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GENERALIZED PLANE STRAIN FINITE-ELEMENT FORMULATION
FOR THERMAL AND ELECTRICAL BUCKLING ANALYSIS

OF PIEZO COMPOSITE BEAM

R. JEROME AND N. GANESAN

We develop a generalized plane strain (GPS) finite element formulation to predict the critical buckling
voltage and temperature of a piezo composite beam in more generality than the cases characterized by
plane strain and plane stress assumptions.

This generalized plane strain formulation represents the two-dimensional finite element model as
closely as possible to the three-dimensional finite element model. It is similar to the plane strain formu-
lation that reduces a three-dimensional stress-strain relation to a two-dimensional one, but in contrast
with most GPS formulations in the literature, it does not include out of plane degrees of freedom. In our
formulation the reduced two-dimensional stress-strain relation incorporates the effect of allowed/applied
strain ε0 in the dimension not included in the two-dimensional model. Further, since the goal is to deal
with thermal and electrical buckling analysis, an initial strain vector is incorporated in the formulation.

A finite element solver based on an eight-node quadrilateral element was developed under the new
formulation, and its results show good agreement with those reported by Varelis and Saravanos (2004)
and those obtained with ANSYS. The critical electrical and thermal buckling loads for examples other
than those characterized by plane stress and plane strain were analyzed, and it was found that they are
significantly influenced by α, the parameter controlling the out-of-plane strains.

1. Introduction

Finite element analysis of smart structures has attracted much attention in recent years due to its wide
range of applications. A significant amount of research has gone into the analysis of piezo composite
structures. A number of finite element (FE) models have been proposed for the analysis of smart struc-
tures; and a detailed survey is given in [Benjeddou 2000]. One of the main problems addressed is the
buckling analysis of smart structures.

Three-dimensional beam models can be simulated using two-dimensional in-plane elements by consid-
ering only the longitudinal cross-section of the three-dimensional beam model. The boundary conditions
and the loading conditions can be simulated more accurately in this two-dimensional model than in the
one-dimensional beam element model. Still, the two-dimensional analysis of the beam is based on either
the plane stress or plane strain assumption, and cases outside these assumptions cannot be handled by
two-dimensional in-plane elements. The generalized plane strain formulation can be used to model cases
other than plane stress and plane strain at the cost of additional degrees of freedom.

The generalized plane strain formulation has been discussed extensively in the literature and has been
used for several applications. Most composite problems are generalized plane strain in nature, and they
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are often solved using three-dimensional finite element analysis. Lin and Yi [1991] used the generalized
plane strain formulation for the analysis of interlaminar stresses in viscoelastic composites. Krueger
et al. [2002] have critically compared the two-dimensional finite element modeling assumptions with
results from three-dimensional finite element analysis for composite skin-stiffener debonding. They have
proposed a method for analyzing the composite using one layer of brick elements instead of using plane
elements. Hu and Pagano [1997] presented a new method of solving generalized plane strain problems
by introducing out-of-plane thermal strains in a two-dimensional finite element analysis with the plane
strain model. They have done their proposed two-dimensional FE analysis using ANSYS and compared
the results and computation time with those of the three-dimensional FE models.

In most of the literature, a plate element has been used to model the piezo composite plate as well
as piezo composite beams for buckling analysis. Varelis and Saravanos [2002] developed a nonlinear
mechanics to describe piezoelectric laminated plates, including nonlinear effects due to large displace-
ments and rotations, and carried out a linear buckling analysis of plates by neglecting the nonlinear
stiffness matrix. Varelis and Saravanos [2004] carried out pre- and post-buckling analysis of plates.
Giannopoulos et al. [2007] presented a coupled formulation between thermal, electrical, and mechanical
fields incorporating nonlinearity due to large displacements, and solved for linear buckling by neglecting
the nonlinear stiffness matrix.

Figure 1. The three-dimensional piezo composite beam.

φ

− φ
Figure 2. The plane of the finite element model used for thermal and electrical buckling
analysis, with electrical boundary conditions and kinematic constraints. For thermal
buckling analysis, the applied voltage is zero.
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This paper presents a generalized plane strain FE formulation for thermal and electrical buckling of
a piezo composite beam (Figure 1). The two-dimensional model is a cross-sectional one, as shown in
Figure 2. This contrasts with the plate finite elements generally used to model a piezo composite beam
[Varelis and Saravanos 2002; 2004; Giannopoulos et al. 2007]. Our generalized plane strain formula-
tion is similar to the standard plane strain formulation (which reduces a three-dimensional stress-strain
relation to a two-dimensional stress-strain relation), in that it does not include out-of-plane degrees of
freedom. Therefore, it has fewer degrees of freedom than the conventional generalized plane strain
formulation. As we shall see, however, this does not compromise its performance.

Our formulation includes the effect of out-of-plane strain (that is, in the direction not included in
the two-dimensional FE model) via a parameter α, which intervenes in the stress-strain relationship of
the beam. The effect of the out-of-plane strain is included in the formulation through the constitutive
relations.

We compare the performance of the plane strain model, the plane stress model and the newly developed
generalized plane strain model in calculating the critical buckling voltage and critical buckling tempera-
ture of a piezo composite beam. It turns out that the present model simulates the three-dimensional FE
model more closely than the conventional plane stress or plane strain two-dimensional FE model for the
same number of degrees of freedom.

The present formulation can be used to analyze beams inside a gap or a slot which constrains expansion
of the beam in the direction not included in the two-dimensional FE model.

List of symbols

εxx , εyy, εzz Strains in the x , y and z directions
σxx , σyy, σzz Stresses in the x , y and z directions
εx0, εy0, εz0 Initial strains in the x , y and z directions

ε0
yy Free expansion strain in y direction

σ PS
yy Stress in the y direction for plane strain case
σG

yy Stress in the y direction for generalized plane strain
ε0 allowed/applied strain in the z direction

α = ε0/ε0
yy Ratio between allowed/applied strain to the free expansion strain in the z direction
{T } Stress vector
{S} Stain vector
{S0} Initial strain vector
{E} Electric field vector
{D} Electric displacement vector

[c], [s] Elastic constants matrices
[ε] Dielectric constants matrix

[d], [e] Piezoelectric constants matrix
[c̄], [s̄] two-dimensional reduced elastic constants matrices
[ε̄] two-dimensional reduced dielectric constants matrix

[d̄], [ē] two-dimensional reduced piezoelectric constants matrix
{ue} Elemental structural displacement degrees of freedom
{ϕe} Elemental electric potential degrees of freedom
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[Nu] Shape function matrix for structural displacement
[Nϕ] Shape function matrix for electric potential
[Bu] Shape function derivative matrix for structural strain
[Bφ] Shape function derivative matrix for electric field
[M] Elemental mass matrix
[Kuu] Elemental structural stiffness matrix
[Kuϕ] Elemental piezostructure coupling matrix
[Kϕϕ] Elemental capacitance matrix
{ fe} Elemental external mechanical force
{ge} Elemental electrical charge
[Kσ ] Elemental geometric nonlinear matrix

s Elemental stress matrix
[M] Assembled mass matrix
[K uu] Assembled structural stiffness matrix
[K uϕ] Assembled piezostructure coupling matrix
[Kϕϕ] Assembled capacitance matrix
[Kσ ] Assembled geometric nonlinear matrix
{ f } Assembled external mechanical force
[K eq] Assembled equivalent capacitance matrix

2. Formulation

Generalized plane strain FE formulation. The three-dimensional stress-strain relation is given by

εxx = s11σxx + s12σyy + s13σzz + εx0, (1)

εyy = s21σxx + s22σyy + s23σzz + εy0, (2)

εzz = s31σxx + s32σyy + s33σzz + εz0, (3)

where εxx , εyy and εzz are the strains in the x , y and z directions and σxx , σyy and σzz are the stresses
in the x , y and z directions. The strains εx0, εy0 and εz0 are the initial strains. Consider a plane strain
case where εyy = γxy = γyz = 0. Because of the assumption εyy = 0, Equation (3) becomes εyy =

s21σxx + s22σyy + s23σzz + εy0 = 0, which gives

σyy =−
s21

s22
σxx −

s23

s22
σzz −

εy0

s22
. (4)

This σyy is required to resist the y direction strain ε0
yy caused by the stresses σxx and σzz . Therefore,

σyy produces a strain equal to ε0
yy but in the opposite direction, so the net strain in the y direction is

maintained at zero.
Based on this argument, Equation (4) can be recast as

s22σyy =−ε
0
yy =−s21σxx − s23σzz − εy0. (5)

Substituting σyy from (4) into (1) and (2) for the plane strain case implies, from (5), that we are incorpo-
rating the effect of −ε0

yy in the two-dimensional stress-strain relation. The stress-strain relationship then
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becomes 
εxx

εzz

γxz

=
 s11− s2

12/s22 s13− s12s23/s22 0
s13− s12s23/s22 s33− s2

23/s22 0
0 0 s55



σxx

σzz

τxz

+

εx0− (s12/s22)εy0

εz0− (s23/s22)εy0

γxz0

 , (6)

which enforces the condition εyy = 0.
Now consider the case where εyy = ε

0
yy but γxy = γyz = 0, that is, the y direction is allowed to expand

freely, as shown in Figure 3. In this case the effect of ε0
yy caused by the stresses σxx and σzz has to be

incorporated into the two-dimensional stress-strain relation. From (5), it is clear that to produce positive
strain ε0

yy , the stress σyy should be in the opposite direction of the plane strain case. From (5) we get

s22σ
G
yy = s22

(
−σ PS

yy

)
= ε0

yy = s21σxx + s23σzz + εy0, (7)

σG
yy =

(
−σ PS

yy

)
=

s21

s22
σxx +

s23

s22
σzz +

εy0

s22
, (8)

where σG
yy and σ PS

yy are the stresses in the y direction for the case εyy = ε
0
yy and for the plane strain case,

respectively.
By substituting σG

yy from (8) into (1) and (2), we obtain for the stress-strain relationship the equation
εxx

εzz

γxz

=
 s11+ s2

12/s22 s13+ s12s23/s22 0
s13+ s12s23/s22 s33+ s2

23/s22 0
0 0 s55



σxx

σzz

τxz

+

εx0+ (s12/s22)εy0

εz0+ (s23/s22)εy0

γxz0

 , (9)

which enforces the condition εyy = ε
0
yy .

Before enforcing this condition, however, the condition εyy = 0 has to be enforced, which means
that before applying the strain ε0

yy , there should not be any strain in the y direction. By enforcing the

ε   / 2

ε   / 2

Figure 3. The beam is allowed to expand freely in y direction.
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condition εyy = 0, the stress-strain relation becomes (6). Introducing the quantities

s ′11= s11−
s2

12

s22
, s ′13= s13−

s12s23

s22
, s ′33= s33−

s2
23

s22
, ε′x0= εx0−

s12

s22
εy0, ε′z0= εz0−

s23

s22
εy0, (10)

we can recast (6) as 
εxx

εzz

γxz

=
s ′11 s ′13 0

s ′13 s ′33 0
0 0 s55



σxx

σzz

τxz

+

ε′x0
ε′z0
γxz0

 . (11)

Next, the condition εyy = ε
0
yy has to be enforced on the y direction for the strain-free (εyy = 0) stress-

strain relation. By enforcing the condition εyy = ε
0
yy , the stress-strain relation becomes (9) . Now the

stress-strain relation becomes
εxx

εzz

γxz

=
 s ′11+ s2

12/s22 s ′13+ s12s23/s22 0
s ′13+ s12s23/s22 s ′33+ s2

23/s22 0
0 0 s55



σxx

σzz

τxz

+

ε′x0+ (s12/s22)εy0

ε′z0+ (s23/s22)εy0

γxz0

 (12)

The two conditions εyy = 0 and εyy = ε
0
yy can be enforced in any order; this is just a superposition of

one condition over the other. The condition εyy = 0 enforces zero strain in the y direction, and εyy = ε
0
yy

says the beam can expand freely in the y direction. By superimposing these two conditions, the beam
is forced to expand exactly the same amount as that of free expansion in the y direction. The derivation
for generalized plane strain is carried out based on this analogy.

For the generalized plane strain case we have εyy = ε
0 but γxy = γyz = 0. In this case, ε0 is the

allowed/applied strain in the y direction. If ε0 is specified as a multiple of ε0
yy , its effect can be taken

into account in the two-dimensional stress-strain relation.
Let the allowed/applied strain be ε0

= αε0
yy , as shown in Figures 4 and 5. The reduced two-dimensional

stress-strain relation, incorporating the effect of ε0, becomes
εxx

εzz

γxz

=
 s ′11+αs2

12/s22 s ′13+αs12s23/s22 0
s ′13+αs12s23/s22 s ′33+αs2

23/s22 0
0 0 s55



σxx

σzz

τxz

+

ε′x0+α(s12/s22)εy0

ε′z0+α(s23/s22)εy0

γxz0

 , (13)

where s ′11, s ′12, and s ′22 are given by (10) .
If α in (13) is 0, then (13) reduces to (6), which is a stress-strain relation for the plane strain case. If

the α in (13) is 1, then (13) reduces to (12), which is a stress-strain relation for the condition εyy = ε
0
yy .

By substituting (10) into (12) , the stress-strain relation for the condition εyy = ε
0
yy becomes

εxx

εzz

γxz

=
s11 s13 0

s13 s33 0
0 0 s55



σxx

σzz

τxz

+

εx0

εz0

γxz0

 . (14)

This is a simple two-dimensional stress-strain relation which completely does not constrain the strain
ε0

yy , caused by the stresses σxx and σzz .
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ε  / 2 = α ε   / 2

ε  / 2 = α ε   / 2

0 < α < 1

Figure 4. Beam is not allowed to undergo full free expansion in the y direction.

ε  / 2 = α ε   / 2

ε  / 2 = α ε   / 2

ε  / 2 = α ε   / 2

ε  / 2 = α ε   / 2

Figure 5. Left: Beam expands more than the free expansion in the y direction by the
external load. Right: Beam gets compressed in the y direction by the external load.

The generalized plane strain stress-strain relations of (13) can be extended to generalized plane strain
two-dimensional piezostructure coupled stress-strain relations. The constitutive equations for a piezo-
electric material are

{T } = [cE
]
(
{S}− {S0}

)
− [e]T {E}, {D} = [e]{S}+ [εS

]{E}, (15)

where {T } is the stress vector, {S} the stain vector, {S0} the initial strain vector, {E} the electric field
vector, {D} the electric displacement vector, [c] and [s] the elastic constants matrices, [ε] the dielectric
constants matrix, and [d] and [e] the piezoelectric constants matrix, and where superscript E and S
indicate that the specified values are evaluated at constant E and S.
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Equation (15) can be written in strain form as

{S} = [s E
]{T }+ [d]T {E}+ {S0}, {D} = [d]{T }+ [εE

]{E}, (16)

where

[e] = [d][cE
], [cE

] = [s E
]
−1. (17)

Equation (16) can be recast as{
{S}
{D}

}
=

[[
s E
]

[d]T

[d]
[
εE
]] {{T }
{E}

}
+

{
{S0}

{0}

}
. (18)

This in turn can be expanded for the case where the polarization direction is the positive z axis as follows:

S1

S2

S3

S4

S5

S6

D1

D2

D3


=



s11 s12 s13 0 0 0 0 0 d31

s12 s22 s23 0 0 0 0 0 d32

s13 s23 s33 0 0 0 0 0 d33

0 0 0 s44 0 0 0 d24 0
0 0 0 0 s55 0 d15 0 0
0 0 0 0 0 s66 0 0 0
0 0 0 0 d15 0 ε11 0 0
0 0 0 d24 0 0 0 ε22 0

d31 d32 d33 0 0 0 0 0 ε33





T1

T2

T3

T4

T5

T6

E1

E2

E3


+



S10

S20

S30

S40

S50

S60

0
0
0


. (19)

In the piezostructure coupled two-dimensional case, the xz plane is considered for analysis as shown
in Figure 2, and the y direction is the be the out-of-plane direction. Now consider the plane strain case,
where

S2 = S4 = S6 = 0, (20)

D2 = E2 = 0. (21)

By substituting (20) into (19) , the second row of (19) becomes S2= s12T1+s22T2+s23T3+d32 E3+S20=0,
which gives

T2 =−
s12

s22
T1−

s23

s22
T3−

d32

s22
E3−

S20

s22
. (22)

Substituting (22) into (19) and using (20) and (21), we obtain the reduced stress-strain relationship in
the plane strain case in the form

S1

S3

S5

D1

D3


=


s ′11 s ′13 0 0 d ′31
s ′13 s ′33 0 0 d ′33
0 0 s55 d15 0
0 0 d15 ε11 0

d ′31 d ′33 0 0 ε′33





T1

T3

T5

E1

E3


+



S′10
S′30
S50

0
0


, (23)
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where

s ′11 = s11−
s2

12

s22
, s ′13 = s13−

s12s23

s22
, s ′33 = s33−

s2
23

s22
, (24)

d ′31 = d31−
s12d32

s22
, d ′33 = d33−

s23d32

s22
, ε′33 = ε33−

d2
32

s22
, (25)

S′10 = S10−
s12

s22
S20, S′30 = S30−

s23

s22
S20. (26)

The arguments given for the pure elastic generalized plane strain case can be extended for the piezo-
structure coupled generalized plane strain case. The reduced two-dimensional piezostructure coupled
stress-strain relationship for the generalized plane strain case is given by

S1

S3

S5

D1

D3

=


s ′11+αs2
12/s22 s ′13+αs12s23/s22 0 0 d ′31+αs12d32/s22

s ′13+αs12s23/s22 s ′33+αs2
23/s22 0 0 d ′33+αs23d32/s22

0 0 s55 d15 0
0 0 d15 ε11 0

d ′31+αs12d32/s22 d ′33+αs23d32/s22 0 0 ε′33+αd2
32/s22




T1

T3

T5

E1

E3

+


S′10−αs12S20/s22

S′30−αs23S20/s22

S50

0
0

,
which can be recast as{
{S}
{D}

}
=

[
[s̄] [d̄]T

[d̄] [ε̄ ]

]{
{T }
{E}

}
+

{{
S0
}

{0}

}
, {S} = [s̄]{T }+ [d̄]T {E}+ {S0}, {D} = [d̄]{T }+ [ε̄]{E}.

Using (17) , this can further be rewritten in stress form as

{T } = [c̄]
(
{S}−

{
S0
})
− [ē]T

{E} , {D} = [ē] {S}+ [ε̄] {E} .

Finite element formulation. In order to model the piezo composite beam, an eight-node quadrilateral
element was developed. The finite element model of the piezo composite beam is shown in Figure 6.
Each node has three degrees of freedom: axial displacement (u1), transverse displacement (u3) and
electric potential (φ). The elemental degrees of freedom are

{ue} =
{
u1

1, u1
3, u2

1, u2
3, u3

1, u3
3, . . . , u8

1, u8
3
}T
, {ϕe} = {ϕ1, ϕ2, ϕ3, . . . , ϕ8}

T . (27)

φ

− φ

ξ

Figure 6. Finite element model of the piezo composite beam with kinematic constraints
and electrical boundary conditions for electrical buckling analysis and (with zero applied
voltage) for thermal buckling analysis.
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The displacement {u} = {u1, u3}
T and electric potential (φ) within the element can be expressed in

terms of element shape functions as

{u} = [Nu]{ue}, {ϕ} = [Nϕ]{ϕe},

where

[Nu]=
[

N1 0 N2 0 . . . N8 0
0 N1 0 N2 . . . 0 N8

]
, [Nϕ] = [N1 N2 N3 . . . N8],

N1, N2, . . . , N8 being the shape functions.
The strain displacement relation can be expressed as

{S} =


S1

S3

S5

=


∂u1/∂x1

∂u3/∂x3

∂u1/∂x3+ ∂u3/∂x1

= [Bu] {ue} ,

where [Bu] is the shape function derivative matrix:

[Bu]=

∂N1/∂x1 0 ∂N2/∂x1 0 . . . ∂N8/∂x1 0
0 ∂N1/∂x3 0 ∂N2/∂x3 . . . 0 ∂N8/∂x3

∂N1/∂x3 ∂N1/∂x1 ∂N2/∂x3 ∂N2/∂x1 . . . ∂N8/∂x3 ∂N8/∂x1


The electric field-potential relation can be expressed as

{E} =
{

E1

E3

}
=

{
−∂ϕ/∂x1

−∂ϕ/∂x3

}
= [Bϕ] {ϕe} ,

where [Bφ] is the shape function derivative matrix:

[
Bϕ
]
=

[
∂N1/∂x1 ∂N2/∂x1 ∂N3/∂x1 . . . ∂N8/∂x1

∂N1/∂x3 ∂N2/∂x3 ∂N3/∂x3 . . . ∂N8/∂x3

]
.

After application of the variational principle, the coupled finite element matrix equation becomes (see
[Allik and Hughes 1970; Lerch 1990; Tzou and Tseng 1990])

[M]{üe}+ [Kuu]{ue}+ [Kuϕ]{ϕe} = { fe}, [Kϕu]{ue}+ [Kϕϕ]{ϕe} = {ge}, (28)

where [M] =
∫

V ρ[N ]
T
[N ] dV is the element mass,

[Kuu]=

∫
V
[Bu]

T
[c̄E
][Bu] dV, [Kuϕ]=[Kϕu]

T
=

∫
V
[Bu]

T
[ē]T [Bϕ] dV, [Kϕϕ]=

∫
V
[Bϕ]T [ε̄][Bϕ] dV

are the stiffness, piezoelectric coupling and capacitance matrices, and

{ fe} =

∫
V
[Bu]

T
[c̄E
]{S0} dV +

∫
V
[N ]T {Pb} dV +

∫
�1

[N ]T {Ps}d�1+ [N ]T {Pc}, (29)

{ge} = −

∫
�2

[N ]T P d�2− [N ]T Q (30)
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are the external mechanical force and electrical charge. The first term in (29) is the element load vector
due to initial strains, and the other terms are body, surface, and point forces, respectively [Cook et al.
2003].

In order to do the buckling analysis, the geometric nonlinear matrix can be computed as [Cook et al.
2003]

[Kσ ]=
∫

V
[G]T

[
s 0
0 s

]
[G] dV,

where

s =
[
σx0 τxz0

τxz0 σz0

]
and [G]=


∂N1/∂x1 0 ∂N2/∂x1 0 . . . ∂N8/∂x1 0
∂N1/∂x3 0 ∂N2/∂x3 0 . . . ∂N8/∂x3 0

0 ∂N1/∂x1 0 ∂N2/∂x1 . . . 0 ∂N8/∂x1

0 ∂N1/∂x3 0 ∂N2/∂x3 . . . 0 ∂N8/∂x3


are the stress and shape function derivative matrices.

For static analysis and for the case where only a mechanical load exists, Equation (28) becomes, after
assembling the stiffness matrices,

[K uu]{u}+ [K uϕ]{φ} = { f }, [Kϕu]{u}+ [Kϕϕ]{φ} = 0; (31)

the assembled geometric nonlinear matrix is [Kσ ].
In the case of thermal buckling analysis, since only the thermal load exists, the right-hand side of

(31)1 is simply

{ f } =
∑∫

V
[Bu]

T
[c̄E
]{S0} dV ,

and the assembled buckling eigenequation is(
[K uu] + λ[Kσ ]

)
{δu} = {0}. (32)

In the case of electrical buckling analysis, the right-hand side of (31) is { f }= {0} and the known quantities
are only the voltages on the electrodes. Therefore, for electrical buckling, (31) becomes

[K uu]{u}+ [K uϕ]{φ} = {0}, [Kϕu]{u}+ [Kϕϕ]{φ} = {0}. (33)

Since the FE model is a cross section model, as shown in Figure 6, the voltages are known only at the
electrodes. There are other nodes in the piezo layer whose potentials have to be evaluated, and this in
a coupled way. To evaluate the voltages applied in the piezolayer in a coupled way, Equation (33)1 is
solved for {u} and it is substituted into (33)2 to get an equivalent stiffness matrix

[K eq] = [Kϕϕ] + [Kϕu][K uu]
−1(−[K uϕ].)

Now [K eq] is a coupled capacitance matrix because the effect of the first equation of (33)1 has been
incorporated into the second equation of (33)2 and the unknown potentials can be evaluated using the
equation

[K eq]{φ} = {0}. (34)

The unknown potentials in the piezolayers have been determined by taking the known potentials to the
right-hand side and solving (34) , which is similar to the process of solving thermal problems where one
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knows temperatures on some nodes and the temperatures on the other nodes are evaluated. Once all the
potentials are known, (33)1 can be used to determine the displacements. The buckling eigenequation is
(32).

3. Results and discussion

A finite element solver was written implementing the formulation above. In this section we discuss some
validation tests and then new example calculations involving a system where neither plane stress nor
plain strain conditions are assumed.

Validation. The code was validated for electric buckling by comparison with the results in [Varelis and
Saravanos 2004]. The same example was also subjected to a three-dimensional FE computation in AN-
SYS; due to the limitations of ANSYS, a thermal analog of the linear electrical buckling problem [Dong
and Meng 2006] was solved as a proxy.

The example beam of Varelis and Saravanos is a three-layer [pzt/Al/pzt] composite with length 200 mm,
width 20 mm, thickness of each piezo layer tp = 0.25 mm, and aluminum layer thickness ta = 0.5 mm.
In the case α = 1 (the beam is allowed to expand freely in the y direction), we obtain these values for
the critical electrical buckling voltage:

present approach 189.6 V

ANSYS 3D model 188.8 V

[Varelis and Saravanos 2004] 188 V

(35)

We observe good agreement between all three results.
For thermal buckling validation, we took an example beam from [Giannopoulos et al. 2007]: a three-

layer [pzt/Al/pzt] composite with length 70 mm and width 5 mm. The thickness of each piezo layer is
tp = 0.191 mm and that of the aluminium layer is ta = 0.070 mm. The beam is subjected to a uniform
temperature rise above the ambient temperature, and again we take α = 1. These are the values obtained
for the critical thermal buckling temperature:

present approach 29.7◦C

ANSYS 3D model 28.3◦C
(36)

No direct comparison is possible with the calculations in [Giannopoulos et al. 2007], since that reference
only contains the thermal buckling analysis of plates. However, we performed a three-dimensional anal-
ysis in ANSYS for the same problem solved by these authors, and it was found that the ANSYS result
and their result agree very well.

Further examples. We next performed the thermal and electrical buckling analysis for an example
structure taken from [Giannopoulos et al. 2007], using different assumptions for the parameter α. In
the particular cases of plane stress assumptions and plane strain assumptions, the results obtained are
compared with those obtained with ANSYS; however, the more general case (neither plane stress nor
plane strain) has also been studied.

The beam is a three layer [pzt/Al/pzt] composite with length 70 mm and width 5 mm. The thickness
tp of each piezo layer is 0.191 mm and the aluminium layer thickness ta is 0.070 mm.
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Electrical buckling. An equal voltage was applied to the piezolayers in the corresponding direction as
shown in Figure 6, so that pure compression is developed in the structure due to the kinematic constraints
imposed by the boundary conditions. The results obtained for the buckling voltage with our FE solver
under assumptions of plane stress, plane strain, and free expansion (α = 1) are shown here along with
those obtained from an ANSYS solution of the thermal analog [Dong and Meng 2006] to our problem:

free expansion plane stress plane strain

ANSYS (3D/2D/2D) 98.3 V 102.7 V 78.4 V
present approach 97.5 V 102.3 V 78.2 V

(37)

This shows good agreement between the ANSYS results and those from the present analysis; in
particular, our critical buckling voltage calculated using α = 1 (free expansion) matches closely the one
obtained using a three-dimensional analysis in ANSYS.

It is also clear that the calculated critical buckling voltage varies greatly with the constraints assumed.
This dependence was explored further by varying the value of α in the calculation using the present
approach. For α = 1 (free expansion), as we have seen, we obtained 97.5 V, then 91.8 V for α = 0.75,
and 86.7 V for α = 0.5, 82.2 V for α = 0.25, and finally 78.2 V, for α = 0 (plane strain assumption). The
decrease in the critical buckling voltage with α can be rationalized by observing that as α is reduced,
compressive stress is increased in the y direction (perpendicular to the plane of the FE model), which in
turn increases the voltage produced in the piezo layer. The developed voltage is such that it causes the
piezo layer to expand in the other two directions (in the plane of the FE model). This expansion causes
additional compressive stress due to the imposed kinematic constrains on the boundary, which in turn
makes the structure buckle at lower voltages.

We extended the computation to α < 0, meaning that external strain is applied in compression (Figure
5, right), and to α > 1, meaning that external strain is applied in tension (Figure 5, left). When α < 0
the trend just discussed still holds true: the calculated critical buckling voltage decreases in tandem with
α. Thus for α < 0 we have 74.6 V at α = −0.25 and 71.3 V at α = −0.5. When α > 1 the critical
buckling voltage increases (103.9 V at α = 1.25 and 111.3 V at α = 1.5); this is because the expansion
in the y direction produces voltage in such a way that the piezo layer contracts in the xz plane. Due to
the kinematic constraints imposed by the boundary condition, this produces tensile stress opposed to the
compressive stress produced by electrical actuation, resulting in an increase in the buckling voltage.

Thermal buckling. The analysis carried out in the preceding paragraphs was repeated for thermal buck-
ling. Here the setup as the same as in Figure 6, but there is no applied voltage. Instead, the beam
is subjected to a uniform temperature rise above the ambient temperature. The buckling temperatures
obtained in the calculations under various assumptions are as follows:

free expansion plane stress plane strain

ANSYS (3D/2D/2D) 28.30 ◦C 29.62 ◦C 22.56 ◦C
present approach 29.66 ◦C 29.66 ◦C 22.44 ◦C

(38)

Again we see good agreement between the ANSYS calculations and those based on the present approach.
Further, the calculations yield the same critical buckling temperature using the plane stress assumption
or using α = 1 (free expansion). This is because the thermal expansion mechanism is given by the initial
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strain vector {S0}, which is not reduced under the plane stress assumption. More precisely, when the
three-dimensional stress-strain relation (1) is reduced to a two-dimensional stress-strain relation based
on the plane stress assumption (T2= T4= T6= 0, D2= E2= 0), the initial strain vector {S0} is unchanged.

Here are the results given by the present approach for various values of α:

α =−0.5 19.9529◦C α = 0.25 23.9296◦C α = 1 29.6673◦C

α =−0.25 21.1288◦C α = 0.75 27.4970◦C α = 1.5 35.1063◦C

α = 0 22.4481◦C α = 0.5 25.6004◦C α = 1.25 32.1751◦C

We see that the critical buckling temperature increases with α. This is because, as α decreases, the
compressive stress in the direction perpendicular to the FE model increases, which makes the material
expand in the other two directions due to the Poisson effect. This expansion causes additional compres-
sive stress in the beam due to the kinematic constraints imposed by the boundary condition, reducing the
critical buckling temperature. The influence of α on the critical buckling temperature is similar to that
of the influence in critical buckling voltage as discussed earlier.

Combined thermal and electrical buckling. In the combined thermal and electrical buckling analysis,
the critical electrical buckling voltage was predicted for different uniform temperature increases in the
beam. All analyses carried out for electrical and thermal buckling were also repeated for combined
thermal and electrical buckling. The results obtained under different assumptions are presented in Figure
7 (comparison with ANSYS calculation performed on the thermal analog [Dong and Meng 2006]) and
in Figure 8 (dependence on α). The results are similar to those just discussed.

Figure 7. Values of critical buckling voltage obtained with the present approach and
with ANSYS [Varelis and Saravanos 2004].



FE FORMULATION FOR THERMOELECTRICAL BUCKLING ANALYSIS OF PIEZO COMPOSITE BEAM 1639

Figure 8. Influence of α on the combined thermal and electrical buckling analysis.

4. Conclusion

A generalized plane strain FE formulation was developed to predict the critical buckling voltage and
critical buckling temperature of a piezo composite beam for cases other than those characterized by
plane strain and plane stress assumptions. The two-dimensional FE formulation presented in this paper
is capable of describing the strain ε0 allowed/applied in the direction which is not included in the two-
dimensional FE model, (here the y direction) if the strain ε0 is specified in terms of the free expansion
strain ε0

yy . An eight-node quadrilateral element was developed based on the new formulation, and the
FE solver results were validated by comparison to the results in [Varelis and Saravanos 2004] and those
obtained with ANSYS. These results are in good agreement with each other. The critical electrical
and thermal buckling load for the cases other than those characterized by plane stress and plane strain,
which can be handled by the present two-dimensional FE solver, was analyzed, and it was found that the
influence of α on the critical buckling voltage as well as the critical buckling temperature is significant.
Since the present formulation varies only in the constitutive equation matrix reduction, this formulation
can be easily incorporated into the existing piezostructure coupled FE solvers.
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