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CRACK FRONT POSITION AND CRACK BACK POSITION TECHNIQUES FOR
EVALUATING THE T-STRESS AT CRACK TIP USING FUNCTIONS OF A

COMPLEX VARIABLE

Y. Z. CHEN, Z. X. WANG AND X. Y. LIN

In this paper, the crack front position and the crack back position techniques for evaluating the T-stress
using complex variables are suggested. In the crack front technique, an expression for stress components
in the crack front position is expressed through a complex variable. The limit value of the expression
from the crack front position will give the T-stress. In the crack back technique, the other expression of
stress components in the crack back position is expressed through the complex variable. The limit value
of the expression from the crack back position will give the T-stress. The suggested techniques are used
to evaluate T-stress in the arc crack and the curved crack problems. It is found from a detailed derivation
that both techniques give the same result in the crack problem. Numerical examples are carried out for
two problems: an elliptic crack with a central crack and a curved crack with parabolic configuration.

1. Introduction

The T-stress term at the vicinity of a crack tip was introduced in earlier years [Williams 1957; Rice 1974].
The T-stress term may affect the plastic zone ahead of crack tip [Larsson and Carlsson 1973; Betegon
and Hancock 1991]. In addition, the T-stress has significant influence on the directional stability for the
crack growth path [Rice 1974; Melin 2002]. A maximum tensile stress criterion for the onset of crack
growth was suggested, which considers the role of the stress intensity factors and T-stress [Smith et al.
2006]. The T-stress before and after crack kinking in two-dimensional elastic solids was studied [Li
and Xu 2007]. Contributions from the T-stress before crack kinking to the T-stress and stress intensity
factors of the kinked crack are clearly described.

A variety of methods were used to evaluate the T-stress. The Eshelby technique was used [Kfouri
1998]. The T-stress evaluation is completed by using the weight function method [Sham 1989; 1991;
Chen 1997]. The boundary collocation method and the weight function were developed to evaluate the
T-stress [Fett 1997; 1998a; 1998b; 2001; Fett and Rizzi 2005].

The finite element method was used to evaluate the T-stress in crack problems [Ayatollahi et al. 1998;
Chen et al. 2001]. A hybrid finite element at the vicinity of the crack tip was suggested [Tong et al. 1973;
Cheung and Chen 1991; Karihaloo and Xiao 2001; Xiao and Karihaloo 2002; Xiao et al. 2004]. The
formulation of a hybrid finite element depends on the Williams expansion. The element is embedded in
the usual finite elements. Once the problem is solved, the higher-order terms as well as the T-stress in
the expansion are obtainable. Using the HCE (hybrid crack element), the higher-order terms in the stress
distribution of a three-point bend beam are evaluated [Karihaloo and Xiao 2001]. The problem for an
edge crack in a finite plate with wedge force on the crack face was studied [Xiao and Karihaloo 2002].
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The problem was reduced to a problem of a traction-free edge crack with loading on the outer boundary.
The usage of the Williams expansion and the boundary collocation method gave the final solution.

A stress difference method was developed to evaluate the T-stress in the crack problem [Yang and
Ravi-Chandar 1999]. It was proved that a limit of the difference between two normal stress components
ahead of a crack tip would give the T-stress.

Using the dislocation distribution method and the singular integral equation, several T-stress problems
were solved [Broberg 2005]. Those problems include the problems of: (i) two collinear cracks, (ii) an
edge crack, and (iii) cracks emanating from a circular hole. A Fredholm integral equation was used to
evaluate the T-stress in the multiple crack problems [Chen 1994]. The solved problems were limited
to the line crack case. In addition, a compendium of the T-stress solutions in the crack problems was
carried out [Sherry et al. 1995].

From the methodology for evaluating the T-stress, researchers suggested two techniques for obtaining
the T-stress in the line crack case. In the stress difference method, the T-stress is obtained from the
stress difference in crack front position [Yang and Ravi-Chandar 1999]. In the mode I fracture case, the
T-stress evaluation was related to a stress evaluation in the crack back position [Ayatollahi et al. 1998].
The mentioned derivations were related to the real analysis only. It is seen that those methods are not easy
to use in some complicated cases, for example, for evaluating the T-stress in the curved crack problem.

It is known that in most cases the complex potentials in the plane elasticity crack problem can be
formulated successfully [Savruk 1981; Chen and Lin 2006]. In addition, the stress components can be
expressed by the complex potentials explicitly. Therefore, it is a particular advantage to use a complex
variable for evaluating the SIF (stress intensity factor) as well as the T-stress. In this paper, the crack
front position and crack back position techniques for evaluating T-stress using the complex variable are
suggested. In the crack front technique, an expression for stress components in the crack front position is
expressed through the complex variable. The limit value of the expression from the crack front position
will give the T-stress. In addition, in the crack back technique, the other expression for stress components
in the crack back position is expressed through the complex variable. The limit value of the expression
from the crack back position will give the T-stress. It is found from a detailed derivation that both
techniques give the same result in the crack problem.

2. Basic equations in the crack front position and the crack back position techniques

In the crack front position technique, the T-stress is evaluated in the front position of the crack. In
addition, in the crack back position technique, the T-stress is evaluated in the back position of the crack.
The two techniques with usage of a complex variable are introduced below.

2.1. The stress expansions in the vicinity of crack tip. The stress distribution near a crack tip under
the traction-free crack face was investigated early on by Williams [1957]. A little modification for the
Williams expansion is suggested below. It is assumed that the crack face has the following loadings
(Figure 1)

σ+y = σ
−

y = pc, σ+xy = σ
−

xy = qc. (1)
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From the Williams expansion, the stresses at the crack tip area can be expressed as[
σx σxy

σxy σy

]
=

K I
√

2πr

[
f11(θ) f12(θ)

f12(θ) f22(θ)

]
+

K I I
√

2πr

[
g11(θ) g12(θ)

g12(θ) g22(θ)

]
+

[
T qc

qc pc

]
, (2)

where the first two terms in the expansion form are singular at the crack tip, K I , K I I denote the mode
I and mode II stress intensity factors respectively, and the functions fi j (θ), gi j (θ) represent the angular
distributions of stresses at crack tip. In Equation (2), the third term is finite and bounded. The term T is
denoted as the T-stress and can be regarded as the stress acting parallel to the crack flanks. In Equation
(1) the term O(r1/2) has been neglected for clarity. In addition, the angular distribution can be expressed
as [Williams 1957] f11

f12

f22

= cos(θ/2)

1− sin(θ/2) sin(3θ/2)
sin(θ/2) cos(3θ/2)

1+ sin(θ/2) sin(3θ/2)

 ,
g11

g12

g22

=
− sin(θ/2)[2+ cos(θ/2) cos(3θ/2)]

cos(θ/2)[1− sin(θ/2) sin(3θ/2)]
sin(θ/2) cos(θ/2) cos(3θ/2)

. (3)

Clearly, substituting θ =±π into Equation (2) will yield the stresses σy = pc and σxy = qc, which are
applied on the crack face.

Note that Equation (2) represents a pattern of stress distribution at the vicinity of crack tip. It is easily
seen that the stress field defined by Figure 1 was solely determined by two factors: (1) the tractions
σ+y = σ

−
y = pc, σ+xy = σ

−
xy = qc applied on the crack face, (2) the tractions applied along the outer

boundary CDEFGH in Figure 1. Therefore, the tractions σ+y = σ
−
y = pc, σ+xy = σ

−
xy = qc applied on the

crack face cannot alone determine the K I , K I I and T values. Alternatively, there is no definite relation
between (i) the tractions σ+y = σ

−
y = pc, σ+xy = σ

−
xy = qc applied on the crack face and (ii) the stress field

and the T-stress at the crack tip. In this study, it is assumed that pc and qc are given beforehand. In this
case, the K I , K I I and T values will be determined by the tractions applied on the boundary CDEFGH.

Figure 1. A finite cracked plate with loadings on the crack face.
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Let θ = 0 and r = s1 in Figure 1, from Equations (2), (3), we have

σx =
K I
√

2πs1
+ T + O(s1/2

1 ), σy =
K I
√

2πs1
+ pc+ O(s1/2

1 ). (4)

Therefore, from Equation (4), the following equation is obtained

T = lim
s1→0

(σx − σy)+ pc or T =− lim
s1→0

(σy − σx)+ pc (5)

This equation will be used for the crack front position technique. In fact, this equation was suggested in
[Yang and Ravi-Chandar 1999].

The necessity for introducing Equations (1), (2), and (5) can be seen from an example described in
Section 5. In the example, the T-stress in the curve crack problem is evaluated. In the problem, the stress
field of the original problem must be decomposed into the uniform stress field and the perturbation stress
field. In the perturbation stress field, the crack face is applied by the normal and shear tractions. Clearly,
for investigating the T-stress in the perturbation field (in Figure 2b), the usage of Equations (1), (2), and
(5) is necessary simply because the normal and shear tractions are applied on the crack face. When some
solutions to the traction-free condition on the crack face are available, we simply let pc = 0 and qc = 0
in the relevant equations.

Alternatively, let θ = π and r = s2 in Figure 1, and from Equations (2), (3) we have

σ+x =−
2K I I
√

2πs2
+ T + O(s1/2

2 ), σ+y = pc+ O(s1/2
2 ). (6)

In addition, let θ =−π and r = s2, and we have

σ−x =
2K I I
√

2πs2
+ T + O(s1/2

2 ), σ−y = pc+ O(s1/2
2 ). (7)

(o)

Same in magnitude and opposite in direction for σN , σN T

(a) (b)

Figure 2. Superposition method: (o) the original field, a curved crack in an infinite plate
with the remote loading σ∞y = p2, or σ∞x = p1, or σ∞xy = q; (a) the uniform field, a perfect
plate with remote loading σ∞y = p2, or σ∞x = p1, or σ∞xy = q, the subscript u denoting
the uniform field; (b) the perturbation field, a curved crack with loading on the crack
face, the subscript p denoting the perturbation field.
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In Equations (6) and (7), σ+x , σ+y (σ
−
x , σ

−
y ) denote the stress component along the upper (lower) side,

respectively (Figure 1). Therefore, from Equations (6) and (7), the following equation is obtained:

T = lim
s2→0
{[(σ+x + σ

+

y )+ (σ
−

x + σ
−

y )]/2}− pc or T = lim
s2→0
{(σ+x + σ

−

x )/2}. (8)

Equation (8) can be used for the general case, which is first suggested by us in this paper.
In the case of a mode I fracture, or K I I = 0, the above-mentioned equations can be reduced to

T = lim
s2→0
{σ+x + σ

+

y }− pc = lim
s2→0
{σ−x + σ

−

y }− pc or T = lim
s2→0

σ+x = lim
s2→0

σ−x . (9)

This equation will be used in the crack back position technique. In fact, Equation (9) was suggested in
[Ayatollahi et al. 1998].

2.2. T-stress expressions in crack front position and crack back position techniques using a complex
variable. The following analysis depends on the complex variable function method in plane elasticity
[Muskhelishvili 1953]. In this method, the stresses (σx , σy, σxy), the resultant forces (X, Y ), and the
displacements (u, v) are expressed in terms of complex potentials φ(z), ψ(z), 8(z)= φ′(z), and 9(z)=
ψ ′(z) such that

σx + σy = 4 Re8(z), (10)

σy − iσxy = 2 Re8(z)+ z8′(z)+9(z), (11)

σy − σx + 2iσxy = 2(z̄8′(z)+9(z)), (12)

or

σy − σx − 2iσxy = 2(z8′(z)+9(z)), (13)

f =−Y + i X = φ(z)+ zφ′(z)+ψ(z), (14)

2G(u+ iv)= κφ(z)− zφ′(z)−ψ(z), (15)

where z = x + iy denotes a complex variable, G is the shear modulus of elasticity, κ = (3− ν)/(1+ ν)
is for the plane stress problems, κ = 3− 4ν is for the plane strain problems, and ν is the Poisson’s ratio.
In the present study, the plane strain condition is assumed thoroughly.

It is assumed that a concrete crack problem, for example, the problem shown by Figure 1 has been
solved. Alternatively, the relevant complex potentials are obtained in advance. Therefore, from Equa-
tions (5) and (12), we have

T =−Re(σy − σx + 2iσxy)|z=s1,s1→0+ pc

=−2 Re(z̄8′(z)+9(z))|z=s1,s1→0+ pc,
(16)

(see Figure 1). This is the formula for evaluating the T-stress in the crack front position technique.
In addition, from Equations (8) and (10) we have (Figure 1)

T = lim
s2→0
{[(σ+x + σ

+

y )+ (σ
−

x + σ
−

y )]/2}− pc

= 2 Re(8+(z)+8−(z))|z=−s2,s2→0− pc.
(17)

This is the formula for evaluating the T-stress in the crack back position technique.
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3. Closed form solution for the T-stress in an arc crack using the crack front position and crack
back position techniques

A closed form solution for the T-stress in the arc crack by using the crack front position and crack back
position techniques is introduced below. The configuration of the arc crack is shown in Figure 3. The
arc crack has a spanning angle 2α with the remote loading σ∞x , σ∞y , σ∞xy . In addition to two complex
potentials 8(z) and 9(z), the following complex potential �(z) is introduced:

�(z)= 8̄
(1

z

)
−

1
z
8̄′
(1

z

)
−

1
z2 9̄

(1
z

)
. (18)

Here and after, for example, the following definition is used [Muskhelishvili 1953]

8̄
(1

z

)
=8

(1
z̄

)
. (19)

After some manipulation, the stress components in (r, θ) coordinates can be expressed as [Muskhelishvili
1953]

σr + σθ = 4 Re8(z), (20)

σr − σθ − 2iσrθ =−28(z)+ 2�̄
(1

z

)
+ 2z

(
z−

1
z̄
.
)
9(z). (21)

For the arc crack problem under the remote loading σ∞x , σ∞y , σ∞xy , there is a solution as follows
[Muskhelishvili 1953]:

8(z)= F1(z)+ F2(z), �(z)= F1(z)+ F2(z), (22)

Figure 3. An arc crack.
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where

F1(z)=
1

2X (z)

(
Coz+C1+

D1

z
+

D2

z2

)
, F2(z)=

Do

2
+
0̄1

2z2 , (23)

Co =
1
2
(01− 0̄1) sin2(α/2)+

40+ (01+ 0̄1) sin2(α/2) cos2(α/2)

2(1+ sin2(α/2))
,

C1 =−Co cosα,

Do = 20−Co,

D1 =−0̄1 cosα,

D2 = 0̄1,

(24)

0 =
σ∞x + σ

∞
y

4
, 01 =

σ∞y − σ
∞
x

2
+ iσ∞xy , (25)

X (z)=
√
(z− exp(−iα))(z− exp(iα)) (taking the branch lim

z→∞
X (z)/z = 1). (26)

The T-stress at the crack tip A is evaluated by using the crack front position technique. Similar to
Equation (16), the T-stress at the crack tip A can be evaluated by (Figure 3)

TA =−Re{σr − σθ − 2iσrθ }|z=exp(iβ),β>α,β→α + pc, (27)

where the point z = exp(iβ) with β > α is actually located in front of the crack tip A (Figure 3).
Considering (i) the traction-free crack face, where pc = 0, (ii) z− 1/z̄ = 0 for z = exp(iβ), and (iii)

substituting Equation (21) into (27), the above-mentioned equation can be reduced to

TA = 2 Re
(
8(z)− �̄

(1
z

))
z=exp(iβ),β>α,β→α

. (28)

Substituting Equations (22), (23), and (24) into (28) yields

TA = 2 Re(Do+ 0̄1 exp(−2iα))= σ∞x
(
− cos 2α+

(1− cosα)(3+ cosα)
2(3− cosα)

)
+ σ∞y

(
cos 2α+

(1− cosα)2

2(3− cosα)

)
− 2σ∞xy sin 2α, (29)

which was obtained previously by using a different method [Chen 2000].
Since σx + σy(= σr + σθ ) is invariant, similar to Equation (17), the T-stress in the crack back position

technique can be defined as

TA = {[(σ
+

r + σ
+

θ )+ (σ
−

r + σ
−

θ )]/2}|t=exp(iβ),β<α,β→α − pc. (30)

Considering the traction-free crack face, where pc = 0, and substituting Equations (20) and (22) into
(30), the above-mentioned equation can be reduced to

TA = 2 Re(8+(t)+8−(t))|t=exp(iβ),β<α,β→α. (31)



1666 Y. Z. CHEN, Z. X. WANG AND X. Y. LIN

In the crack back position, or for t = exp(iβ), where β < α, we have X+(t) = −X−(t), where X+(t),
X−(t) denotes the value of X (z) at z = t+, the positive side, and z = t−, the negative side, respectively.
Considering this point and substituting (22) into (31) yields the same result as shown by Equation (29):

TA = 2 Re(Do+ 0̄1 exp(−2iα)). (29)

4. Evaluation of the T-stress for an elliptic plate with a central crack and normal loading on the
contour

In the following analysis, we can let ω(z)= zφ̄′(z)+ ψ̄(z), �(z)= ω′(z). From Equations (10)–(15), the
stresses (σx , σy, σxy), the resultant forces (X, Y ), and the displacements (u, v) are expressed in terms of
the complex potentials φ(z) and ω(z) in the following form:

σx + σy = 4 Re8(z),

σx − σy + 2iσxy = 28(z)− 2(z− z̄)8′(z)− 2�(z̄),
(32)

f =−Y + i X = φ(z)+ (z− z̄)φ′(z)+ω(z̄), (33)

2G(u+ iv)= κφ(z)− (z− z̄)φ′(z)−ω(z̄). (34)

For an elliptic plate with a crack under the condition of symmetric loading (Figure 4), the complex
potentials can be expressed in the form [Chen 1983]:

φ(z)= φ1(z)+φ2(z), (35)

ω(z)= ω1(z)+ω2(z), (36)

where

φ1(z)= ω1(z)=
M∑

k=1

ak X (z)z2k−2, (37)

φ2(z)=−ω2(z)=
M∑

k=1

bkz2k−1, (38)

X (z)=
√

z2− a2 (taking the branch lim
z→∞

X (z)/z = 1). (39)

Figure 4. An elliptic plate with a central crack and normal loading p.
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In Equations (37) and (38), ak and bk (k = 1, 2, . . . ,M) are real undetermined coefficients. The complex
potentials shown by Equations (37) and (38) satisfy the traction-free condition [Chen 1983]. Therefore,
only the condition on the elliptic boundary needs to be satisfied for the complex potentials. The eigenex-
pansion variational method is used to evaluate the coefficients ak and bk (k = 1, 2, . . . ,M) [Chen 1983].
In Equations (37) and (38), we can denote

81(z)= φ′1(z)=�1(z)= ω′1(z), (40)

82(z)= φ′2(z)=−�2(z)=−ω′2(z). (41)

Note that, for z = s1, s1 > a and s1→ a, we have 81(z)−�1(z̄) = 0 and 82(z)−�2(z̄) = 282(z).
If the crack front position method is used, from Equations (5) and (32), and pc = 0, we have

T = lim
z=s1, s1>a, s1→a

(σx − σy)= 4 lim
z=s1, s1>a, s1→a

82(z)= 4
M∑

k=1

bk(2k− 1)a2k−2. (42)

If the crack back position method is used, from Equations (8) and (32), and pc = 0, we have

T = lim
z=s2, s2<a, s2→a

{[(σ+x + σ
+

y )+ (σ
−

x + σ
−

y )]/2} = lim
z=s2, s2<a, s2→a

2 Re{8+(z)+8−(z)}. (43)

For z= s2, s2 < a and s2→ a, both 8+1 (z) and 8−1 (z) take pure imaginary values and 8+2 (z)=8
−

2 (z)
takes a real value. Therefore, from Equations (43), the same result is obtainable

T = 4
M∑

k=1

bk(2k− 1)a2k−2. (44)

For the normal loading p (Figure 4), we choose M = 15 in Equations (37) and (38) in the eigenex-
pansion variational method [Chen 1983]. Finally, the computed results for the T-stress is expressed as

T = H(c/b, a/b)p, (45)

which are tabulated in Table 1. From Table 1 we see that, for a circular plate (c/b= 1) with a central crack,
we have T =−0.0199P for a/b = 0.1, which is a rather small value. However, we have T =−3.8334p
for a/b = 0.9, which is a rather large value. It is also seen from tabulated results that the deviation of
the computed results for the c/b = 1 case from previously obtained results [Fett 2001] is rather small.

5. Evaluation for the T-stress in a curved crack using the crack front position and crack back
position techniques

The T-stress in the curved crack problem can also be evaluated with the usage of two techniques and the
relevant complex potentials. In addition, one numerical example is presented below.

For evaluating the T-stress at the crack tip, it is suitable to use the superposition method. The original
problem is shown in Figure 2o. Without losing generality, it is assumed that the remote loading is
σ∞y = p2, or σ∞x = p1, or σ∞xy = q . The original field can be considered as a superposition of a uniform
field and a perturbation field, which are shown by Figure 2a–b, respectively. The T-stress at the crack
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a/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
c/b =

0.5 −0.0529 −0.1701 −0.2713 −0.3012 −0.2418 −0.0982 0.0904 0.1489 −0.9572
1.0 −0.0199 −0.0778 −0.1705 −0.2960 −0.4603 −0.6870 −1.0447 −1.7523 −3.8334
1.0†

−0.0216 −0.0806 −0.1712 −0.2937 −0.4568 −0.6868 −1.0515 −1.7589 −3.8466
1.5 −0.0114 −0.0464 −0.1079 −0.2023 −0.3439 −0.5636 −0.9370 −1.6859 −3.5710
2.0 −0.0090 −0.0373 −0.0887 −0.1713 −0.3012 −0.5118 −0.8803 −1.6178 −3.2109

Table 1. Nondimensional T-stresses H(c/b, a/b) for an elliptic plate with a central
crack and the normal loading p on contour (see Figure 4 and Equation (45)). † From an
equation in [Fett 2001].

tip A is denoted by TA, which is composed of two portions and can be expressed as

TA = TA(u)+ TA(p), (46)

where TA(u) and TA(p) are derived from the uniform field and the perturbation field, respectively.
The uniform field is defined for an infinite perfect plate with the remote loading σ∞y = p2, σ∞x = p1, or

σ∞xy = q (Figure 2a). This stress field is easy to evaluate. The stress components along the prospective site
of the crack are denoted by σN (u), σT (u), σN T (u), where the subscript (u) denotes the stress components
defined in the uniform field. Clearly, for the right crack tip A, we have the following T-stress contribution
(Figure 2a):

TA(u) = σT (u), at point tA = σT (u)(tA). (47)

In the notation for σT (u)(tA), the subscript T denotes the stress in the T -direction, (u) represents the
stress from the uniform field, and tA denotes the location of a point for finding the T-stress.

In the following, the perturbation field for the curved crack is studied (Figure 2b). It was proved that
the complex potentials for this field could be expressed as [Savruk 1981; Chen and Lin 2006]

φ′(z)=8(z)=
1

2π

∫
L

g′(t)dt
t − z

, φ′′(z)=8′(z)=
1

2π

∫
L

g′(t)dt
(t − z)2

, (48)

ψ ′(z)=9(z)=
1

2π

∫
L

g′(t)dt̄
t − z

−
1

2π

∫
L

t̄ g′(t)dt
(t − z)2

, (49)

where g′(t) denotes the dislocation distribution along the curved crack and is defined by

g′(t)=
dg(t)

dt
, (t ∈ L , L − the curved crack). (50)

In Equation (50), g(t) is the COD (crack opening displacement) function defined by

g(t)=−
2Gi
κ + 1

{
(u(t)+ iv(t))+− (u(t)+ iv(t))−

}
, (t ∈ L , L − the curved crack), (51)

where (u(t)+ iv(t))+((u(t)+ iv(t))−) denotes the displacement in the upper side (lower side) of the
curved crack, respectively.
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For the curved crack problem, a singular integral equation was suggested previously [Savruk 1981;
Chen and Lin 2006]:

1
π

∫
L

g′(t)dt
t − to

+M(to)= σN (p)(to)+ iσN T (p)(to), (to ∈ L), (52)

where

M(to)=
1

2π

∫
L

K1(t, to)g′(t)dt +
1

2π

∫
L

K2(t, to)g′(t)dt̄, (53)

L denotes the curved crack configuration, and

K1(t, to)=
d

dto

{
ln

t − to
t̄ − t̄o

}
=−

1
t − to

+
1

t̄ − t̄o

dt̄o
dto
, (54)

K2(t, to)=−
d

dto

{ t − to
t̄ − t̄o

}
=

1
t̄ − t̄o

−
t − to
(t̄ − t̄o)2

dt̄o
dto
. (55)

For the perturbation field, the applied tractions on the crack face must be opposite to those from the
uniform field (Figure 2a–b). Clearly, the right hand term in Equation (52) is defined by

σN (p)(to)+ iσN T (p)(to)=−(σN (u)(to)+ iσN T (u)(to)), (to ∈ L). (56)

In addition, the dislocation distribution g′(t) should satisfy the following single-valued condition of
displacements [Savruk 1981; Chen and Lin 2006],∫

L
g′(t)dt = 0. (57)

Substituting Equations (48) and (49) into (12) yields

σy − σx − 2iσxy =
1
π

∫
L

g′(t)dt
t̄ − z̄

−
1
π

∫
L

(t − z)g′(t)dt̄
(t̄ − z̄)2

. (58)

In the vicinity of the right crack tip A, we can assume the coordinates Ax∗y∗ (Figure 2b). In these
coordinates, we have

(σy−σx−2iσxy)∗ = (σy−σx−2iσxy) exp(−2iδ) =
( 1
π

∫
L

g′(t)dt
t̄−z̄

−
1
π

∫
L

(t−z)g′(t)dt̄
(t̄−z̄)2

)dt̄A

dtA
, (59)

with dt̄A/dtA = exp(−2iδ). It is convenient to introduce the following equality

Re
(
−

1
π

∫
L

g′(t)dt
t − z

+
1
π

∫
L

g′(t) dt̄
t̄ − z̄

)
= 0. (60)

Therefore, from Equations (59) and (60) we have

(σy − σx)∗ = Re
{( 1
π

∫
L

g′(t)dt
t̄ − z̄

−
1
π

∫
L

(t − z)g′(t)dt̄
(t̄ − z̄)2

)dt̄A

dtA

}
+Re

(
−

1
π

∫
L

g′(t)dt
t − z

+
1
π

∫
L

g′(t)dt̄
t̄ − z̄

)
. (61)
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Similar to Equation (16), the T-stress in the perturbation field can be defined by

TA(p) =−(σy − σx)∗|z→tA + pc, (62)

where tA denotes the complex value for the crack tip A, and z→ tA represents a limit from the crack
front position. In this case, we have

pc = σN (p)(tA)=−σN (u)(tA). (63)

Substituting Equations (61) and (63) into (62) yields

TA(p) =−σN (u)(tA)− 2 Re M(tA), (64)

where the integral M(tA)= M(tA)|to=tA has been defined by Equation (53). Finally, from Equations (46),
(47), and (64), we have

TA = TA(u)+ TA(p) = σT (u)(tA)− σN (u)(tA)− 2 Re M(tA). (65)

A particular case is introduced below. It is assumed that there is a line crack in an infinite plate. In
this case, from Equations (53), (54), and (55) we find M(to)= 0 and M(tA)= 0, and Equation (65) can
be reduced to

TA = σT (u)(tA)− σN (u)(tA). (66)

Therefore, the term −2 Re(M(tA)) in Equation (65) represents the influence caused by curvature to the
T-stress. For a straight-line crack, this term −2 Re(M(tA)) is generally equal to zero.

On the other hand, the crack back technique is introduced below. From Equations (17) and (48), we
have

TA(p) = 2 Re
(
8+(to)+8−(to)

)
|to→tA − σN (p)(tA)= Re

( 2
π

∫
L

g′(t)dt
t − to

)
to→tA
− σN (p)(tA). (67)

In Equation (67), the Plemelj formula is used for obtaining 8+(to) and 8−(to) [Muskhelishvili 1953].
Substituting Equation (52) into (67), the same result as shown by Equation (64) will be found. It is

seen that the two techniques give the same result.
Similarly, at the left crack tip B we have

TB = TB(u)+ TB(p) = σT (u)(tB)− σN (u)(tB)− 2 Re
(
M(tB)

)
. (68)

Once the solution for the function g′(t) is obtained, the SIFs (stress intensity factors) at the right crack
tip A and the left crack tip B can be evaluated by [Savruk 1981; Chen and Lin 2006]

(K1− i K2)A =−
√

2π lim
t→tA

√
|t − tA|g′(t),

(K1− i K2)B =
√

2π lim
t→tB

√
|t − tB |g′(t).

(69)

To obtain the final solution, successive steps for evaluating the T-stresses and SIFs in the numerical
solution are summarized as follows.

(i) The first step is to obtain the dislocation function g′(t) from the integral equation pair composed of
Equations (52) and (57).
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Figure 5. A parabolic crack.

(ii) The second step is to obtain two values M(tA)= M(to)|to=tA and M(tB)= M(to)|to=tB , where M(to)
was defined by Equation (53).

(iii) The third step is to evaluate the T-stresses and SIFs at the crack tips by using Equations (65), (68),
and (69).

One numerical example is carried out: a parabolic curved crack is defined by (see Figure 5)

y = γ a(x/a)2. (70)

In computation, the curve length coordinates method is used to solve the singular integral equation [Chen
2004]. The computed T-stresses is expressed as

T = G1(γ )p (for σ∞y = p case), (71)

T = G2(γ )p (for case σ∞x = σ
∞

y = p). (72)

The computed results for γ = 0.1, 0.2, . . . , 1.0 are listed in Table 2. It is known that for a line crack
in horizontal position under loading σ∞y = p we have T =−p. In addition, for a line crack in vertical
position under loading σ∞y = p we have T = p. The tabulated results for G1(γ ) (for σ∞y = p) reflect the
following property. If the tangential angle δ at the crack tip is changed gradually, the relevant T-stress is
also changed simultaneously, for example from T =−0.9051p (for δ = arctan 0.2) to from T = 0.6527p
(for δ = arctan 2.0).

6. Conclusions

It is known that the T-stress is a particular term for a stress component parallel to the crack face in the
vicinity of the crack tip. However, depending on the position where the stress component is evaluated,
the situations for this particular term are quite different. We assume that the fracture is mode I and
the crack face is traction-free. In this case, the T-stress is a term embedded in the singular value of

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
G1(γ ) −0.9051 −0.6674 −0.3793 −0.1062 0.1185 0.2813 0.4276 0.5183 0.5936 0.6527
G2(γ ) 0.0184 0.0603 0.1015 0.1299 0.1409 0.1326 0.1301 0.1107 0.0946 0.0791

Table 2. Nondimensional T-stresses G1(γ ) (for σ∞y = p case) and G2(γ ) (for σ∞x =
σ∞y = p case) for a parabolic crack (see Figure 5 and Equations (71), (72)).
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the stress component if the stress distribution at the crack front position is considered. However, if the
stress distribution at the crack back position is considered under the condition K I I = 0, the T-stress is a
regular term in the stress component. All of those situations cause people to investigate the crack front
position and crack back position techniques for evaluating the T-stress. It is known that in the crack front
technique, one needs to evaluate a limit taking the form of limr→0(σx − σy). However, in this case, this
limit generally takes the type∞−∞. This is an inconvenient point in computation.

In this study, all derivations including the T-stress are related to complex potentials. In this case, one
can use the two techniques to evaluate T-stress in more complicated crack problems, for example, in the
curved crack problem. In addition, the obtained T-stress expression, or the equation shown by Equation
(65) for the curved crack, are a regular integral plus some terms.
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