Recent Issues
Volume 20, 2 issues
Volume 20
Issue 2, 125–142
Issue 1, 1–124
Volume 19, 5 issues
Volume 19
Issue 5, 747–918
Issue 4, 541–746
Issue 3, 303–540
Issue 2, 157–302
Issue 1, 1–156
Volume 18, 5 issues
Volume 18
Issue 5, 621–764
Issue 4, 427–565
Issue 3, 293–425
Issue 2, 143–291
Issue 1, 1–141
Volume 17, 5 issues
Volume 17
Issue 5, 403–501
Issue 4, 297–401
Issue 3, 193–296
Issue 2, 97–192
Issue 1, 1–95
Volume 16, 5 issues
Volume 16
Issue 5, 595–696
Issue 4, 389–594
Issue 3, 237–388
Issue 2, 105–235
Issue 1, 1–104
Volume 15, 5 issues
Volume 15
Issue 5, 555–633
Issue 4, 435–554
Issue 3, 291–434
Issue 2, 185–289
Issue 1, 1–184
Volume 14, 5 issues
Volume 14
Issue 5, 601–770
Issue 4, 449–599
Issue 3, 309–448
Issue 2, 193–308
Issue 1, 1–191
Volume 13, 5 issues
Volume 13
Issue 5, 607–714
Issue 4, 421–605
Issue 3, 247–419
Issue 2, 141–246
Issue 1, 1–139
Volume 12, 5 issues
Volume 12
Issue 5, 563–722
Issue 4, 353–561
Issue 3, 249–351
Issue 2, 147–247
Issue 1, 1–146
Volume 11, 5 issues
Volume 11
Issue 5, 491–617
Issue 4, 329–490
Issue 3, 197–327
Issue 2, 91–196
Issue 1, 1–90
Volume 10, 5 issues
Volume 10
Issue 5, 537–630
Issue 4, 447–535
Issue 3, 207–445
Issue 2, 105–206
Issue 1, 1–103
Volume 9, 5 issues
Volume 9
Issue 5, 465–574
Issue 4, 365–463
Issue 3, 259–363
Issue 2, 121–258
Issue 1, 1–119
Volume 8, 8 issues
Volume 8
Issue 8-10, 385–523
Issue 5-7, 247–384
Issue 2-4, 109–246
Issue 1, 1–107
Volume 7, 10 issues
Volume 7
Issue 10, 887–1007
Issue 8-9, 735–885
Issue 7, 613–734
Issue 6, 509–611
Issue 5, 413–507
Issue 4, 309–412
Issue 3, 225–307
Issue 2, 119–224
Issue 1, 1–117
Volume 6, 9 issues
Volume 6
Issue 9-10, 1197–1327
Issue 7-8, 949–1195
Issue 6, 791–948
Issue 5, 641–790
Issue 1-4, 1–639
Volume 5, 6 issues
Volume 5
Issue 6, 855–1035
Issue 5, 693–854
Issue 4, 529–692
Issue 3, 369–528
Issue 2, 185–367
Issue 1, 1–183
Volume 4, 10 issues
Volume 4
Issue 10, 1657–1799
Issue 9, 1505–1656
Issue 7-8, 1185–1503
Issue 6, 987–1184
Issue 5, 779–986
Issue 4, 629–778
Issue 3, 441–627
Issue 2, 187–440
Issue 1, 1–186
Volume 3, 10 issues
Volume 3
Issue 10, 1809–1992
Issue 9, 1605–1807
Issue 8, 1403–1604
Issue 7, 1187–1401
Issue 6, 1033–1185
Issue 5, 809–1031
Issue 4, 591–807
Issue 3, 391–589
Issue 2, 195–389
Issue 1, 1–193
Volume 2, 10 issues
Volume 2
Issue 10, 1853–2066
Issue 9, 1657–1852
Issue 8, 1395–1656
Issue 7, 1205–1394
Issue 6, 997–1203
Issue 5, 793–996
Issue 4, 595–791
Issue 3, 399–594
Issue 2, 201–398
Issue 1, 1–200
Volume 1, 8 issues
Volume 1
Issue 8, 1301–1500
Issue 7, 1097–1299
Issue 6, 957–1095
Issue 5, 837–956
Issue 4, 605–812
Issue 3, 407–604
Issue 2, 205–406
Issue 1, 3–200
Abstract
A continuum-mechanics approach for the derivation of a model for the behavior, that
is, the growth and remodeling, of an arterial tissue under a mechanical load is
presented. This behavior exhibits an interplay between two phenomena: continuum
mechanics and biology. The tissue is modeled as a continuous mixture of two
components: elastin and collagen. Both components are incompressible, but the tissue
as a whole can show volumetric growth due to the creation of collagen. Collagen is a
fibrous structure, having a strain-induced preferred orientation. Remodeling of the
tissue incorporates degradation of elastin and strain-induced creation and
degradation of collagen fibers. Both elastin and collagen are considered to be
nonlinear elastic media; elastin as a neo-Hookean material and collagen fibers
behaving according to an exponential law. The modeling is based on the classical
balance laws of mass and momentum.
Keywords
arterial tissue, volumetric growth, strain-induced
orientation, elastin, collagen
Milestones
Received: 7 February 2008
Accepted: 25 March 2008
Published: 1 August 2008