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This paper deals with the numerical solution of the nonlinear heat transfer problem in a multilayered
plate. Kansa’s meshless method is used for the solution of this problem. In this approach, the unknown
temperatures in layers are approximated by the linear combination of radial basis functions, while the
governing equation and the boundary conditions are imposed directly at the collocation points. The
multiquadrics [MQ] are used as the radial basis functions. In the presented method the radial basis func-
tions contains a free parameter C, called the shape parameter. Usually, in the application of radial basis
functions, this parameter is chosen arbitrarily depending on the author’s experience. In the presented
paper, special attention is paid to the optimal choice of the shape parameter for the radial basis functions.
This optimal value of the shape parameter is obtained using a formula given by other authors for solution
of the linear case.

1. Introduction

In the last two decades, meshless methods were introduced to computational mechanics. The essential
feature of these methods is that they only require a set of unconnected nodes to construct the approxi-
mation functions. Among all the meshless methods, Kansa’s method [1990a; 1990b] has become quite
popular due to its simplicity. In this approach, the solution is approximated by a linear combination of
the radial basis functions, while the governing equation and the boundary conditions are imposed directly
at the collocation points. The most popular radial basis functions are multiquadrics [Hardy 1971]. In
the presented method, the radial basis functions contain a free parameter C, called the shape parameter.
Usually in the application to radial basis functions this parameter is chosen arbitrarily, depending on
the author’s experience. However, the shape parameter affects both the accuracy of the approximation
and the conditioning of the system of equation, and there are papers in which this parameter is chosen
optimally in proposed algorithms of solution, for example, [Golberg et al. 1996; Rippa 1999; Wertz et al.
2006; Huang et al. 2007].

The purpose of this paper is to determine the optimal choice of the shape parameter for the radial
basis functions when a nonlinear heat conduction problem in multilayered solid structures is consid-
ered. Walls of heat treatment furnaces usually consist of several layers of different materials, with a
different temperature inside and outside of the furnace. There are some electronic devices in which
heat flow exists in the multi-layered device materials. Accurate thermal analysis of the high-temperature
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devices must take into account the dependence of the thermal conductivity on the temperature. Usually,
for problems with temperature-dependent thermal conductivity, the Kirchhoff transformation is used
to convert a nonlinear heat equation into a linear one with nonlinear boundary conditions. However,
in the multilayered walls, the nonlinear boundary conditions appear between layers, which makes this
transformation generally problematic. In the paper [Bonani and Ghione 1995], the heat flow in only
two layers has been considered. Moreover, the authors assumed that the thermal conductivity in layers
is linearly dependent, which permits them to use the Kirchhoff transformations. Similarly, in the paper
[Pesare et al. 2001], the authors linearized the boundary conditions between layers and used the Fourier
transformation.

In this paper we apply Kansa’s method for the numerical solution of nonlinear heat transfer in multi-
layered solid structures. Special attention is paid to the optimal choice of the shape parameter for radial
basis functions. This optimal value of the shape parameter is obtained using the formula given in the
paper [Huang et al. 2007], which was used in the two-dimensional linear case. Here, this formula is
examined for the nonlinear one-dimensional case.

2. Formulation of the problem

Let’s consider three cases of multi-layer walls as shown in Figure 1:

(1) constant thermal conductivity of layers λ(i) = AW (i),

Figure 1. Plane multi-layer wall.
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(2) linear temperature-dependent thermal conductivity λ(i)
= AW (i) + BW (i)T (i),

(3) temperature-dependent thermal conductivity of layers

λ(i)
= AW (i) + BW (i)T (i)

+ CW (i)(T (i))2, i = 1, 2, . . . , M, (2-1)

where T (i)(x) is the temperature field in i th layer, and AW (i), BW (i), and CW (i) are known constants
for each layer. On the left and the right hand of the walls the temperatures are TL and TR respectively.

The one-dimensional governing equation for steady state heat transfer in multi-layered walls with
thermal conductivity dependent on temperature is given as

d
dx

[
λ
(
T (i)) dT (i)

dx

]
= 0, for x ∈ [Y (i) , Y (i + 1)] , i = 1, . . . , M. (2-2)

Equation (2-2) can be expressed as

d2T
dx2 = −

1
λ
(
T (i)

) dλ

dT (i)

(
dT (i)

dx

)
. (2-3)

Substituting Equation (2-1) into Equation (2-3) we have

d2T
dx2 = −

BW (i) + 2CW (i)T (i)

AW (i) + BW (i)T (i) + CW (i)(T (i))2

(
dT (i)

dx

)2

. (2-4)

Equation (2-4) should be solved with the following boundary conditions:

(1) on the left boundary:
T (1)

= TL for x = Y (1), (2-5)

(2) on the right boundary:
T (M)

= TR for x = Y (M + 1), (2-6)

(3) continuity of temperature and heat flux between layers:

T (i)
= T (i+1),

λ
(
T (i)) dT (i)

dx
= λ

(
T (i+1)

) dT (i+1)

dx
, (2-7)

for x = Y (i + 1) , i = 1, 2, . . . , M.

We introduce the nondimensional variables in the form T̆ (i) = T (i)/TL , x̆ (i) = x (i)/D, where D =

Y (M + 1) − Y (1) is the width of a wall. Now, the nondimensional thermal conductivity has the form

λ̆(i)
= 1 +

BW (i)
AW (i)

TL T̆ (i)
+

CW (i)
AW (i)

(TL T̆ (i))2 (2-8)

= 1 + B̆W (i)T̆ (i) + C̆W (i)(T̆ (i))2, (2-9)

where B̆W (i) =
BW (i)
AW (i)

TL , C̆W (i) =
CW (i)
AW (i)

(TL)2.
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The governing Equation (2-4), in the nondimensional thermal conductivity, is now the following:

d2T̆ (i)

dx̆2 = −
B̆W (i) + 2C̆W (i)T̆ (i)

1 + B̆W (i)T (i) + C̆W (i)(T (i))2

(
dT̆ (i)

dx̆

)2

, (2-10)

and is solved with the following boundary conditions in dimensionless form:

(1) on the left boundary:

T̆ (1)
= 1, for x̆ =

Y (1)

D
, (2-11)

(2) on the right boundary:

T̆ (M)
=

TR

TL
, for x̆ =

Y (M + 1)

D
, (2-12)

(3) continuity between layers:

T̆ (i)
= T̆ (i+1),

λ̆
(

T̆ (i)
) dT̆ (i)

dx̆
= β(i+1)

· λ̆
(

T̆ (i+1)
) dT̆ (i+1)

dx̆
, (2-13)

x̆ =
Y (i + 1)

D
, i = 1, 2, . . . , M,

where β(i+1)
=

AW (I + 1)

AW (I )
.

3. Method of solution

According to Kansa’s method the approximate solution is assumed in the form

T̆ (i)
=

N∑
j=1

D(i, j)φ j (x̆, x̆w(i, j), C), i = 1, 2, . . . , M, (3-1)

where φ j (x̆, x̆w(i, j), C) =
√

(x̆ − x̆w(i, j))2 + C2 are multiquadrics as radial basis functions, D(i, j)
are coefficients to be determined, i is related to i th layer, j is related to interpolation nodes, N is the
number of interpolation points in each layer, x̆w(i, j) are interpolation points which are determined by
the formula

x̆w(i, j) =

(Y (i +1)

D
−

Y (i)
D

)
· ( j − i)

N − 1
+

Y (i)
D

,

and C is the shape factor for which the optimal value will be determined by using error estimation.
Then we can write the solution, Equation (3-1), as

T̆ (i)
=

N∑
j=1

D(i, j)
√

(x̆ − x̆w(i, j))2 + C2, i = 1, 2, . . . , M, (3-2)

The problem can be solved if the coefficients D(i, j), i = 1, 2, . . . , M, j = 1, 2, . . . , N , are known.
These N G = M · N unknown coefficients will be determined with the following equations:
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(1) from determination of boundary condition (2-11) at the left side of wall:

T̆ (1)(x̆w(1, 1)) = 1, (3-3)

(2) determination of boundary condition (2-12) at the right side of wall:

T̆ (M)(x̆w(M, N )) =
TR

TL
, (3-4)

(3) from the continuity conditions (2-13) between layers, which lead to 2(M − 1) equations in the form

T̆ (i)(x̆w(i, N )) = T̆ (i+1)(x̆w(i + 1, 1)), (3-5)

λ̆(T̆ (i))
dT̆
d x̆

∣∣∣
x̆w(i,M))

= β(i+1)λ̆(T̆ (i+1))
dT̆ (i+1)

dx̆

∣∣∣
x̆w(i+1, j)

. (3-6)

(4) from pointwise satisfaction of Equation (2-10) in the inner nodes on each layer, which leads to
M (N−2) equations of the form

d2T̆ (i)

dx̆2

∣∣∣
x̆w(i, j))

=

{
−

B̆W (i) + 2C̆W (i)T̆ (i)

1 + B̆W (i)T (i) + C̆W (i)(T (i))2

(
dT̆ (i)

dx̆

)2}∣∣∣∣∣
x̆w(i, j))

, (3-7)

where i = 1, 2, . . . , M and j = 2, . . . , N − 1.

Together we have 1 + 1 + 2(M−1) + M (N−2) = M N nonlinear equations, the same as the number
of unknowns D(i, j).

In the presented method, the radial basis functions contain a free parameter C called the shape parame-
ter. Usually in the application of radial basis functions this parameter is chosen arbitrarily, depending on
author’s experience. However, the shape parameter affects both the accuracy of the approximation and the
conditioning of the system of equations, and there are papers in which this parameter is chosen optimally
in a proposed algorithm of solution, for example, [Rippa 1999]. For MQ collocation, the shape factor in
the basis functions should be increased to its limit. When we push C → ∞, the theoretical accuracy can
be achieved but condition number of solutions matrix becomes huge which leads to the loss of accuracy.
We establish an error estimate of

ε ≈ O
(
exp(aC3/2

+ (ln λ)C1/2h−1)
)
, with 0 < λ < 1and a > 0,

given in [Huang et al. 2007]. A finite C value for which the error is minimized exists. This optimal value
is found to be Copt = Cmax = − ln λ/(3ah). To determine Copt, knowledge of the constants λ and a in
the error estimate is needed. In a real world problem, the error is not known because the true solution
is not given. Without data, λ and a cannot be determined. This difficulty is overcome by utilizing the
residual error, which is a good measure of the error trend, but not the error magnitude. Using residual
errors corresponding to a number of C and h values, these two constants λ and a can be estimated by
least square data fitting.

For numerical experiments we solve three cases: constant, linear, and nonlinear temperature-dependent
thermal conductivity of layers. In order to verify the exactness of the proposed method, as a first example,
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one layer with known temperature at the left and right walls and linearly temperature-dependent thermal
conductivity λ(T ) = AW + BW · T was considered. The analytical solution is

T (x) =
−AW +

√
AW 2 − 2BW (κ1 · x + κ2)

BW
,

where

κ1 =
AW (TR − TL) +

1
2 BW (T 2

K − T 2
L )

G
and κ2 = AW TL +

1
2 BW T 2

L ,

and we can make a comparison of the result from the MQ collocation method with the optimal shape
factor and check the accuracy of the method using the maximum error

εmax = max
q=1,...,N−1

|T (xrq) − T̆ (xrq)|

Tmax
,

and square error

εsqr =

√√√√ 1
N − 1

N−1∑
q=1

[T (xrq) − T̆ (xrq)]2

Tmax
.

4. Residual error

In a real life problem, we have no knowledge about the exact solution; hence we do not have error data
to use at all. We need to find an alternative to the above procedure and estimate the residual error. If we
check the residual error at a node xrq not belonging to the collocation set,

εR(xrq) =
d

dx

(
λT̆ (xrq)

dT̆ (xrq)

dx

)
,

the error is generally not zero. The residual error can be used as a good indication of error trend, but it
does not give the error magnitude. We can write the estimate of residual error as follows: εr = Aε , where
A is a constant of an unknown order of magnitude. For a given grid h, we can perform two computations
using two different C values, Ck and Ck+1, to obtain the residual errors εr (Ck) and εR(Ck+1). With two
such data points, their ratio gives the following linear equation in the two unknowns a and ln λ:

ln
εR(Ck)

εR(Ck+1)
= (C3/2

k − C3/2
k+1)a −

C1/2
k − C1/2

k+1

h
ln λ,

The three computations with different C’s can form two equations for the determination of a and ln λ .
In practice, it is better to obtain a larger number of data points to perform the least squares fitting. Then
the obtained constants can be used to determine the Copt value for a finer grid.

5. Numerical results

Linear temperature-dependent thermal conductivity of one layer. In these cases, the exact solutions
are unknown so we can estimate the method error magnitude (maximum and square error). In these
numerical calculations, 11 and 21 collocation points in one layer were chosen and 10−4 for maximal



THE OPTIMAL SHAPE PARAMETER OF MQ COLLOCATION METHOD 1083

C ln εR

1.6 0.00121982413
1.8 0.000886213166
2.0 0.000691965229
2.2 0.000571502605
2.4 0.00048876342
2.6 0.000562506018
2.8 1.6346723
3.0 2.36810104

Copt ln εR

2.45619734 0.00046022506

Table 1. Residual error as a function of the shape parameter C for linear temperature-
dependent thermal conductivity.

C ln εR

0.005 0.792708032
0.155 0.629296421
0.305 0.0521441337
0.455 0.00555486248
0.605 0.000754166689
0.755 0.000130104558

Copt ln εR

0.786010956 0.000104694988

Table 2. Residual error as a function of the shape parameter C for linear temperature-
dependent thermal conductivity.

error in Newton’s method was accepted. The first approximation was the solution to the temperature
distribution for a constant thermal conductivity coefficient (independent of the temperature).

For 11 collocation points the optimal shape factor is Copt = 2.45619734 for which the residual error
εR = 0.00046 and maximum and square error between approximated and analytic solution is, εmax =

3.81 × 10−005, εsqr = 2.27 × 10−005 respectively (Table 1).
For 21 collocation points Copt = 0.786010956, εR(Copt) = 0.0001047, εmax = 3.46 × 10−005, εsqr =

2.84 × 10−005 (Table 2). The values of maximum and square errors show that the accuracy of the method
is high and the approximate solution agrees with the theoretical solution. The above figures show that
the numerical and theoretical solutions are similar and the MQ collocation method with optimized shape
procedure is an effective tool to solve heat transfer problems.

Constant thermal conductivity of multilayer plane. We considered three cases:
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C ln εR

0.05 3.0710643
0.2 0.447483879
0.35 0.150444561
0.5 0.086741511
0.65 0.065856967
0.8 0.057433939
0.95 0.053670263
1.1 0.051987961
1.25 0.095730805
1.4 0.074601817
1.55 0.064468031

Copt ln εR

0.594536825 0.000310218

C ln εR

0.1 2.64531052
0.2 0.53068379
0.3 0.174990457
0.4 0.09438661
0.5 0.068759911
0.6 0.058639665
0.7 0.054148311
0.8 0.052033416
0.9 0.05100849
1.0 0.050664394
1.1 0.08348719

Copt ln εR

0.386502402 0.015555844

Table 3. Residual error as a function of the shape parameter C for constant thermal
conductivity. Left: one-layer wall with 21 collocation points. Right: two-layer wall with
11 collocation points.

The first case experiment is performed at one layer with 21 collocation points. The calculated shape
factor is Copt = 0.594536825 for which the residual error is εR(Copt) = 0.00031 (Table 3, left).

In the second case, a two layer wall is taken with 11 collocation points. The calculated shape factor
is Copt = 0.386502402 for which the residual error is εR(Copt) = 0.01556 (Table 3, right).

In the third case, a three layer wall is considered with 11 collocation points. The optimal shape factor
is Copt = 0.687803178 and the residual error is εR(Copt) = 0.0328 (Table 4).

C ln εR C ln εR C ln εR

0.1 1.97888189 0.35 0.042408028 0.6 0.033871399
0.15 0.532822138 0.4 0.037617988 0.65 0.056527116
0.2 0.177169659 0.45 0.035414293 0.7 0.074507336
0.25 0.083325356 0.5 0.034366375 0.75 0.19534613
0.3 0.053618929 0.55 0.033893021 0.8 0.886799178

Copt ln εR

0.687803178 0.032803874

Table 4. Residual error as a function of the shape parameter C for constant thermal
conductivity, for a three-layer wall with 11 collocation points.
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C ln εR

0.01 1.53630798
0.11 1.41237822
0.21 0.246053512
0.31 0.048526885
0.41 0.010647406
0.51 0.00258324
0.61 0.000698235
0.71 0.000209848
0.81 0.00048872

Copt ln εR

0.791210985 8.34 × 10−05

C ln εR

0.005 2.11501089
0.13 1.66547618
0.255 0.168228737
0.38 0.023131902
0.505 0.004399075
0.63 0.001125429
0.755 0.000375851
0.88 0.000161322
1.005 0.066491517

Copt ln εR

0.812596263 0.000245721

Table 5. Residual error as a function of the shape parameter C . Left: one-layer wall
with 21 collocation points. Right: two-layer wall with 11 collocation points.

Temperature-dependent thermal conductivity of layers. Next we considered the nonlinear temperature-
dependent thermal conductivity, so we solved the nonlinear system using Newton’s method.

In the first case, the experiment is performed at one layer with 21 collocation points. The calculated
shape factor is Copt = 0.791210985 for which the residual error is εR(Copt) = 8.34 × 10−005 (Table 5,
left).

In the second case, a two layer wall is taken into account with 11 collocation points. The calculated
shape factor is Copt = 0.812596263 for which the residual error is εR(Copt) = 2.46 × 10−04 (Table 5,
right).

In the third case, a three layer wall is taken into account with 11 collocation points. The optimal shape
factor is Copt = 0.618039263 and the residual error is εR(Copt) = 1.11 × 10−04 (Table 6).

C ln εR

0.005 4.89989774
0.13 0.910910183
0.255 0.0331283856
0.38 0.00237394996
0.505 0.000305350558
0.63 0.00172510558

Copt ln εR

0.618039263 0.000111371465

Table 6. Residual error as a function of the shape parameter C , for a three-layer wall
with 11 collocation points.
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6. Conclusion

In this paper, the meshless method has been successfully used to solve the nonlinear heat transfer problem
in multilayer wall insulation with a temperature-dependent thermal conductivity. Special attention was
paid to the optimal choice of the shape parameter for the radial basis functions. For a calculated optimal
value Copt = −(ln λ)/(3ah), we can minimize the solution error. We find a constant ln λ using the residual
error and least square method. The proposed method can be very easily implemented. The proposed
algorithm of calculation is based on the Kansas’s method, which numerically leads to a relatively simple
nonlinear system of algebraic equations. The use of the calculated optimal shape factor guarantees a
quick convergence with Newton’s method for nonlinear system equations.
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