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Lattice structures possess a huge potential for energy absorbing applications, and the postinitial collapse
region should be analyzed with respect to design principles in such cases. This paper presents an ana-
lytical method to calculate the ultimate yield surfaces of statically indeterminate planar lattice structures,
based on the assessment of static equilibrium of the unit cell before and after initial yielding. The
material of the unit cell wall is assumed to be elastic, perfectly plastic. Three statically indeterminate
planar lattice structures: the diamond cross cell, the statically-indeterminate square cell (SI-square cell),
the new Kagome cell (N-Kagome), are analyzed. The parametric studies reveal the roles of various
geometrical parameters on the performance of each structure. The SI-square cell is utilized as an example
to demonstrate the evolution of structural yielding, thus providing an insight into the collapse mode of
lattice structures. Furthermore, the stress-strain relationships of the SI-square and N-Kagome cells are
also calculated, and the effective constitutive relations of both lattices are found to be linearly hardening,
which is validated by finite element (FE) simulations.

1. Introduction

Recently, lightweight structures, including metal foams, metallic sandwiches with various core topolo-
gies, and lattice structures, have been widely used in engineering applications [Gibson and Ashby 1997;
Ashby et al. 2000; Smith et al. 2001; Xue and Hutchinson 2003; 2004; 2006; Hutchinson and Xue 2005]
for their superior properties of high specific stiffness and strength, most effective energy absorption, shock
mitigation, and heat insulation. A lattice structure consists of periodically patterned trusses or sheets
which provide large interstructural spaces, thus significantly enhancing the mechanical performance
of the structure compared with the equivalent solid plate of same weight. Furthermore, the periodic
cellular structures possess far superior specific strengths compared with disordered structures such as
Voronoi honeycombs [Fazekas et al. 2002] or less ordered open or closed cell metallic foams [Doyoyo and
Wierzbicki 2003]. Two-dimensional lattice structures possess configurations with regular and periodic
microstructures in a plane and remain the same along the normal direction of the plane. Because two-
dimensional lattice structures are attractive for use as cores in lightweight sandwich beams or plates, for
load carrying, energy-absorption, and packaging applications, various aspects of their mechanical and
thermal behaviors have received significant attention [Gibson and Ashby 1997; Chen et al. 1999; Evans
et al. 2001; Hayes et al. 2004; Fleck and Qiu 2007].
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Yielding is generally premonitory of structural collapse for lattice structures, and so a comprehensive
understanding of lattice yielding behavior is indispensable for engineering applications. Previous studies
on yielding behavior of cellular structures were mainly focused on the yielding criterion and the con-
tinuum constitutive relations, and employed the phenomenological and micromechanics methods in the
analysis of the periodic unit cell. Deshpande and Fleck [2000] proposed two phenomenological isotropic
constitutive models for the plastic behavior of metallic foams, and good agreement was found between
their experimental results and analytical predictions. Xue et al. [2005] presented a phenomenological
plastic constitutive model for compressible orthotropic materials and extended the model for applications
to metal core structures in sandwich plates. This plastic constitutive model was also implemented in
a finite element program to study the dynamic mechanical behavior of metal cores [Vaziri and Xue
2007]. From investigations of the representative periodic units, Gibson and Ashby [1997] presented
basic mechanical results about ideal and commercial hexagonal honeycombs. Mohr [2005] suggested a
mechanism-based multisurface plasticity model for ideal truss lattice materials. Standard homogenization
techniques were employed to develop a general micromechanics-based finite-strain constitutive model for
truss lattice materials. Wang and McDowell [2005] systematically calculated the initial yield surfaces of
five different types of planar lattice patterns by analysis of the periodic unit cells, considering both the in-
plane and triaxial stress states. Doyoyo and Mohr [2003] experimentally investigated the microstructural
response of aluminum honeycomb under combined normal and shear out-of-plane loading. Zhang et al.
[2008] designed two novel statically indeterminate planar lattice structures and calculated their initial
yield surfaces and buckling surfaces.

It should be noted that the previous studies about yield surfaces of lattice structures were mainly
based on numerical or experimental methods. These methods are commonly complicated and often
cannot provide simple explicit results which are more convenient for engineering applications. However,
it must be noted that high accuracy results can be obtained by utilizing these methods, especially for
the case where buckling of the microstructure is evident. For most stretching dominated structures
composed of moderately flexible struts (that is, when the relative density is larger than 0.06), comparison
of the yield strengths and elastic strengths indicates that elastic buckling generally does not occur before
yielding [Wang and McDowell 2004; Zhang et al. 2008]. In this case, the analytical method based on
the micromechanics method, through analysis of the periodic unit cell, is capable of deriving explicit
yield surface results with enough accuracy. Since the statically indeterminate lattice structure is still
dominated by stretching after the initial yielding, it can still sustain comparatively large additional load
after initial yielding. Besides, this category of lattices is expected to possess higher specific strengths
than that of statically determinate lattices such as the triangular and Kagome lattices. Therefore, for
practical applications of the statically indeterminate lattice structures in engineering conditions, it is
crucial to investigate their ultimate yield behavior in detail. The results concerning the ultimate yielding
of statically indeterminate cells have not been reported so far.

In this paper, a simple analytical method based on analysis of the equilibrium of the periodic unit cell
before and after initial yielding is put forward to calculate the ultimate yield equations of planar lattice
structures whose degree of static indeterminacy are one, which is introduced in Section 2.

In Section 3, the ultimate yield surfaces of three statically indeterminate planar lattices are calculated
using this method. Comparison of yield strengths among these lattice structures are made in Section 4.
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Finally, in Section 5, the whole stress-strain relationships of two statically indeterminate lattice struc-
tures in the principal directions are analyzed.

2. Formulation of ultimate yield surface

We consider a representative statically indeterminate lattice structure so that its periodic unit cell, com-
prised of eight struts fastened to each other, has a parallelogram shape as depicted in Figure 1. The
structure undergoes in-plane deformation under multiaxial stressing. The applied normal stresses in the
x1 and x2 directions are denoted as σ1 and σ2, respectively, and the shear stress is τ12. It is noted that the
pair of struts having the same orientation must exhibit identical mechanical behavior, so analyzing only
one strut is sufficient for each pair. For convenience, each selected strut in the four pairs is numbered by
i th, i = 1, . . . , 4 respectively and the length of the i th strut is li .

The onsets of yielding of the four pairs of struts are generally not concurrent. As the applied stresses
increase up to a set of particular values, a certain pair of struts starts to yield. This state is considered the
initial yielding of the lattice structure. After initial yielding, the unit cell of the structure is still capable
of withstanding further loading. Continuously increasing the loads results in at least one more pair of
struts also yielding. Consequently, the structural unit cell will become a mechanism and eventually
collapse. We name such behavior the ultimate yielding of the lattice structure. After the initial yielding
of the statically indeterminate lattice structure, the load is mainly supported by the original configuration
(excluding the initially yielding struts) although the initial yielding struts still increase in strength to some
extent when the material possesses a strain hardening effect. The strain hardening effect of the parent
material will make the solution of the ultimate yielding equation very complicated. Therefore, all struts
are assumed to be made of elastic, perfectly plastic material in this paper. Basically, once the ultimate
yielding occurs, the structure cannot bear additional loads any more in this case. It is also possible that

Figure 1. Sketch of a representative statically indeterminate lattice structure (a) and its
unit cell (b).
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two or more pairs of struts simultaneously start to yield, in which case we consider that the structure is
undergoing the ultimate yielding without experiencing the initial yielding. The evolution of structural
yielding will be addressed again later, while the emphasis in this section is to establish the equations for
identifying the initial and ultimate yielding conditions of the structure.

According to the criteria proposed by Deshpande et al. [2001], the lattice pattern in Figure 1 is a
stretching dominated structure. Furthermore, the unit cell in Figure 1 without one pair of struts is still
statically determinate, and each strut still undergoes mainly stretching or compressing; that is to say,
the structure is still stretching dominant after initial yielding. Therefore, the deformation of the lattice
structure is still very small compared with the dimension of the lattice unit cell. The analytical results
in Section 5 also demonstrate that the effective ultimate yielding strain of the lattice structures are both
within 5εys , where εys denotes the strain of the solid material. For the typical value of εys = 0.001, for a
metal material, the effective ultimate yielding strain of the lattice structure is only 0.005. Therefore, the
assumption of “small deformation” is still reasonable after initial yield. The agreement of the analytical
and Finite Element (FE) results on the stress-strain relationships of the SI-square and N-Kagome cells
in Section 5 also demonstrate that the “small deformation” assumption can be accepted. Besides, the
bending deformation of each strut in the lattice structure is still small enough so that they cannot contact
each other. The results of finite element method (FEM) calculations also support this statement. As shown
in Figure 2, when ultimate yielding in the SI-square lattice structure occurs under uniaxial loading in
the x1 and diagonal directions, the bending deformations and rotational angles of each strut are both
comparatively small. Therefore, the assumption that the structural elements do not contact each other is
precise for describing the deformation mode before the ultimate yielding of the lattice structure, and the
equilibrium equations established on the original configuration of the lattice are also accurate enough.

Due to the dominance of cell wall stretching, the internal force of the i th strut is proportional to each
applied stress component, thus the initial yielding condition of the i th strut can be written in nondimen-
sional terms as

|Ni/(σysbt)| = |piσ
◦

1 /σys + qiσ
◦

2 /σys + riτ
◦

12/σys | = 1, i = 1, . . . , 4, (1)

where Ni denotes the internal force of the i th strut, and σys is the yield strength of strut material; b and t
are the in-plane wall thickness and out-of-plane dimensions, respectively; σ ◦

1 , σ ◦

2 and τ ◦

12 are the applied
stresses leading to initial yielding of the unit cell. The coefficients pi , qi , and ri can be considered as
the contributing fraction of each stress component to the internal force of the i th strut, depending on the

Figure 2. The deformation sketches of the SI-square cell under uniaxial loading in the
x1 and diagonal directions with the deformations magnified by 100 times.
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initial structural geometry. For the case in which a single stress component exists (that is, σ1), the related
coefficient (that is, pi ) can be determined straightforwardly (that is, pi = Ni/(σ1bt)).

It is noted that after initial yielding (that is, the i th strut is yielding), the structure is still stretching
dominant. Assuming that the j th ( j = 1, . . . , 4, j 6= i) strut yields subsequently after the i th strut, then
the corresponding ultimate yield equation of the unit cell can be given by

|N (i)
j /(σysbt)| = |(N (i)◦

j + 1N (i)
j )/σysbt |

=

∣∣∣∣∣∣∣∣
p jσ

◦

1 /σys + q jσ
◦

2 /σys

+ r jτ
◦

12/σys + P (i)
j 1σ1/σys

+ Q(i)
j 1σ2/σys + R(i)

j 1τ12/σys

∣∣∣∣∣∣∣∣ = 1, i, j = 1, . . . , 4, j 6= i ,
(2)

where N (i)◦
j denotes the internal force of the j th strut at the onset of initial yielding of the i th strut. 1N (i)

j
denotes the additional internal force within the j th strut thereafter, and correspondingly 1σ1, 1σ2, and
1τ12 are the additional applied stresses thereafter. By definition, the additional stresses can be written
by

1σ1 = σ1 − σ ◦

1 , (3)

1σ2 = σ2 − σ ◦

2 , (4)

1τ12 = τ12 − τ ◦

12, (5)

where σ1, σ2, and τ12 are the final applied stresses. Analogous to pi , qi , and ri , the coefficients P (i)
j ,

Q(i)
j , and R(i)

j can be considered as the contribution fraction of each stress component increment to the
additional internal force of the j th strut after the initial yielding of the structure. They are determined
by the geometrical configuration, which excludes the initially yielding struts (the i th strut), and this
configuration is named the postyielding configuration. Assuming that an additional stress is exerted to
such postyielding configuration, (1σ1), the related coefficients (that is, P (i)

j ) can be determined straight-

forwardly (P (i)
j = N (i)

j /(1σ1bt)).
Substituting Equation (3) into (2) gives∣∣∣∣∣∣∣∣

(p j − P (i)
j )σ ◦

1 /σys + (q j − Q(i)
j )σ ◦

2 /σys

+ (r j − R(i)
j )τ ◦

12/σys + P (i)
j σ1/σys

+ Q(i)
j σ2/σys + R(i)

j τ12/σys

∣∣∣∣∣∣∣∣ = 1, i, j = 1, . . . , 4, j 6= i. (6)

Through analyzing, in detail, the equilibrium of the structural unit cell under the specified uniaxial stress-
ing, we find that the parameters (p j − P (i)

j ), (q j − Q(i)
j ), (r j − R(i)

j ), and pi , qi , ri satisfy the following
generalized relation:

p j − P (i)
j

pi
=

q j − Q(i)
j

qi
=

r j − R(i)
j

ri
= s(i)

j , (i, j = 1, . . . , 4, i 6= j), (7)
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where s(i)
j is introduced as the scale parameter, depending only on the geometry of the unit cell. The

details of the procedure for getting Equation (7) will be given in Appendix A. For the special struc-
ture depicted in Figure 1, the parameter s(i)

j can be further related to the length ratios. By introducing
the effective lengths, defined as l ′1 = l1, l ′2 = 2l2, l ′3 = 2l3, and l ′4 = l4, s(i)

j can be simply written in a
generalized form as

s(i)
j =

{
l ′j/l ′i i + j = 5,

−l ′j/l ′i i + j 6= 5,
(i, j = 1, . . . , 4, i 6= j). (8)

The term |(p j − P (i)
j )σ ◦

1 /σys + (q j − Q(i)
j )σ ◦

2 /σys + (r j − R(i)
j )τ ◦

12/σys | can be simplified by combin-
ing Equations (1) and (7), that is,∣∣∣(p j − P (i)

j )σ ◦

1 /σys + (q j − Q(i)
j )σ ◦

2 /σys + (r j − R(i)
j )τ ◦

12/σys

∣∣∣ = |s(i)
j |. (9)

Substituting (9) into (6), the ultimate yield equation is written as:

maxi, j=1,...,4,i 6= j {|s
(i)
j + P (i)

j σ1/σys + Q(i)
j σ2/σys + R(i)

j τ12/σys |} = 1(
when maxi=1,...,4

{
piσ1/σys + qiσ2/σys + riτ12/σys

}
≥ 1, i = 1, . . . , 4

)
,

(10a)

maxi, j=1,...,4,i 6= j {|−s(i)
j + P (i)

j σ1/σys + Q(i)
j σ2/σys + R(i)

j τ12/σys |} = 1(
when min

i=1,...,4

{
piσ1/σys + qiσ2/σys + riτ12/σys

}
≤ −1, i = 1, . . . , 4

)
.

(10b)

Equation (10a) is related to the i th strut’s initial yielding under tension, while Equation (10b) is related
to its initial yielding under compression. It should be pointed out that the above equations are applicable
for any kind of statically indeterminate structures whose degrees of static indeterminacy are one even
though their derivation is based on the particular configuration shown in Figure 1.

Here we make a simple comparison of the present analytical method with the methods adopted in
the previous investigations on the yield surfaces of the lattice structures. Xue et al. [2005] proposed a
phenomenological ellipsoidal yield surface for lattice materials based on the six initial yield strengths in
the orthotropic axes. This kind of closed-form yield surface is advantageous in establishing the hardening
rule and the plastic constitutive relations similar to that of the isotropic metal material. The deformation
of each strut within the lattice cell is not detailed analyzed in this model, so this phenomenological
method is not capable of presenting an explicit ultimate yielding equation beyond the initial yielding.
Mohr [2005] suggested a mechanism-based multisurface plasticity model for ideal truss lattice materials.
Standard homogenization techniques were employed to develop a general micromechanics-based finite-
strain constitutive model for truss lattice materials. In their integration algorithm, an iterative numerical
method needs to be adopted to check the yield condition and calculate the plastic strain step by step, and
thus an explicit analytical ultimate equation also cannot be obtained using their method.

3. Ultimate yield surfaces of three types of lattice structures

Utilizing the equations presented in Section 2, we explore the ultimate yield surfaces of several lattice
structures, including the diamond cross cell, SI-square cell and N-Kagome cell. The configurations of
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Figure 3. Configurations of the diamond cross (a), the SI-square (b), and the N-Kagome
(c) lattice structures.

these lattice structures are shown in Figure 3. Figure 3(a) presents a diamond cross cell having a half
top angle of α, which can be specified by setting the lengths of all four outside struts of the unit cell
structure shown in Figure 1 to be equal. The statically indeterminate square (SI-square) cell, as shown
in Figure 3(b), is considered to be a special diamond cross cell having the half top angle of α = π/4.
The N-Kagome cell, proposed by Zhang et al. [2008], is presented in Figure 3(c). Compared with the
original Kagome cell, the N-Kagome cell has three short struts inside the triangle. Zhang et al. [2008]
indicated that, for a given relative density and wall thickness, the N-Kagome cell has larger hexagon
cavities, which are convenient for oil storage, disposal of heat exchanger, battery deploying and for other
functions..

In this section, the procedure of gaining the ultimate yield surfaces is explained in detail by exempli-
fying that of the diamond cross cell. The similar descriptions for the SI-square and N-Kagome cells are
omitted and only the results of the ultimate yield surfaces for these two cells are listed in Appendix B.
By employing an energy method, the statically indeterminate problem of the diamond cross cell under
a general stress state can be solved, and the internal forces of each strut can be expressed in terms of
the applied stress components. Then the initial yield equation of the diamond cross cell is obtained as
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follows:

max



l
tσys

∣∣ sin 2α(σ1 sin α+σ2 cos α)

1+2 sin3 α+2 cos3 α
− τ12

∣∣ − 1

l
tσys

∣∣−σ1 sin2 2α+2σ2 sin α(1+2 sin3 α)

1+2 sin3 α+2 cos3 α

∣∣ − 1

l
tσys

∣∣ 2σ1 cos α(1+2 cos3 α)−σ2 sin2 2α

1+2 sin3 α+2 cos3 α

∣∣ − 1

l
tσys

∣∣ sin 2α(σ1 sin α+σ2 cos α)

1+2 sin3 α+2 cos3 α
+ τ12

∣∣ − 1


= 0. (11)

According to Equation (8), the values of s(i)
j are calculated and written in form of an array as following,

[
s(i)

j

]
=


/ −2 cos α −2 sin α 1

−
1

2 cos α
/ sin α

cos α
−

1
2 cos α

−
1

2 sin α
cos α
sin α

/ −
1

2 sin α

1 −2 cos α −2 sin α /

 , (12)

where i and j are the row index and column index, respectively and i 6= j .
Based on the methods briefed in the previous section, the parameters, P (i)

j , Q(i)
j , and R(i)

j , are identified
by

[
P (i)

j

]
=


/ 0 2bl cos α 0

0 / 2bl cos α 0

bl cos α
sin α

−2bl cos2 α
sin α

/ bl cos α
sin α

0 0 2bl cos α /

 ,
[
Q(i)

j

]
=


/ 2bl sin α 0 0

bl sin α
cos α

/ −2bl sin2 α
cos α

0

0 2bl sin α / 0

0 2bl sin α 0 /

 ,

[
R(i)

j

]
=


/ 0 −2bl cos α −2bl cos α

−bl / 2bl cos α bl

−bl 0 / bl

−2bl 2bl cos α 2bl sin α /

 . (13)
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Substituting Equations (11), (12) and (13) into Equations (10a) and (10b) gives the ultimate yield
equations of the diamond cross cell, that is,

max



2 l
tσys

|− sin α + σ1 cos α ± τ12 sin α| − 1

2 l
tσys

|− cos α + σ2 sin α ± τ12 cos α| − 1

l
tσys

|1 ± 2τ12 cos α| − 1

l
tσys

∣∣ sin α
cos α

+ 2σ1 cos α − 2σ2
sin2 α
cos α

∣∣ − 1

l
tσys

∣∣ cos α
sin α

− 2σ1
cos2 α
sin α

+ 2σ2 sin α
∣∣ − 1


= 0, when

max



l
tσys

sin 2α(σ1 sin α+σ2 cos α)

1+2 sin3 α+2 cos3 α
− τ12 − 1

l
tσys

−σ1 sin2 2α+2σ2 sin α(1+2 sin3 α)

1+2 sin3 α+2 cos3 α
− 1

l
tσys

2σ1 cos α(1+2 cos3 α)−σ2 sin2 2α

1+2 sin3 α+2 cos3 α
− 1

l
tσys

sin 2α(σ1 sin α+σ2 cos α)

1+2 sin3 α+2 cos3 α
+ τ12 − 1


> 0, (14a)

max



2 l
tσys

|sin α + σ1 cos α ± τ12 sin α| − 1

2 l
tσys

|cos α + σ2 sin α ± τ12 cos α| − 1

l
tσys

|−1 ± 2τ12 cos α| − 1

l
tσys

∣∣− sin α
cos α

+ 2σ1 cos α − 2σ2
sin2 α
cos α

∣∣ − 1

l
tσys

∣∣− cos α
sin α

− 2σ1
cos2 α
sin α

+ 2σ2 sin α
∣∣ − 1


= 0, when

min



−
l

tσys

sin 2α(σ1 sin α+σ2 cos α)

1+2 sin3 α+2 cos3 α
− τ12 + 1

−
l

tσys

−σ1 sin2 2α+2σ2 sin α(1+2 sin3 α)

1+2 sin3 α+2 cos3 α
+ 1

−
l

tσys

2σ1 cos α(1+2 cos3 α)−σ2 sin2 2α

1+2 sin3 α+2 cos3 α
+ 1

−
l

tσys

sin 2α(σ1 sin α+σ2 cos α)

1+2 sin3 α+2 cos3 α
+ τ12 + 1


< 0. (14b)
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(a) (b)

(c) (d)

Figure 4. The initial (a) and ultimate (b) yield surfaces of the SI-square cell, and the
initial (c) and ultimate (d) yield surfaces of the N-Kagome cell.

Since the SI-square lattice structure can be considered as a special diamond cross lattice structure,
only the results for the SI-square and N-Kagome lattice structures are discussed herein. Figures 4(a)
and 4(b) show the initial and ultimate yield surfaces of the SI-square cell in the space of normalized
effective stresses respectively, while Figures 4(c) and 4(d) are corresponding to the N-Kagome cell. All
four yield surfaces are closed, convex, and anisotropic. By comparison, the ultimate yield surfaces of
both structures are entirely outside their initial yield surfaces, indicating that the structures still have
capabilities of bearing extra loads after the onset of initial yielding. It is also demonstrated that the
magnitude of the residual carrying capacity depends on the loading conditions. The initial and ultimate
yield surfaces consist of only planar facets. This is the common feature of the stretching dominated
structures.

Representations of yield surfaces in the stress spaces of σ1 and σ2, σ1 and τ12, and σ2 and τ12 are
illustrated in Figures 5(a), (b) and (c) respectively. In all three stress spaces, the ultimate yield surfaces
of the SI-square cell embrace those of the N-Kagome cell with a large extra area, although the sizes of
their initial yield surfaces are comparative with those of the N-Kagome cell. Therefore, we may draw a
conclusion that the SI-square cell has much larger ultimate load-carrying capacity than the N-Kagome
cell.
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Figure 5. The initial and ultimate yield surfaces of the SI-square cell and N-Kagome
cell in the stress spaces of σ1, σ2 (a), σ1, τ12 (b) and σ2, τ12 (c).

4. Yielding responses of the lattice structures under uniaxial loading

In order to estimate the structural load carrying capacity, we analyze the ultimate yield strength of each
aforementioned lattice patterns subjected to uniaxial loads. Assume that the angle between the loading
direction and x1 direction is θ (0 ≤ θ < π). The resultant stress can be decomposed into two normal
stress components and a shear stress component such that

σ1 = σ cos2 θ, σ2 = σ sin2 θ, τ12 = σ sin θ cos θ. (15)

Thus, the ultimate yield equations obtained before can be easily exploited to calculate the yielding re-
sponses of the structures to given stresses in any loading directions.

4.1. The ultimate yield strengths of three lattice structures under uniaxial loading. From (14a), (14b),
and (15), the ultimate yield strength of the diamond cross cell related to the loading direction of θ is
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obtained as

σ ∗
ut(θ)

σys
= min



∣∣ sin α+cos α

2 cos2 θ cos2 α−2 sin2 θ sin2 α

t
l

∣∣
∣∣ 1

sin θ cos θ
t
l

∣∣
∣∣ 1+2 sin α

2 cos θ cos(α±θ)
t
l

∣∣
∣∣ 1+2 cos α

2 sin θ cos(α±θ)
t
l

∣∣


. (16)

For the SI-square cell, its ultimate yield strength as a function of θ is given by

σ ∗
ut(θ)

σys
=

{√
2−1

cos 2θ
r (0 ≤ θ ≤ 0.0541π),

1
2 cos θ(sin θ+cos θ)

r
(
0.0541π ≤ θ ≤

π
4

)
.

(17)

where r is the relative density of the lattice structure. Furthermore, the values of the maximum and
minimum ultimate yield strengths for the SI-square cell are as follows,

σ ∗
ut max

σys
= 0.5r,

(
θ =

nπ

2
±

π

4
, n = 1, . . . , 4

)
, (18a)

σ ∗

ut min

σys
= 0.414r,

(
θ =

nπ

2
, n = 1, . . . , 4

)
. (18b)

For the N-Kagome cell, the relationship between the ultimate strength and the loading direction is
calculated according to the ultimate yield equation (Equation (A.4)), that is,

σ ∗
ut(θ)

σys
=


r

4 cos2 θ−1

(
0 ≤ θ < π

12

)
,

(
√

3−1)r
√

3 cos 2θ+sin 2θ

(
π
12 ≤ θ < π

6

)
,

0.388r
(
θ =

π
6

)
.

(19)

Its maximum and minimum values of normalized ultimate strengths are given by

σ ∗
ut max

σys
= 0.423r, θ =

nπ

3
+

π

6
(n = 0, . . . , 5), (20a)

σ ∗

ut min

σys
= 0.333r, θ =

nπ

3
+

π

3
(n = 0, . . . , 5). (20b)

4.2. Comparison of yield strength for various cell patterns. The yield strengths of four types of cell
patterns, including the diamond, Kagome, SI-square, and diamond cross cells, are compared in Figure
6. Among them, the former two, as representatives of the statically determinate lattice structures, are
excellent structures for high specific stiffness and specific strength [Wang and McDowell 2004; 2005].
Different from the SI-square and diamond cross cells, they are not able to sustain further load after initial
yielding. Therefore, their initial yield strengths are adopted to identify their maximum load-carrying
capability. For the latter two statically indeterminate structures, the SI-square and diamond cross cells, the
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Figure 6. Comparison of yield strength among four different cell patterns.

ultimate yield strengths are employed to weigh their maximum load-carrying capabilities. The diamond
cross cell that we analyze has the half top angle of α = π/6. Basically, the yield strengths of the
structures vary as the loading direction changes. The ultimate yield strength of the SI-square cell stays
at a higher level relative to that of the Kagome cell over almost the whole range of loading directions,
indicating that the SI-square cell has an advantage with respect to withstanding loads. For both the
diamond and diamond cross cells, their strengths depend on the applied loading direction. The minimum
yield strengths of both patterns occur when θ = 0◦ while the maximum values are higher than 0.6 at
θ = 90◦. On the whole, the ultimate yield strengths of the diamond cross cell (α = π/6) are slightly
higher than that of the diamond cell. It is usual in estimation of the structural performance to adopt the
worst case scenario so that the structure is considered to be a better one if it is able to survive relatively
longer under any loading conditions. By comparison, the SI-square cell, the minimum yield strength of
which is much higher than the others, is recommended as the best two-dimensional lattice structure for
its superior load carrying capability among those aforementioned lattice patterns.

For the diamond cross cell with different half top angle α, the uniaxial ultimate yield strength is also
calculated and plotted in Figure 7. It is noted that if rotated an angle of π/2, the diamond cross cell of the
half top angle α will be the same as that of the half top angle π/2−α. Therefore, the top angle considered
in the analysis is restricted in the range of 0 < α ≤ π/4. As shown in Figure 7, as the half top angle
decreases from π/7, the maximum yield strength is elevated and the minimum yield strength is lowered
slightly. Therefore, the structure exhibits more obvious anisotropy. When the half top angle α is less
than π/6, each of the corresponding curves is composed of three segments, and value of the normalized
strength (σ ∗

ut(θ)/σy)(1/r) increases with load direction θ . For α in the range of π/6 < α < π/4, the
corresponding curve consists of four parts. It is noted that the anisotropy of the structural response is not
always a disadvantage. Particularly, for the case where the applied load is fixed at a determined direction,
the half top angle of the structure can be well designed to ensure that its corresponding yield strength is
as high as possible. The structure with the half top angle of π/4 evolves into the SI-square one, which
displays a more isotropic yielding behavior.
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Figure 7. The ultimate yield strength of the diamond cross cells with different half top angles.

4.3. Evolution of the yield modes for the SI-square cell. As discussed before, the SI-square cell, as a
statically indeterminate structure, undergoes initial yielding followed by the ultimate yielding. Its initial
yield strength and ultimate yield strength are presented in Figure 8 as a function of θ . As the loading
direction θ varies, both the initial yield strength and the ultimate yield strength are changed. It is seen
that there exist several sharp peaks on the curves. Careful analysis exposes that each sharp peak actually
corresponds to the transition of the yielding modes from one to another. Corresponding to each marked
point on the curves, the yield modes are demonstrated in Figure 8. The curved segment between A and
E on the initial yield curve arises from the fact that the horizontal struts experience yielding; the curved
segment between E and F is related to the case where the inclined struts yield first. Initial yielding of a
pair of struts usually does not mark the limit of its load-carrying resistance. Rather, it signifies a change
in the way in which the structure responds to further loads. The structural unit cell does not collapse until
additional plastic yielding struts have formed to convert it into a mechanism. The collapse modes are
different for different loading directions. For θ = 0◦, after the horizontal struts yield initially, the vertical
struts will yield finally as the applied effective stress increases up to σ ∗(θ)/rσys = 0.414. For either
θ = 9.7◦ or θ = 45◦, three pairs of struts, including the horizontal, the vertical, and the inclined struts,
all yield together once the applied load increases beyond the corresponding values of the ultimate yield
strength. It is also noted that at θ = 27.3◦ the horizontal and inclined struts will yield simultaneously,
resulting in direct structural collapse without initial yielding. The maximum load carrying capacity of
the SI-square structure occurs when the load is applied to the unit cell along the angle of θ = 45◦, while
the structure is relatively weaker to the horizontally applied load.

5. Stiffness analysis under uniaxial loading

For the struts made of the elastic, perfectly plastic material, the stress-strain relationships and stiffness
characteristics of the SI-square and N-Kagome cells are also solved analytically and presented in this
section.
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Figure 8. The initial and ultimate yield strength of the SI-square cell (a) along with the
evolution of the yielding mode (b).

Considering the stress-strain relationship of the SI-square cell loaded in the x1 direction (θ = 0◦),
with increase of the effective stress, σ1, from zero to the initial yield strength, the effective stress is
proportional to the effective strain, with the slope just equal to the effective modulus. If the stress still
increases after the initial yielding, the horizontal strut will yield (see yielding mode A in Figure 8), and
the additional stress, 1σ1, will be proportional to the additional strain 1ε1. In this case, the stress is still
linearly dependent on the strain, while the slope becomes the effective modulus of the unit cell without
the horizontal strut. This is presented in Figure 9. The second pair of struts will occur yielding when the
stress reaches the ultimate yield strength. After onset of the ultimate yielding, the unit cell is not able
to support additional stress any more. The effective modulus and initial yield strength of the SI-square
cell have been obtained by Zhang et al. [2008]. The effective stiffness of the unit cell without the initial
yielding strut can also be easily calculated, thus the normalized stress-strain relationship can be gained,
that is,

σ1

rσys
=


2−

√
2

2
ε1
εys

, 0 ≤
ε1
εys

≤ 1,

2−
√

2
2 +

3−2
√

2
2

(
ε1
εys

− 1
)
, 1 < ε1

εys
≤

√
2 + 1,

√
2 − 1, ε1

εys
>

√
2 + 1,

(21)

where εys is the yield strain of the material, and the stiffness of the material is Es = σys/εys . Similarly, the
normalized stress-strain relationship of the SI-square cell in the diagonal direction can also be obtained,

σdiag

rσys
=


4−

√
2

7
εdiag
εys

, 0 ≤
εdiag
εys

≤ 1,

4−
√

2
7 +

5
√

2−6
14

( εdiag
εys

− 1
)
, 1 <

εdiag
εys

≤
4+

√
2

2 ,

1
2

εdiag
εys

> 4+
√

2
2 .

(22)
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Figure 9. The stress-strain relationships of the SI-square cell in the three typical directions.

The normalized stress-strain relationship of the N-Kagome cell in the x1 and x2 directions could also
be calculated,

σ1

rσys
=


9−2

√
3

23
ε1
εys

, 0 ≤
ε1
εys

≤ 1,

9−2
√

3
23 +

11
√

3−15
138

(
ε1
εys

− 1
)
, 1 < ε1

εys
≤

9+2
√

3
3 ,

1
3 , ε1

εys
> 9+2

√
3

3 .

(23)

σ2

rσys
=


9−2

√
3

23
ε2
εys

, 0 ≤
ε2
εys

≤
16+

√
3

11 ,

6−
√

3
11 +

111−45
√

3
694

ε2
εys

, 16+
√

3
11 < ε2

εys
≤ 2.345,

3−
√

3
3 , ε2

εys
> 2.345.

(24)

According to Equations (21)–(24), the normalized stress-normalized strain curves are plotted in Fig-
ures 9 and 10 for the SI-square and the N-Kagome cells respectively. Each change in slope corresponds
to the formation of plastic struts which produces progressive flexibility of the structure. In Figure 9, each
marked transition point is corresponding to the yielding mode marked with the same letter in Figure 8.
Collapse occurs when enough struts have undergone plastic yielding to transform the structure into a
mechanism with no inherent stiffness, corresponding to the final horizontal segments of the curves.

Corresponding FE simulations are performed to verify the analytical stress-strain relations. In the
calculation, the material is linear elastic with linear hardening plasticity. A small linearly hardening
coefficient, E ′/E = 0.001, is adopted for the cell wall material, where E and E ′ are the elastic modulus
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Figure 10. The stress-strain relationships of the N-Kagome cell in the principle directions.

and the tangential modulus. As shown in Figures 9 and 10, good agreements are found between the FE
results and the analytical stress-strain predictions, thus verifying the analytical solutions.

6. Concluding remarks

Based on the analysis of the equilibrium of a unit cell before and after initial yielding, a simple analytical
method is put forward to calculate the ultimate yield equation of statically indeterminate planar lattice
structures for the elastic, perfectly plastic parent material. The ultimate yield surfaces and yield strengths
of several indeterminate unit cells are assessed using the proposed method, and the residual loading
capacity after the onset of initial yielding can be quantitatively predicted. The stress-strain relationships
of the SI-square and N-Kagome cells are also calculated for the elastic, perfectly plastic materials, and
the effective constitutive relations of both lattices are found to be linearly hardening, which is validated
by finite element (FE) simulations. Comparison of the initial and ultimate yield surfaces indicates that
these lattice structures possess considerable residual loading capacities which depend on the loading
conditions. It is found that the ultimate yield strength of the SI-square cell is nearly isotropic, possesses
a higher ultimate yield strength, and therefore is an excellent lightweight structure for load carrying. The
ultimate yield strengths of the diamond cross cell (α = π/6) are slightly higher than that of the diamond
cell on the whole.

Appendix A: the deduction of the relationship given by Equation (7)

In order to obtain the relationships between the parameters (p j − P (i)
j ), (q j − Q(i)

j ), (r j − R(i)
j ), and pi ,

qi , ri , the equilibrium of the unit cell is analyzed. The anticlockwise angle of the i th strut and the x1

direction is assumed to be θi . For the case where the first strut yields first, that is, i = 1, we simply
take the values of applied stresses to be unit, that is, σ1 = 1 or 1σ1 = 1, which can be equivalent to two
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concentrated loads exerted on the connecting nodes of the struts, PA andPB , as shown in Figure 11. (We
note that the stress quantities σ and 1σ are reference stresses that can be chosen arbitrarily; they are
simply scaling factors.) The equilibrium equations of points A and B before initial yielding are

−p1 cos θ1 + p3 cos θ3 + p4 cos θ4 = PA/bt,

−p1 sin θ1 + p3 sin θ3 + p4 sin θ4 = 0,

p1 sin θ1 + p2 sin θ2 + p4 sin θ4 = 0,

p1 cos θ1 + p2 cos θ2 + p4 cos θ4 = −PB/bt.

(A.1)

The equilibrium equations of points A and B after initial yielding are:

P (1)
3 cos θ3 + P (1)

4 cos θ4 = PA/bt,

P (1)
3 sin θ3 + P (1)

4 sin θ4 = 0,

P (1)
2 sin θ2 + P (1)

4 sin θ4 = 0,

P (1)
2 cos θ2 + P (1)

4 cos θ4 = −PB/bt.

(A.2)

Subtracting each equation of Equation (A.2) from Equation (A.1) gives:

(p3 − P (1)
3 ) cos θ3 + (p4 − P (1)

4 ) cos θ4 = p1 cos θ1,

(p3 − P (1)
3 ) sin θ3 + (p4 − P (1)

4 ) sin θ4 = p1 sin θ1,

(p2 − P (1)
2 ) sin θ2 + (p4 − P (1)

4 ) sin θ4 = −p1 sin θ1,

(p2 − P (1)
2 ) cos θ2 + (p4 − P (1)

4 ) cos θ4 = −p1 cos θ1.

(A.3)

Taking these parameters, (p2 − P (1)
2 ), (p3 − P (1)

3 ), (p4 − P (1)
4 ) and p1, as unknown quantities, the rank

of the coefficient matrix of Equation (A.3) is three, which indicates that those four equations in Equation

(A.3) are not independent, and the value of
p j −P(1)

j
p1

( j = 2, 3, 4) can be uniquely determined as follows,

p2 − P (1)
2

p1
=

sin(θ4 − θ1)

sin(θ2 − θ4)
,

p3 − P (1)
3

p1
=

sin(θ4 − θ1)

sin(θ4 − θ3)
,

p4 − P (1)
4

p1
=

sin(θ1 − θ3)

sin(θ4 − θ3)
. (A.4)

Analogously, if the first strut yields first, and only the unit applied stress σ2 = 1 or τ12 = 1 exists, the
following relationships can be obtained:

q2 − Q(1)
2

q1
=

sin(θ4 − θ1)

sin(θ2 − θ4)
,

q3 − Q(1)
3

q1
=

sin(θ4 − θ1)

sin(θ4 − θ3)
,

q4 − Q(1)
4

q1
=

sin(θ1 − θ3)

sin(θ4 − θ3)
, (A.5)

r2 − R(1)
2

r1
=

sin(θ4 − θ1)

sin(θ2 − θ4)
,

r3 − R(1)
3

r1
=

sin(θ4 − θ1)

sin(θ4 − θ3)
,

r4 − R(1)
4

r1
=

sin(θ1 − θ3)

sin(θ4 − θ3)
. (A.6)
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Figure 11. The unit cell under uniaxial compression in the x1 direction (a) before and
(b) after the initial yield of the first strut.

Similar deduction can be performed for the cases that the second, third, and fourth struts yield first by
using the same method, and the results can be concluded as:

p j − P (i)
j

pi
=

q j − Q(i)
j

qi
=

r j − R(i)
j

ri
= s(i)

j =

{
l ′j/l ′i i + j = 5,

−l ′j/l ′i i + j 6= 5,
(i, j = 1, . . . , 4, i 6= j), (A.7)

where the definition of s(i)
j and l ′i can be seen in Section 2.

Appendix B: the initial and ultimate yield equations of the SI-square and N-Kagome lattice
structures

The SI-square cell can be considered as a special diamond cross cell having the half top angle of α = π/4.
By taking α = π/4 in Equation (11) and Equation (14), the initial and ultimate yield equations of the
SI-square cell are respectively given by

max



(
|
(
σ1/rσys + σ2/rσys

)
− (2 +

√
2)(τ12/rσys)| − 1

)
,(

|−
√

2σ1/rσys + (2 +
√

2)(σ2/rσys)| − 1
)
,(

|
(
σ1/rσys + σ2/rσys

)
+ (2 +

√
2)(τ12/rσys)| − 1

)
,(

|(2 +
√

2)(σ1/rσys) −
√

2(σ2/rσys)| − 1
)


= 0, (A.1)
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max



∣∣2(
σ1

rσys
+

τ12
rσys

)∣∣ − 1 = 0,∣∣2(
σ1

rσys
−

τ12
rσys

)∣∣ − 1 = 0,∣∣(√2 + 1)
(

σ1
rσys

−
σ2

rσys

)∣∣ − 1 = 0,∣∣2(
σ2

rσys
+

τ12
rσys

)∣∣ − 1 = 0,∣∣2(
σ2

rσys
−

τ12
rσys

)∣∣ − 1 = 0,∣∣(√2 + 2) τ12
rσys

∣∣ − 1 = 0



= 0, (A.2)

where r is the relative density of the SI-square lattice, that is, r = (2 +
√

2)t/ l.
Exploiting the method introduced in Section 2, the initial and ultimate yield equations of the N-

Kagome cell are respectively obtained as follows:

max


∣∣−√

3
3

σ1
rσys

+
6+

√
3

3
σ2

rσys
− 2(1 +

√
3) τ12

rσys

∣∣ − 1∣∣−√
3

3
σ1

rσys
+

6+
√

3
3

σ2
rσys

+ 2(1 +
√

3) τ12
rσys

∣∣ − 1∣∣ 9+2
√

3
3

σ1
rσys

−
3+2

√
3

3
σ2

rσys

∣∣ − 1

 = 0, (A.3)

max



∣∣2 σ2
rσys

− 2
√

3 τ12
rσys

∣∣ − 1∣∣2 σ2
rσys

+ 2
√

3 τ12
rσys

∣∣ − 1

2(
√

3 + 1)
∣∣ τ12

rσys

∣∣ − 1∣∣−3 σ1
rσys

+
σ2

rσys

∣∣ − 1
√

3+1
2

∣∣√3
(
−

σ1
rσys

+
σ2

rσys

)
− 2 τ12

rσys

∣∣ − 1
√

3+1
2

∣∣√3
(
−

σ1
rσys

+
σ2

rσys

)
+ 2 τ12

rσys

∣∣ − 1



= 0, (A.4)

where the relative density of the N-Kagome cell is r = (
√

3 + 1) t
l .
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