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NONLINEAR ELASTIC MATERIALS INCLUDING IRREGULAR 3-D BRICK AND

THIN STRUCTURES

M. JABAREEN AND M. B. RUBIN

A generalized form for the strain energy of inhomogeneous deformations is developed for a 3-D brick
Cosserat Point Element (CPE) which includes full coupling of bending and torsional modes of defor-
mation. The constitutive coefficients, which depend on the reference geometry of the element, are
determined by solving eighteen bending problems and six torsion problems on special elements that
are parallelepipeds with two right angles. The resulting constitutive coefficients ensure that the strain
energy for inhomogeneous deformations remains a positive definite function of the inhomogeneous strain
measures for all reference element shapes. A number of example problems are considered which show
that the generalized CPE produces results as accurate as enhanced strain and incompatible elements for
thin structures and is free of hourglass instabilities typically predicted by these enhanced elements in
regions experiencing combined high compression with bending.

1. Introduction

Recently, Nadler and Rubin [2003] developed a 3-D eight noded brick element based on the theory of
a Cosserat point [Rubin 1995; 2000]. This Cosserat point element (CPE) can be used to formulate the
numerical solution of dynamic problems for nonlinear hyperelastic materials. The kinematics of the CPE
are characterized by eight element director vectors and the kinetics propose eight balance laws of director
momentum to determine the dynamic response of the element. The locations of the nodes in the current
deformed configuration are characterized by eight nodal director vectors and the element directors are
related to the nodal directors by standard tri-linear shape functions. Moreover, the CPE theory considers
the element as a structure and introduces a strain energy function which characterizes the response of the
structure. Also, the nodal forces are related to derivatives of the strain energy function through algebraic
relations in a similar manner to the relationship of the stress to derivatives of the strain energy function
in the full three-dimensional theory of hyperelastic materials.

The CPE can easily be implemented into standard finite element programs. Specifically, the nodal
positions (nodal director vectors) are used as input variables to determine the nodal forces and tangent
stiffness as output variables. Here, the element assembly and solution procedures in the computer pro-
gram FEAP [Taylor 2005] were used to satisfy the equilibrium equations by updating the present nodal
director vectors.

In the standard finite element procedures for hyperelastic materials the response of the element is
determined by integrals over the element region which assume that the kinematic approximation is valid
pointwise. This is in contrast with the CPE which needs no integration over the element region. In
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this regard, the nodal forces in the CPE are not determined by integration of a displacement field based
on shape functions. However, the CPE approach does not use a mixed approach based on separate
shape functions for kinematic and kinetic quantities. Specifically, the nodal forces are determined by
the nodal directors through algebraic constitutive equations characterizing the structural response of the
element. Furthermore, it is known [Zienkiewicz and Taylor 2005] that the standard element based on full
integration is robust but that it exhibits unphysical locking for thin structures with poor element aspect
ratios and for nearly incompressible materials. Special methods based on enhanced strains, incompatible
modes and reduced integration with hourglass control have been developed to overcome these problems;
see, e.g., [Belytschko et al. 1984; Simo and Rifai 1990; Simo and Armero 1992; Belytschko and Binde-
man 1993; Simo et al. 1993; Bonet and Bhargava 1995; Reese and Wriggers 1996; 2000; Reese et al.
2000; Hutter et al. 2000]. However, these improved formulations can exhibit unphysical hourglassing in
regions experiencing combined high compression with bending; see, for example, [Reese and Wriggers
1996; 2000; Loehnert et al. 2005; Jabareen and Rubin 2007a; 2008c]. Furthermore, it was shown in
[Jabareen and Rubin 2007a] that some of these improved element formulations in commercial codes can
exhibit inelastic response even though they attempt to model a hyperelastic material with a strain energy
function.

Restrictions were developed on the strain energy function for the CPE which ensure that the element
reproduces exact solutions for all homogeneous deformations [Nadler and Rubin 2003]. Consequently,
the CPE automatically satisfies a nonlinear form of the patch test. Also, a functional form of the strain
energy for the CPE was proposed with specific dependence on the strain energy of the three-dimensional
material and the reference geometry of the CPE element. In addition, a strain energy function for inho-
mogeneous deformations was introduced as a quadratic function of inhomogeneous strain measures.

In the original CPE formulation [Nadler and Rubin 2003] the coefficients in the strain energy func-
tion for inhomogeneous deformations where determined by comparing linear solutions of a rectangular
parallelepiped CPE with exact solutions of the linear three-dimensional equations for pure bending, pure
torsion and higher-order hourglass modes of deformation. Loehnert et al. [2005] implemented the CPE
formulation into the finite element code FEAP [Taylor 2005] and considered specific example problems
which showed that the response of the original CPE was robust and locking free for thin structures.
However, it was also shown that the accuracy of the original CPE degraded with increased irregularity
of the reference element shape.

Recently, Boerner et al. [2007] have proposed a numerical method for determining coefficients in a
quadratic form of the strain energy function for inhomogeneous deformations which improve the response
of the CPE for 2-D plane strain problems with irregular elements. In [Jabareen and Rubin 2007b] analyt-
ical expressions were developed for constitutive coefficients in an improved CPE for 3-D deformations
by generalizing the quadratic form of the strain energy function for inhomogeneous deformations to
include additional coupling of the inhomogeneous strains active in bending modes. Functional forms
for the additional coefficients were determined by considering four bending solutions for special shaped
reference elements which are parallelepipeds with two right angles. In [Jabareen and Rubin 2008c]
improved coefficients were developed for torsion by considering an exact torsion-like solution of the
linear elastic equations for an isotropic elastic material.

In this paper, exact linear solutions of bending and simple torsion of these special elements are re-
examined and it is shown that by including more general coupling of bending and torsional modes it
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is possible to match solutions of the two additional bending modes not handled in [Jabareen and Rubin
2007b] as well as the simple torsion solutions. Matching these additional two bending modes significantly
improves the response of the generalized CPE for the problem of bending of a thin rhombic plate, which
was shown to be inaccurate in [Ehrlich 2007].

Here is an outline of this paper. Section 2 presents the basic equations of the CPE. Section 3 describes
the procedure to use eighteen bending solutions and six torsions solutions to determine the functional
forms of the constitutive coefficients in the strain energy function for inhomogeneous deformations.
Section 4 considers a number of examples that demonstrate the response of the generalized CPE. Finally,
Section 5 presents conclusions.

2. Basic equations of a Cosserat point element (CPE)

Here attention is focused on an eight noded 3-D brick CPE as developed in [Nadler and Rubin 2003]
and modified in [Jabareen and Rubin 2008c; Jabareen and Rubin 2007b]. Moreover, for the present
discussion it is sufficient to confine attention to the equilibrium equations. Within the context of this
theory the kinematics of the CPE are characterized by

{Di , di } (i = 0, 1, 2 . . . , 7), (2.1)

where Di are constant reference directors associated with the reference configuration and di are present
directors associated with the deformed present configuration. These element director vectors are related
to the nodal director vectors [which locate the nodes of a brick element (see Figure 1) relative to a fixed
origin] by a constant matrix and details can be found in [Nadler and Rubin 2003].

Without loss in generality, the three-dimensional position vector X∗ associated with material points
in the reference configuration of the element can be expressed in the form

X∗(θ1, θ2, θ3)=

7∑
j=0

N j (θ1, θ2, θ3)D j , |θ1
| ≤

H1

2
, |θ2

| ≤
H2

2
, |θ3

| ≤
H3

2
, (2.2)
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Figure 1. Sketch of a general brick CPE showing the numbering of the nodes and the surfaces.
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where θ i (i = 1, 2, 3) are convected material coordinates having the units of lengths, Hi are constant
lengths characterizing the element defined by

|D1| = 1, |D2| = 1, |D3| = 1, (2.3)

and N i are shape functions

N 0
= 1, N 1

= θ1, N 2
= θ2, N 3

= θ3, N 4
= θ1θ2, N 5

= θ1θ3, N 6
= θ2θ3, N 7

= θ1θ2θ3. (2.4)

Moreover, the region P0 associated with the reference configuration is mapped to the region P associ-
ated with the present configuration, which is bounded by ∂P which is characterized by the six surfaces
∂PJ (J = 1, 2, . . . , 6), such that

∂P = ∂P1 ∪ ∂P2 ∪ ∂P3 ∪ ∂P4 ∪ ∂P5 ∪ ∂P6,

θ1
=+

H1
2

on ∂P1, θ2
=+

H2
2

on ∂P2, θ3
=+

H3
2

on ∂P3,

θ1
=−

H1
2

on ∂P4, θ2
=−

H2
2

on ∂P5, θ3
=−

H3
2

on ∂P6. (2.5)

The element directors and nodal directors are related using a tri-linear form like (2.2) for the position
vector x∗ of material points in the present configuration. This causes the displacement field to be contin-
uous across element boundaries. However, it is important to emphasize that the constitutive equations in
the CPE approach are determined by a strain energy function for the structure and do not depend on the
pointwise validity of this approximate expression for x∗.

Now, in the absence of body force, the equilibrium forms of the balances of director momentum
become

mi
= t i with (t0

= 0) and (i = 0, 1, 2, . . . , 7), (2.6)

where mi are director couples due to surface tractions on the boundaries of the element, and t i are intrinsic
director couples which require constitutive equations. In this regard, it is mentioned that director couples
are kinetic quantities conjugate to the element directors and they do not necessarily have the units of
mechanical moment.

For the CPE it is convenient to introduce the deformation measures

F =
3∑

i=1

di ⊗ Di , β i = F−1di+3− Di+3 (i = 1, 2, 3, 4), F = F
(

I +
4∑

i=1

β i ⊗ V i
)
, (2.7)

where {Di , di
} (i = 1, 2, 3) are the reciprocal vectors of {Di , di }, respectively, and {V, V i

} characterize
the reference configuration of the element and are defined in [Nadler and Rubin 2003, Appendix B].
Specifically, when the reference CPE is a rectangular parallelepiped then V represents the volume of
the CPE and V i vanish. Nadler and Rubin [2003] developed restrictions on the strain energy of an
elastic CPE which ensure that the element satisfies a nonlinear form of the patch test for all uniform
homogeneous nonlinear elastic anisotropic materials. In particular, the specific (per unit mass) strain
energy 6 of the CPE can be expressed in terms of the specific strain energy 6∗ of the three-dimensional
material and the specific strain energy 9 associated with inhomogeneous deformations, such that

6 =6∗(C)+9(C, κ i
j ), (2.8)
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where the kinematic quantities {C, κ i
j } are defined by

C = FT F,

κ1
1 = H2β1 · D

1, κ2
1 = H1β1 · D

2, κ3
1 = H3β1 · D

3,

κ1
2 = H3β2 · D

1, κ2
2 = H2β2 · D

2, κ3
2 = H1β2 · D

3,

κ1
3 = H1β3 · D

1, κ2
3 = H3β3 · D

2, κ3
3 = H2β3 · D

3,

κ1
4 = H2 H3β4 · D

1, κ2
4 = H1 H3β4 · D

2, κ3
4 = H1 H2β4 · D

3. (2.9)

Here, it is convenient to introduce the alternative variables bi (i = 1, 2, . . . , 12) by

bi = {κ
1
1 , κ

3
3 , κ

2
1 , κ

3
2 , κ

1
2 , κ

2
3 , κ

3
1 , κ

2
2 , κ

1
3 , κ

1
4 , κ

2
4 , κ

3
4 }. (2.10)

Then, following [Jabareen and Rubin 2008c; Jabareen and Rubin 2007b], the strain energy 9 for inho-
mogeneous deformations is expressed in the form

2m9 =
D1/2Vµ
6(1− ν)

( 12∑
i=1

12∑
j=1

Bi j bi b j

)
, (2.11)

where m is the mass of the element, {µ, ν} are the shear modulus and Poisson’s ratio associated with the
small deformation response, Bi j is a constant symmetric matrix with the response to higher order hour-
glassing being uncoupled from that to bending and torsion so that Bi j has the following zero components:

Bi j = 0 for i = 10 and j 6= 10,

Bi j = 0 for i = 11 and j 6= 11,

Bi j = 0 for i = 12 and j 6= 12,

(2.12)

and the values of {B(10,10), B(11,11), B(12,12)} are given by the expressions associated with higher order
hourglassing in [Nadler and Rubin 2003]. It then can be shown (loc. cit.) that the constitutive equations
for a hyperelastic CPE become

d1/2T = 2m F
∂6∗(C)
∂C

FT ,

t4
=

(
m
∂9

∂b1
H2d1

+m
∂9

∂b3
H1d2

+m
∂9

∂b7
H3d3

)
+(d1/2T )(F−T V 1),

t5
=

(
m
∂9

∂b5
H3d1

+m
∂9

∂b8
H2d2

+m
∂9

∂b4
H1d3

)
+(d1/2T )(F−T V 2),

t6
=

(
m
∂9

∂b9
H1d1

+m
∂9

∂b6
H3d2

+m
∂9

∂b2
H2d3

)
+(d1/2T )(F−T V 3),

t7
=

(
m
∂9

∂b10
H2 H3d1

+m
∂9

∂b11
H1 H3d2

+m
∂9

∂b12
H1 H2d3

)
, (2.13)
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and the remaining quantities t i are determined by

t i
=

(
d1/2T −

7∑
j=4

t j
⊗ d j

)
·di (i = 1, 2, 3). (2.14)

These constitutive equations automatically satisfy a nonlinear form of the patch test [Nadler and Rubin
2003].

Next, for elastically isotropic materials it is convenient to use the work of Flory [1961] to introduce
the dilation J̄ , the pure measures of distortion {F′,C ′} and the scalar measures of distortion {α1, α2}

J̄ = det(F), F′ = J̄−1/3 F, C ′ = F′T F′, α1 = C ′ · I, α2 = C ′ ·C ′. (2.15)

Then, the strain energy function 6∗ can be written in the form

6∗ = 6̂∗( J̄ , α1, α2), (2.16)

so that

∂6∗

∂C
=
∂6̂∗

∂ J̄

( 1
2 J̄ C−1)

+
∂6̂∗

∂α1

(
J̄−2/3(I − 1

3(C · I)C
−1))
+
∂6̂∗

∂α2

(
2 J̄−4/3(C− 1

3(C ·C)C
−1)). (2.17)

Also, for the example problems considered later 6∗ is specified in terms of the small deformation bulk
modulus K and shear modulus µ, such that

ρ∗06
∗
=

1
2

K ( J̄ − 1)2+µ(α1− 3), (2.18)

where ρ∗0 is the constant reference density of the material, the mass m of the CPE is given by

m = ρ∗0 D1/2V . (2.19)

and K and Young’s modulus E associated with the small deformation response satisfy the equations

K =
2µ(1+ ν)
3(1− 2ν)

, E = 2µ(1+ ν). (2.20)

Furthermore, for later reference it can be shown [Nadler and Rubin 2003] that the director couples mi

are related to the traction vector t∗ applied to the boundary ∂P by the integrals

mi
=

∫
∂P

N i t∗da∗ (i = 0, 1, . . . , 7), (2.21)

where da∗ is the current element of area. Also, it can be shown [Loehnert et al. 2005] that d1/2T is equal
to the volume integral of the three-dimensional Cauchy stress T∗

d1/2T =
∫

P
T∗dv∗, (2.22)

where dv∗ is the current element of volume.
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3. Determination of the constitutive coefficients

In this paper the constitutive coefficients Bi j in (2.11) are determined by matching solutions of the
linearized equations for the CPE with exact solutions of the linear theory of elasticity for special ele-
ment shapes. Specifically, the classical pure bending solution (e.g., [Sokolnikoff 1956]) of the three
dimensional equations of elasticity for a rectangular parallelepiped can be written in the form

X∗ = X∗i
′e′i , u∗ = u∗i

′e′i , T∗ = T ∗i j
′(e′i ⊗ e′j ), (i, j = 1, 2, 3)

u∗1
′
= γ X∗1

′X∗2
′, u∗2

′
=−

1
2γ
(
(X∗1
′)2+ν(X∗2

′)2−ν(X∗3
′)2
)
, u∗3

′
=−γ νX∗2

′X∗3
′,

T ∗11
′
= 2µ(1+ ν∗)γ X∗2

′, all other T ∗i j
′
= 0. (3.1)

In this solution, X∗ locates a material point in the reference configuration, u∗ is the displacement vector,
T∗ is the stress tensor, the constant γ controls the magnitude of the bending field and the components
of the tensors are referred to the right-handed orthonormal base vectors e′i (i = 1, 2, 3). Also, the simple
torsion-like solution in [Jabareen and Rubin 2008c] can be expressed in the form

u∗ = (−ωφX∗2
′X∗3
′)e′1+ (−ωX∗1

′X∗3
′)e′2+ (ωX∗1

′X∗2
′)e′3,

T∗ = µω[−(1+φ)X∗3
′(e′1⊗ e′2+ e′2⊗ e′1)+ (1−φ)X

∗

2
′(e′1⊗ e′3+ e′3⊗ e′1)], (3.2)

where the constant ω is the twist per unit length in the e′1 direction and the constant φ controls the warping
of the cross-section with unit normal e′1.

In order to determine values of the coefficients Bi j it is convenient to consider the following three
elements shapes, which are defined in terms of another fixed rectangular Cartesian triad ei as follows:

Element E1 (D12 6= 0, D13 = 0, D23 = 0)

D1 = e1, D2 = D12e1+

√
1− D2

12e2, D3 = e3, Di = 0 (i = 0, 4, 5, 6, 7), (3.3a)

Element E2 (D12 = 0, D13 6= 0, D23 = 0)

D1 = e1, D2 = e2, D3 = D13e1+

√
1− D2

13e3, Di = 0 (i = 0, 4, 5, 6, 7), (3.3b)

Element E3 (D12 = 0, D13 = 0, D23 6= 0)

D1 = e1, D2 = e2, D3 = D23e2+

√
1− D2

23e3, Di = 0 (i = 0, 4, 5, 6, 7), (3.3c)

where the metric Di j is defined by
Di j = Di · D j . (3.4)

Each of these element shapes is a parallelepiped with two right angles. Now, from [Nadler and Rubin
2003] it follows that for these element shapes the reference geometry is characterized by

V = H1 H2 H3, V i
= 0 (i = 1, 2, 3, 4), (3.5)

and the position vector X∗ in (2.2) and the Cartesian coordinates X∗′i can be expressed in the forms

X∗ =
3∑

j=1

θ j D j , X∗i
′
=

3∑
j=1

θ j (e′i · D j ). (3.6)
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Consequently, the exact displacements u∗ and stresses T∗ in (3.1) and (3.2) can be rewritten as functions
of the convected coordinates θ i (i = 1, 2, 3).

Within the context of the linear theory of a CPE [Nadler and Rubin 2003] the director displacements
δi are defined such that

di = Di + δi , (i = 0, 1, . . . , 7), (3.7)

and for the special elements defined by (3.3) the linearized forms of the inhomogeneous strains β i become

β i = δi+3 (i = 1, 2, 3, 4). (3.8)

As explained in [Nadler and Rubin 2003], the values δ∗i of the element director displacements δi which
correspond to the exact displacement field u∗ need to be properly defined. Specifically, for these element
shapes the values δ∗i are determined by the equations in [Nadler and Rubin 2003] which connect δ∗i to
integrals over the reference element region of derivatives of u∗ with respect to the convected coordinates.
In particular, for the exact solutions (3.1) and (3.2) and the element shapes (3.3) it can be shown that
these expressions yield

δ∗1 = δ∗2 = δ∗3 = δ∗7 = 0, (3.9)

so that when δi are replaced by the exact values δ∗i the linearized values of κ i
4 vanish

κ1
4 = κ

2
4 = κ

3
4 = 0, (3.10)

and the linearized forms of the constitutive equations (2.13) and (2.14) reduce to

d1/2T = 0, t i
= 0 (i = 0, 1, 2, 3, 7),

t4
=

(
m
∂9

∂b1
H2 D1

+m
∂9

∂b3
H1 D2

+m
∂9

∂b7
H3 D3

)
,

t5
=

(
m
∂9

∂b5
H3 D1

+m
∂9

∂b8
H2 D2

+m
∂9

∂b4
H1 D3

)
,

t6
=

(
m
∂9

∂b9
H1 D1

+m
∂9

∂b6
H3 D2

+m
∂9

∂b2
H2 D3

)
(3.11)

where di have been replaced by the reference values Di . Also, the values of mi in (2.21) associated with
the exact solutions (3.1) and (3.2) are given by

mi
= 0 (i = 0, 1, 2, 3, 7), mi

=

∫
∂P0

N i T∗N∗d A∗ (i = 4, 5, 6), (3.12)

where ∂P0 is the reference boundary of the CPE, N∗ is the unit outward normal to ∂P0 and d A∗ is the
reference element of area. It then follows that within the context of the linearized theory, the equations of
equilibrium associated with the bending (3.1) and torsion (3.2) solutions reduce to three vector equations

t i
−mi

= 0 (i = 4, 5, 6). (3.13)

Analytical expressions for Bi j can be developed by matching the solutions (3.1) and (3.2) for each of
the element shapes (3.3). Then, the resulting coefficients are combined in a manner that ensures that Bi j
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is a positive definite tensor. Specifically, with reference to the element shape E1 in (3.3a) consider six
bending solutions associated with specifications of the orientation of e′i relative to Di

Bending B1 : e′1 = D1, e′3 = D3, (3.14a)

Bending B2 : e′1 = D1, e′2 = D3 (3.14b)

Bending B3 : e′1 = D2, e′3 = D3 (3.14c)

Bending B4 : e′1 = D2, e′2 = D3 (3.14d)

Bending B5 : e′1 = D3, e′3 = D2 (3.14e)

Bending B6 : e′1 = D3, e′3 =−D1 (3.14f)

Also, consider two torsion solutions associated with specifications

Torsion T1 : e′1 = D1, e′3 = D3, (3.15a)

Torsion T2 : e′1 = D2, e′3 = D3, (3.15b)

For each bending and torsion solution the exact displacements u∗ are used to determine the exact
values δ∗i . Then, the linearized values of κ i

j are determined using (2.9) and (3.8) with δi replaced by δ∗i
and the resulting constitutive equations for t i are determined by (3.11). Similarly, the values of mi are
determined by using the exact stress T∗ in the equations (3.12). Also, the values of the warping constant
φ which corresponds to nearly pure torsion [Jabareen and Rubin 2008c] are determined by

Torsion T1 : m6
· D1 = 0⇒ φ =

H 2
2 (1− D2

12)− H 2
3

H 2
2 (1− D2

12)+ H 2
3
, (3.16a)

Torsion T2 : m5
· D2 = 0⇒ φ =

H 2
1 (1− D2

12)− H 2
3

H 2
1 (1− D2

12)+ H 2
3
, (3.16b)

In these expressions it can be seen that {m6, D1} are associated with the cross-sectional coordinates
{θ2, θ3

} and {m5, D2} are associated with the cross-sectional coordinates {θ1, θ3
}. With reference to

Figure 2 it can also be seen that these expressions are similar to those in [Nadler and Rubin 2003] since
the cross-section normal to D1 has lengths {H2

√
1− D2

12, H3} and the cross-section normal to D2 has
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Figure 2. Cross-section of the parallelepiped element E1.
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lengths {H1
√

1− D2
12, H3}. For each bending solution the value of γ can be eliminated in the resulting

equations of equilibrium (3.13) and the value of ω can be eliminated from each of the equations of
equilibrium associated with the torsion solutions. Also, the values (3.16) are used in the resulting torsion
equations. It therefore follows that the each of the solutions (B1)-(B6), (T1) and (T2) yield nine scalar
equations of equilibrium which total 72 scalar equations to determine the values of Bi j as functions of
Hi and D12. Some of these scalar equations are trivially satisfied and others are redundant. In particular,
using a symbolic program like Maple it can be shown that the equations associated with the bending
solutions (3.14) can be solved for Bi j (i, j = 1, 2, . . . , 5) in terms of

{B77, B78, B79, B88, B89, B99}. (3.17)

Then, these expressions can be substituted into the equations for torsion to determine all of the values of
Bi j (i, j = 1, 2, . . . , 9) in terms of one of the values {B77, B88, B99}, say B77.

Next, it is noted that that the strain energy function 9 in (2.11) will be positive definite provided
that the coefficient matrix Bi j is positive definite. The results of the calculations just described yield a
form for Bi j which separates into two matrices [Bi j (i, j = 1, 2, 3, 4) and Bi j (i, j = 5, 6, . . . , 9)]. In
particular, it can be shown that

det(Bi j )= (1− ν)2(1+ ν)2(1− D2
12)

2 > 0, (i, j = 1, 2, 3, 4) (3.18)

which is independent of the lengths Hi and is positive for the full range of Poisson’s ratio and D12

−1< ν < 1
2 , −1< D12 < 1. (3.19)

Moreover, the det(Bi j ) for (i, j = 5, 6, . . . , 9) is a linear function of B77, which has the value

det(Bi j )=
1
2(1− ν)

4(1+ ν) for (i, j = 5, 6, . . . , 9) and D12 = 0. (3.20)

It was found that if the value of B77 is specified so that

det(Bi j )=
1
2(1− ν)

4(1+ ν)(1− D2
12) for (i, j = 5, 6, . . . , 9), (3.21)

then the expressions for Bi j are quite simple and

det(Bi j )=
1
2(1− ν)

6(1+ ν)3(1− D2
12)

3 for (i, j = 1, 2, . . . , 9), (3.22)

which is positive for the range of values (3.19).
Similar procedures can be used to define bending and torsion solutions for the element shapes E2 and

E3 and the resulting equations can be solved for Bi j to determine the dependence on the metrics D13 and
D23. Next, define auxiliary variables {λ12, λ13, λ23} as follows:

For D2
12+ D2

13+ D2
23 = 0:

λ12 = λ13 = λ23 = 0, (3.23a)

For D2
12+ D2

13+ D2
23 > 0:

λ12 =
D2

12

D2
12+ D2

13+ D2
23
, λ13 =

D2
13

D2
12+ D2

13+ D2
23
, λ23 =

D2
23

D2
12+ D2

13+ D2
23
. (3.23b)
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Then it is possible to denote the values of Bi j associated with the solutions of the three elements E1-E3
in (3.3) by B12

i j for E1, by B13
i j for E2, and by B23

i j for E3. Moreover, the matrix B0
i j is defined so that it

yields a strain energy function 9 equivalent to that obtained in [Nadler and Rubin 2003] for a rectangular
parallelepiped, when the value of the torsion function b∗(1) is taken to be 1/2 as suggested in [Jabareen
and Rubin 2008c]. Then, the general expression Bi j (D12, D13, D23) combining these solutions is

Bi j (D12, D13, D23)= (1− λ12− λ13− λ23)B0
i j + λ12 B12

i j + λ13 B13
i j + λ23 B23

i j . (3.24)

Now, using the definitions (3.23) it follows that each of the coefficients {(1−λ12−λ13−λ23), λ12, λ13, λ23}

is non-negative and that at least one of them is positive. Also, each of the matrices {B0
i j , B12

i j , B13
i j , B23

i j },
given in Appendix A, is positive definite so that the combined matrix Bi j (D12, D13, D23) is also positive
definite for all reference element shapes.

4. Examples

For planar problems (in the D1-D2 plane with D13 = D23 = 0) it was shown in [Jabareen and Rubin
2008a] that

b5 = b6 = b7 = b8 = b9 = b10 = b11 = 0. (4.1)

Moreover, since the values of Bi j (i, j = 1, 2, 3, 4) for these planar problems reduce to those of the
improved CPE in [Jabareen and Rubin 2007b], the results of the improved and generalized CPE will
be identical for all planar problems. Consequently, the results of the example problems of a Cook’s
membrane, a Kirsch problem and buckling of a block considered in [Jabareen and Rubin 2007a; 2007b]
are identical to those that would be predicted by the generalized CPE of Sections 2 and 3. In particular, it
follows that the generalized CPE is free of the unphysical hourglassing that is predicted by the elements
in ABAQUS, ADINA, ANSYS and FEAP [Taylor 2005] based on enhanced strain and incompatible
mode methods.

In this section a number of example problems are considered to examine the predictions of the gener-
alized CPE which show that it is more accurate than the improved CPE in [Jabareen and Rubin 2007b].
For all of the example problems the full nonlinear equations are solved using the constitutive equations
(2.13) and (2.14) with strain energy specified by (2.8), (2.13), (2.14) and (2.18), even when the loads are
small and the deformations remain small. Also, for irregular shaped elements the values of V i in (2.7)
and (2.13) can be nonzero so the response is examined for more general conditions than those used in
the last section used to develop expressions for the constitutive coefficients Bi j . Unless otherwise stated
the material is taken to be compressible with

K = 1 GPa, µ= 0.6 GPa, ν = 0.25. (4.2)

For the special examples which consider a nearly incompressible the material constants are specified by

K = 1000 GPa, µ= 0.6 GPa, ν ≈ 0.4997. (4.3)

Furthermore, it was shown in [Jabareen and Rubin 2007a; 2007b] that the enhanced strain element
in FEAP produces results similar to the enhanced strain or incompatible mode elements in ABAQUS,
ADINA and ANSYS so that comparison with these types of elements will be limited to the element in
FEAP.
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For the calculations with the improved CPE presented here use is made of the modified torsion co-
efficients discussed in [Jabareen and Rubin 2008c]. In addition, for the improved CPE the matrices
Bi j associated with the individual metrics {D12, D13, D23} are combined using an expression of the form
(3.24) instead of using the method described in [Jabareen and Rubin 2007b] for ensuring that Bi j remains
positive definite.

Furthermore, in the following figures the symbols {G, I, F, Q1, Q1P0, HO9} denote predictions of:
the generalized CPE developed here; the improved CPE developed in [Jabareen and Rubin 2007b]; the
enhanced strain, full integration, mixed element for nearly incompressible materials and the mixed higher
order 9 node quadrilateral in FEAP, respectively. Also, it is noted that when the elements are rectangular
parallelepipeds with (D12 = D13 = D23 = 0) the predictions of (G) and (I) are identical.

4.1. Shear load on a thin cantilever beam (small deformations). Figure 3 shows a sketch of a thin
cantilever beam with dimensions

L = 200 mm, H =W = 10 mm, (4.4)

which is fully clamped at its end X∗1 = 0 and is subjected to a shear force P (modeled by a uniform shear
stress) applied in the e2 direction to its end X∗1 = L . The lateral surfaces are traction free. The mesh
{20n× n× n} is defined by distorting the middle cross-section in its reference configuration (using the
parameters a1, a2, a3, a4 shown in Figure 3), with 10n elements on each side of this cross-section and n
elements in each of the e2 and e3 directions. Two cases of element distortion are considered:

Case I: a1 = a, a2 =−a, a3 = a, a4 =−a,

Case II: a1 = a, a2 = a, a3 =−a, a4 =−a,
(4.5)

and the parameter a/H defines the element irregularity. Both of these cases cause the middle surface to
remain planar with the normal to that surface being in the e1-e2 plane for Case I and in the e1-e3 plane
for Case II. The value

u∗A2 = 0.21310 mm for P = 0.1 N (4.6)

of the e2 component of the displacement of point A (see Figure 3) predicted by (G) with the most refined
mesh (n = 5) and a regular mesh (a/H = 0) is considered to be exact and the error E associated with

Figure 3. Shear load on a thin cantilever beam. The irregular element mesh is based on
the distorted center cross-section.
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the predictions u A2 of other calculations for the same value of P is defined by

E =
u A2− u∗A2

|u∗A2|
. (4.7)

Figure 4a shows the error as a function of the irregularity parameter a/H for Case I with n = 1. Ideally
the response should be nearly insensitive to the value of a/H . This figure shows that the predictions of
(G) and (I) are identical and are slightly more accurate than those of (F) for large values of irregularity.
Figure 4b shows that the three elements converge to the same value for Case I with the refined mesh
(n = 5) and large irregularity a/H = 2. The results for Case II shown in Figures 4c,d indicate that (G)
is again slightly more accurate than (F) and that they both converge to the same solution. In contrast,
Figures 4c,d show that (I) predicts significant errors and converges slowly for large irregularities. It will
be shown later that this deficiency for Case II causes (I) to be inaccurate for out-of-plane bending of a
rhombic plate.
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Figure 4. Shear load on a thin cantilever beam (small deformations). (a,c) Errors in the
displacement of the point A in the e2 direction versus the distortion parameter a/H and;
(b,d) the errors versus n for the mesh {20 n × n × n} defined for two cases of element
distortion.
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Figure 5. Shear load on a thin slanted cantilever beam.

4.2. Shear load on a thin slanted cantilever beam (small deformations). Figure 5 shows a sketch of a
thin slanted cantilever beam with dimensions (4.4) and with the slanting angle θ . The boundary conditions
are the same as those for the previous example except that the shear load P is applied in the e3 direction to
emphasize differences between the predictions of (G) and (I). Again the mesh is taken to be {20 n×n×n}
with 20n elements in axial direction of the beam. All of the elements have parallelogram cross-sections
in the e1-e2 plane with sides parallel to the ends of the beam.

Figure 6a shows the displacement component u A3 of point A (see Figure 5) in the e3 direction as a
function of θ for the most refined mesh (n = 5). The error E in u A3 is defined in a similar manner to
(4.7) with the exact value u∗A3 taken to be that predicted by (G) for each value of θ with n = 5 and with
the load P given by (4.6). Figures 6b,c show that (G) and (F) converge to the same values and that (G)
is slightly more accurate than (F) for n=1 and large values of θ . Also, it can be seen that (I) predicts
significant errors with slow convergence.

4.3. Shear load on a thin twisted cantilever beam (small deformations). The problem of shear loading
of a thin twisted beam provides a severe test of the accuracy of an element formulation since the ele-
ments have irregular shapes and the response couples torsion and bending modes of deformation. In its
unstressed reference configuration the twisted beam has length L and a rectangular cross-section with
height H and width W given by

L = 200 mm, H = 10 mm, W = 2 mm. (4.8)

Also, each of the cross-sections is twisted by the angle θ such that the position of a material point X∗ in
the reference configuration is given by

X∗ = X∗i
′e′i , θ =

X∗1
′

L
2,

e′1 = e1, e′2 = cos θe2+ sin θe3, e′3 =− sin θe2+ cos θe3, (4.9)

where 2 controls the magnitude of the twist. Furthermore, the influence of irregular element meshes is
explored by applying the twist θ to the cross-sections of the beam shown in Figure 3 and in Figure 7
using the element irregularity specified by Case I in (4.5). The surface X∗1

′
= 0 is fully clamped, a shear
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Figure 6. Shear load on a thin slanted cantilever beam (small deformations). (a) Dis-
placement u A3 of the point A in the e3 direction versus the angle θ for n = 5 with the
mesh {20 n× n× n}; (b) errors in u A3 versus θ for n = 1; (c) errors in u A3 versus n for
θ = 60 deg.

force P (modeled by a uniform shear stress) is applied to the end X∗1
′
= L in the constant e′2 direction

(defined by its direction in the reference configuration) and the remaining lateral surfaces are traction
free. Also, the element mesh for this problem is specified by {20 n× n× n} with 20n elements along the
length of the beam.

Figure 8a shows the component u′B2 of the displacement of the point B (see Figure 7) in the e′2 direction

u′B2 = uB · e′2, (4.10)

versus the pre-twist 2 for the most refined mesh with n = 5, no element irregularity (a/H = 0) and the
load given by

P = 0.01 N. (4.11)

This value of load is used for all calculations in this subsection. It can be seen that {G, I, F} converge
to the same results. Thus, the value u′∗B2 of u′B2 predicted by (G) for n = 5 is considered to be exact
and the error E of other calculations is defined in a similar manner to (4.7). Figures 8b,c show the
influence of element irregularity for the coarse mesh with n = 1 and Figures 8d,e consider a finer mesh
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Figure 7. Shear load on a thin twisted cantilever beam. The element mesh is based on
the distorted center cross-section.

with n = 2. From these figures it can be seen that (G) is as accurate as (F) and is much more accurate
than (I), especially for irregular shaped elements.

4.4. Lateral torsional buckling of a thin cantilever beam (large deformations). For this example the
beam and element mesh are characterized by the same parameters as used in Section 4.3 with the shear
force P being applied in the e′2 direction. To investigate rotation of the beam’s end it is convenient to
consider the difference in the displacements of the points A and B shown in Figure 7. Specifically, the
quantity 1u is defined by

1u = (uB − uA) · e′2. (4.12)

Figure 9 shows the results for large deformation lateral torsional buckling of a thin cantilever beam.
Again it is emphasized that the direction e′2 of the load is held constant during loading. The buckling
process is triggered by the small pre-twist

2= 0.1 deg, (4.13)

which smoothes out the bifurcation that would occur for a perfect beam with 2= 0. Figure 10 shows
the results for shear loading with a large pre-twist

2= 30 deg . (4.14)

Moreover, the curves in Figures 9 and 10 denoted by (E) are predicted by (G) with n = 5 and a/H = 0
and are considered to be exact.

The results in Figure 9 show that for n = 2 (Figures 9a,b) the predictions are not yet converged and
are sensitive to element irregularity with large errors being predicted by (I). Figures 9c,d show that for
n = 3 the predictions are reasonably converged and that the sensitivity of element irregularity is reduced
for {G, F} but that (I) still predicts large errors.
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Figure 8. Shear loading of a thin twisted cantilever beam with a pre-twist 2 and the
mesh {20 n×n×n} (small deformations). The influence of element irregularity is shown
in the middle row graphs for n = 1 and in the bottom graphs for n = 2.

The results in Figure 10 for shearing of a thin cantilever beam with a large pre-twist again show
that the predictions of {G, F} are relatively accurate but that the predictions of (I) are inaccurate for the
irregular shaped elements even for the mesh with n = 3 (Figure 10d). This result is consistent with that in
[Jabareen and Rubin 2007b, Figure 8b], which showed that the error of out-of-plane bending of a beam
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Figure 9. Large deformation lateral torsional buckling of a thin cantilever beam with a
small pre-twist 2 = 0.1 deg. using the mesh {20 n× n× n}. The influence of element
irregularity is shown in the top two graphs for n = 2 and in the bottom two for n = 3.

with the element irregularity of Case I [(4.5) here] does not have a zero slope as a/H approaches zero.
Furthermore, this error causes (I) to predict inaccurate results for out-of-plane bending of a rhombic
plate, as will be shown next.

4.5. Point load on the corner of a thin partially clamped rhombic plate (small deformations). Figure
11 shows a sketch of one quarter of a thin fully clamped rhombic plate with dimensions

L = 500 mm, H = 10 mm, (4.15)

with two clamped and two free edges and which is loaded at its corner by a point force. The length of
each edge is L and the load is specified by

P = 1 N. (4.16)

The mesh used for the plate is defined by {10 n× 10 n× n} with n elements through the thickness.
Figure 12a shows the component u A3 of the displacement of the point A in the e3 direction as a

function of θ for the most refined mesh (n = 5). The error E in this displacement is defined in a similar
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Figure 10. Large deformation shear loading of a thin cantilever beam with a pre-twist
2= 30 deg using the mesh {20 n×n×n}. The influence of element irregularity is shown
in the top two graphs for n = 2 and in the bottom two for n = 3.

Figure 11. Point load on the corner of a thin partially clamped rhombic plate.

manner to (4.7) with the exact value u∗A3 taken to be that predicted by (G) for each value of θ with n = 5
and the load P given by (4.16). Figures 12b,c show that {G,F} predict nearly the same values, that
(I) predicts significant errors for n = 1 (especially for the angle θ = 60 deg) and that (I) exhibits slow
convergence.
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Figure 12. Point load on the center of a thin fully clamped rhombic plate (small defor-
mations). Displacement u A3 of the point A in the e3 direction versus the angle θ for
n = 5 with the mesh {10 n× 10 n× n}; (b) errors in u A3 versus θ for n = 1; (c) errors in
u A3 versus n for θ = 60 deg.

Figure 13. Point load on the center of a thin fully clamped square plate with an irregular
element mesh.

4.6. Point load on the center of a thin fully clamped square plate with an irregular element mesh
(small deformations). Figure 13 shows a sketch of one quarter of a thin fully clamped square plate with
dimensions (4.8) that is loaded by a point force at its center. Only one quarter of the plate is modeled and
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the value P given by (4.16) corresponds to one quarter of the load that would be applied to the center of
the entire plate. Irregular elements are specified by moving the center point of the quarter section to the
position characterized by the lengths {a1, a2} (shown in Figure 13) defined by two cases:

Case I: a1 = a2 = a, −1≤ 4a
L
≤ 1,

Case II: a1 =
L
4

cos(θ), a2 =
L
4

sin(θ), 0≤ θ ≤ 2π.
(4.17)

The quarter section of the plate is meshed by {10 n× 10 n× n} with each subsection being meshed by
{5 n× 5 n× n} and with n elements through the thickness. The error E in the displacement component
u A3 of point A in the e3 direction is defined in a similar manner to (4.7) with the exact value u∗A3 taken
to be that predicted by (G) for regular elements (a/L = 0) with n = 5

u∗A3 = 0.16893 mm for P = 1 N. (4.18)

Figures 14a,b show the error for n = 1 as a function of the irregularity parameters 4a/L for Case I
(Figure 14a) and as a function of θ/(2π) for Case II (Figure 14b). From these figures it can be seen that
that {G, F} are relatively insensitive to the magnitude and type of element irregularity but that (I) predicts
significant errors for irregular elements.

4.7. Point load on the corner of a thin partially clamped rhombic plate (large deformations). Figure
15 shows the deformed shapes of a thin partially clamped rhombic plate subjected to a point load on its
corner for two different angles θ and the same value P of load. The plate is fully clamped on two edges
and the other edges and major surfaces are traction free. The dimensions are given by (4.8) as shown in
Figure 11 (with L now being the length of the plate’s edge) and the point force P is specified by

P = 1 kN. (4.19)
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Figure 14. Point load on the center of a thin fully clamped square plate (small deforma-
tions). Errors in the displacement of the point A in the e3 direction versus the distortion
parameters (a) 4a/L and; (b) the angle θ for two cases of element irregularity with the
mesh {10× 10× 1}.
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 (b) ! = 60 deg 

P 

Figure 15. Point load on a partially clamped rhombic plate (large deformations). Pre-
dictions of the generalized CPE for the mesh {10 n× 10 n× 1} with n = 2 and P = 1 kN.

The mesh is specified by {10 n× 10 n× 1} and the exact value u∗3 of the displacement of the corner in
the e3 direction is determined by the most refined solution (G) with n = 5

u∗3 = 0.21084 m for θ = 0 deg, u∗3 = 0.39306 m for θ = 60 deg . (4.20)

Figures 16 show the load P versus displacement curves for n = 2 and the convergence curves for two
values of the angle θ . Comparison of Figures 16a,c shows that the rhombic plate with angle θ = 60 deg is
more flexible than that for θ = 0 deg and that {G, F} predict nearly the same values, whereas (I) predicts
significant errors for the angle θ = 60 deg. Also, Figure 16d shows that the convergence properties of
(G) are slightly better than those of (F) for the case when θ = 60 deg.

4.8. A pair of opposing point loads applied to a complete circular cylindrical shell (large deforma-
tions). Figure 17 is a sketch of one eighth of a thin circular cylindrical shell that is subjected to a pair of
opposing point loads P . The entire shell has length 2L , middle surface radius R, and thickness H , with

L = 300 mm, R = 300 mm, H = 3 mm. (4.21)

All nodes (except for one) on the circular edges of the shell are allowed to move freely in the axial
direction but their radial and circumferential positions are fixed. Also, the eighth region of the shell is
modeled by the mesh {10 n× 10 n× 1} in the axial, circumferential and radial directions, respectively.

Figure 18 plots the force P versus radial displacement ur of the point A under the load for different
mesh refinements. Curves are presented for (G) for the most refined mesh of n = 10 and for {G, F} for
n = 3 (Figure 18a) and n = 5 (Figure 18b). It can be seen from Figure 18a that for the coarser mesh
(n = 3) the load-deflection curve exhibits ratcheting due to localized limit points whereas for the more
refined mesh (n = 5) in Figure 18b the load-deflection curve is smooth. It can also be seen that the
predictions of {G, F} tend to converge to the same solutions. Figure 19 shows the deformed shape of
one eighth of the circular shell predicted by (G) for n = 5 and P = 1.73 kN with no enhancement of the
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Figure 16. Point load on a partially clamped rhombic plate (large deformations). Pre-
dictions of the load P versus displacement u3 at the loaded corner and convergence of
the error in the displacement for the mesh {10 n× 10 n× 1} with the load P = 1 kN and
different angles θ .

 

Figure 17. Sketch of one eighth of a thin circular cylindrical shell that is subjected to a
pair of opposing point loads P .
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Figure 18. A pair of opposing concentrated loads P applied to a thin circular cylindrical
shell with the mesh {10 n× 10 n× 1}.

displacements. In particular, it is noted that the inability of the coarse mesh to capture the high curvature
of the middle of the shell far away from the load is most likely the cause of the ratcheting shown in
Figure 18a.

4.9. Plane strain indentation of a rigid plate into a nearly incompressible block (large deformations).
Crisfield et al. [1995] and César de Sá et al. [2001] considered the example of plane strain indentation of
a rigid plate into a block and showed limitations of enhanced strain elements for elastic and elastic-plastic
response. Figure 20 shows a sketch of the dimensions and boundary conditions for this problem with a

 

Figure 19. Deformed shape of an eighth of a thin circular cylindrical shell subjected to
a pair of opposing concentrated point loads P for the mesh {10 n× 10 n× 1} with n = 5
and P = 1.73 kN.
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nearly incompressible elastic material. The block has length 2L , height L and depth W . Material points
on its sides and bottom remain in contact with a rigid container and are allowed to slide freely. The top
surface of the block is loaded by a rigid plate (AB) of length L which makes perfect contact with the
block so that material points in contact with the rigid plate move only vertically. The remaining half of
the block’s top surface is traction free. The dimensions of the block are given by

L =W = 1 m. (4.22)

Irregular meshes are defined by dividing the block into four subsections with the central node moving
to the position characterized by the lengths {a1, a2} (shown in Figure 20) defined by two cases:

Case I: a1 = a, a2 = 0, −1≤ 8a
3L
≤ 1, u A2 =−0.1 m, n = 5,

Case II: a1 = 0, a2 = a, −1≤ 8a
3L
≤ 1, u A2 =−0.1 m, n = 5.

(4.23)

The entire block is meshed by {8 n× 4 n× 1} with 4n elements in the e1 direction and 2n elements in
the e2 in each of the subsections. The point C (shown in Figure 20) is located on the free top surface at
a distance 0.25L from the corner B of the rigid plate.

Figure 21 shows convergence of the solution for the regular (a = 0) mesh {8 n× 4 n× 1} and u A2 =

−0.1 m. The converged value u∗C2 of the displacement of the point C in the e2 direction predicted by (G)
for a regular mesh with n = 20 is considered to be exact and is given by

u∗C2 = 0.071895 m for u A2 =−0.1 m with n = 20. (4.24)

The error E of in the values uC2 predicted by calculations of other elements and meshes is defined by an
expression similar to (4.7). Figure 21 shows the convergence of this error predicted by {G, Q1P0, HO9}.
This error is plotted relative to n for the mesh {8 n× 4 n× 1} in Figure 21a and is plotted relative to the
degrees of freedom (DOF, calculated for plane strain response) in Figure 21b. From Figure 21a it is not
clear if (Q1P0) exhibits a locking behavior by converging to a value different from (G) or whether the

 

Figure 20. Plane strain indentation of a rigid plate into a block showing the boundary
conditions and definition of element irregularity.
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Figure 21. Plane strain indentation of a rigid plate into a nearly incompressible block.
Convergence of the error E in the displacement uC2 of the point C using the regular
mesh {8 n × 4 n × 1} for u A2 = −0.1 m versus: (a) n; and (b) versus the number of
degrees of freedom DOF.

convergence rate is very slow. To validate the converged value of (G) for n = 20, calculations were also
performed using the mixed higher order element (HO9) with the mesh {8 n× 4 n× 1} up to n = 10. In
particular, it can be seen in Figure 21b that (HO9) tends to converge to the value predicted by (G).

Figure 22 presents the errors E in the displacement uC2 for two cases of element irregularity and for
the mesh {8 n×4 n×1} with n = 5 and u A2 =−0.1 m. Since there is a strain concentration near the edge
of the plate it is expected that a non-fully converged solution will be sensitive to element irregularity. In
particular, it can be seen from Figure 22a that (Q1P0) is more sensitive to element irregularity than (G)
for positive values of a for Case I which cause the elements near the plate’s edge B to be more irregular.
The results in Figure 22b show that the error reduces slightly for increasing positive values of a for Case
II which cause the elements near the plate’s edge B to be more refined.
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Figure 22. Plane strain indentation of a rigid plate into a nearly incompressible block.
Error E in the displacement uC2 of the point C for two cases of element irregularity and
for the mesh {8 n× 4 n× 1} with n = 5 and u A2 =−0.1 m.
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 Figure 23. Plane strain indentation of a rigid plate into a nearly incompressible block
showing nonlinear load curves using the regular mesh {8 n× 4 n× 1} for 3 values of n.

Figure 23 shows nonlinear load curves using the regular mesh {8 n× 4 n× 1} for different values of n.
Again it can be seen that (G) predicts more flexible response than (Q1P0) for the coarser meshes. Figure
24 shows the deformed shapes for the regular mesh {8 n×4 n×1} with n = 3 for different values of loads.
In particular, it can be seen that the flexibility of (G) allows the elements near the plate’s corner to roll
around the corner more easily than allowed by (Q1P0). Since the flexibility of (G) has been validated
relative to the mixed higher order element (HO9) it is concluded that the stiffness shown by (Q1P0) is
unphysical.

4.10. Indentation of a rigid plate into a nearly incompressible block (large deformations). Figure 25
shows a sketch of one fourth of a nearly incompressible block that has total length 2L , height L and
depth 2L with

L = 1 m. (4.25)
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Figure 24. Plane strain indentation of a rigid plate into a nearly incompressible block
showing the deformed shapes for the regular mesh {8 n× 4 n× 1} with n = 5. The left
column shows the results for (G) and the right column shows the results (Q1P0).

The bottom (X∗3 = 0) and exterior lateral surfaces (X∗1 =±L , X∗2 =±L) of the block remain in contact
with and slide freely on smooth rigid planes. The block’s top surface (X∗3 = L) is loaded by a rigid
plate (ABCD) which makes perfect contact with the material points so that these points can only move
vertically in the e3 direction. The remaining portion of the block’s top surface is traction free. Irregular
elements are generated by moving the nodes of the center plane by the displacements {a1, a2, a3, a4} as
shown in Figure 25 with

a1 = a, a2 = 0, a3 =−a, a4 = a, −1≤
8a
3L
≤ 1. (4.26)
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Figure 25. Indentation of a rigid plate into a block showing the boundary conditions
and definition of element irregularity. Symmetry conditions are used so that only one
fourth of the block is meshed.

The mesh for the one fourth region is specified by {4 n×4 n×4 n} with 2n elements below and above the
distorted center surface and with {n× n} elements under the rigid plate. Moreover, the vertical reference
locations of material points on these distorted surfaces are described by a bilinear form of the coordinates
(X∗1, X∗2). Furthermore, the point E is located at a distance L/4 from the edge of the rigid plate.

Based on the results of the previous example it is expected that the deformation will be concentrated
near the edges of the plate so that a refined mesh will be required to obtain an accurate solution. Mesh
refinement of this 3-D problem is beyond the capacity of the hardware being used to obtain the solution.
Therefore, attention will be focused on the robustness of the solutions with relative coarse meshes.

Figure 26 explores the sensitivity of the elements {G, Q1P0} to irregularity of the reference element
shape. Since the converged value of the displacement uE3 is not known it is convenient to define the
difference of uE3 relative to the value u∗E3 predicted for a regular mesh (a = 0). Specifically, the value
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Figure 26. Indentation of a rigid plate into a nearly incompressible block. The displace-
ment uE3 of the point E as a function of element irregularity for the mesh {4 n×4 n×4 n}
with n = 3 and u A3 =−0.1 m.
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Figure 27. Indentation of a rigid plate into a nearly incompressible block. Nonlinear
load curves for the regular mesh {4 n× 4 n× 4 n} with different values of n.

of u∗E3 for each element for the regular mesh {4 n× 4 n× 4 n} with n = 3 and u A3 =−0.1 m is given by

u∗E3 =−0.0078595 m for (G), u∗E3 =−0.0071327 m for (Q1P0). (4.27)

The difference 1 is then defined by a formula of the type (4.7)

1=
uE3− u∗E3

|u∗E3|
, (4.28)

for each of the elements using its value of u∗E3 so that 1 vanishes for each element when a = 0. The
results in Figure 26 demonstrate that (G) can be used for three-dimensional irregularity of the reference
element shapes and that the predictions of (G) are similar to those of (Q1P0). Since the solution is
not fully converged for this mesh it is expected that the solution will be sensitive to the value of the
irregularity parameter a. In particular, the results in Figure 26 are consistent with the observation that
the mesh is more refined under the rigid plate for positive values of a.

Figure 27 shows nonlinear load curves using the regular mesh {4 n× 4 n× 4 n} for different values
of n. From these figures it can be seen that the results predicted by {G, Q1P0} are similar. In particular,
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the unphysical stiffness exhibited by (Q1P0) in the previous plane strain problem is not detected in this
three-dimensional problem.

5. Conclusions

A generalized form (2.11) for the strain energy of inhomogeneous deformations of a Cosserat point
element (CPE) has been developed which includes full coupling of bending and torisonal modes. The
dependence of the constitutive coefficients Bi j on the metric Di j (3.4) have been determined by matching
exact small deformation solutions for pure bending (eighteen solutions) and simple torsion (6 solutions).
These coefficients are then used with nonlinear strain measures to characterize the response of general
irregular element shapes to large deformations.

Ideally, for a fully converged solution the response of a structure to a specified load should be insensi-
tive to irregularities in the element shapes used to mesh the structure. The results here indicate that the
main features of this desired response for general shaped elements can be obtained by properly modeling
pure bending and simple torsion of parallelepipeds with two right angles. Also, it is recalled [Jabareen
and Rubin 2007b] that insensitivity to element irregularity can best be exhibited by focusing attention on
a thin structure that is loaded so that inhomogeneous deformations (like bending and torsion) dominate
homogeneous deformations. In particular, plots like Figure 4c for (I) clearly emphasize undesirable
sensitivity to element irregularity.

In contrast with standard finite elements, the nodal forces in the generalized CPE are determined by
algebraic expressions in terms of derivatives of a strain energy function and no integration is needed over
the element region. A number of example problems (also see [Jabareen and Rubin 2007a; Jabareen and
Rubin 2007b]) have been considered which show that the generalized CPE is as accurate as elements
based on enhanced strain and incompatible modes and is as robust as elements based on full integration.
The plane strain example of indentation of a rigid plate into a nearly incompressible block showed that
the flexibility exhibited by the CPE is physical and that the mixed Q1P0 element predicts unphysical
stiffness. Furthermore, the generalized CPE can be used to model 3-D bodies, thin shells and rods and
nearly incompressible materials. In addition, the generalized CPE is free of hourglass instabilities that
are observed in other element formulations in regions experiencing combined high compression with
bending. Consequently, the generalized CPE is truly a robust user friendly element that can be used with
confidence to model problems in nonlinear elasticity.

Appendix A. Values of the constitutive coefficients Bi j

The equations of the bending and torsion problems discussed in Section 3 for the element shapes can be
solved for the values of Bi j in the strain energy function (2.11) for inhomogeneous deformations and the
results were reported in [Jabareen and Rubin 2008b]. Specifically, the nonzero components of the upper
diagonal of the symmetric matrices {B0

i j , B12
i j , B13

i j , B23
i j , i, j = 1, 2, . . . , 9} in (3.24) for a general shaped

element are specified by

B0
11 = 1, B12
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H 2

1 D2
12

H 2
2

, B13
11 = 1+

(1− ν){H 2
1 (1− D2

13)+ H 2
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2
13

2H 2
2 (1− D2

13)
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88, B23

88 = B0
88+

(1−ν)H 2
1 D2

23

2H 2
2 (1−D2

23)
,

B0
89 =

(1− ν)H 2
3

2H1 H2
, B12

89 = B0
89−

(1− ν)H 2
3 D2

12

2H1 H2(1− D2
12)
, B13

89 = B0
89, B23

89 = B0
89,

B0
99 =

(1−ν)(H 2
2 + H 2

3 )

2H 2
1

, B12
99 = B0

99+
(1−ν)H 2

3 D2
12

2H 2
1 (1−D2

12)
, B13

99 = B0
99+

(1−ν)H 2
2 D2

13

2H 2
1 (1−D2

13)
, B23

99 = B0
99,

with {λ12, λ13, λ23} defined by (3.23).
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