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A nonlinear free-vibration analysis of an Euler–Bernoulli beam with an edge crack and a cohesive zone
at the crack tip, represented by bending and shear springs, is presented. Restricting attention to bending
nonlinearities, we suppose the beam is loaded statically in bending into the nonlinear region and small
amplitude vibrations are then superposed. A two term perturbation expansion is used where the small
parameter depends on the ratio of the first and second derivatives of the nonlinear moment-slope relations
computed in Part I. The zeroth order term is the linear free-vibration solution (constant spring stiffness
equal to the first derivative of the moment-slope relation). Each mode generates a second harmonic
(first-order term) whose magnitude depends on the linear spring stiffness and on the small perturbation
parameter. Key features of the zeroth and first-order solutions are studied as functions of the moment-
slope relations computed in Part I, and the possibility of cohesive property characterization is discussed.

1. Introduction

Material characterization based on vibration characteristics is an important quantitative nondestructive
evaluation (QNDE) tool. The presence of cracks in a structure causes an increase in structural and
material compliance, reduction in the natural frequencies, and changes in the mode shapes. Natural
frequency and mode shape versus crack geometry relationships are of interest, for example, in the as-
sessment of the performance integrity of cracked structures, nondestructive evaluation of the extent and
location of cracking, and prediction of the resonant frequency in high-cycle fatigue. The reduction in
natural frequencies caused by transverse cracks in linear elastic beams and similar thin structures has
been studied extensively both theoretically and experimentally. (See [Gudmundson 1982; Gudmundson
1983; Bamnios and Trochidis 1995a; Bamnios and Trochidis 1995b; Dimarogonas 1996; Chondros and
Dimarogonas 1998; Gounaris and Papadopoulos 1997; Chondros et al. 1998; Yokoyama and Chen 1998;
Shifrin and Ruotolo 1999; Mahmoud et al. 1999; Li 2001; Chondros 2001]. See also the numerous
references in [Kessler et al. 2002], and the extensive review in [Dimarogonas 1996].) A typical beam
analysis involves a linear elastic frequency analysis of the vibrating beam, modeled by Euler–Bernoulli
or some higher order beam theory on either side of the (infinitesimally thin) crack plane along with one
of various models for representing the localized increased compliance of the beam in the neighborhood
of the crack plane caused by the presence of the crack. One such model, used in the present analysis
and previously by Yokoyama and Chen [1998] and Mendelsohn [2006], is the line-spring model [Rice
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and Levy 1972], which replaces the crack plane with shear and bending springs, whose stiffnesses are
found from fracture mechanics solutions of edge-cracked geometries under appropriate loading. The
analysis of Yokoyama and Chen [1998] assumes elastic behavior at the crack tip(s) which allows the
spring constants to be found from well-tabulated elastic fracture mechanics solutions for stress intensity
factors. In the absence of material nonlinearity, the spring constants found in this way are independent
of load and depend only on crack length and specimen geometry.

The majority of the work cited above in vibration signatures of cracked structures has been linear
and elastic and the only nonlinearity that has been studied is that due to intermittent crack face contact
during a vibration cycle, known as the breathing crack phenomenon. This results in higher harmonics
generated through the coupling of the bending vibrations with longitudinal motions in the direction of
the opening and closing crack faces [Dimarogonas 1996; Chondros et al. 2001; Brandon et al. 1999;
Sekhar and Balaji Prasad 1998; Ruotolo et al. 1996]. The reductions in natural frequencies compared to
the uncracked beam are less than when the crack closure portions of the vibration cycle are prevented
from occurring, say due to a static preload.

Turning to material types of nonlinearity, we note, as discussed in detail in the companion paper
[Mokashi and Mendelsohn 2008], that many materials exhibit a region of cohesive behavior that is
limited to a thin planar zone ahead of the crack tip, often referred to as a cohesive zone. The only beam
vibration analysis that considers plastic or cohesive behavior at the crack tip that the authors are aware
of is that of [Mendelsohn 2006], who also solves a free-vibration problem for the cracked beam using
the line-spring model. However, despite the nonlinear behavior of the M −1θ relationships found using
a Dugdale–Barenblatt cohesive zone, the dynamic response is assumed to be linear and the stiffness
constant is taken to be the slope of the nonlinear M −1θ curve. In other words, at a given static preload
MS , the dynamic response is assumed to take place linearly along the local tangent to the nonlinear
M −1θ curve. Since the crack plane is taken at the midspan, and the applied static preload is in bending
only, as will be the case in the present analysis as well, only the symmetric modes activate the bending
cohesive behavior and the shear response is always elastic. The shear line-spring stiffness was therefore
calculated as in [Yokoyama and Chen 1998] and confirmed by the BEM analysis in the doctoral thesis
by Mokashi [2007]. For sufficiently large static preloads, the resulting linear eigenvalue problem results
in markedly reduced natural frequencies compared to the elastic cracked case with no cohesive zones.

The present work extends that of Mendelsohn [2006] in two ways. First, it makes use of the nonlinear
M −1θ curves for the linear softening cohesive zone [Mokashi and Mendelsohn 2008], as opposed
to those for Dugdale–Barenblatt cohesive zones. This is important for many materials, which exhibit
softening behavior before crack growth and ultimate failure. And second, it is the first attempt to ad-
dress the nonlinearity of the line-spring directly in the dynamic analysis. This is done by employing
an asymptotic or perturbation technique used in nonlinear dynamics. The method involves identifying
the nonlinear part of the nonlinear bending spring boundary condition, and writing it in such a way
that it is multiplied by a parameter, which can be argued to be small. The solution is then expanded in
powers of the small parameter, and by collecting terms of like powers of the small parameter, a series
of linear boundary conditions are generated. The lowest order boundary conditions are naturally linear,
while the nonlinear terms in the original formulation result in nonlinear combinations of lower order
results appearing as known loading terms in the higher order linear problems. This method has been
widely used for including weak nonlinearities throughout nonlinear dynamics; spatially discrete and
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spatially continuous systems, and in the time domain and frequency domain. In problems similar to the
present one, Pecorari [2003; 2004] and Pecorari and Poznić [2005] have used a perturbation approach
in a frequency domain analysis of wave transmission and reflection at contact interfaces, where the
elasto-plastic contact is represented by nonlinear springs. The work presented here is a first step toward
evaluating the feasibility of and developing an inverse technique, which would determine the cohesive law
parameters from measurements of the nonlinear contributions to the dynamic response of edge-cracked
beam specimens.

2. Nonlinear beam vibration formulation

In the following the line-spring model for a cracked beam is introduced, and the relationship between
the quasistatic nonlinear bending deformation across the crack-plane and the nonlinear small amplitude
dynamic response about a quasistatic preload is discussed. Since the present study is aimed at charac-
terizing only cohesive nonlinearity effects, the well understood nonlinearity due to crack face contact is
avoided by assuming a static preload for two reasons. While the contact conditions could be added, and
the vibration problem without the static preload could be treated with a slightly modified perturbation
method, that would (i) only confuse the issue at hand by mixing the two nonlinear effects, and (ii) require
extremely large vibration amplitudes to activate significant cohesive behavior during a test. The latter
would be almost impossible to control, so as is commonly done in QNDE, the cohesive zone is activated
by the static preload and the superposed vibrations are assumed to be of small amplitude about this
preload state.

The resulting nonlinear motions about the static preload are represented as a two-term series in a
small parameter which depends on the quasistatic nonlinear bending deformation behavior and on the
nondimensional amplitude of the free vibration response. This yields two uncoupled problems; one that
is of zeroth order in the small parameter which is the fundamental modified free-vibration eigenvalue
problem. The second of these problems (first order in the small parameter) is a forced vibration problem
where the source term is the zeroth order contribution to the nonlinear bending spring boundary condition,
which is solved for first from the zeroth order problem. For each natural frequency and mode shape
from the zeroth order problem, there is a first-order solution with known amplitude and frequency twice
that of the natural frequency (that is, the nonlinearity generates a complete set of second harmonics).
Consider a simply supported Euler–Bernoulli beam of rectangular cross-section A, containing an edge-
crack of length a located a distance c from the left end; see Figure 1. The beam has length L , depth W
and thickness b (A = b ·W ), although all measurable results are independent of the thickness b. The
presence of the crack allows discontinuities in transverse deflection (1υ) and slope of the deflection (1θ)
across the crack-plane [Mokashi and Mendelsohn 2008, Figure 1]. Recalling the line-spring model of the
crack-plane presented in [Mokashi and Mendelsohn 2008], we rewrite the bending and shear interactions
[Mokashi and Mendelsohn 2008, Equations (1) and (2)] in terms of resistance or stiffness rather than
compliance.

M = RN (1θ) (1a)

Q = RT (1υ)= KT1υ. (1b)
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Figure 1. (a) Geometry of an edge-cracked beam. (b) Discontinuity in slope and deflec-
tion under mode I and mode II loading, respectively.

Here R represents the resistance to crack-plane deformation. If material behavior is linear for a particular
mode, then that R is a linear function of the deformation with slope equal to the stiffness. Since the static
preload and resulting cohesive behavior is in bending only, the shear spring is assumed linear throughout,
and the second equality in Equation (1b) is used, where KT is the stiffness obtained from an elastic mode
II loading crack solution.

The nonlinearity in the bending spring is now treated. Consider a general nonlinear quasistatic soft-
ening relationship for the bending spring (Figure 2) representing any of the predicted relations from
[Mokashi and Mendelsohn 2008, Figures 8 and 9]. In order to isolate the bending effects, the crack is
placed in the middle of the beam (c= L/2) so that the odd modes excite only mode I deformations. Now
assume a static mode I preload, represented by the point [1θs,Ms] in Figure 2, and further assume that
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Figure 2. A generic nonlinear quasistatic M −1θ curve.
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small amplitude free vibrations occur about the preload state. Neglecting hysteresis, a first approximation
for the dynamic behavior is that the point [θtot,Mtot] lies along the tangent to the curve at [1θs,Ms]

[Mendelsohn 2006] where ‘tot’ indicates the total response which is sum of the static and dynamic
responses. This is equivalent to taking the total response to be the first two terms of a Taylor series
expansion about [1θs,Ms]. This approximation is refined here by assuming that the dynamic response
is nonlinear as well and that [θtot,Mtot] lies along a parabola at [1θs,Ms], that is, the first three terms in
the Taylor series about [1θs,Ms]:

Mtot = Ms + KN0(1θtot−1θs)+ KN1(1θtot−1θs)
2, (2a)

KN0 ≡ [(d Mtot/d1θtot)]1θtot=1θs , (2b)

KN1 ≡ (1/2)[(d2 Mtot/d1θ2
tot)]1θtot=1θs . (2c)

Now, defining the dynamic moment to be the total minus the static moment and similarly for the jump
in slope, the nonlinear dynamic representation of the bending spring is obtained as

M = KN01θ + KN11θ
2, (3)

where KN0 and KN1 are defined above and M and 1θ (without subscripts) are the dynamic moment and
jump in slope.

2.1. Beam equation of motion and boundary conditions. The equation of motion for an Euler–Bernoulli
beam is

E I
∂4υ

∂x4 + ρA
∂2υ

∂t2 = 0, (4)

where E I is the flexural rigidity, ρ is the density, A is the cross-sectional area, υ(x, t) is the dis-
placement of the mid-plane, defined positive in the upward direction, and θ(x, t) = (∂υ/∂x) is the
slope, defined positive in the counter-clockwise direction. The bending moment and shear force are
M(x, t)= E I (∂2υ/∂x2) and Q(x, t)= E I (∂3υ/∂x3). (See [Mokashi and Mendelsohn 2008, Figure 1]
for sign conventions.) The following boundary conditions can be specified for all times t > 0. At the
simple supports (x = 0, L) the displacement and rotational moment are zero. Since the length of the
line-spring is always zero, static equilibrium requires that the bending moment and shear force across
the crack plane be continuous.

∂2υ

∂x2 (c−, t)=
∂2υ

∂x2 (c+, t), (5)

∂3υ

∂x3 (c−, t)=
∂3υ

∂x3 (c+, t). (6)

where c− and c+ indicate limits from the left and right, respectively as x goes to c. The jump in
displacement and slope, respectively, across the crack plane are defined as

1υ(t)≡ υ(c+, t)− υ(c−, t), (7)

1θ(t)≡
∂υ

∂x
(c+, t)−

∂υ

∂x
(c−, t). (8)
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The bending moment is related to the change in slope across the crack plane through the nonlinear
bending relation (3):

M = E I
∂2υ

∂x2 (c−, t)= KN 0 1θ(t)+ KN 1 (1θ(t))
2. (9)

The shear spring relation is, however, linear:

Q = E I (∂3υ/∂x3)=−KT 0 1υ(t). (10)

2.2. Nondimensionalization and perturbed boundary conditions. In the following perturbation analy-
sis, the zeroth order solution will be eigenfunctions of the linear free-vibration problem, involving KN0

and KT 0 only. These eigenfunctions will be determined in terms of a free amplitude constant, say, A0,
which is assumed to be small compared to the length of the beam. Write the deflection υ(x, t) in a
variable separable form in the two solution regions: L to the left of crack plane (0< x̄ < c̄) and R to the
right of the crack plane (c̄ < x̄ < L̄), where x̄ ≡ x/L . The deflections in the left and right regions are
then

υ(x, t)= υL(x, t)= A0 φL(x̄) T (t), 0< x̄ < c̄, (11)

υ(x, t)= υR(x, t)= A0 φR(x̄) T (t), c̄ < x̄ < L̄. (12)

A is a free parameter representing the vibration amplitude. Substituting this notation into the linear
dimensional boundary conditions (5), (6), (9) and (10) yields

φ′′L(c̄)= φ
′′

R(c̄) (13)

φ′′′L (c̄)= φ
′′′

R (c̄) (14)

φ′′L(c̄)T (t)= K̄N 0[1φ
′T (t)+ εN (1φ

′2)T 2(t)], (15)

φ′′′L (c̄)= − K̄T 01φ, (16)

where ′ ≡ (d/dx̄)= L(∂/∂x), and

K̄T 0 ≡ (KT 0 L3/E I ), (17)

1φ = φR(c̄)−φL(c̄), (18)

K̄N 0 ≡ (KN 0 L/E I ), (19)

εN ≡ (KN 1/KN 0)(A0/L), (20)

1φ′ ≡ φ′R(c̄)−φ
′

L(c̄). (21)

The parameters, K̄N 0 , K̄T 0 and εN are dimensionless and εN is assumed to be a small quantity, which
is easily achieved by keeping the vibration amplitude A0 several orders of magnitude smaller than the
beam length. The deflection of the beam in the left and right regions are now expanded in powers of εN .

υ(x, t)= υL(x, t)= A0 [φL 0(x̄) T0(t)+ εN φL 1(x̄) T1(t)+ ...], 0< x̄ < c̄,

υ(x, t)= υR(x, t)= A0 [φR0(x̄) T0(t)+ εN φR1(x̄) T1(t)+ ...], c̄ < x̄ < L̄.
(22)
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The solution forms obtained in (22) are substituted in (15) to get the following expression for the nonlinear
boundary condition

φL
′′

0(c̄) T0(t) + εN φL
′′

1(c̄) T1(t)

= K̄N 0 [1φ
′

0 T0(t)+ εN 1φ
′

1 T1(t)+ ... εN (1φ
′

0 T0(t)+ εN 1φ
′

1 T1(t)+ ...)2]. (23)

Keeping only the zeroth and first-order terms of εN , this can be rewritten as

φL
′′

0(c̄) T0(t) + εN φL
′′

1(c̄) T1(t)= K̄N 0 [1φ
′

0 T0(t)+ εN (1φ
′

1 T1(t)+ (1φ′0)
2 T 2

0 (t))]. (24)

In order that (22) be satisfied for all times t , we must have T1(t)= T 2
0 (T ). The solution forms for υ(x, t)

in (22) are now substituted into the linear nondimensional boundary conditions, (13)–(16). The resulting
expressions and (24) are then separated into zeroth order and first-order contributions in εN , to obtain
separate linear nondimensional, time-independent boundary conditions for the zeroth and the first-order
problems.

The zeroth order crack plane boundary conditions are written as:

φ′′L0(c̄)= φ
′′

R0(c̄),

φ′′′L0(c̄)= φ
′′′

R0(c̄),

φ′′L0(c̄)− K̄N0 1φ
′

0 = 0,

φ′′′L0(c̄)+ K̄T 0 1φ0 = 0.

(25)

The first-order crack plane boundary conditions are written as:

φ′′L1(c̄)= φ
′′

R1(c̄),

φ′′′L1(c̄)= φ
′′′

R1(c̄),

φ′′L1(c̄)− K̄N0 1φ
′

1 = K̄N0 (1φ
′

0)
2,

φ′′′L1(c̄)+ K̄T 0 1φ1 = 0.

(26)

Note that the time functions factor out of all of these linear boundary conditions if T1(t)= T 2
0 (t). The

zeroth and first-order jumps 1φ0, 1φ′0 and 1φ′1 are defined analogously to the total jumps in (18) and
(21) by adding a subscript of 0 or 1.

3. Zeroth order solution

Assuming the time dependence T0(t) = sin(ω0t) and substituting the zeroth order contributions to the
displacement forms in (22) into the equation of motion, (4), leads to the forms:

υL 0(x, t)= A0φL0(x̄)T0(t)
= A0[C1 sin(k̄0 x̄)+C2 sin h(k̄0 x̄)] sin(ω0t),

υR0(x, t)= A0φR0(x̄)T0(t)
= A0[C3 sin(k̄0 x̄)− tan(k̄0) cos(k̄0 x̄)] +C4[sin h(k̄0 x̄)− tan h(k̄0) cos h(k̄0 x̄)] sin(ω0t),

(27)
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where k̄0 ≡ k0L and the wave number k0 and frequency ω0 are related by

k2
0 = ω0

√
(ρA/E I ). (28)

The solution forms in Equation (27) satisfy the simple support boundary conditions of zero displacement
and zero moment at x̄ = 0 and x̄ = 1. Using a linear system in the unknown constants the boundary
conditions (25) can be written as

[A] · (x)= 0 (29)

where (x) is the vector consisting of the four constants C1, C2, C3 and C4 and [A] is the coefficient
matrix, shown below

− sin(k̄0c̄) sinh(k̄0c̄) sin(k̄0c̄)− tan(k̄0) cos(k̄0c̄) tanh(k̄0) cosh(k̄0c̄)− sinh(k̄0c̄)
− cos(k̄0c̄) cosh(k̄0c̄) cos(k̄0c̄)+ tan(k̄0) sin(k̄0c̄) tanh(k̄0) sinh(k̄0c̄)− cosh(k̄0c̄)

K̃N0 cos(k̄0c̄)− sin(k̄0c̄) K̃N0 cosh(k̄0c̄)+ sinh(k̄0c̄) −K̃N0(cos(k̄0c̄)+ tan(k̄0) sin(k̄0c̄)) K̃N0(tanh(k̄0) sinh(k̄0c̄)− cosh(k̄0c̄))
K̃T 0 sin(k̄0c̄)+ cos(k̄0c̄) K̃T 0 sinh(k̄0c̄)− cosh(k̄0c̄) K̃T 0(tan(k̄0) cos(k̄0c̄)− sin(k̄0c̄)) K̃T 0(tanh(k̄0) cosh(k̄0c̄)− sinh(k̄0c̄))


The dimensionless bending and shear stiffnesses in [A] are defined as

K̃N0 ≡
K̄N0

k̄0
=

KN0

E I k0
=

12
EW 3k0

(
KN0

b

)
, (30)

K̃T 0 ≡
K̄T 0

k̄3
0

=
KT 0

E I k3
0

=
12

EW 3k0

(
KT 0

b

)
(31)

where W is the depth and b is the thickness of the beam. Setting the determinant of the matrix [A] equal
to zero for given crack position, c̄ and stiffnesses K̃N O and K̃T O yields an infinite number of eigenvalues

k0n; n = 1, 2, 3, . . . (32)

For a given mode and k0n the mode shapes can be determined by solving any three of the four equations
of the linear system, (29), for any three of the constants (C1,C2,C3,C4) in terms of the fourth and
substituting in (27).

4. First-order solution

For each of the infinite zeroth order modes with wavenumber k0n and frequency ω0n (n = 1, 2, 3, ...),
there is a first order solution with wavenumber k1n and frequency ω1n . For convenience, the index n is
suppressed throughout this section. Since there is already an undetermined amplitude constant A0 in the
zeroth order solution, (27), one of the four constants C1, C2, C3, C4 may be taken to be unity without
loss of generality. Hence from here on, let C1 = 1.

The first-order crack plane boundary conditions can be written time-independently (see Equation (26))
only if T1(t)= T 2

0 (t). For the assumed T0(t)= sin(ωt) above

T1(t)= T 2
0 (t)= sin2(ω0t)= 1/2− 1/2 cos(2ω0t)∼=−1/2 cos(2ω0t), (33)

where the last relation indicates the dynamic contribution to T1(t). Hence, for the first-order solution,
the frequency is ω1 = 2ω0, and k1 =

√
2k0, (28). The first order solution for the deflections to the left
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and right of the crack planes that satisfy the simple support conditions at x̄ = 0 and x̄ = 1 can thus be
defined as

υL 1(x, t)= εN A0φL1(x̄)T1(t)
= εN A0 [D1 sin(k̄1 x̄)+ D2 sinh(k̄1 x̄)] (−1/2 cos(2ω0t)),

υR1(x, t)= εN A0φL1(x̄)T1(t)
= εN A0 [D3 sin(k̄1 x̄)− tan(k̄1) cos(k̄1 x̄)]

+ D4 [sinh(k̄1 x̄)− tanh(k̄1) cosh(k̄1 x̄)] (−1/2 cos(2ω0t)),

(34)

where k̄1 ≡ k1L . The single higher harmonic is at twice the frequency and is phase shifted compared to
the fundamental. Similar to the zeroth order, this deflection solution is now substituted in the first-order
nondimensional, time-independent boundary conditions, (26), yielding the linear system

[B] · (y)= (Z), (35)

where (y) is the vector consisting of the four constants D1, D2, D3 and D4, and the elements of (Z) are
Z1 = 0, Z2 = 0, Z3 = 0 and Z4 = (K̃N0(1φ

′

0)
2/2k̄0). The term 1φ′0 in the fourth element of (Z) is

obtained from the zeroth order mode shape as

1φ′0 = φ
′

R0(c̄)−φ
′

L0(c̄). (36)

The coefficient matrix [B] is given below

− sin(k̄1c̄) sinh(k̄1c̄) sin(k̄1c̄)− tan(k̄1) cos(k̄1c̄) tanh(k̄1) cosh(k̄1c̄)− sinh(k̄1c̄)

− cos(k̄1c̄) cosh(k̄1c̄) cos(k̄1c̄)+ tan(k̄1) sin(k̄1c̄) tanh(k̄1) sinh(k̄1c̄)− cosh(k̄1c̄)

K̃T 0
2
√

2
sin(k̄1c̄)+ cos(k̄1c̄) K̃T 0

2
√

2
sinh(k̄1c̄)− cosh(k̄1c̄) K̃T 0

2
√

2
[tan(k̄1) cos(k̄1c̄)− sin(k̄1c̄)] K̃T 0

2
√

2
[tanh(k̄1) cosh(k̄1c̄)− sinh(k̄1c̄)]

K̃N0√
2

cos(k̄1c̄)− sin(k̄1c̄) K̃N0√
2

cosh(k̄1c̄)+ sinh(k̄1c̄) K̃N0√
2
[− cos(k̄1c̄)− tan(k̄1) sin(k̄1c̄))] K̃N0√

2
[tanh(k̄1) sinh(k̄1c̄)− cosh(k̄1c̄)]


The nondimensional stiffnesses K̃N0 and K̃T 0 are defined in Equation (30), substituting the solutions of

(35) for D1, D2, D3 and D4 into (34) to get the first-order deflection of the beam.

5. Results

The length L and depth of the beam are taken to be 12.5 m and W 1.25 m, respectively. By appropriate
scaling, results for any beam with a L/W ratio of 10 may be obtained. The thickness of the beam, b
is not a critical parameter since most of the vibration parameters are independent of the thickness. The
dimensionless crack ratio ā is taken to be 0.34 for all results. The material of the beam is chosen as
aluminum (Young’s modulus E = 72.8 GPa, ν = 0.3). Results for other ā ratios and beam materials
do not reveal any new patterns or insights. Since the even modes are antisymmetric about the midspan,
the midspan is subjected only to shear and the even mode frequencies do not depend on the nonlinear
bending stiffness.

The remaining parameters to prescribe and calculate are (KN0/b), (KN1/b) and (KT 0/b) which in turn
will determine K̃N0, K̃T 0 and εN in (30) and (20). For calculation purposes we note that the M̄ −1θ
curves from the BEM model [Mokashi and Mendelsohn 2008, Figures 8 and 9] really involve M̄ ≡
M/b and are independent of b, the beam thickness. Hence we can approximate (KN0/b) and (KN1/b),
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Equations (2b)–(2c), from the particular M̄ −1θ curve using central differences. Similarly KT 0/b will
be independent of b, and is calculated using the elastic analysis presented in [Yokoyama and Chen 1998]:

KT 0

b
=

E

2 (1− ν2)
∫ ā

0
F2

T
1−ā dā

, (37)

where FT is a function of the dimensionless crack ratio ā

FT = 1.993 ā+ 4.513 ā2
− 9.516 ā3

+ 4.482 ā4. (38)

For the crack length ā = 0.34, the shear stiffness per unit thickness is calculated to be K̄T 0/b = 3.3986 ·
1011 N/m2. Finally the perturbation parameter εN , (20), is easily written in terms of KN1/b and KN0/b
by dividing the numerator and denominator by b.

A typical set of results for the eigenvalues and zeroth and first order mode shapes are shown in Figures
3–5. Cohesive law 5 in [Mokashi and Mendelsohn 2008, Table 1] (to = 50 MPa, δo = 1.6 mm) is used and
the static preload per unit thickness is taken to be M̄s = 7 · 106 N. From the data for the M −1θ relation
shown in [Mokashi and Mendelsohn 2008, Figure 9], the first and second derivatives are calculated using
standard central differences as KN0/b = 8.4 · 109 N and KN1/b = 5.88 · 1012 N and the free amplitude
constant is taken to be A0 = 0.005 m , which gives a perturbation parameter value of εN = 0.28. The first
four wavenumbers and frequencies from the zeroth order eigenvalue problem are k01 = 0.23883, k02 =

0.50248, k03= 0.72195, k04= 1.00389, ω01= 62.881, ω02= 278.337, ω03= 574.577, ω04= 1110.981.
Wave numbers are in m−1 and frequencies are in rad / sec. Figure 3 shows the zeroth order mode shapes
and slope of the cracked beam with a cohesive zone for the lowest of these modes and compares them to
the uncracked case. The presence of the crack causes an increase in maximum deflection and a jump in
slope 1θo at the crack plane. Figure 4 shows the corresponding lowest mode first-order second harmonic
solution for the deflection and slope for the cracked beam with a cohesive zone. The wavenumber and
frequency are k11 = 0.33776 and ω11 = 125.762. The magnitude of the first-order response depends
on A2

0, so it is quite sensitive to A0, however the ratio of the first-order magnitudes to the zeroth order
magnitudes depend only on A0 through the perturbation parameter εN .

Figure 3. Zeroth-order mode shapes for deflection and slope. The solid curves are the
uncracked mode shapes.
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Figure 4. First-order mode shapes for deflection and slope.

The double hump in the first-order deflection appears as KN0 is reduced from a very large value
representing an intact plane at x = c, and the cusp becomes deeper as KN0 is further reduced. The
shapes of both υ1 and υ ′1 are independent of KN1 and εN . The jump in slope is distinctly observed and
the maximum slopes occur at the crack plane rather than at the supports as in Figure 3. The magnitude
of first-order jump in slope is observed to be on the order of 15% of the zeroth order jump in this
example. Corresponding results for higher even modes show no effect of the crack or cohesive behavior
and higher-order odd modes are similar to the plots shown in Figures 3 and 4, but with increasingly
smaller magnitudes and wavelengths.

To study the effect of the cohesive law and its parameters, t0 and δ0 on the M̄ −1θ relationship and
the dynamic results, 11 cohesive laws were considered [Mokashi and Mendelsohn 2008, Table 1]. The

Figure 5. Variation of the first eigenvalue over applied moment.
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amplitude of vibration A0 is 0.001 in these results. All other parameters are as given above. Figure 5
shows the variation of the fundamental eigenvalue over applied static moment, M̄s for all of the cohesive
laws. It can be seen that eigenvalues drop with increasing moments, starting with a maximum eigenvalue
of 0.243. This is lower than the first eigenvalue for an uncracked beam (k01uncracked ≈ 0.25). The variation
in eigenvalues show some dependence on J0, that is, with decreasing J0, the eigenvalue decreases for a
given moment. However, this dependence is not absolute, and some deviations are observed, as seen with
cases 7 and 11 of [Mokashi and Mendelsohn 2008, Table 1]. The grouping by peak cohesive traction is
only partially evident in these results, but the peak traction still has an influence.

The effect of the cohesive laws on the maximum modal amplitude is seen in Figure 7. When plotted
against applied moment,(υ0)max shows a strong dependence on t0. At any given moment, lower stresses
lead to higher maximum modal amplitudes. For laws that share a common t0, as the slope of the cohesive
law becomes steeper Jo decreases, the cohesive law is exercised at a lower moment, and over the part of
the load range the displacement increases with increasing slope of the law. This controls the branching
off of, for example, the 6 and 9 curves from the 3 curve. The corresponding plots for 1θ are shown in
Figure 8 and they are remarkably similar.

Next the ratios of the first-order responses to the zeroth order responses are plotted against applied
moment. Figure 9 shows the maximum modal amplitude ratios (left) and the ratios of the jump in
slopes for the first order to the zeroth order against applied moment (right). Both results show a strong
dependence on J0, that is, with decreasing J0, higher ratios are obtained for a given moment. However,
deviations to this trend are observed in cases 2, 8 and 11 [Mokashi and Mendelsohn 2008, Table 1].

A sensitivity study was done to understand the dependence of our dynamic model to the key parameters
A0, K̄N0 and K̄N1. Figure 6 (left) shows a plot of k0, (υ0)max and 1θ0 against the zeroth order bending

Figure 6. First eigenvalue: variation of k0, (v0)max and 1θ0 (left); variation of (v1)max

and 1θ1 and ε over bending stiffness (right). A0 = 0.01.
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Figure 7. Variation of the maximum modal amplitude for the first eigenvalue over ap-
plied moment.

stiffness per unit thickness, K̄N0. The physical range of K̄N0 considered spans from very high compliance
that approximates a plastic hinge on the lower end to high stiffness approximating an uncracked beam
on the higher end. k0 shows an increase with increasing bending stiffness, asymptotically approaching
0.25, which is the first eigenvalue for the uncracked beam. (υ0)max and 1θ0, however, decrease with an

Figure 8. Variation of the jump in slope for the first eigenvalue over applied moment.
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Figure 9. First eigenvalue: ratio of first- to zeroth-order maximum modal amplitude
over applied moment (left); ratio of first- to zeroth-order jump in slope over applied
moment (right).

increase in K̄N0, asymptotically reaching the uncracked condition. (υ0)max and 1θ0 scale with A0, that
is, using different values of A0, a family of similar curves can be obtained. A0 is taken to be 0.01 in
Figure 6 (left). Knowing (υ0)max and 1θ0, it may then be possible to obtain both A0 and the zeroth order
bending stiffness, K̄N0. It is to be noted that k0 does not depend on either A0 or K̄N1, and both (υ0)max

and 1θ0 do not depend on K̄N1.
Figure 6 (right) shows a plot of (υ1)max, 1θ1 and εN against K̄N0. The first-order bending stiffness

per unitthickness K̄N1 is taken to be −1 · 1012 N . All the three parameters show a sharp decrease with
increasing stiffness. All of these parameters scale with the product A0 · ¯KN1, that is, using different
values of A0 · K̄N1, a family of similar curves can be obtained. Knowing A0 and K̄N0 from the previous
plots and (υ1)max or 1θ1 from this plot, it may then be possible to obtain the A0 · K̄N1 term. Since A0

is known, the first-order bending stiffness, K̄N1 could then be obtained. Results for the third eigenvalue
are in [Vedachalam 2007] and show similar trends.

6. Conclusions

This paper addresses the issue of a linear softening cohesive zone ahead of a crack tip and its effect on the
vibrational response of an edge-cracked beam. For a given crack length, presence of the cohesive zone
leads to an additional reduction in the fundamental natural frequency, and induces nonlinearity leading
to a second harmonic. The dynamic response is controlled by the critical yield stress, to or the critical
fracture energy JI o, much more than the crack tip opening displacement δo or the slope of the cohesive
law. The state of damage affects the 1θ ratios more strongly than the modal amplitude ratios. 1θ ratios
can, therefore, be used effectively in cohesive damage characterization. Within physical ranges of the
dynamic spring constants, the first-order harmonic is observed to be quite significant when compared to
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the fundamental. This model has potential for use in nondestructive cohesive material characterization in
beam-like structures. There is potential for determining the dynamic spring constants from the dynamic
responses. However, the relationship between the spring constants and the cohesive law parameters is
less clear at this point and needs to be explored more in order to move towards an experimental inverse
technique based on the present modeling.
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