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Among techniques for the determination of the mode I stress intensity factors (SIFs), strain gage pro-
cedures are the simplest and most straightforward. We report here on an experimental investigation
of the determination of opening mode stress intensity factors using the single strain gage method. Our
approach overcomes certain drawbacks and greatly widens the applicability of strain gage methods in the
determination of static SIFs of complex configurations. The approach was tested through experiments
on specimens of finite width and finite height edge-cracked plates (fully finite plates) subjected to tensile
stress. We compared the experimentally determined mode I stress intensity factors of fully finite plates
with the computed values using finite element analysis, obtaining good agreement between the present
approach and computed values.

1. Introduction

Cracks frequently initiate and grow at stress concentration zones such as notches, holes, reentrant corners
and welded joints in structural components. Because such elements occur frequently in structural compo-
nents, understanding the severity of cracks is important in the development of static strength, fatigue crack
growth and fatigue life prediction methodologies. The stress intensity factor (SIF) is the key parameter
in linear elastic fracture mechanics (LEFM) for quantifying the severity of cracks. It reflects the effect
of loading, crack size, crack shape and component geometry in life and strength prediction methods.

An accurate knowledge of the stress intensity factor is essential for the prevention of brittle fractures
arising from cracks; in particular, the use of the LEFM principles in preventing the fracture of engineering
components depends largely on the availability of accurate SIFs. As a result, analytical, numerical and
experimental methods for SIF determination in cracked bodies have been developed for several decades
[Sanford 2003]. Analytical methods are limited to simple configurations due to mathematical difficulties,
and one must resort to numerical or experimental methods for more complex situations. The experimental
determination of stress intensity factors is also needed as a way to validate theoretical and numerical
results, and provides a valuable aid to their application. Approaches include the compliance method
[Bonesteel et al. 1978; Jr 1981], photoelasticity [Gdoutos and Theocaris 1978; Hyde and Warrior 1990],
caustics [Theocaris 1970; Konsta-Gdoutos 1996] and strain gage methods [Dally and Berger 1993].

Of all these techniques, the most straightforward is the use of electrical resistance strain gages [Sanford
2003]. It has received much attention because it can measure surface strains accurately and directly within
strain gradient zones, allowing the subsequent determination of SIFs. Irwin [1957] first suggested the use
of strain gages to determine SIFs; however, the local yielding effect at the crack tip of metallic materials,
high strain gradients, the three-dimensional state of stress at the crack tips and the finite size of the strain
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gages are the primary issues for establishing a valid approach for accurate measurement of SIFs using
the strain gage techniques. Earlier attempts to measure SIFs using strain gages were reported in [Broek
1982].

A practical method to tackle the issues mentioned in the previous paragraph, providing an effec-
tive strain gage technique for measuring the static opening mode stress intensity factor (K I ) in two-
dimensional bodies, was first proposed by Dally and Sanford [1987] for linear elastic isotropic materials.
In this method the strains are represented by three/four parameter series. The generalized Westergaard
approach [Sanford 1979] is employed to determine the strain series and subsequently K I . The chief
advantage of the Dally–Sanford approach is that only a single strain gage is sufficient to determine the
mode I SIF, which can be placed at distances far away from the crack tip. Their numerical results reveal
that the zone of three-parameter strain series is sufficiently large. Further, an analysis of the error due
to strain gradient effects was presented, to suggest possible locations for the finite-sized strain gages.
Experiments were conducted on aluminum compact tension (CT) specimens with small strain gages
(active grid size 0.76 × 0.76 mm2) at different distant radial locations from the crack tip. The authors
noticed that the gage readings at all locations were affected by the formation of a plastic zone and the
subsequent redistribution of stresses and strains. A methodology has been suggested based on Irwin’s
method of shifting the elastic field [Sanford 2003] by a distance equal to the plastic zone radius ry to
correct the measured strains, and hence the SIFs. However, a major limitation of this approach is that
one should know the exact SIF of the selected configuration a priori in order to calculate the plastic zone
size.

Parnas and Bilir [1996] employed the Dally–Sanford single strain gage method to determine the SIFs
of CT specimens made of steel and aluminum. Their investigation included the effect of plate thickness.
The accuracy of the measured SIFs was observed to depend on the thickness of the specimen. The results
clearly show that in the case of thin plates the linearity between applied load and measured strain is not
achieved at all loads: beyond a certain load the relationship is found to be nonlinear. However, the linear
relation is observed for thick plates. Parnas and Bilir attributed these effects to the formation of plastic
zones in the specimens.

Other strain gage methods designed specifically for measuring static mode I SIFs have been proposed
by Wei and Zhao [1997] and Kuang and Chen [1995]. Unlike Dally and Sanford, Wei and Zhao used
two strain gages, and adopted Williams’ [1957] eigenfunction expansion to determine the truncated strain
series. These authors tested their theory on three-point bend steel (TPBS) specimens using 0.5 × 0.5 mm2

active-grid strain gages and reported inaccuracies in the measured SIFs due to the formation of plastic
zones. However, the locations of the strain gages were suggested empirically and require knowing a
priori knowledge about the plastic zone size, which depends on the unknown exact stress intensity factor
of the configuration.

Kuang and Chen [1995], in contrast, approached the problem using near-field strain equations and
asymptotic strain expressions. They suggested that strain gages can be placed at distances greater than
half the thickness of the specimen from the crack tip despite the fact that at distances larger from the crack
tip, the measured strains cannot be accurately represented by asymptotic terms alone. They conducted
experiments on steel CT specimens using strip gages containing 10 strain sensors each of 0.5 × 0.5 mm2

active grid size. Contrary to theoretical predictions, the normalized mode I SIF was found to be a
function of the applied loads and the thickness of the specimen. The measured SIF was also found to
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depend on the angular position relative to the crack axis. However these authors demonstrated that highly
inaccurate SIF results are obtained if the strain gages are placed at distances below half the thickness of
the specimen. Their measurements at locations away from the crack tip are also affected by plasticity
effects. Corrections to the measured strains were suggested, in a manner similar to that of [Dally and
Sanford 1987], but contrary to earlier works, no improvement of the measured SIFs was accomplished,
even after incorporating plastic zone corrections.

Of these various strain gage methods for measuring opening mode static SIFs, the procedure of Dally
and Sanford enjoys the greatest practicability and a solid mathematical background. By contrast, very
large numbers of strain gages are needed to measure opening mode SIFs in the overdetermined method
proposed by Berger and Dally [1988]. Dally and Sanford’s technique has been extended to mixed mode
cases [Dally and Berger 1986], which requires four strain gages for determination of the SIFs. A pro-
portional extrapolation technique for determining mixed mode SIFs using strain gages has also been
proposed [Itoh et al. 1988]. However, a special strain gage pattern is needed in this technique.

An advantage of strain gage techniques is that they can be employed directly on metallic engineering
components to determine the SIF of their configurations. Also important is that numerical and analytical
solutions of static SIFs of complex domains can be corroborated via strain gage procedures to provide
reliability of the results/methods. For example, many researchers have reported on the application of
photoelastic methods [Marloff et al. 1971; Chan and Chow 1979; Amir et al. 1989; Nurse et al. 1994]
and caustics [Biak et al. 1995; Lee and Hong 1993] to the determination of static SIFs or the corroboration
of analytical and numerical solutions for important configurations. Such application investigations using
existing procedures are useful in establishing the experimental methods and make them into a viable
alternative in real design situations of great complexity.

In spite of these important applications of strain gage methods, no work has been reported to date on
the application of the Dally–Sanford single strain gage procedure to the validation of accurate mode I
static SIFs of the complex configurations, so as to establish the usefulness of this technique in real design
situations. This is true also of the other strain gage methods.

A critical review of earlier work [Dally and Sanford 1987; Parnas and Bilir 1996; Wei and Zhao 1997;
Kuang and Chen 1995] in this field discloses the various drawbacks that prevented further utilization of
these methods in the determination of SIFs for important complex configurations: (a) the normalized
SIF is found to be function of thickness of the specimen and the applied loads which is obstinate to the
theory; (b) the measured strains are severely affected by plastic zone formation and subsequent strain
redistribution; (c) while certain approximate procedures have been proposed to correct the measured
strains (and hence SIFs), these procedures depend on the unknown exact stress intensity factor of the
configuration; (d) there are indications that at times no significant improvements can be achieved even
after plastic zone corrections are applied. The last three works referenced at the start of this paragraph
employed theoretical values of SIFs for CT and TPBS specimens to correct measured SIFs for plasticity
effects. Clearly such corrections are not possible in the case of configurations for which no SIF solutions
are available.

These difficulties arise mainly from the use of the metallic specimens in strain gage procedures, al-
though the SIF is independent of the material. The preparation of complex configurations, particularly of
cracked specimens, is relatively difficult with metallic materials; great care has to be exercised in creating
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sharp natural cracks with intricate orientations. Thus methods such as Dally and Sanford’s, which have
a sound mathematical basis, may be more effectively exploited by using materials other than metals.

The fact that the SIF is independent of the material is exploited in photoelastic and other experimental
methods [Gdoutos 1990; Dally and Riley 1991]. As is well known, polymethylmethacrylate (PMMA),
known commercially as Perspex or Plexiglas, is a homogeneous, isotropic and brittle material at room
temperatures [Maccagno and Knott 1989]. This material has long been used in studies of many aspects
of linear elastic fracture mechanics [Maccagno and Knott 1989; Mukherjee and Burns 1972; Katsamanis
and Delides 1988; Xu et al. 2004]. One advantage it offers is that it is relatively easy to introduce sharp
natural cracks by pressing a razor blade into the bottom of a notch. PMMA is also inexpensive and easy
to fabricate in complex cracked configurations, making it an excellent model material for experimental
fracture mechanics. (See [Maccagno and Knott 1989] for details and a historical account of the use of
PMMA for this purpose.)

In view of the shortcomings arising to the use of metallic specimens in strain gage procedures and
of the availability of excellent strain gage technology, we suggest that the use of the specimens made
of PMMA material will greatly broaden the applications of these methods. All of aforesaid drawbacks
of use of the metallic specimens can be overcome with the use of this material. However, to the best
of our knowledge no published report is available on use of the PMMA in conjunction with strain gage
methods, in particular with the single gage technique of Dally and Sanford.

The proximity of component boundaries to the crack tip has an effect on SIFs [Sanford 2003; Gdoutos
1990]. In general, as the boundaries come close to the crack tip, the magnitude of the SIF increases. An
edge-cracked plate subjected to uniform tensile stress is a widely used benchmark problem [Pang 1993].
Analytical and numerical solutions for the mode I SIF of this configuration are available only for finite
width plates [Murakami 1987; Tada et al. 2000], that is, for large values of a/w and h/w ≥ 1, where a is
the crack length, w is the width of the plate and h is the height of the plate from the crack axis. However,
to our knowledge no report in the open literature, whether using analytical, experimental or numerical
methods, is available on SIFs for edge-cracked plates of finite width and finite height (large a/w and
h/w ≤ 1) subjected to uniform tension. In this situation both the width and the height of the plate are
close to the crack tip. We call such plates fully finite.

In this work we investigate the feasibility of experimental determination of accurate opening mode
stress intensity factors using the Dally–Sanford method and cracked polymethylmethacrylate (PMMA)
specimens. In the Dally–Sanford procedure, gages can be placed at low strain gradient zones; as a
consequence larger gages can be employed. In contrast with [Dally and Sanford 1987; Wei and Zhao
1997; Kuang and Chen 1995], our work attempts to measure accurate SIFs using relatively large strain
gages (active gage length 3 mm) and monotonically increasing loads with continuous measurement of the
strain. Our goal is to accurately determine opening mode SIFs of fully finite edge-cracked plates subject
to uniform tension. To validate the proposed method for the determination of SIFs, we compare our
experimental results with computer-calculated values obtained using ANSYS finite-element software.

2. Theoretical background

In the Dally and Sanford method [1987], the strain field adjacent to a crack tip is represented by an infinite
series solution. The area around a crack tip can be divided into three regions (Figure 1) to identify valid
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Figure 1. Different regions at the crack tip.

locations for accurate strain measurements. The very near field region (region I in Figure 1) is the zone
where the singular term in the series or asymptotic expression is sufficient to represent this region. This
is a singularity dominated zone. Due to yielding of material and three-dimensional nature of stress state,
this is not a valid region for accurate strain measurements.

Region II is the near-field region, defined as the area beyond region I where the strain field can be
represented within a specified accuracy by a small number of series terms, both singular and nonsingular.
Region III, the far-field region, corresponds to large values of the radial distance r from the crack tip;
in that region a very large number of unknowns are needed in the series for an accurate representation
of the strain field, so strain measurements are not appropriate there. Thus region II is the optimum zone
for accurate strain measurements: it can be represented by few terms and is sufficiently away from the
crack tip. Dally and Sanford [1987] adopted a three-parameter approach; that is, they assumed that the
strain field in region II can be represented with sufficient accuracy by three series terms. The strain field
in this region for plane stress conditions is then written as (see also [Sanford 2003])
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where A0, A1 and B0 are unknown coefficients that can be determined using the geometry of the specimen
and the boundary conditions. Using the definition of KI one can easily show that it is related to A0 by

KI =
√

2π A0. (2)

A single strain gage is sufficient to measure the constant A0 (hence KI ) by placing and orienting the
strain gage as given below. Using the strain transformation equations, the strain component εx ′x ′ at the
point P located by r and θ (Figure 2) is given by
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Figure 2. Strain gage location and orientation.

The coefficient B0 term in (3) can be eliminated by selecting the angle α so that

cos 2α = −κ = −
1−ν

1+ν
. (4)

The coefficient A1 can also be made zero if the angle θ is selected so that

tan
θ

2
= −cot 2α. (5)

Thus by placing a single strain gage (Figure 2) with α and θ as defined by (4) and (5) one can measure
the strain εx ′x ′ , which in turn is related to KI by

2Gεx ′x ′ =
K I
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The angles α and θ depend only on the Poisson’s ratio of the specimen material. The selection of the
radius r for locating the strain gage can be obtained by considering strain gradient effects, as explained
in [Dally and Sanford 1987]. Since the gages can be located far from high strain gradient zones, the
measurements can be taken with relatively large, hence inexpensive, strain gages.

3. Numerical evaluation of the SIFs of fully finite edge-cracked plates

The SIFs of finite width and finite height edge-cracked plates is given by

K I = σ
√

πa FI

( a
w

,
h
w

)
, (7)

where FI
( a

w
, h

w

)
is the configuration factor or normalized SIF, which shows the effect of geometry of the

body on the SIF [Sanford 2003; Gdoutos 1990].
Finite element analyses using ANSYS 9.0 were carried out to determine accurate opening mode SIFs

of fully finite edge-cracked plates (with various values of a/w and h/w) subject to uniform tension
(Figure 3). The displacement extrapolation method of ANSYS [2005] was employed to compute the
normalized opening mode SIFs. It is known (see [Swain 2007]) that this method is consistent and yields
very accurate SIFs. In our investigation we chose two values of a/w, 0.3 and 0.5, and values of h/w

ranging from 0.2 to 1.1 in steps of 0.1. It is well known that semi-infinite plates can be represented
approximately by h/w ≥ 1, while h/w < 1 represents fully finite edge-cracked configurations.
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Figure 3. Problem domain: Edge cracked plate subjected to uniform tension.

Natural isoparametric quadratic triangular elements (T6) and the corresponding quarter point singular
elements [Barsoum 1976; Freese and Tracey 1976] were used. We assume plane stress conditions, σ =

1.0 MPa, a Young’s modulus E = 10000 MPa and a Poisson’s ratio of 0.3. Because of symmetry, only
half the plate was considered in the analysis. Figure 4 shows a typical unstructured mesh pattern (without
gradation) used in the determination of the normalized SIFs. Such meshes were used for all values of
a/w and h/w. No significant improvements in the SIFs were observed when the meshes were refined
further [Swamy 2007].

The computed normalized opening mode SIFs for different values of a/w and h/w are presented in
Table 1. As expected, the SIF increases as the a/w ratio increases and the h/w ratio decreases, that is,

 

 

Figure 4. Typical meshes for SIF determination for the problem domain.
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h/w
FI = K I /σ

√
πa

a/w = 0.3 a/w = 0.5

0.2 3.5979 6.0343
0.3 2.5390 4.0308
0.4 2.0736 3.2898
0.5 1.8496 3.0060
0.6 1.7420 2.8954

h/w
FI = K I /σ

√
πa

a/w = 0.3 a/w = 0.5

0.7 1.6938 2.8514
0.8 1.6733 2.8342
0.9 1.6649 2.8277
1.0 1.6622 2.8250
1.1 1.6613 2.8249

Table 1. FE-computed normalized SIFs of semi-infinite and finite edge-cracked plates.

when the surrounding boundaries approach the crack tip. It may also be noticed from Table 1 that FI

remains almost constant for h/w ≥ 0.9, indicating semi-infinite cases.

4. Experimental details

As stated, our goal was to determine the SIFs of fully finite edge-cracked panels with the shape shown
in Figure 3, using the single strain gage technique of [Dally and Sanford 1987]. The configuration
of the experimental specimens representing the problem domain is shown in Figure 5. The specimens
were made from commercially available PMMA (Perspex sheet) with a thickness of 6 mm. Plane stress
condition is anticipated in the specimens. The width of all the specimens was kept at w = 150 mm, while
the crack length a and the height h of the specimen were varied to create semi-infinite and fully finite
edge-cracked specimens.

 

Figure 5. Details of the experimental PMMA specimen.
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All specimens were monotonically loaded with a closed loop, servohydraulic INSTRON 8801 machine
(100 kN capacity) under displacement control with actuator speed 0.05 mm/min. The whiffletree tech-
nique (Figure 5) was employed to transform the point load from the INSTRON to a uniformly distributed
load on the specimen. The whiffletree plates were made from mild steel, and mild steel pins were used to
connect them with the specimens. Five holes were used to connect each whiffletree to the corresponding
specimen. As shown in Figure 5, each hole lies 10 mm from the top or bottom edge of the specimen.
It was assumed that the point load applied by the machine is equally divided between the five holes as
shown in Figure 5.

To imitate the sharp crack form the model (Figure 3), we made a 3 mm wide notch with a jigsaw, of
length (a−2) mm, and further created a fine slit, 2 mm long, by means of a razor blade. Very sharp cracks
can be made in this way: the crack tip root radius is less than 0.0035 mm (see [Srikanth 2006]). Two
a/w ratios (0.3 and 0.5) and four h/w ratios (0.3, 0.5, 0.7 and 1.0) were chosen for the experimental
study. Only one specimen each was tested for a/w = 0.3 and various values of h/w, and two specimens
each for a/w = 0.5 and various h/w. Strain measurements on the loaded specimens were carried out
using a single electrical strain gage (HBM type 1-LY11-3/120) with an active grid of 3 × 1.4 mm2. A
Young’s modulus of 2300 MPa and Poisson’s ratio of 0.37 have been measured for the PMMA material
in a tensile test [Swamy 2007]. Thus α and θ in (4) and (5) equal respectively 58.69◦ and 54.76◦. The
radial position of the strain gage r = 10 mm was chosen in all experiments based on the strain gradient
analysis presented in [Dally and Sanford 1987].

The measured strains were processed and digitized using a National Instruments Data Acquisition
Board (PXI 1052) and an eight-channel universal strain gage module (SCXI 1520). Continuous strain
measurements was made by interfacing the INSTRON machine’s load cell with a NI Data Acquisition
Board (DAQ). Figure 6 depicts a specimen attached to the INSTRON with whiffletree plates.

 

Figure 6. A typical PMMA specimen with whiffletree plates.
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5. Finite element simulation of the experimental specimens

Since the experimental specimen (Figure 5) differs from the original problem domain (Figure 3) espe-
cially in the matter of loading, a finite element simulation of the experimental specimen with assumed
magnitude of point loads at the five holes was carried out using ANSYS. Such simulations before the ex-
periments are vital in establishing whether or not the selected configuration of the experimental specimen
mimics the actual problem domain. The specimens were modeled with T6 elements and quarter-point
singular elements were placed at the crack tips. Figure 7 shows a representative mesh with loading and
boundary conditions employed in the numerical simulation studies.

Figure 7. Typical mesh of an experimental specimen, computed by ANSYS.

A few results of computed SIFs of the experimental specimens and that of original problem domain
are presented in Table 2. It also presents the percent relative error (in absolute value) considering SIFs
in Table 1 as exact values. It may be noticed from table that, the expected SIFs from the specimens are
in very good agreement with the SIFs of the original problem (Figure 3). Although not presented here,
similar simulations were carried out for other values of h/w and exceptional agreement between the two
set of SIFs was observed [Swamy 2007]. Thus the numerical results clearly indicate that experimental
specimen as designed in Figure 5 can accurately imitate the original problem (Figure 3).

h/w 0.4 0.6 1.0

speciment FI (Figure 5) 2.0652 1.7427 1.6655
problem domain FI (Figure 3) 2.0736 1.7420 1.6622

relative error 0.41% 0.04% 0.20%

Table 2. Experimental and computed normalized SIFs for a/w = 0.3 and selected values
of h/w.
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Figure 8. Variation of the measured strain with applied load for a/w = 0.3.

6. Experimental results and discussion

Figure 8 shows the experimentally measured strain data on PMMA specimens as a function of the applied
load for a/w = 0.3 and h/w = 0.3, 0.5, 0.7, 1.0. A linear fit was made to the data points of all the
specimens. A very good linear relationship can be noticed between the measured strain and the applied
load in the figure for all four specimens. The coefficient of determination R2 in all the graphs is also
close to unity, indicating good fits. A slight deviation from linearity in Figure 8(a) is probably due to
the improper settlement of the pins in the holes of the whiffletree. From the linear equations presented
in each of the four graphs, measured strains were calculated at different loads. Subsequently, using the
computed strains the opening mode SIFs were determined using (6) at different values of applied load.

Table 3 presents the measured opening mode SIFs (K I ) at different loads for semi-infinite and fully
finite edge-cracked plates of a/w = 0.3. The experimental results of Table 3 are presented in graphical
form in Figure 9 to show the dependency of K I on the applied load and proximity to the boundaries.
Since the measured strains are linearly proportional to the applied load so are the measured SIFs. Besides
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Figure 9. Variation of the measured K I with applied load for a/w = 0.3.

this, the trend that the magnitude of the measured SIF is increasing with the increase in load is also in
agreement with the theoretical predictions [Sanford 2003; Gdoutos 1990]. Further, the magnitude of
SIF increases with decreasing h/w. Table 3 also provides normalized SIFs (FI ), which are found to be
independent of applied loads. Therefore a single value corresponding to a configuration is presented in
the table.

Plots of the measured strain data as a function of the applied load for a/w = 0.5 and h/w = 0.3,
0.5, 0.7, 1.0 were found to be very similar to the case of a/w = 0.3, and the corresponding averaged

Load (N)
K I (MPa

√
m)

a/w = 0.3 a/w = 0.5 a/w = 0.7 a/w = 1.0

100 0.1132 0.0827 0.0757 0.0687
200 0.2265 0.1653 0.1513 0.1374
300 0.3397 0.2480 0.2270 0.2061
400 0.4529 0.3307 0.3027 0.2748
500 0.5662 0.4133 0.3783 0.3434
600 0.6794 0.4960 0.4540 0.4121
700 0.7926 0.5787 0.5297 0.4808
800 0.9059 0.6613 0.6053 0.5495
900 1.0191 0.7440 0.6810 0.6182

1000 1.1323 0.8267 0.7567 0.6869

FI 2.7098 1.9783 1.8108 1.6438

Table 3. Measured K I values at different loads for a/w = 0.3, and load-independent
normalized SIFs (last row).
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Figure 10. Variation of the measured K I with applied load for a/w = 0.5.

measured SIFs at different applied loads are shown in Table 4. Figure 10 shows the graph of averaged
measured SIFs as function of the applied load. As in the case of a/w = 0.3, the increase of the SIF with
decreasing h/w and increasing values of the applied loads are in line with the theory. The normalized
SIFs for h/w = 0.3, 0.5, 0.7, and 1.0 also appear in Table 4.

The measured FI using strain gages and the computed normalized SIFs using FEA of semi-infinite and
fully finite edge-cracked plate appear in Table 5. For comparison, the table also shows the analytical val-
ues of normalized SIFs [Tada et al. 2000] for semi-infinite plates (h/w = 1.0). The discrepancy between

Load (N)
K I (MPa

√
m)

a/w = 0.3 a/w = 0.5 a/w = 0.7 a/w = 1.0

100 0.2031 0.1654 0.1540 0.1520
200 0.4063 0.3308 0.3081 0.3040
300 0.6094 0.4962 0.4621 0.4560
400 0.8126 0.6616 0.6162 0.6080
500 1.0157 0.8270 0.7702 0.7600
600 1.2189 0.9923 0.9242 0.9120
700 1.4220 1.1577 1.0783 1.0639
800 1.6252 1.3231 1.2323 1.2159
900 1.8283 1.4885 1.3864 1.3679

1000 2.0315 1.6539 1.5404 1.5199

FI 3.7666 3.0665 2.8561 2.8181

Table 4. Measured K I values at different loads for a/w = 0.5, and load-independent
normalized SIFs (last row).
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h/w
FI (a/w = 0.3) FI (a/w = 0.5)

numerical experimental analytic numerical experimental analytic

0.3 2.5390 2.7098 (6.7%) ------ 4.0308 3.7666 (6.6%) ------
0.5 1.8486 1.9783 (7.0%) ------ 3.0060 3.0665 (2.0%) ------
0.7 1.6938 1.8108 (6.9%) ------ 2.8514 2.8561 (0.2%) ------
1.0 1.6622 1.6438 (1.1%) 1.6624 2.8250 2.8181 (0.2%) 2.8291

Table 5. FE-computed, experimentally measured, and (where available) analytic values
of FI for edge-cracked plate and two choices of a/w. Bracketed values are absolute
values of relative error. Analytic solutions are from [Tada et al. 2000].

the experimentally determined and FE-computed values, ranging from 0.2% to 7%, shows (assuming the
FE-computed values to be exact) that the experimental method is substantially accurate in spite of the
relatively large gage (3 mm active length). Excellent agreement is also observed between the measured
and the theoretical normalized SIFs of semi-infinite plates.

Probable reasons for the somewhat larger errors (up to 7%) appearing in Table 5 are: (a) In all cases
the cracks (fine slits) were made by pressing a razor blade through a distance of 2 mm; although great
care was taken, it is difficult to control this length precisely. (b) When the razor blade is employed,
the crack front at times is not precisely normal to the sheet surface. Similar observations were made in
[Williams and Ewing 1972].

The measured and computed SIFs are shown in Figure 11, in order to assess the usefulness of the
strain gage method of Dally and Sanford [1987] in combination with PMMA specimens for measuring
the accurate SIFs. We see that either the results of Table 1 or the graphs in Figure 11 may be employed
for SIFs of finite width and finite height edge-cracked plates subject to uniform tension.

Figure 11. Comparison of measured and computed values of the normalized SIF.
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7. Conclusions

The present investigation outlines various reasons which prevented the extensive application of the strain
gage methods in determination of the accurate mode I SIFs. An experimental program is devised
which includes the use of PMMA specimens so as to make the single strain gage method of [Dally
and Sanford 1987] a more powerful and attractive experimental technique. The effectiveness of use of
PMMA specimens in conjunction with the Dally and Sanford technique in measuring accurate opening
mode stress intensity factors was demonstrated in the present investigation. Monotonically increasing
load experiments were performed on the finite width and finite height PMMA edge-cracked specimens
and strains were measured using 3 mm active length strain gages. Various trends of the experimental
results are in excellent agreement with the LEFM theory. Moreover, a good agreement has also been
observed between computed SIFs using FEA and the measured SIFs using the relatively large strain
gages. The present investigation attempts to suggest accurate SIFs of the fully finite edge-cracked plates
and subjected to uniform tension. The results of the present work clearly demonstrate that the single
strain gage technique of Dally and Sanford can be used more effectively in combination with the PMMA
specimens and can become a very useful tool for measurement of accurate opening mode SIFs of the
complex configurations yet with relatively large gages.
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