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ALONG A SUPERCONDUCTING HETEROSTRUCTURE

BOGDAN T. MARUSZEWSKI, ANDRZEJ DRZEWIECKI AND ROMAN STAROSTA

We analyze the propagation conditions and dispersion relations for SH surface waves (Love-like waves)
running along a vortex array in a supercoducting heterostructure consisting of a layer and a half-space.
Investigations allowed us to estimate a new interval for the wave phase velocity values different from the
classical estimate and to show that the structure has filtering properties.

1. Introduction

Superconductors generally fall into two classes. A type-I superconductor expels magnetic flux from the
material and hence is in the Meisser state. That is possible only at an applied magnetic field strength less
than the determined critical value. In contrast a type-II superconductor behaves in another way. For an
applied field less than the lower critical field a type-II superconductor will exhibit the usual Meisser effect.
Applied fields greater than the upper critical field strength destroy the superconductivity altogether. In
between the lower Hc1 and upper Hc2 magnetic field strengths the superconductor is in the mixed or vortex
state. The second variable that determines the existence of that state is the temperature T < Tc, where
Tc denotes the critical phase transition temperature [Tilley and Tilley 1974; Tinkham 1975; Orlando
and Delin 1991; Cyrot and Pavuna 1992; Blatter et al. 1994; Brandt 1995; Lüthi 2005; Fossheim and
Sudbø 2004]. Magnetic flux can penetrate a type-II superconductor in the form of Abrikosov vortices
(also called flux lines, flux tubes, or fluxons) each carrying a quantum of magnetic flux. These tiny
vortices of supercurrent tend to arrange themselves in a triangular or quadratic flux-line lattice [Cyrot
and Pavuna 1992; Fossheim and Sudbø 2004] which is more or less pertubed by material inhomogeneties
that pin the flux lines. Pinning is caused by imperfections of the crystal lattice, such as dislocations,
point defects grain boundaries, etc. Hence a honeycomb-like pattern of the vortex array presents some
thermomechanical properties.

In the natural state of any superconductor the thermomechanical field comes from atomic and/or
molecular interactions both within crystalline (solid) and amorphous (fluid) states of the material in the
presence of temperature changes. Such a situation transfers itself to the vortex state as well.

Since the vortices are formed by the applied magnetic field and the supercurrent flows around each
vortex, there are also Lorenz force interactions among the vortices. Those interactions form an origin
of an additional thermomechanical (stress) field occurring in the type-II superconductor. Near the lower
critical magnetic intensity limit Hc1, this field has an elastic character. However, if the density of the
supercurrent is above its critical value and/or the temperature is sufficiently high, a flow of vortex lines
occurs in the superconducting body. Within such a situation vortices behave rather as a fluid than as an
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elastic lattice. The fluidity of the vortex array is also observed when the applied magnetic field tends to
its upper critical limit Hc2 (same references as on page 1097). In this way we meet a very interesting
situation in a type-II superconduntor. We can say that there are two coexisting thermomechanical fields
in the medium. One field is of a pure thermoelastic character coming from the mechanical properties
of the crystal lattice of the superconductor. The second field comes from the vortex array, which keeps
its thermoelastic character near the lower magnetic field strength limit Hc1 and transfers smoothly into
a ”fluid” near the upper magnetic field strength limit Hc2. The above phenomenon (transfer and coex-
istence) occurs in the {(H(T ), T ) : Hc1 < H < Hc2, T < Tc} space. However, the vortex field also has
a viscous character. The motion of vortices is damped by a force proportional to the vortex velocity.
There are two reasons for that damping. The first reason comes from simultaneous interactions among
magnetic, mechanical, and thermal fields. The second reason occurs because the resistivity in area of
vortex creep is the same as the resistivity of a current which would flow inside the vortex core. Hence
the viscosity coefficient reads, from [Cyrot and Pavuna 1992],

η =
80µ0 Hc2

ρn
, (1)

where 80 is the magnetic flux, µ0 denotes the permeability of vacuum, and ρn is the resistivity in the
normal state.

Since the vortices may be described within a macroscopic phenomenology, except for the descrip-
tion presented in [Blatter et al. 1994; Ketterson and Song 1999], an unconventional model of magne-
tothermomechanical processes running in the vortex array in a continuous manner has been proposed
[Maruszewski and Restuccia 1999; Maruszewski 1998; 2007; Maruszewski et al. 2007]. Following that
model, field equations have been obtained and their form shows that not only diffusion, creep, or flow
of the vortices are possible in the superconducting material but also wave propagation (transmission of
singnals) [Restuccia and Maruszewski 1998; 1999; Maruszewski and Restuccia 2001; Drzewiecki et al.
2002a; 2002b].

This paper deals with Love’s wave propagation along the superconducting heterostructure consisting
of two II-type superconductors (the layer on the half-space) placed in an external magnetic field per-
pendicular to characteristic planes of the structure. The analysis has been based on [Achenbach 1976;
Maruszewski et al. 2007; Maruszewski and van de Ven 1995; Drzewiecki et al. 2004]. We focus only on
magnetoelastic interactions within the vortex lattice (the applied magnetic field intensity is close to the
lower magnetic field limit Hc1, satisfying the inequality H 0 > Hc1).

2. Magnetoelastic Love’s waves

Let us consider a superconducting heterostructure consisting of a layer of thickness h and a half-space.
That heterostructure is placed in an external constant magnetic field H = [H 0, 0, 0]. Along the interface
between the structure components Love’s wave propagates with a velocity v. The propagation direction
is x2. The complete geometry of the problem is presented in Figure 1.

The general linearized equations describing the propagation of harmonic waves in the above hetero-
structure (solely in the vortex field) read as follows (see [Maruszewski and Restuccia 1999; Maruszewski
2007; Maruszewski et al. 2007; Maruszewski and van de Ven 1995; Restuccia and Maruszewski 1999;
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Figure 1. Geometry of the problem.

Drzewiecki et al. 2002a]):

µui, j j + ηu̇i, j j + (λ + µ)u j,i j +
1
3ηu̇ j,i j + µ0(hr,i − hi,r )H 0

r − ρüi = 0, (2)

λ2
0hi,kk − hi + ui,k H 0

k − uk,k H 0
i = 0.

Since the viscosity coefficient (1) is very small we neglect the damping features in the vortex field in the
sequel. The linearization has been done assuming the total magnetic field in the structure of the form

H = H0
+ h, |h| �

∣∣H0∣∣, H0
=

[
H 0

1 , 0, 0
]
, H 0

1 = const, (3)

where h is the small contribution to the total magnetic field H coupled with the displacement vector
u. Lamé’s constants, λ and µ, have been calculated from H 0 and Hc1 [Blatter et al. 1994; Ketterson
and Song 1999], µ0 is the permeability of vacuum, and λ0 is the London penetration depth. Note that
Equations (2) are valid simultaneously for both arrays 1 and 2 in Figure 1.

Now assuming that the solutions of (2) in the geometry shown in Figure 1 are in the following form

f (x1, x2, t) = f (x1) exp[ı(ωt − kx2)], (4)

where f (x1, x2, t) stands for all fields in (2), that is,

f (x1, x2, t) =
{0u3,

0h3
}
(x1, x2, t), (5)

where Love’s mode concerns only the u3 component, Equations (2) may be rewritten in the form (see
[Achenbach 1976; Maruszewski and van de Ven 1995])

µK uK
3, j j − µ0hK

3,1 H 0
1 − ρK üK

3 = 0 and λ0h0
3, j j − kK

3 + uK
3,1 H 0

1 = 0 both with j = 1, 2, (6)

where K = 1, 2 distinguishes the layer (1) from the half-space (2).
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To facilitate the investigation of (6) and the analysis of its solutions, we convert the above formula to
a dimensionless form with the help of the relations

x1 = hx, x2 = hy, x3 = hz, t = T τ , T = h
√

ρ1

µ1
=

h
vT 1

,

H 0
1 = Hc1 H0, hK

3 = Hc1hK
z , uK

3 = huK
z , � = ωT, V =

v

vT 1
,

k =
ω

v
=

�

vT
=

�

V h
, ρ̃K =

ρK h2

T 2µ1
, λ̃K =

λK

µ1
, µ̃K =

µK

µ1
, µ̃0 =

µ0 H 2
c1

µ1
, λ̃

2
0K =

λ2
0K

h2 ,

(7)

where vT K denotes the transverse elastic mode phase velocity in the layer and the substrate.
Recasting the set (6) dimensionless form using Equations (4), (5), and (7), we obtain

µ̃K
d2uK

z

dx2 +
�2

V 2

(
V 2ρ̃K − µ̃K

)
uK

z + µ̃0 H0
dhK

z

dx
= 0,

λ̃0K
d2h2

z

dx2 −

(
λ̃

2
0K

�2

V 2 + 1
)

hK
z + H0

duK
z

dx
= 0.

(8)

The boundary and jump conditions for the variables in (7) across the characteristic planes of the hetero-
structure are

at x = −1 :

{
h1

z = 0 (continuity of the tangent component of the magnetic field),

u1
z,x = 0 (the plane is stress free),

and

at x = 0 :


[|hz|] = h1

z − h2
z = 0,

[|uz|] = u1
z − u2

z = 0 (continuity of displacements),

[|uz,x |] = u1
z,x − u2

z,x = 0 (continuity of stress).

The characteristic equation of (8) for both layer and substrate reads

λ2
0K µK p4

+
[
λ2

0K BK (�, V ) − FK (�, V )µK − µ0 H 2
0
]

p2
− FK (�, V )BK (�, V ) = 0, (9)

where the solutions of (8) were assumed to be in the form{
uK

z , hK
z
}

=
{0uK

z , 0hK
z
}
epx (10)

and

BK (�, V ) =
�2

V 2

(
V 2ρ̃K − µ̃K

)
, FK (�, V ) = λ̃

2
0K

�2

V 2 + 1 > 0.

The waves under consideration propagate if the solutions of (10), u1
z and h1

z , are convergent, that is, the
squares of the roots p1 and p2 of the characteristic equation (9) in the layer are both real and p3 and p4

in the substrate are of opposite signs. To avoid divergence of solutions (10) in the substrate, we assume
additionally that u2

z and h2
z vanish if x → ∞. The requirements above for p1–p4 are satisfied, if for

p1, p2 : B1(�, V ) < 0 → V 2 < µ̃1/ρ̃1,

p3, p4 : B2(�, V ) > 0 → V 2 > µ̃2/ρ̃2.
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Hence we obtain a very important condition for Love’s phase velocity wave if its propagation is possible

µ̃2/ρ̃2 < V 2 < µ̃1/ρ̃1 (dimensionless form)

or
vT 2 < v < vT 1 (dimensional form). (11)

That is a new result and it differs from the classical result for the elastic Love’s wave propagation condi-
tion which run along interface between two elastic materials (layer and substrate); see [Achenbach 1976].
For the latter case the inequality (11) is reciprocal.

As a result, the solutions (10) for the layer are, in detailed form,

u1
z = S1ep1x

+ S2e−p1x
+ S3ep2x

+ S4e−p2x (12)

and

h1
z =−M(p1, �, V )S1ep1x

+M(p1, �, V )S2e−p1x
−M(p2, �, V )S3ep2x

−M(p2, �, V )S4e−p2x , (13)

where
M(pi , �, V ) =

pi

µ̃0 H0
+

�2(V 2
− 1)

V 2 H0 pi
, i = 1, 2. (14)

For the substrate the solutions are

u2
z = S5e−p3x , h1

z = N
(

p3, �, V
)
S5e−p3x , where N (p3, �, V ) =

µ̃2 p3

µ̃0 H0
+

�2(V 2ρ̃2 − µ̃2)

V 2µ̃0 H0 p3
.

Now using solutions (12)–(15) for the boundary and jump conditions, we arrive at the homogeneous
algebraic equations

Wmn(�, V )Sn = 0, m, n = 1, . . . , 5. (15)

Equation (15) has nontrivial solutions only if its determinant satisfies the relation below

det Wmn(�, V ) = 0. (16)

We have thus proved that Love’s waves can propagate in a superconducting heterostructure and that their
dispersion relation is given by (16).

3. Numerical results

The numerical analysis of the problem considered in the paper has been done for the superconducting
heterostructure consisting of two ceramics, YBa2Cu3O6+x (YBCO) as the layer and La1−x Srx CuO4 as
the half-space. All the necessary data are collected in Table 1. The results of using these data in the
dispersion relation (16) are presented in Figures 2–3.

The first very important result from Equation (16) is that the waves considered are able to propagate
only if the thickness of the layer satisfies

10−7 < h < 10−5. (17)

Then from Figures 2–3 it is seen that there are two frequency regions where waves are nondispersive.
This means that they can be stably modulated in order to transmit signals carrying information. Between
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Quantity YBa2Cu3O6+x La1−x Srx CuO4 Unit

λ0 4·10−7 2.5·10−7 m
ρ 10−6 5·10−6 kg/m3

Hc1 0.01/µ0 0.01/µ0 A/m
Hc2 120/µ0 120/µ0 A/m
ξ 10−9 1.5·10−9 m
Hc Hc2ξ/(λ0

√
2) Hc2ξ/(λ0

√
2) A/m

c11 µ0 H 02
1 /4π µ0 H 02

1 /4π N/m2

c66 (H 2
c /16π)(1−0.29b)(1−b)2b (H 2

c /16π)(1−0.29b)(1−b)2b N/m2

b µ0 H 0
1 /Hc2 µ0 H 0

1 /Hc2 Vs/Am
µ c66 c66 N/m2

λ c11−2c66 c11−2c66 N/m2

µ0 4π ·10−7 4π ·10−7 Vs/Am

Table 1. Data for the superconducting heterostructure.

Figure 2. Dispersion for various intensities of applied magnetic field and fixed layer
thickness h = 10−7 m for the dimensionless (top) and dimensional (bottom) version.
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Figure 3. Dispersion for various layer thicknesses and fixed magnetic field intensities
H 0

1 = 20Hc1.

those regions there is a forbidden interval (for frequencies)

108 < ω < 1012, (18)

where strong dispersion of Love’s wave is observed.
These properties are not typical if we compare them to those related to classical ones, concerning

waves in a elastic material heterostructure.

4. Conclusions

(i) The paper proves that Love’s waves can propagate within a vortex array existing in a superconducting
heterostructure.

(ii) The anomalous range of the phase velocity of (11) indicates that in this case the layer should have a
higher vortex density and the substrate should have a lower vortex density contrary to the classical
elastic material case.

(iii) The thickness of the layer allowing wave propagation is limited; see Equation (17).

(iv) There are two dispersionless regions concerning Love’s modes in the structure. The similar property
has been observed in the case of bulk waves in the vortex array existing in the superconducting space
[Drzewiecki et al. 2002a; 2004].

(v) There is a forbidden region where the dispersion is very high.

(vi) The waves under consideration propagate with an acoustic phase velocity and an optical wave fre-
quency. This is another anomalous feature about them.
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