) v̂ = 0, (2-15)

in q , where

v̂ =
ρv2

√
αγ

, δ =
α + γ − 2β

2(β +
√

αγ )
(2-16)

are the dimensionless squared wave speed and a material parameter.
We note in passing that strong ellipticity dictates that α > 0, γ > 0, β > −

√
αγ , thus δ + 1 > 0. The

characteristic equation, (2-15), is the same as that previously derived by Connor and Ogden [Connor and
Ogden 1996], using a different approach involving employment of a stream function. The motivation
for our differing approach is to retain the hydrostatic pressure explicitly within the governing equations.
This will later allow comparison of its relative order with the two displacement components, within the
long-wave regimes. If we now multiply (2-14)1 by cθ and (2-14)2 by sθ , then subtract them and make
use of (2-9), we obtain

P = P(q)U2, P(q) =
P(3)q3

+ P(2)q2
+ P(1)q + P(0)

(λ2 + 1)2kv
,

with
P(3)

= −λ4γ − 2 β λ2
− α,

P(2)
= −(2K1 + K2 + 3γ )λ3

+ (K1 + 3 α + 2K2)λ,

P(1)
= (ρv2

+ K1)λ
4
− (3γ − 4β − 2ρv2

+ 3α)λ2
+ K2 + ρv2,

P(0)
= (α + K1)λ

3
− (K2 + γ )λ.

(2-17)
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The solutions for u1, u2, and pt may now be expressed as the linear combinations

u1 = (q1 A1eikq1x2 + q2 A2eikq2x2 + q3 B1eikq3x2 + q4 B2eikq4x2)eik(vt−x1),

u2 = (A1eikq1x2 + A2eikq2x2 + B1eikq3x2 + B2eikq4x2)eik(vt−x1),

pt = k(P(q1)A1eikq1x2 +P(q2)A2eikq2x2)eik(vt−x1)+k(P(q3)B1eikq3x2 +P(q4)B2eikq4x2)eik(vt−x1),

(2-18)

where A1, A2, B1, B2 are constants. The incremental traction components across any plane with outward
unit normal along n in Be are given by

τi = Bmilkuk,lnm + p0um,i nm − pt ni . (2-19)

Relative to the Eulerian system, the two nonzero traction components associated with the upper and
lower faces of the plate are given by

τ ′

1 = (B1111u′

1,1 + B1122u′

2,2)sθ + (B2112u′

2,1 + B2121u′

1,2)cθ + p0(u′

1,1sθ + u′

2,1cθ ) − pt sθ ,

τ ′

2 = (B1212u′

2,1 + B1221u′

1,2)sθ + (B2211u′

1,1 + B2222u′

2,2)cθ + p0(u′

1,2sθ + u′

2,2cθ ) − pt cθ .
(2-20)

The spatial derivatives in (2-20) are all referred to the Eulerian system. We now change and recalculate
all the derivatives of displacement components and pressure relative to the natural system, obtaining

τ1(λ
2
+ 1)5/2

= −
(
λ2

+ 1
)2

pt

+
(
(−B1221 − γ + B1111) λ4

+ (−K1 − γ + 2 B1122) λ2
+ B1122

)
u1,1

+
(
(2 γ − σ2 + B1122) λ4

+ (−K1 − 2 σ2 + 3 γ + 2 B1122) λ2) u2,2

+ (−σ2 − K1 + γ + B1122) u2,2 +
(
λ5γ − K1λ + (−K1 + γ ) λ3) u1,2

+
(
(γ − σ2) λ5

+ (−K1 − σ2) λ + (γ − 2 σ2 − K1) λ3) u2,1, (2-21)

τ2(λ
2
+ 1)5/2

= −λ
(
λ2

+ 1
)2

pt

+
(
B1122λ

5
+ (−K2 − α + 2 B1122) λ3

+ (−α + B1122 − K2) λ
)

u1,1

+
(
(γ + B1122 − σ2 − K2) λ5

+ (−σ2 + α + γ + B1122) λ
)

u2,2

+ (α + 2 γ − K2 − 2 σ2 + 2 B1122) λ3u2,2 +
(
K2λ

4
− α (K2 − α) λ2) u1,2

+
(
(K2 − 2 γ + α + 2 σ2) λ2

− γ + (−γ + α + K2 + σ2) λ4
+ σ2

)
u2,1. (2-22)

After using the form of solutions (2-13) for displacements and pressure components, these two traction
components may be expressed as

τ1 =
1

(λ2 + 1)5/2 T1(q), T1(q) = T(3)
1 q3

+ T(2)
1 q2

+ T(1)
1 q + T(0)

1 ,

τ2 =
1

(λ2 + 1)5/2 T2(q), T2(q) = T(3)
2 q3

+ T(2)
2 q2

+ T(1)
2 q + T(0)

2 ,

(2-23)
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where

T(3)
1 = γ λ4

+ 2 β λ2
+ α,

T(2)
1 = λ5γ − (2β − 4γ )λ3

+ (4β − 3α)λ,

T(1)
1 = (3γ − σ2 − ρv2)λ4

+ (3α − 2ρv2
− 2σ2 + 7γ − 4β)λ2

+ 2β − ρv2
+ γ − σ2,

T(0)
1 = (σ2 − γ )λ5

+ (2σ2 − α − γ )λ3
− (2β − γ − σ2)λ

(2-24)

and

T(3)
2 = γ λ5

+ 2 β λ3
+ λ α,

T(2)
2 = (3γ − 4β)λ4

+ (2β − 4α)λ2
− α,

T(1)
2 = (2β−σ2+γ −ρv2)λ5

−(4β+2σ2−5α+2ρv2
−5γ )λ3

+(2α−ρv2
+γ −σ2)λ,

T(0)
2 = (2β − 2α + γ − σ2)λ

4
+ (3γ − α − 2σ2)λ

2
− σ2 + γ.

(2-25)

The complete general solutions for τ1 and τ2, as a sum of partial wave solutions, are provided by

τ1 = C(T1(q1)A1eikq1x2 + T1(q2)A2eikq2x2)eik(vt−x1) + C(T1(q3)B1eikq3x2 + T1(q4)B2eikq4x2)eik(vt−x1),

τ2 = C(T2(q1)A1eikq1x2 + T2(q2)A2eikq2x2)eik(vt−x1) + C(T2(q3)B1eikq3x2 + T2(q4)B2eikq4x2)eik(vt−x1).

(2-26)
As a numerical illustration, we will employ in turn the neo-Hookean and Varga strain-energy functions

W =
1
2µ(λ1

2
+ λ2

2
+ λ3

2
− 3), W = µ(λ1 + λ2 + λ3 − 3), (2-27)

where µ is the infinitesimal shear modulus. For the future reference, we note that the parameter δ from
(2-16) is expressible in terms of ε:

(neo-Hookean) β = α + γ, δ = 0;

(Varga) β =
√

αγ , δ =

[(
α

γ

)1/4
−

(
γ

α

)−1/4]2

4
=

(
λ −

1
λ

)2

4
=

ε2

4
.

(2-28)

In passing, we remark that within the plane strain assumption neo-Hookean and Mooney–Rivlin materials
coincide.

3. Analysis of the dispersion relation

The quartic characteristic equation (2-15) has four roots which affect the character of the dispersion
relation. In particular, we note that solutions of (2-15) may in general form two complex conjugate
pairs, be all real, or there may be two real together with a complex conjugates pair. In order to derive a
dispersion relation we specify the boundary conditions:

τ1 = τ2 = 0 on x2 = 0, −h. (3-1)
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Before proceeding to the derivation of the dispersion relation, we note that the two traction components
(2-26) may be represented as

τ1 = sθ

√
αγ ( f (q1)A1eikq1x2 + f (q2)A2eikq2x2)eik(vt−x1)

+ sθ

√
αγ ( f (q3)B1eikq3x2 + f (q4)B2eikq4x2)eik(vt−x1),

τ2 = cθ

√
αγ (g(q1)A1eikq1x2 + g(q2)A2eikq2x2)eik(vt−x1)

+ cθ

√
αγ (g(q3)B1eikq3x2 + g(q4)B2eikq4x2)eik(vt−x1);

(3-2)

this representation concurs with that of [Connor and Ogden 1996], with f (q) and g(q) given by

f =
(q − λ)

(
q + λ−1

)2

1 + δ
+ 3 q − λ + 2 λ−1

+ p (q − λ) − v̂ q, with p =
γ − σ2
√

αγ
;

g =
(q − λ)2 (q + λ−1

)
1 + δ

+ 3 q − 2 λ + λ−1
+ p

(
q + λ−1)

− v̂ q.

(3-3)

We now use the solutions for incremental tractions, together with the boundary conditions, to derive a
system of four linear homogeneous equations in A1, A2, B1, and B2. The dispersion relation results
from the condition that this system has a nontrivial solution, yielding a 4 × 4 determinant. After a little
algebraic manipulation, this condition is expressible in the form

det

∣∣∣∣∣∣∣∣∣∣
f (q1)C1 f (q2)C2 f (q3)C3 f (q4)C4

g(q1)C1 g(q2)C2 g(q3)C3 g(q4)C4

f (q1)S1 f (q2)S2 f (q3)S3 f (q4)S4

g(q1)S1 g(q2)S2 g(q3)S3 g(q4)S4

∣∣∣∣∣∣∣∣∣∣
= 0, S j = sin

q j kh
2

, C j = cos
q j kh

2
. (3-4)

We note that the dispersion relation may be shown to always provide a real equation. In the case of a
neo-Hookean material [Connor and Ogden 1996] the characteristic equation (2-15) has the roots

q1 = i, q2 = −i, q3 = ε + iκ, q4 = ε − iκ, κ2
= 1 − v̂. (3-5)

When κ is real (v̂ < 1) there are four complex roots exist, and when κ is imaginary (v̂ > 1) two are
complex and two real; the case of four real roots is not possible. If we introduce the small dimensionless
parameter η, defined as the ratio of a layer thickness h to typical wave length l, so η ≡ h/ l ≡ kh, the
dispersion relation for a neo-Hookean material reduces to(
q0(p2

− κ2)2
+ q0κ

2 (q0 + 2 p)2
+ 4 κ2(p2

− κ2) (q0 + 2 p)
)

sinh (η) sinh (η κ)

+2 κ (pq0 + p2
+ κ2)2(cos (η ε) − cosh (η) cosh (η κ)

)
= 0, (3-6)

where q0 = 1 + ε2
+ κ2.

To illustrate the behavior of the solution for the dispersion relation (3-4), some numerical results are
presented for a plate composed of Varga material. Figure 1 shows dispersion curves of dimensionless
frequency (vertical axis) against scaled wave number (horizontal axis) for several parameter sets, and
Figure 2 has the corresponding plots of dimensionless squared wave speed (vertical scale) against scaled
wave number (horizontal scale). From both figures it is possible to note that as ε increases a wave-front
is observed, most strikingly in the lower right pane. Also, Figure 2 illustrates the fact that depending
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Figure 1. Numerical solution of dispersion relation, showing dimensionless frequency
ω (vertical axis) against scaled wave number η (horizontal axis) for a Varga material.
Clockwise from top left: ε = 1, 2, 3, all with p = 1; lower left, ε = 2, p = 1.5.
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Figure 2. Numerical solution of dispersion relation, showing dimensionless squared
wave speed v̂ (vertical axis) against scaled wave number η (horizontal axis) for a Varga
material. Clockwise from top left: ε = 1, 2, 3, all with p = 1; lower left, ε = 2, p = 1.5.
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on the numerical values of ε and p there may be one (lower left pane) or two fundamental mode long-
wave limits (remaining panes). Such phenomena will be investigated analytically through long-wave
asymptotic expansion.

4. Long-wave low-frequency motion

4A. Leading order. Approximations for the phase speed will now be derived in the long-wave region.
The term long-wave is introduced to indicate that the wavelength considerably exceeds the plate thickness
and therefore η � 1, with η → 0 indicating the long-wave limit. Our first consideration is so-called low-
frequency motion, for which v̂ generally remains finite as η → 0. We therefore assume that the roots of
the characteristic equation are not large and within the long-wave region

C j = 1 + O(η2), S j =
q jη

2
+ O(η3), j = 1, 2, 3, 4. (4-1)

The appropriate leading-order term of the dispersion relation is then provided by

D = det

∣∣∣∣∣∣∣∣∣∣
f (q1) f (q2) f (q3) f (q4)

g(q1) g(q2) g(q3) g(q4)

q1 f (q1) q2 f (q2) q3 f (q3) q4 f (q4)

q1g(q1) q2g(q2) q3g(q3) q4g(q4)

∣∣∣∣∣∣∣∣∣∣
= 0. (4-2)

Calculating the 4 × 4 determinant results in the following quadratic in v̂:

D(0)
≡ v̂2

+(p2(δ+1)−2p(δ+1)+δ−3−ε2)v̂− (p2
−1)(2p(1+δ)−2(δ−1)+2+ε2) = 0, (4-3)

with the two roots taking the explicit forms

v̂
(0)
1 =

−(p − 1)2(δ + 1) + ε2
+ 4 +

√
R

2
,

v̂
(0)
2 =

−(p − 1)2(δ + 1) + ε2
+ 4 −

√
R

2
,

R =
(
(p − 1)2 δ + (p + 1)2

− ε2)2
+ 4 ε2 (p + 1)2 . (4-4)

In passing, we note that the discriminant of the quadratic in v̂ is a perfect square in each of the cases in
which δ or ε vanish or p = −1.

4B. Second order. To obtain second-order correction terms of dispersion relation, the trigonometrical
functions in (3-4) are expanded to the next order, resulting in

C j = 1 −
q2

j η
2

8
+ O(η4), S j =

q jη

2
−

q3
j η

3

48
+ O(η4), j = 1, 2, 3, 4. (4-5)

The dispersion relation is then expanded and may be represented in the form

D = D(0)
+ η2D(2)

+ O(η4). (4-6)
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Figure 3. Comparison of numerical (solid lines) and asymptotic results for the funda-
mental modes, showing v̂ (vertical axis) against η (horizontal axis). Top row: Varga
material with ε = 1, p = 0.5 (left, two fundamental modes), and with ε = 1, p = 2 (right,
one fundamental mode); the dotted curve represents the second-order approximation.
Bottom row: neo-Hookean material with ε = 0, p = 2 (left, one fundamental mode), and
with ε = 2, p = 1 (right, two fundamental modes); the dotted curve is the third-order
approximation and the dashed curve is the second-order approximation.

We note that both D(0) and D(2) are quadratic in v̂. The form of D(2) is sufficiently complicated that it
is not of value to write it explicitly here. Notwithstanding this, a corrected expansion may be readily
established and written down in the form

v̂i = v̂
(0)
i − η2 D(2)(v̂

(0)
i )

D′(0)(v̂
(0)
i )

+ O(η4). (4-7)

Although the explicit representation of D(2) is complex, nevertheless approximations afforded by (4-7)
can be readily generated and compared with the purely numerical solution. Figure 3 confronts numeri-
cal results with second- and third-order approximations for the fundamental modes. The second-order
approximation curves in the case of a Varga material (top panes) already show very good agreement over
a wide wave number regime; third-order approximation curves are omitted in this case.

4C. Long-wave low-frequency approximations in the case δ = 0. In this section we consider a class
of materials for which δ = 0, implying that 2β = α + γ . As first noted in [Connor and Ogden 1996], in
such cases the characteristic equation (2-15) factorizes and the dispersion relation takes the particularly
simple form given in (3-6). Using (3-6), we are able to derive long-wave low-frequency approximations
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up to and including O(η4). We begin by noting the following expansions:

sinh(η) = η +
1
6 η3

+ O(η5), cosh(η) = 1 +
1
2 η2

+
1

24 η4
+ O(η5),

κ =

√
1 − v̂0 −

1
2

v̂1 η2√
1 − v̂0

−
4v̂2(1 − v̂0) + v̂2

1

8(1 − v̂0)3/2 η4
+ O(η5),

cos(ηε) = 1 −
1
2 η2ε2

+
1
24 η4ε4

+ O(η5), (4-8)

sinh(ηκ) =

√
1 − v̂0η +

(v̂0 − 1)2
− 3v̂1

6
√

1 − v̂0
η3

+
(v̂0 − 1)2

8
η4

+ O(η5),

cosh(ηκ) = 1 +
1
2

(
1 − v̂0

)
η2

−
1

12

(
6v̂1 + (v̂0 − 1)2) η4

+ O(η5).

Employing expansions (4-8) in (3-6), we obtain a representation of the dispersion relation in a form

D = D(0)
+ η2D(2)

+ η4D(4)
+ O(η6), (4-9)

providing, at leading order,

D(0)
=

√
1 − v̂0(1 − p2

− v̂0)(v̂
2
0 − 2ε2v̂0 + ε4

+ 4ε2)(2 + ε2
− v̂0 + 2p) = 0. (4-10)

In (4-10) the root v̂0 = 1 is a spurious root associated with a double root of the characteristic equation.
Additionally, the third factor cannot provide any real solutions and we therefore conclude that the two
long-wave limits are provided by

v̂
(0)
1 = 1 − p2, v̂

(0)
2 = ε2

+ 2p + 2. (4-11)

It is now possible to show that the second-order term D(2) provides a linear function in v̂, from which
we deduce the two second-order corrections:

v̂
(2)
1 =

1
12(ε2

+ (p + 1)2)p2, v̂
(2)
2 = −

1
12(ε2

+ (p + 1)2). (4-12)

Finally, the third dispersion term D(4) is again a linear term in v̂(2) and provides the following third-order
corrections:

v̂
(4)
1 =

p2Z1

576(ε2 + 1 + 3 p2 − 4 p)
, v̂

(4)
2 =

Z2

576(2p + ε2 + 1)(7p + 3ε2 + 3)
, (4-13)

where

Z1 = ε6
+ (3p2

− 12p − 13)ε4
− (13p4

− 24p3
− 10p2

+ 24p + 29)ε2

− 15p6
+ 4p5

+ 55p4
+ 88p3

+ 23p2
− 12p − 15,

Z2 = −24(p2
+ p + 1)ε6

− (136p3
+ 168p2

− 73p − 72)ε4

−(256p4
+ 366p3

− 28p2
− 218p − 72)ε2

− 159p5
− 252p4

− 34p3
+ 172p2

+ 121p + 24.

For the class of materials considered, expansions for the two long-wave low-frequency dimensionless
squared wave speeds may be expressed as

v̂m = v̂(0)
m + η2v̂(2)

m + η4v̂(4)
m + O(η6), (4-14)
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within which v̂
(n)
m , m = 1, 2, n = 0, 2, 4, are as given in equations (4-11), (4-12) and (4-13). For certain

sets of parameters, these approximations might not be valid because third-order corrections may become
large within the vicinity of certain combinations of ε and p. These combinations of parameters may be
identified as

ε2
+ 1 + 3 p2

− 4 p = 0,

2p + ε2
+ 1 = 0,

7p + 3ε2
+ 3 = 0, (4-15)

noting that both leading-order approximations should stay positive. Using these conditions, we obtain
some regions close to which the approximations are not valid, given by

(a) 0 ≤ ε ≤
1

√
3

with p =
2 ±

√
1 − 3ε2

3
,

(b) 0 ≤ ε ≤ 1 with p =
(ε2

+ 1)

2
, (4-16)

(c) 0 ≤ ε ≤
2

√
3

with p =
3(ε2

+ 1)

7
.

The bottom panes in Figure 3 show good agreement between these expansions and numerical solutions
for the fundamental modes in the case of a neo-Hookean strain-energy function.

5. Long-wave high-frequency motion

The long-wave high-frequency case can be characterized by the fact that the scaled phase speed v̂ → ∞

as η → 0. We will also assume that the associated cut-off frequencies are finite. We begin by examining
the four roots of the characteristic equation (2-15) when v̂ � 1 and consider expansions of its roots in
the form

q = s1v̂ + s0 +
s2

v̂
+

s3

v̂2 +
s4

v̂3 , v̂ =
�

η
. (5-1)

After some algebraic manipulation, the following approximations for the roots of (2-15) are obtained:

q1 = i −
iδ (ε − 2 i)2 η2

2 (1 + δ) �2 + O(η4), q2 = −i +
iδ (ε + 2 i)2 η2

2 (1 + δ) �2 + O(η4),

q3 =

√
1 + δ�

η
+ ε −

1
2

(4 δ + 1) η
√

1 + δ�
+

2ε δ η2

(1 + δ) �2 −
1
8

(
16 δ2

+ 20 ε2δ − 8 δ + 1
)
η3

(1 + δ)3/2 �3
+ O(η4), (5-2)

q4 = −

√
1 + δ�

η
+ ε +

1
2

(4 δ + 1) η
√

1 + δ�
+

2ε δ η2

(1 + δ) �2 +
1
8

(
16 δ2

+ 20 ε2δ − 8 δ + 1
)
η3

(1 + δ)3/2 �3
+ O(η4),

where � is the associated scaled frequency and η the dimensionless wave number.

5A. Leading order. To derive the leading-order approximations, we represent the dispersion relation in
terms of the finite scaled frequency �0 and small scaled wave number η. Before doing this, we establish
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the roots of the characteristic equation up to and including O(η2), which yields

q1 = i
(
1 + O(η2)

)
, q2 = i

(
1 + O(η2)

)
,

q3 =
�0

√
1 + δ

η
+ ε −

(4δ + 1) η

2�0
√

1 + δ
+ O(η2), (5-3)

q4 = −
�0

√
1 + δ

η
+ ε +

(4δ + 1) η

2�0
√

1 + δ
+ O(η2),

allowing the following expansions for the f (qi ) to be obtained:

f (q1) ≈ −
((1 + δ) p + δ) λ2

+ 1 − 2 δ

(1 + δ) λ
− i

(
�2

0

η2 −
1 + ((1 + δ) p + 3 δ) λ2

(1 + δ) λ2

)
,

f (q3) ≈

(
2 ε λ− λ2

+ 2
λ

)
�2

0

η2 +

(
2 ε2

+ 2 δ + 1
)
λ + ε

(1 + δ) λ2

+

(
1 − 2 ε λ3

+
(
3 ε2

+ 1 + (1 + δ) p + 3 δ
)
λ2

+ 4 ε λ
√

1 + δλ2

)
�0

η

+
−(ε2

+ (1 + δ) (p + 1))λ3
+
(
ε3

+ ((1 + δ) p + 3 δ + 1) ε
)
λ2

(1 + δ) λ2 , (5-4)

and likewise for the g(qi ):

g(q1) ≈
(1 − 2 δ) λ2

+ (1 + δ) p + δ

(1 + δ) λ
− i

(
�2

0

η2 −
3 δ + λ2

+ (1 + δ) p
1 + δ

)
,

g(q3) ≈

(
2 ε λ− 2 λ2

+ 1
λ

)
�2

0

η2 +
ε2

+ δ + (1 + δ) p + 1
(1 + δ) λ

+

(
λ3

− 4 ε λ2
+
(
3 ε2

+ 1 + (1 + δ) p + 3 δ
)
λ + 2 ε

√
1 + δλ

)
�0

η

+
ε λ3

−
(
2 ε2

+ 2 δ + 1
)
λ2

+
(
ε3

+ ((1 + δ) p + 3 δ + 1) ε
)
λ

(1 + δ) λ
. (5-5)

To derive a leading-order form of the dispersion relation Equation (3-4), expansions for sin and cos are
required, these being obtainable as

S1 =
1
2 iη + O(η2), S2 = −

1
2 iη + O(η2),

S3 = sin
(

1
2

√
1 + δ�0

)
+

1
2 cos

(
1
2

√
1 + δ�0

)
ε η + O(η2),

S4 = − sin
(

1
2

√
1 + δ�0

)
+

1
2 cos

(
1
2

√
1 + δ�0

)
ε η + O(η2),

C1 = 1 + O(η2), C2 = 1 + O(η2),

C3 = cos
(

1
2

√
1 + δ�0

)
−

1
2 sin

(
1
2

√
1 + δ�0

)
ε η + O(η2),

C4 = cos
(

1
2

√
1 + δ�0

)
+

1
2 sin

(
1
2

√
1 + δ�0

)
ε η + O(η2).

(5-6)
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Substituting these expansions, together with (5-4), (5-5) and (5-3), into (3-4) results in a dispersion
relation of the form D(0)

+ O(η2). At leading order, we obtain D(0)
= 0, implying that

sin
(√

1 + δ�0

)
= 0 H⇒ �(0)

=
nπ

√
1 + δ

. (5-7)

5B. Long-wave high-frequency approximations in the case δ = 0. In the case δ = 0, we establish
long-wave high-frequency approximations to higher order than in the general case.

5B.1. Leading-order approximations. Motivated by the general case, we assume that � = �0 + O(η2).
The following expansions are obtainable for the neo-Hookean material dispersion relation (3-6)

κ =

√
1 −

�2

η2 =
i�0

η
−

( i
2�0

)
η + O(η2),

cos(ηε) = 1 + O(η2), sinh(η) = η + O(η2), cosh(η) = 1 + O(η2), (5-8)

sinh(ηκ) = i sin (�0) + O(η2), cosh(ηκ) = cos (�0) + O(η2),

from which the dispersion relation takes the approximate form

D = D(0)
+ O(η2), D(0)

= i�0
8 sin (�0) . (5-9)

From (5-9) we deduce that the cut-off frequencies are given by �0 = nπ , a result which could have been
obtained directly from (5-7).

5B.2. Higher-order approximations. Corrections to the cut-off frequencies are now sought in the form

� = nπ + �2η
2
+ �4η

4
+ O(η5). (5-10)

Keeping in mind that cos �0 = (−1)n and sin �0 = 0, we obtain the following expansions up to and
including O(η4):

κ =
iπ n
η

+
i (−1 + 2 π n�2)

2π n
η +

i
(
8 π3n3�4 − 1 + 4 π n�2

)
8π3n3 η3

+ O(η5),

sinh(η) = η +
1
6 η3

+ O(η5), cosh(η) = 1 +
1
2 η2

+
1
24 η4

+ O(η5),

cos(ηε) = 1 −
1
2 η2ε2

+
1

24 η4ε4
+ O(η5), (5-11)

sinh(ηκ) =
i (−1)n (−1 + 2 π n�2)

2π n
η2

+
i (−1)n (8 π3n3�4 − 1 + 4 π n�2

)
8π3n3 η4

+ O(η5),

cosh(ηκ) = (−1)n
− −

(−1)n
+ 4 (−1)1+n π n�2 + 4 (−1)n π2n2�2

2

8π2n2 η4
+ O(η5).

The dispersion relation correction is now expressible as

D = D(2)η2
+ D(4)η4

+ O(η6), (5-12)

leading to the corrections

�2 =
4 (p + 1)2 ((−1)n

− 1
)
+ (−1)n π2n2

2π3n3 (−1)n , �4 =
H

24n5π5(−1)n ,
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where

H = −192 π4n4(−1)n�2
2

+

(
240 π n((−1)n

− 1)(p2
+ 1) + 36 π3n3(−1)n(5 + 2 ε2)

+
(
96 π3n3(−1)n

+ 480 π n((−1)n
− 1)

)
p − 4 π5n5(−1)n

)
�2

+
(
(96(1 − (−1)n) + 24 π2n2)p2

+ (96(1 − (−1)n) + 48 π2n2)p
)
ε2

+ 96 (1 − (−1)n)p3
+ (24 (−1)nπ2n2

+ 312(1 − (−1)n))p2

− 336 ((−1)n
− 1)p + 12 π2n2(2 − 3 (−1)n)ε2

+ 120(1 − (−1)n)− 21 (−1)nπ2n2
+ 2 (−1)nπ4n4.

Although the corrections, especially �4, are quite complex, they are readily plotted, and provide excellent
agreement with numerical solutions (Figure 4).

6. Relative asymptotic orders of displacements and hydrostatic pressure

We now wish to establish the relative orders of displacement and pressure within both the long-wave
low and high-frequency regimes. Before moving on to this, we first introduce the notation ζ = x2/h;
after which the solutions for displacement components and hydrostatic pressure may, from (2-18), be
represented in the form

u1 = (q1 A1eiηq1ζ + q2 A2eiηq2ζ + q3 B1eiηq3ζ + q4 B2eiηq4ζ )eik(vt−x1),

u2 = (A1eiηq1ζ + A2eiηq2ζ + B1eiηq3ζ + B2eiηq4ζ )eik(vt−x1), (6-1)

pt = k
(
P(q1)A1eiηq1ζ + P(q2)A2eiηq2ζ

)
eik(vt−x1) + k

(
P(q3)B1eiηq3ζ + P(q4)B2eiηq4ζ

)
eik(vt−x1),

where A1, A2, B1 and B2 may, through the use of (3-1) and (3-2), be related through

f (q1)A1 + f (q2)A2 + f (q3)B1 + f (q4)B2 = 0,

g(q1)A1 + g(q2)A2 + g(q3)B1 + g(q4)B2 = 0,

f (q1)e−iq1η A1 + f (q2)e−iq2η A2 + f (q3)e−iq3η B1 + f (q4)e−iq4η B2 = 0,

g(q1)e−iq1η A1 + g(q2)e−iq2η A2 + g(q3)e−iq3η B1 + g(q4)e−iq4η B2 = 0.

(6-2)

6A. Long-wave low-frequency leading-order displacements and hydrostatic pressure. In the long-wave
low-frequency regime the squared wave speed is generally O(1). Accordingly, there are generally no
large or small parameters in the characteristic equation (2-15), and we may assume that to leading order
exp(−iηq jζ ) = 1 + O(η). Thus, in the long-wave low-frequency region

u1 ≈ (q1 A1 + q2 A2 + q3 B1 + q4 B2), u2 ≈ A1 + A2 + B1 + B2,

pt ≈ k(P(q1)A1 + P(q2)A2 + P(q3)B1 + P(q4)B2).
(6-3)

To obtain the dependence of the coefficients A1, A2, B1, and B2, and thereby the displacement com-
ponents and pressure increment, on η, we first use the fact that exp(−iηq j ) = 1 − iηq j + O(η2), for
j ∈ [1, 4], and note the two associated long-wave low-frequency phase speed limits given by (4-4). In
complete generality it is possible to establish the relative asymptotic orders of A1, A2, B1, and B2 and
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Figure 4. Second- and third-order approximations for first three harmonics compared
with numerical results: dimensionless frequency � (vertical axis) against scaled wave
number η (horizontal axis) for neo-Hookean material. Dotted curves correspond to third
order, dashed curves to second order and unbroken curves to numerical results.

hence establish the relative orders of u1, u2, and pt . However, the complexity of the algebra is immense.
Accordingly, only explicit results relating to a neo-Hookean material are presented. In this case, A1,
A2, B1, and B2 may be expressed in terms of one parameter, Ũ say, from which the leading order
displacements are established as shown in Table 1 at the top of the next page, where we remark that the
exponential function eik(x1−vt) has been incorporated into the definition of Ũ . It is of interest to note that
in Case 1 the in-plane displacement component u1 has a factor ε at leading order, whereas in Case 2, the
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Case 1: v̂(0)
= v̂

(0)
1 = 1 − p2,

u1 =

(
16M1

1

(
(p − 1)2

+ ε2
) (

(p + 1)2
+ ε2

)
pε(

ε +
√

ε2 + 4
)3

)
Ũη + O(η2),

u2 =

(
32M1

2

(
(p − 1)2

+ ε2
) (

(p + 1)2
+ ε2

)
(p + 1) p(

ε +
√

ε2 + 4
)4

)
Ũη + O(η2),

M1
1 =

√
ε2 + 4

(
2(p + 1) + ε2(p + 4) + ε4)

+ ε5
+ ε3(p + 6) + 4ε(p + 2)

M1
2 =

(
ε5

+ ε3(p + 5) + ε(3p + 5)
)√

ε2 + 4 + ε6
+ ε4(p + 7) + ε2(5p + 13) + 4(p + 1).

Case 2: v̂(0)
= v̂

(0)
2 = ε2

+ 2p + 2,

u1 =

(
64M2

1

(
(p + 1)2

+ ε2
)
(p + 1)

√
1 + ε2 + 2p(

ε +
√

ε2 + 4
)3

)
Ũη + O(η2),

u2 = −

(
128M2

2

(
(p + 1)2

+ ε2
)
ε
√

1 + ε2 + 2p(
ε +

√
ε2 + 4

)4

)
Ũη + O(η2),

M2
1 =

(
ε2 p + 3p + 1

)
ε
√

ε2 + 4 + ε4 p + ε2(5p + 1) + 4

M2
2 =

(
ε4 p + ε2(4p + 1) + 2(p + 1)

)√
ε2 + 4 + ε5 p + ε3(6p + 1) + 4ε(2p + 1),

Table 1. Leading-order displacements (see previous page).

normal displacement component u2 has a similar factor. We may therefore conclude that if ε ∼ O(1),
u1 and u2 have the same asymptotic orders. This contrasts with the classical case, discussed for example
[Kaplunov et al. 1998], in which u2 � u1 in Case 1 (bending) and u1 � u2 Case 2 (extension). It
also contrasts with their prestress counterparts for which one principal axis is normal to the plate — see
[Kaplunov et al. 2000] — within which the classical structure is preserved. In the case ε = 0, the results
above reduce to

Case 1: Bending
v̂

(0)
1 = 1 − p2, u1 = O(η2), u2 = 8 (p + 1)4 (p − 1)2 pŨη + O(η2), M2

1 = M2
2 = 4(p + 1),

Case 2: Extension
v̂

(0)
2 = 2p + 2, u1 = 32 (p + 1)4 Ũ

√
1 + 2pη + O(η2), u2 = O(η2), M1

1 = M1
2 = 4(p + 1).

From this we see that if ε = 0, the relative orders agree with previously mentioned classical results. In
passing we note that the relative asymptotic orders may need modification within the vicinity of certain
critical states of prestress. The order of hydrostatic pressure in case of a neo-hookean material may
similarly be established and shown to be of the form

pt = kQŨη + O(η2), (6-4)

with Q generally O(1). For both associated fundamental modes, the coefficient Q is algebraically complex
and is therefore not written explicitly here. However, in the case of ε = 0, more explicit results are
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obtainable, yielding

Case 1: v̂
(0)
1 = 1 − p2

: Q(1)
= 0,

Case 2: v̂
(0)
2 = 2p + 2 : Q(2)

= 32γ
√

1 + 2p(1 + p)5Ũ ,

indicating that in Case 1 (Bending) pt ∼ η2 and in Case 2 (extension) pt ∼ η. These results, together
with those for u1 and u2, are a particular case of those obtained in [Kaplunov et al. 2000].

6B. Long-wave high-frequency leading-order displacements and hydrostatic pressure. As η → 0, ap-
propriate approximations of the characteristic equation, (2-15), are readily obtainable and the exponential
functions in (6-1) are therefore representable in the approximate forms

eiηq1ζ = 1 + O(η), eiηq2ζ = 1 + O(η),

eiηq3ζ = eiζnπ
+ O(η), eiηq4ζ = e−iζnπ

+ O(η).

Hence, in the long-wave high-frequency regime, the displacement components and hydrostatic pressure
are given approximately by

u1 ≈ q1 A1 + q2 A2 + q3 B1eiζnπ
+ q4 B2e−iζnπ ,

u2 ≈ A1 + A2 + B1eiζnπ
+ B2e−iζnπ ,

pt ≈ k
(
P(q1)A1 + P(q2)A2 + P(q3)B1eiζnπ

+ P(q4)B2e−iζnπ
)
.

In order to estimate the dependence of the coefficients A1, A2, B1, and B2 on η, we expand the exponential
functions in powers of η, up to O(η2), which yields

e−iηq1 = 1 + η + O(η2), e−iηq2 = 1 − η + O(η2),

e−iηq3 = (−1)n(1 − iηε) + O(η2), e−iηq4 = (−1)n(1 − iηε) + O(η2).

The displacement components are now expressible in terms of a single parameter Ũ in the form

u1 = C (1)
6 η−6

+ C (1)
5 (η−5) + O(η−4),

u2 = C (2)
5 (η−5) + O(η−4),

C (1)
6 =

4n7π7 (−1)n (λ2
+ 1

)
cosh(ζnπ)Ũ

λ (1 + δ)3 ,

C (1)
5 6= 0,

C (2)
5 =

2 i
(
λ2

+ 1
)
π5n5Ũ

λ3 (1 + δ)3 Cu,

for

Cu = −2iπ λ2n(−1)n sinh(ζnπ) + 2 (1 − (−1)n)
(
λ4

− 2 λ3ε − λ2(p(1 + δ) + ε2
+ 6 + 2 δ) + 2 ε + 1

)
,

and the pressure takes the form

pt = kc(7)η−7
+ kc(6)η−6

+ O(η−5),
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where
c7 = c(7)

1 ε + c(7)
0 , c6 = c(6)

2 ε2
+ c(6)

1 ε + c(6)
0 .

All the coefficients are quite lengthy both in general and for the neo-Hookean strain energy function.
However, in general all coefficients are O(1). We note from the above long-wave representations that
the incremental pressure is asymptotically leading, with the in-plane displacement component very much
larger than its normal counterpart. We note that in the case ε = 0,

c(7)
0 (ε = 0, � = �(0)) = 0,

c(6)
0 (ε = 0, � = �(0)) = 8γπ7n7(−1)n(p + 1)Ũ ,

indicating that now the incremental pressure and in-plane displacement are the same order. This is
in agreement with the result in [Kaplunov et al. 2000]. We conclude by remarking that in general
the incremental pressure is asymptotically leading and this will have consequences in the derivation
of appropriate asymptotic long-wave models.

7. Some concluding remarks

In this paper we have investigated the influence of a simple shear primary deformation on long wave
motion in an incompressible elastic layer. For high-frequency motion, the results are broadly similar to
those previously published in regard to pure homogeneous strain. However, the results for low-frequency
motion show a significant departure from previous investigations. In this case it is not possible to de-
compose the problem into symmetric and antisymmetric components. It is therefore not possible to
establish analogs of classical extension and bending. The reason for this is that whenever the amount of
shear is finite, within the long-wave low-frequency regime both the in-plane and normal displacement
components have the same asymptotic order. This contrasts with the classical cases of extension and
bending, together with their homogeneously strained counterparts, for which the in-plane and normal
component are asymptotically leading, respectively. Knowledge of the asymptotic orders of displacement
components will provide the necessary basis for deriving an appropriate asymptotic model. Although
such a model would be a great simplification, with the displacements having the same order, it would
seem unlikely that it will be one-dimensional. Work to clarify this is currently being carried out and the
results will be published in due course.
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