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VISCOELASTIC STATE OF A SEMI-INFINITE MEDIUM WITH MULTIPLE
CIRCULAR ELASTIC INHOMOGENEITIES

ANDREY V. PYATIGORETS AND SOFIA G. MOGILEVSKAYA

This paper is concerned with the problem of an isotropic, linear viscoelastic half-plane containing mul-
tiple, isotropic, circular elastic inhomogeneities. Three types of loading conditions are allowed at the
boundary of the half-plane: a point force, a force uniformly distributed over a segment, and a force
uniformly distributed over the whole boundary of the half-plane. The half-plane is subjected to far-
field stress that acts parallel to its boundary. The inhomogeneities are perfectly bonded to the material
matrix. An inhomogeneity with zero elastic properties is treated as a hole; its boundary can be either
traction free or subjected to uniform pressure. The analysis is based on the use of the elastic-viscoelastic
correspondence principle. The problem in the Laplace space is reduced to the complementary problems
for the bulk material of the perforated half-plane and the bulk material of each circular disc. Each prob-
lem is described by the transformed complex Somigliana’s traction identity. The transformed complex
boundary parameters at each circular boundary are approximated by a truncated complex Fourier series.
Numerical inversion of the Laplace transform is used to obtain the time domain solutions everywhere in
the half-plane and inside the inhomogeneities. The method allows one to adopt a variety of viscoelastic
models. A number of numerical examples demonstrate the accuracy and efficiency of the method.

1. Introduction

The problem of an isotropic, linearly viscoelastic half-plane containing multiple, nonoverlapping circular
inhomogeneities is of practical importance in the area of mechanics of composite materials. Analysis of
the relevant literature reveals that the problem has not yet received significant attention.

Standard numerical methods such as the finite element method and the boundary element method can
be used to solve the problems of viscoelastic media containing inhomogeneities. These methods require
very fine meshes to adequately approximate the inhomogeneities or their boundaries and usually employ
a time stepping procedure. In addition, the finite element method cannot directly model an infinite or
semi-infinite area. As a result, these methods are computational intensive due to their large number of
degrees of freedom.

There are few numerical methods custom designed to directly simulate the behavior of viscoelastic
composite materials. The problem of an infinite, linear viscoelastic plane containing multiple, nonover-
lapping, circular elastic inhomogeneities was considered in [Huang et al. 2005a] for the Kelvin visco-
elastic model and in [Huang et al. 2005b] for the Boltzmann viscoelastic model. The numerical approach
presented in these papers combines a direct boundary integral method, Fourier series approximations
for the boundary unknowns, and a time-stepping algorithm. The method assumes a time-independent

Keywords: viscoelastic half-plane, multiple circular elastic inhomogeneities, correspondence principle, direct boundary
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viscoelastic Poisson’s ratio. The same assumption was used by Zatula and Lavrenyuk [1995] and Kamin-
skii et al. [2002], who solved a system of boundary-temporal integral equations with the standard colloca-
tion boundary element method to model a viscoelastic half-plane containing circular or rectangular elastic
inhomogeneities. The boundary conditions at the surface of the half-plane included a load distributed
over a segment. Numerical results were presented for the case of one and two inhomogeneities only.

Kaloerov and Mironenko [2007] considered a linearly viscoelastic plate containing a row of aligned
isotropic, elastic, elliptical inhomogeneities or cracks. The authors assumed that the bulk modulus of
the plate is constant, while its Poisson’s ratio at every moment in time t differs from the instantaneous
value at t = 0 by a small parameter. Expanding the Kolosov–Muskhelishvili potentials for the problem
in infinite series with respect to this parameter and equating the coefficients of the same powers of the
parameter, the authors obtain the system of boundary conditions for the unknown functions. These
functions themselves were represented by the infinite complex series. The coefficients in these series
were determined by the least-squares method. The disadvantage of this technique is that the accuracy of
this approach may depend on the choice of the small parameter.

The elastic problems of a piece-wise homogeneous half-plane containing multiple inhomogeneities
have been studied extensively. A comprehensive review of the literature related to the elastic case is
given by Legros et al. [2004] and Kushch et al. [2006].

This paper is concerned with the problem of an isotropic, linearly viscoelastic half-plane containing
multiple, isotropic, circular elastic inhomogeneities. Three types of loading conditions are allowed at
the boundary of the half-plane: a point force, a force uniformly distributed over a segment, and a force
uniformly distributed over the whole boundary of the half-plane. The half-plane is subjected to far-
field stress that acts parallel to its boundary. The analysis in the present paper is based on the use
of the elastic-viscoelastic correspondence principle. The problem in Laplace space is reduced to the
complementary problems for the bulk material of the perforated half-plane and the bulk material of each
circular disc. Each problem is described by the transformed complex Somigliana’s traction identity. The
transformed complex boundary parameters at each circular boundary are approximated by a truncated
complex Fourier series. Numerical inversion of the Laplace transform is used to obtain the time domain
solutions everywhere in the half-plane and inside the inhomogeneities. The method does not assume a
time-independent viscoelastic Poisson’s ratio and allows one to adopt a variety of viscoelastic models.
The method described in the present paper is an extension of [Pyatigorets et al. 2008], where the problem
of an isotropic, linearly viscoelastic half-plane containing multiple holes was considered. The inversion
of the Laplace transform in the latter problem could be performed analytically, which is not the case for
the more general problem considered in the present paper.

The paper is organized as follows. After formulating the problem in Section 2, the system of gov-
erning boundary integral equations, written in the Laplace domain separately for each inhomogeneity
and the viscoelastic matrix, is analyzed in Section 3. In Section 4, the approximations of the unknown
displacements and tractions at the boundaries of the inhomogeneities are introduced. Using the Taylor
series expansion method one arrives at the system of linear equations, where the vector of unknowns
consists of the Fourier coefficients for the boundary parameters. The viscoelastic analogs of the Kolosov–
Muskhelishvili potentials are used to obtain the displacements, strains, and stresses in the Laplace domain.
The section concludes with a description of the procedure for the numerical inversion of the Laplace
transform and discussion of the sources of errors. Three examples, presented in Section 5, show the
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accuracy and effectiveness of the method. Two different constitutive models are used in the numerical
modeling. The first example is aimed at comparing the results obtained by the present approach with
those obtained by the finite element method. The second example investigates the influence of the elastic
properties of the inhomogeneity on the behavior of the hoop stress at a point on its boundary. The
third example studies the asymptotic behavior of stress state in the viscoelastic half-plane and inside the
inhomogeneity for the case when the Burgers model is used to describe the shear response of the bulk
material of the half-plane. Several closing remarks conclude the paper.

2. Problem formulation

Consider an isotropic, linearly viscoelastic half-plane (y ≤ 0) containing an arbitrary number N of
nonoverlapping, arbitrarily located, circular, isotropic elastic inhomogeneities, as shown in Figure 1a.
The elastic properties of the inhomogeneities (shear moduli µk and Poisson’s ratios νk , k = 1, . . . , N )
are assumed to be arbitrary. A hole is treated as a particular case of an inhomogeneity with zero elastic
properties. Let Rk , zk , and Lk denote the radius, the center, and the boundary of the k-th inhomogeneity.

Three types of loading conditions are allowed at the surface y = 0 of the half-plane. These loads are:
a point force F(t) applied at point a, a force F(t) uniformly distributed over the segment (a, b), a force
F(t) uniformly distributed over the whole boundary of the half-plane. The far-field stress σ∞(t) acts
parallel to the boundary of the half-plane. Perfect bonding is assumed between each inhomogeneity and
the bulk material of the half-plane. In the case of a hole, its boundary is assumed to be either traction
free or subjected to uniform pressure −pk(t), k = 1, . . . , Nh (where Nh is the number of holes). For
practical applications it is sufficient to assume the following time-dependent behavior for the functions
pk(t), F(t), and σ∞(t):

pk(t)= p̃k · f p(t), k = 1, . . . , Nh, F(t)= F̃ · fF (t), σ∞(t)= σ̃∞ · f∞(t), (1)

where the constants p̃k, σ̃
∞ are real and the constant F̃ is complex (F̃ = F̃x + i F̃y , i =

√
−1). The

first expression from (1) implies similar time-dependent behavior for all the functions pk(t), the second
expression implies that the time-dependent behavior of the normal and tangential components of the
surface loads is similar, and the third expression is added for consistency.

Figure 1. Problem formulation.
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The viscoelastic model is not specified at this point, as the method enables the adoption of various
models. The evolution of stresses, strains, and displacements in the viscoelastic half-plane and inside
the inhomogeneities are to be determined.

3. Basic equations

The problem considered here can be decomposed into Nd = N − Nh problems for each elastic disc and
a complementary problem for the half-plane containing N cavities. The problems are interrelated by the
condition of perfect bonding between the matrix and the discs.

The analysis is based on the elastic-viscoelastic correspondence principle. According to the principle,
the solution of the problem in the time domain can be directly obtained from the solution of the corre-
sponding elastic problem by applying the inverse Laplace transform to s-dependent quantities [Findley
et al. 1976], where s is the transform parameter.

The Laplace transform of a real function f (t) is defined as

f̂ (s)= L
[

f (t)
]
=

∫
∞

0
f (t)e−st dt, (2)

where s in general is a complex number. The inverse Laplace transform is given by the Bromwich integral

f (t)= L−1[ f̂ (s)
]
=

1
2π i

∫ γ+i ·∞

γ−i ·∞
f̂ (s)est ds, (3)

where γ is a vertical contour in the complex plane to the right of all singularities of f̂ (s).

3.1. The system of boundary integral equations in the Laplace domain. The system of governing equa-
tions in the Laplace domain is obtained by using a direct boundary integral method. This formulation
is based on the use of the transformed Somigliana’s displacement identity, which is a corollary of the
reciprocal theorem (the principle of virtual work). The identity expresses the displacements at a point
within an elastic region in terms of the integrals of the tractions and displacements over its boundary.
Using the strain-displacement relation, Hooke’s law, and the stress-traction relation, one can arrive then
at the integral identity for the traction at the inner point of the region (Somigliana’s traction identity). The
tractions at the boundary of the region can be obtained through the limiting process in which the inner
point of the region is allowed to approach the boundary of the region [Mogilevskaya and Linkov 1998;
Mogilevskaya 2000]. Somigliana’s identities can be written either in the time domain [Carini et al. 1991]
or in the Laplace domain. In the following we use complex variable identities in the Laplace domain
[Huang et al. 2006a]. Thus, the system of governing equations includes the following equations:

(I) The viscoelastic analog of Somigliana’s traction identity at the boundary of the k-th disc, k=1, . . . ,Nd :

2π i
κk + 1
4µk

σ̂ d
k (ξ ; s)=

1− κk

2µk

∫
Lk

σ̂ d
k (τ ; s)

dτ
τ − ξ

−
κk

2µk

∫
Lk

σ̂ d
k (τ ; s)

∂

∂ξ
K1(τ, ξ)dτ

+
1

2µk

∫
Lk

σ̂ d
k (τ ; s)

∂

∂ξ
K2(τ, ξ)d τ̄ + 2

∫
Lk

ûd
k (τ ; s)
(τ − ξ)2

dτ

−

∫
Lk

ûd
k (τ ; s)

∂2

∂τ∂ξ
K1(τ, ξ)dτ −

∫
Lk

ûd
k (τ ; s)

∂2

∂τ̄ ∂ξ
K2(τ, ξ)d τ̄ . (4)
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Here ξ = ξx+ iξy , τ = τx+ iτy are complex coordinates of the points (ξx , ξy) ∈ Lk and (τx , τy) ∈ Lk ; s is
the Laplace transform parameter; σ̂ d

k (τ ; s)= σ̂
d
kn(τ ; s)+ i σ̂ d

kl(τ ; s) is the unknown transformed complex
traction at the point τ in the local coordinate system shown in Figure 1b; ûd

k (τ ; s)= ûd
kx(τ ; s)+ i ûd

ky(τ ; s)
is the unknown transformed complex displacement at the point τ in a global coordinate system; κk

is the Kolosov–Muskhelishvili parameter for the k-th disc, equal to 3 − 4νk for plane strain and to
(3− νk)/(1+ νk) for plane stress; a bar over a symbol denotes complex conjugation; and a hat over a
symbol denotes the transformed quantity (in the Laplace domain). The direction of travel is counter-
clockwise for the boundary Lk .

The kernels K1 and K2 in (4) corresponding to the Kelvin fundamental solution are [Mogilevskaya
and Linkov 1998]

K1(τ, ξ)= ln
τ − ξ

τ̄ − ξ̄
, K2(τ, ξ)=

τ − ξ

τ̄ − ξ̄
. (5)

(II) The viscoelastic analog of Somigliana’s traction identity at the boundary of the k-th cavity located
in the viscoelastic half-plane, k = 1, . . . , N ,

N∑
j=1

{
2
∫

L j

ûh
j (τ ; s)

(τ − ξ)2
dτ −

∫
L j

ûh
j (τ ; s)

∂2

∂τ∂ξ

[
K1(τ, ξ)+ K3(τ, ξ)+ K4(τ, ξ)

]
dτ

−

∫
L j

ûh
j (τ ; s)

∂2

∂τ̄ ∂ξ

[
K2(τ, ξ)+ K5(τ, ξ)+ K6(τ, ξ)

]
dτ
}
−π i

κ̂(s)+ 1
2µ̂(s)

σ̂ h
k (ξ ; s)

−
1

2µ̂(s)

N∑
j=1

{(
κ̂(s)−1

) ∫
L j

σ̂ h
j (τ ; s)

τ − ξ
dτ+

∫
L j

σ̂ h
j (τ ; s)

∂

∂ξ

[
κ̂(s)K1(τ, ξ)+ κ̂(s)K3(τ, ξ)−K4(τ, ξ)

]
dτ

−

∫
L j

σ̂ h
j (τ ; s)

∂

∂ξ

[
K2(τ, ξ)+ K6(τ, ξ)− κ̂(s)K5(τ, ξ)

]
d τ̄
}
=−2π i

κ̂(s)+ 1
4µ̂(s)

σ̂ add
k (ξ ; s), (6)

where ûh
j (τ ; s)= ûh

j x(τ ; s)+ i ûh
jy(τ ; s) is the unknown transformed complex displacement at the point

τ ∈ L j , σ̂ h
j (τ ; s)= σ̂

h
jn(τ ; s)+ i σ̂ h

jl(τ ; s) is the unknown transformed complex traction at the point τ ∈ L j

in the local coordinate system shown in Figure 1a, and κ̂(s) and µ̂(s) are the transformed Kolosov–
Muskhelishvili parameter and the shear modulus of the bulk material of the half-plane, respectively. The
direction of travel is clockwise for the boundary L j .

In addition to the kernels K1 and K2 from (5) the following kernels appear in system (6):

K3(τ, ξ)= ln(τ̄ − ξ), K4(τ, ξ)= ln(τ − ξ̄ )+ (ξ − ξ̄ )
τ̄ − τ

(τ − ξ̄ )2
,

K5(τ, ξ)=
ξ−ξ̄
τ−τ̄

, K6(τ, ξ)=−
τ−ξ
τ̄−ξ

.

(7)

The integral kernels K3–K6 are parts of Melan’s fundamental solution [1932] (a point force applied at an
internal point of a half-plane). Due to the use of this fundamental solution, the boundary of the half-plane
is not involved in the governing system (6).

The function σ̂ add
k (ξ ; s) on the right-hand side of (6) is a complex function that represents the combined

influence of the transformed far-field stress σ̂∞(s) and transformed force F̂(s) applied at the boundary
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of the half-plane. It is expressed as

σ̂ add
k (ξ ; s)= 2σ̂∞k (ξ ; s)+ σ̂

F
k (ξ ; s), (8)

where σ̂∞k (ξ ; s) is the transformed traction at the trace of the boundary of the k-th cavity (k = 1, . . . , N )
due to the far-field stress and σ̂ F

k (ξ ; s) is the transformed traction at the same boundary due to the force
applied at the boundary of the half-plane. Both terms on the right-hand side of (8) are obtained by using
s-varying Kolosov–Muskhelishvili potentials ϕ̂(ξ ; s) and ψ̂(ξ ; s) (see [Muskhelishvili 1959]) and the
formula

σ̂ (ξ ; s)=
∂

∂ξ
ϕ̂(ξ ; s)+

∂

∂ξ
ϕ̂(ξ ; s)+

d ξ̄
dξ

[
ξ
∂2

∂ξ 2 ϕ̂(ξ ; s)+
∂

∂ξ
ψ̂(ξ ; s)

]
(9)

(see [Rabotnov 1988]), where d ξ̄ /dξ = exp(−2iβ), and β is the angle between the axis Ox and the
tangent at the point ξ ∈ Lk . The potentials ϕ̂ and ψ̂ for the far-field stress and the load applied at the
boundary of the half-plane are given in [Pyatigorets et al. 2008].

Equations (5) and (6) are complemented by the following boundary conditions. For the case when the
k-th inhomogeneity is a hole, the traction σ̂ h

k (τ ; s) in (6) is σ̂ h
k (τ ; s) = − p̂k(s). For the case when the

k-th inhomogeneity is an elastic disc, the conditions for perfect bonding are

ûh
k (ξ ; s)= ûd

k (ξ ; s)= ûk(ξ ; s), ξ ∈ Lk,

σ̂ h
k (ξ ; s)= σ̂

d
k (ξ ; s)= σ̂k(ξ ; s), ξ ∈ Lk .

(10)

3.2. Calculation of the s-dependent fields in the composite system. The transformed stresses and dis-
placements at any point in the viscoelastic half-plane and inside the elastic discs are obtained using the
following analogs of the Kolosov–Muskhelishvili formulae:

2µ̂(s)û(z; s)= κ̂(s)ϕ̂(z; s)− z ∂
∂z
ϕ̂(z; s)− ψ̂(z; s),

σ̂xx(z; s)+ σ̂yy(z; s)= 4 Re
[
∂
∂z
ϕ̂(z; s)

]
,

σ̂yy(z; s)− σ̂xx(z; s)+ 2i σ̂xy(z; s)= 2
[
z̄ ∂

2

∂z2 ϕ̂(z; s)+
∂
∂z
ψ̂(z; s)

]
.

(11)

The strains are expressed through the stresses in the Laplace domain as
ε̂xx + ε̂yy =

1− 2ν̂
2µ̂

(σ̂xx + σ̂yy),

ε̂yy − ε̂xx + 2i ε̂xy =
1

2µ̂
(σ̂yy − σ̂xx + 2i σ̂xy).

(12)

The corresponding sets of material properties for the inhomogeneities and the matrix should be used in
(11) and (12) for the evaluation of viscoelastic fields. The expressions for the potentials involved in (11)
and (12) are:
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(a) Potentials for the k-th elastic disc (µ̂(s)= µk and κ̂(s)= κk):

ϕ̂k(z; s)=−
1

2π i(κk + 1)

[∫
Lk

σ̂ d
k (τ ; s) ln(τ − z)dτ − 2µk

∫
Lk

ûk(τ ; s)
τ − z

dτ
]
,

ψ̂k(z; s)=−
1

2π i(κk + 1)

{[∫
Lk

σ̂ d
k (τ ; s)

τ̄dτ
τ − z

+ κk

∫
Lk

σ̂ d
k (τ ; s) ln(τ − z)d τ̄

]

+ 2µk

[∫
Lk

ûk(τ ; s)
τ − z

dτ −
∫

Lk

ûk(τ ; s)
τ − z

d τ̄ +
∫

Lk

ûk(τ ; s)τ̄
(τ − z)2

dτ
]}
.

(13)

Expressions (13) are obtained by Laplace transforming the corresponding elastic potentials given in
[Mogilevskaya et al. 2008].

(b) Potentials for the bulk material of the viscoelastic half-plane:

ϕ̂(z; s)= ϕ̂plane(z; s)+ ϕ̂aux(z; s)+ ϕ̂F (z; s),

ψ̂(z; s)= ψ̂plane(z; s)+ ψ̂aux(z; s)+ ψ̂F (z; s),
(14)

where ϕ̂plane(z;s) and ψ̂plane(z;s) are the potentials due to Kelvin’s fundamental solution and ϕ̂aux(z;s)
and ψ̂aux(z; s) are additional potentials associated with the use of Green’s functions specific for a half-
plane problem. The potentials ϕ̂F (z; s) and ψ̂F (z; s) are given in [Pyatigorets et al. 2008] and the rest
are obtained by applying the Laplace transform to their elastic analogs [Mogilevskaya 2000]:

ϕ̂plane(z; s)=−
1

2π i(κ̂(s)+ 1)

N∑
j=1

[∫
L j

σ̂ h
j (τ ; s) ln(τ−z)dτ−2µ̂(s)

∫
L j

û j (τ ; s)
τ − z

dτ
]
+
σ̂∞(s)

4
z,

ψ̂plane(z; s)=−
1

2π i(κ̂(s)+ 1)

N∑
j=1

{[∫
L j

σ̂ h
j (τ ; s)

τ̄dτ
τ − z

+ κ̂(s)
∫

L j

σ̂ h
j (τ ; s) ln(τ − z)d τ̄

]

+ 2µ̂(s)
[∫

L j

û j (τ ; s)
τ − z

dτ −
∫

L j

û j (τ ; s)
τ − z

d τ̄ +
∫

L j

û j (τ ; s)τ̄
(τ − z)2

dτ
]}
−
σ̂∞(s)

2
z,

(15)

ϕ̂aux(z; s)=−
1

2π i(κ̂(s)+ 1)

N∑
j=1

{[
κ̂(s)

∫
L j

σ̂ h
j (τ ; s) ln(τ̄ − z)dτ +

∫
L j

σ̂ h
j (τ ; s)

τ − z
τ̄ − z

d τ̄
]

+ 2µ̂(s)
[∫

L j

û j (τ ; s)
τ̄ − z

d τ̄ −
∫

L j

û j (τ ; s)d
τ − z
τ̄ − z

]}
,

ψ̂aux(z; s)=−
1

2π i(κ̂(s)+ 1)

N∑
j=1

{
z
[
κ̂(s)

∫
L j

σ̂ h
j (τ ; s)

dτ
τ̄ − z

−

∫
L j

σ̂ h
j (τ ; s)

∂

∂z
τ − z
τ̄ − z

d τ̄

+ 2µ̂(s)
(∫

L j

û j (τ ; s)d
∂

∂z
τ − z
τ̄ − z

−

∫
L j

û j (τ ; s)
d τ̄

(τ̄ − z)2

)]
+

∫
L j

σ̂ h
j (τ ; s) ln(τ̄ − z)d τ̄ − 2µ̂(s)

∫
L j

û j (τ ; s)
τ̄ − z

d τ̄
}
.

(16)
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4. Numerical solution

4.1. Fourier series approximation of the unknowns at the boundaries. The unknown transformed
stresses σ̂k(τ ; s) at each boundary Lk are approximated by the truncated complex Fourier series

σ̂k(τ ; s)=
Mk∑

m=1

T̂−mk(s)gm
k (τ )+ T̂0k(s)+

Mk∑
m=1

T̂mk(s)g−m
k (τ ), τ ∈ Lk, k = 1, . . . , Nd , (17)

where the function gk(τ ) is defined as

gk(τ )=
Rk
τ−zk

= exp(−iθk). (18)

The unknown transformed displacements ûk(τ ; s) at the boundary Lk are represented by the series

ûk(τ ; s)=
Mk−1∑
m=1

B̂−mk(s)gm
k (τ )+ B̂0k(s)+

Mk+1∑
m=1

B̂mk(s)g−m
k (τ ), τ ∈ Lk, k = 1, . . . , N . (19)

Note that the Fourier series in (19) are truncated differently from the series representation (17). The
reason for this is explained in [Mogilevskaya et al. 2008].

4.2. System of complex algebraic equations. After substituting (17) and (19) into Somigliana’s traction
identity (4) and following a procedure similar to the one described in [Mogilevskaya et al. 2008] for the
elastic case, one arrives at the expressions

T̂−1k(s)= 0,

κk−1
2µk

T̂0k(s)=
2
Rk

Re B̂1k(s),

1
2µk

T̂−mk(s)=
m−1

Rk
B̂−(m−1)k(s), m ≥ 2,

κk
2µk

T̂mk(s)=
m+1

Rk
B̂(m+1)k(s), m ≥ 1.

(20)

Expression (17) can now be rewritten using (20) as

σ̂k(τ ; s)=
2µk

Rk

[Mk−1∑
m=1

m B̂−mk(s)gm+1
k (τ )+

2
κk − 1

Re B̂1k(s)+
1
κk

Mk+1∑
m=2

m B̂mk(s)g1−m
k (τ )

]
,

k = 1, . . . , Nd . (21)

After substituting (19) and (21) in Somigliana’s traction identity (6), the s-dependent Fourier coeffi-
cients B̂mk(s) can be taken out from the integrals, and all the space integrals can be evaluated analytically.
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As a result, one arrives at the following system of complex integral equations:

3̂kk(ξ ; s)+
Nh∑
j=1
j 6=k

3̂k j (ξ ; s)+
N∑

r=Nh+1

Ĝkr (ξ ; s)=−
κ̂ + 1
4µ̂

(
p̂k + σ̂

add
k (ξ ; s)

)
+

Nh∑
j=1

p̂j 0̂j (ξ ; s),

ξ ∈ Lk, k = 1, . . . , Nh,

Nh∑
j=1

3̂l j (ξ ; s)+
[
Ĝll(ξ ; s)−

κ̂ + 1
2µ̂

σ̂l(ξ ; s)
]
+

N∑
r=Nh+1

r 6=l

Ĝlr (ξ ; s)=−
κ̂ + 1
4µ̂

σ̂ add
l (ξ ; s)+

Nh∑
j=1

p̂j 0̂j (ξ ; s),

ξ ∈ L l, l = Nh + 1, . . . , N .

(22)

The left-hand sides of (22) contain the unknown displacements at the boundaries of the cavities, while
the right-hand sides contain the known boundary tractions only. The following operators appear in (22):

• operators 3̂k j (ξ ; s) (k, j = 1, . . . , Nh) obtained after evaluation of the integrals in (6) containing
the unknown Fourier coefficients over the boundaries of the holes;

• operators Ĝk j (ξ ; s) (k, j = Nh, . . . , N ) obtained after evaluation of the integrals in (6) containing
the unknown Fourier coefficients over the boundaries of those cavities that later are occupied by the
elastic discs;

• operators 0̂j (ξ ; s) ( j = 1, . . . , Nh) obtained after evaluation of the integrals in (6) containing the
known tractions p̂j over the boundaries of the holes ( p̂j is factored out in (22) ).

The coefficients B̂0k(s) and the imaginary part of B̂1k(s) are not involved in the system of govern-
ing equations (22). These coefficients are responsible for the rigid body translation (B0k) and rotation
(Im B1k) and can be found from a procedure described in [Wang et al. 2003].

The expressions for the operators 3̂αβ and 0̂j can be obtained by applying the Laplace transform to
the corresponding expressions used in [Dejoie et al. 2006]. Operators Ĝαβ differ from the expressions
for 3̂αβ by additional s-dependent multipliers in front of the unknown coefficients B̂−mk(s), Re B̂1k(s),
and B̂mk(s) (m =−(Mk − 1), . . . ,Mk + 1, k = Nh + 1, . . . , N ; see Appendix A). These multipliers are

α̂1k =−

(
µk
µ̂
− 1

)
in front of B̂−mk(s),

α̂2k =−

(
µk
κk−1

κ̂−1
µ̂
− 1

)
in front of Re B̂1k(s),

α̂3k =−

(
µk
κk

κ̂
µ̂
− 1

)
in front of B̂mk(s).

(23)

4.3. System of real linear algebraic equations. The Taylor expansion method (the so-called addition
theorem) described in [Wang et al. 2003] can be used to obtain a system of linear algebraic equations
from (22). In this method, all the functions gm

j (ξ) involved in the representations of the unknowns at the
j-th boundary can be reexpanded in terms of infinite series of functions gk(ξ) as

gm
j (ξ)= gm

j (zk)

∞∑
q=0

(
m+ q − 1

q

)
gq

k (z j )g
−q
k (ξ) for all j 6= k and j, k = 1, . . . , N , (24)
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where
(m+q−1

q

)
represents a binomial coefficient as usual. The functions gj (ξ) can similarly be reex-

panded in terms of functions gk(ξ) due to the fact that

gj (ξ)= g−1
j (ξ).

As a result, all the operators 3̂αβ and Ĝαβ in the left-hand side of (22) are expressed through the functions
gq

k (ξ). Similarly, the operators 0̂j in the right-hand side of (22) can be expressed through the same func-
tions. Using the orthogonality properties of the complex Fourier series, one can equate the coefficients
in front of the terms gq

k (ξ) with the same powers in both sides of the obtained expressions. A finite
system of linear equations with the number of equations equal to the number of unknown coefficients
B̂mk, k = 1, . . . , N , is obtained if one neglects the terms with powers q > Mk and q <−Mk in the Taylor
series for every k.

As a result, one arrives at a system of
∑N

k=1(2Mk + 1) complex linear equations in the Laplace
domain; namely, for k = 1, . . . , N , we can write

ϒ̂kk,q(B̂mk)+
N∑

j=1
j 6=k

ϒ̂k j,q(B̂mj )+1k · =̂k(B̂qk)

=



−
κ̂+1
4µ̂

σ̂∞−
1−1k
µ̂

p̂k −
κ̂+1
4µ̂

�k,0(F̂)+
κ̂−1
2µ̂

Nh∑
j=1

p̂j4k j,0, for q = 0,

−
κ̂+1
4µ̂

σ̂∞−
κ̂+1
4µ̂

�k,2(F̂)+
κ̂−1
2µ̂

Nh∑
j=1

p̂j4k j,2, for q = 2,

−
κ̂+1
4µ̂

�k,q(F̂)+
κ̂−1
2µ̂

Nh∑
j=1

p̂j4k j,q , for q 6=0, 1, 2, −Mk≤q≤Mk,

(25)

where

=̂k(B̂qk)=
κ̂+1
µ̂

µk

Rk
·



1−q
α̂3kκk

B̂(1−q)k, if q ≤−1,

2
α̂2k(κk−1)

Re B̂1k, if q = 0,

q−1
α̂1k

B̂(1−q)k, if q ≥ 2,

(26)

and 1k takes the value 0 if Lk is the boundary of a hole and the value 1 if Lk is the boundary of a cavity
later occupied by an elastic disc. In general, the coefficients B̂mk are different from the coefficients B̂mk

as they may include the multipliers given by (23). The operators ϒ̂kk,q , ϒ̂k j,q , �k,q , and 4k j,q can be
found in [Pyatigorets et al. 2008]1 if one takes into account the specific method of truncating Fourier
series in the present approach.

Separating the real and imaginary parts in complex equations (25) and taking into account that (25)
is real for q = 0, one arrives at a linear system of

∑N
k=1(4Mk − 1) equations. The resulting system of

linear equations can be written in matrix form as[
A+ Ŵ (s)

]
· B̂(s)= D̂(s), (27)

1Due to misprints, all inequalities q ≤−1 present in [Pyatigorets et al. 2008, appendices A–C] should be read as (−q)≤−1.
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where the s-independent matrix A is

A =



block 1︷ ︸︸ ︷
A11 . . . A1N h
...

. . .
...

ANh1 . . . ANh Nh

block 2︷ ︸︸ ︷
A1(N h+1) . . . A1(N h+N d )

...
. . .

...

ANh(N h+1) . . . ANh(N h+N d )

A(N h+1)1 . . . A1N h
...

. . .
...

A(N h+N d )1 . . . A(N h+N d )N h︸ ︷︷ ︸
block 3

A(N h+1)(N h+1) . . . A(N h+1)(N h+N d )
...

. . .
...

A(N h+N d )(N h+N d ) . . . A(N h+N d )(N h+N d )︸ ︷︷ ︸
block 4


. (28)

The matrix A consists of four blocks:

• block 1, the influence of a hole on another hole;

• block 2, the influence of a hole on a cavity occupied by an elastic disc;

• block 3, the influence of a cavity occupied by an elastic disc on a hole;

• block 4, the influence of a cavity occupied by an elastic disc on another cavity occupied by an elastic
disc.

The expressions for submatrices Ajk are available in [Pyatigorets et al. 2008] if one takes into account
the differing truncation of Fourier series in the present approach. The matrix Ŵ (s) is deduced from the
expression for the operator =̂k . This matrix is largely sparse and has the form

Ŵ (s)=



0 · · · 0
...
. . .

...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...
. . .

...

0 · · · 0

Ŵ(N h+1)(N h+1) · · · 0
...

. . .
...

0 · · · ŴN N


, (29)

where the only nonzero submatrices Ŵkk(s) are of dimension (4Mk−1)× (4Mk−1), k = Nh+1, . . . , N .
They have the form

Ŵkk(s)=−
κ̂ + 1
µ̂

µk

Rk
·

m=−(Mk−1) m=Mk+1
−−−−−−−−−−−−−−−−−−−−−−−−−→

q−1
α1k

0 0

0 2
α2k(κk−1)

0

0 0 q+1
α3kκk



y

q=Mk

q=−Mk

. (30)

The vector of unknowns B̂(s) is given as
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B̂(s)=



B̂1(s)
...

B̂Nh (s)

B̂Nh+1(s)
...

B̂N (s)


, (31)

with the subvectors B̂k(s) defined as

B̂k(s)= B̂k(s)=



Re B̂−(Mk−1)k

Im B̂−(Mk−1)k
...

Re B̂−1k

Im B̂−1k

Re B̂1k

Re B̂2k

Im B̂2k
...

Re B̂(Mk+1)k

Im B̂(Mk+1)k



, B̂j (s)=



α̂1 j ·Re B̂−(Mj−1) j

α̂1 j · Im B̂−(Mj−1) j
...

α̂1 j ·Re B̂−1 j

α̂1 j · Im B̂−1 j

α̂2 j ·Re B̂1 j

α̂3 j ·Re B̂2 j

α̂3 j · Im B̂2 j
...

α̂3 j ·Re B̂(Mj+1) j

α̂3 j · Im B̂(Mj+1) j



, (32)

where k = 1, . . . , Nh and j = Nh + 1, . . . , N .
The right-hand vector in (27) can be deduced from the expressions for the operators �k,q and 4k j,q in

[Pyatigorets et al. 2008]. It contains N subvectors consisting of 4Mk − 1, k = 1, . . . , N , elements, and
its transpose is [

D̂(s)
]T
=
[
D̂1(s), D̂2(s), . . . , D̂Nh (s), D̂Nh+1(s), . . . , D̂N (s)

]
. (33)

4.4. Solution in the time domain.

An algorithm for the numerical inversion of the Laplace transform. After the solution of system (27),
the potentials involved in expressions (11) and (12) can be written in terms of s-dependent coefficients.
Thus, the transformed fields can be expressed explicitly via the coefficients. To obtain the viscoelastic
fields in the time domain, one needs to apply the inverse Laplace transform to the s-dependent terms
involved in the transformed fields.

In the general case, the system (27) cannot be solved analytically as its both sides depend on the trans-
form parameter s. This fact suggests that a procedure for numerical inversion of the Laplace transform
should be used. Most of the methods of numerical Laplace inversion are based on the approximation
of the integral (3) by a sum of s-dependent functions evaluated at certain points and multiplied by coef-
ficients specific to a given point. For reviews of some popular methods, see [Davies and Martin 1979;
Cheng et al. 1994].
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Here we used the numerical Laplace inversion method proposed in [Stehfest 1970]. The series ap-
proximation for the Stehfest algorithm is given by

f (t)≈ ln 2
t

NSt∑
n=1

Cn f̂
(

n ln 2
t

)
, (34)

where NSt is even and the coefficients Cn are

Cn = (−1)n+NSt/2
min(n,NSt/2)∑
k=(n+1)/2

k NSt/2(2k)!
(NSt/2− k)! k! (k− 1)! (n− k)! (2k− n)!

. (35)

The detailed derivation of expressions (34) and (35) can be found in [Stehfest 1970; Kumar 2000].
The number of terms NSt in the series is relatively small and usually varies in the range 2≤ NSt ≤ 20 that
makes the calculation procedure fast in comparison with some other methods; see the charts in [Davies
and Martin 1979]. Due to its simplicity the algorithm can be easily implemented in various programming
languages. In addition, the algorithm does not require knowledge of the poles of the integrand (see (3)).
For the case of monotonic smooth functions quite accurate results are reported by Davies and Martin
[1979], Cheng et al. [1994], and Stehfest [1970]. However, no accurate results of the inversion should
be expected for discontinuous functions or functions containing sharp peaks or rapid oscillations.

As the number of terms in approximation (34) does not change during the calculation of viscoelastic
fields, the coefficients Cn are evaluated only once and stored in the computer memory.

Calculation of viscoelastic fields in the time domain. In order to find the viscoelastic potentials in the
time domain, one has to solve system (27) for each moment of time t and each point n in the Stehfest
algorithm in accordance with expression (34). The Gauss–Seidel iterative algorithm combined with
an algorithm based on LU decomposition is adopted to find the explicit solution of system (27). This
technique provides a good convergence rate even if the dimension of matrix A is very large. After that
all s-dependent terms involved in potentials (13)–(16) have to be evaluated at points (n ln 2/t). The
expressions for the potentials in terms of the Fourier coefficients B̂mk(s) are given in Appendix B. The
final step assumes the summation of expressions (11) and (12) for the viscoelastic fields over all points
n in accordance with (34) for each moment of time t .

The stresses and strains in the time domain are uniquely expressed via potentials (13)–(16). However,
the displacements in the time domain are defined up to some additional terms that could be found after
the rigid body motion is fixed, as in [Mogilevskaya et al. 2008].

Error analysis. Three sources of errors can be identified in the present method:

(i) the error due to the use of the truncated series in the approximations (19) and (21),

(ii) the error related to the iterative solution of system (27), and

(iii) the error due to the use of the numerical inversion of the Laplace transform.

Error (i) can be effectively controlled by using an appropriate number Mk of Fourier terms for the
approximations of the displacements and tractions at k-th circular boundary. The value of Mk for this
boundary must be determined in the numerical solution process; it depends mostly on the geometry of
the problem, and the following procedure is suggested for evaluating it. First, system (27) is solved for



70 ANDREY V. PYATIGORETS AND SOFIA G. MOGILEVSKAYA

time 0 to find the instantaneous, “elastic” Fourier coefficients. These coefficients are then substituted in
the original equation (6), and the normalized difference ε between the left-hand side and the right-hand
side of the equation is compared with the predefined accuracy parameter εspec. If ε exceeds εspec, the
number of Fourier terms is increased. The iterations stop when the specified accuracy level is achieved
for every circular boundary. The procedure is described in detail in [Mogilevskaya and Crouch 2001].

Error (ii) can be easily controlled by comparing the solution obtained at a current step of iteration
with the solution from the previous step. The iterations in the Gauss–Seidel algorithm proceed until the
desired degree of accuracy is achieved. In most cases considered in the present work, no more than
30–50 iterations are required for an accuracy around 10−8.

Error (iii) for the Stehfest algorithm of the inversion cannot be controlled automatically, but several
indirect means to control it are available:

• The stresses at the boundary of the half-plane obtained numerically by using the present approach
can be compared with the prescribed boundary conditions.

• For several linear viscoelastic models (for example, standard solid and Burgers models), the instan-
taneous (t = 0) or large (t →∞) time response is the same as for the elastic model. Thus, one
can compare the solution obtained by the present approach with the solution of the corresponding
elastic problem, which sometimes can be found analytically.

• For the problem of an infinite or semi-infinite perforated viscoelastic plane subjected to constant
loading, the stresses in the matrix do not depend on time and are exactly the same as those for the
corresponding elastic problem [Huang et al. 2006b; Pyatigorets et al. 2008]. Thus, one may consider
the problem in which the inhomogeneities have very small shear moduli so they can simulate the
holes in the numerical analysis. The stresses obtained from the solution of this problem should be
the same or very close to the stresses obtained from the corresponding elastic problem.

• The viscoelastic stresses, displacements, and strains obtained using the present approach should
be consistent with each other. For example, the strains at any time moment can be obtained via
transformed Kolosov–Muskhelishvili potentials; see (11) and (12). At the same time, it is easy
to find the horizontal strains along a horizontal path or the vertical strains along a vertical path by
numerically differentiating the corresponding displacements. In addition, the time-dependent strains
inside the elastic inhomogeneities can be found from the stresses by using Hooke’s law. The strains
found by using both approaches should be in good agreement with each other.

• The comparison of the selected examples with the finite element analysis can provide an idea about
the accuracy of the method and the accuracy of the inverse Laplace transform depending on the
number of terms in (34).

An extensive study of the accuracy of the numerical inverse Laplace transform was conducted using
the means listed above. It was found that for the case of constant loading and for the constitutive models
presented in the next section, the best accuracy is achieved when NSt ranges from 8 to 10. However, a
smaller number of terms in the Stehfest algorithm should be used (NSt = 4 to 6) for the calculation of
the stresses near the singular points (where the stresses may be subjected to rapid variations). In such
cases, the use of a large number NSt may cause the sum in (34) to diverge [Stehfest 1970; Cheng et al.
1994]. This effect is usually observed at small times only, and the error introduced by the reduction of
the number of terms in (34) is relatively small. See Section 5.1 for some details.
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Time-dependent loading is not considered in the present work. For this case the Stehfest algorithm
does not provide accurate results. However, the method described in the present paper is not restricted
by the use of any particular procedure in the numerical inversion of the Laplace transform.

5. Examples

Two constitutive models for the material matrix are considered in the following numerical examples. The
condition of plane strain is assumed hereafter.

For model I it is assumed that the material of the matrix responds as a standard solid (Boltzmann
viscoelastic model) in shear (Figure 2, left), and elastically in bulk. Such behavior is quite realistic as
the shear modulus for many polymeric solids relaxes much more than its bulk modulus. The constitutive
equations for the model are

E1+E2
E1

σi j (t)+
η
E1
σ̇i j (t)= 2E2εi j (t)+ 2ηε̇i j (t), i 6= j and σkk(t)= 3K εkk(t), (36)

where σi j and εi j , i 6= j , are the deviatoric stress and strain, σkk and εkk are the volumetric stress and
strain, E1 and E2 are the elastic moduli of the springs (Figure 2, left), η is the viscosity of the dashpot,
K is bulk modulus, and the dot denotes the time derivative. The s-varying analogs of the shear modulus
and Kolosov–Muskhelishvili constant are obtained from the procedure described by Wang and Crouch
[1982]. They are

µ̂(s)=
E1(E2+ ηs)
E1+ E2+ ηs

, κ̂(s)= 1+
6E1(E2+ ηs)

E1(E2+ ηs)+ 3K (E1+ E2+ ηs)
. (37)

For the sake of simplicity, the following values for the material parameters of the viscoelastic matrix are
used for all the examples described by the first constitutive model:

E1 = 8× 103σ0, E2 = 2× 103σ0, η = 5× 103σ0 · sec, K = 17333.3σ0. (38)

The constant σ0 serves to normalize all the loads and stresses. All elastic moduli can also be expressed
via this parameter.

Model II assumes that the bulk material of the viscoelastic matrix behaves according to Burgers model
(Figure 2, right) in shear and elastically in bulk. The constitutive equations for this model are

σ̈i j (t)+
(E1
η1
+

E1
η2
+

E2
η2

)
σ̇i j (t)+

E1 E2
η1η2

σi j (t)= 2E2ε̈i j (t)+ 2 E1 E2
η2

ε̇i j (t), i 6= j,

σkk(t)= 3K εkk(t).
(39)

Figure 2, right, explains the meanings of the parameters involved in (39). The expressions for the s-
varying shear modulus and the Kolosov–Muskhelishvili parameter can be obtained after applying the

Figure 2. Left: the Boltzmann model. Right: the Burgers model.
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Laplace transform to expressions (39). They are

µ̂(s)=
E1s

(
s+ E2

η2

)
s2+ s

(E1
η1
+

E1
η2
+

E2
η2

)
+

E1 E2
η1η2

,

κ̂(s)= 1+
6E1s

(
s+ E2

η2

)
E1s2+

E1 E2
η2

s+ 3K
[

s2+ s
(E1
η1
+

E1
η2
+

E2
η2

)
+

E1 E2
η1η2

] .
(40)

The parameters of the springs and the bulk modulus are taken to be the same as for the first model,
and the viscosities of the dashpots are η1 = 7× 103σ0 · sec and η2 = η; see (38).

It is worth noting that the Poisson’s ratio ν(t) of the viscoelastic matrix is time-dependent for both
constitutive models.

In all the examples presented below it is assumed that the loads applied to the boundaries of half-plane
do not vary in time. Thus, the functions in (1) are taken as f∞(t)= 1, f p(t)= 1, fF (t)= 1, the Laplace
transform of which gives

f̂∞(s)=
1
s
, f̂ p(s)=

1
s
, f̂F (s)=

1
s
. (41)

5.1. Verification with finite element software ANSYS (model I). Consider the problem of a viscoelastic
half-plane containing two holes and one rigid inhomogeneity as shown in Figure 3. The problem is
solved using the present approach and the finite element software ANSYS.

A rectangular domain of size 600R1× 500R1 (width × height) is used for the finite element analysis.
In order to achieve a high degree of accuracy, the rigid disc is meshed with approximately 23100 quadri-
lateral 8-node elements, while 131400 elements of the same type are used for the viscoelastic matrix.

Figure 3. Problem geometry for Example 1.
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The use of such a large number of elements is not dictated by any factor; possibly a smaller number of
elements can be used to achieve satisfactory accuracy in the results (however, it was found that the use of
a mesh with a total of about 35000 elements results in a significantly less accurate solution). The Prony
series is adopted to approximate the relaxation of the shear modulus of the matrix. A time stepping
algorithm is applied to obtain the time domain solution from the time t = 0 till time t = 10 sec with time
step δt = 0.5 sec.

The stresses and strains obtained by both approaches can be compared directly. To compare the dis-
placements it is necessary to introduce proper constraints in the finite element model and to constrain rigid
body motion in the present approach. The procedure is described in detail in [Pyatigorets et al. 2008].

In the present method, the accuracy parameter εspec is specified at the level εspec = 10−5. The number
of Fourier terms Mk used in the approximation of the boundary displacements is as follows:

Left hole Elastic disc Right hole
Mk = 18 23 20

Using ten terms in sum (34) provides quite accurate results for the numerical Laplace inversion. The
calculations with the present method take 8–10 seconds on a Dell computer workstation (Intel P4 3.6 GHz,
2 GB RAM), while the finite element calculations require about 7 hours at the same computer workstation
(no special optimization technique is used).

Some illustrative examples are given in Figures 4–7. Figures 4 and 5 show very good agreement
between the results for the displacements and strains calculated with both approaches. The graphs in
Figures 4 and 5 are plotted for several time instances only (0, 8, and 10 sec), however, good agreement
is found for all time moments for which the solution is found. The comparison of the time-dependent
stresses, obtained by the present approach for two values of NSt = 10 and NSt = 2, with the results from
the finite element analysis is illustrated in Figures 6 and 7. One can see that for NSt = 10, the stresses
exhibit very good agreement with those obtained by ANSYS (see Figure 6). For the case of NSt = 2
some discrepancy in the results given in Figure 7 is observed at small time values only; at larger time
the error reduces greatly. Similar behavior is observed for all the examples considered in the paper. As
the discrepancy is sufficiently small it seems reasonable to use a smaller number of terms in the Stehfest
algorithm when large NSt causes the sum (34) to diverge.

The same procedure was performed to compare the viscoelastic fields for the case of a point force
and a force distributed over the whole boundary of the half-plane. The results for these cases also reveal
good agreement with the results from the finite element analysis.

5.2. Example with a single inhomogeneity (model I). Consider a viscoelastic half-plane containing a
single inhomogeneity. The material properties of the half-plane are described by constitutive model I.
Four types of loading conditions are considered:

(i) a far-field stress σ∞ = σ0 acting parallel to the boundary of the half-plane;

(ii) a point force F = −σ0 acting perpendicular to the boundary of the half-plane along the axis of
symmetry;

(iii) a force F = −σ0 acting perpendicular to the boundary of the half-plane and distributed over the
interval of length 2R whose center is located on the axis of symmetry;
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Figure 4. Variation of the displacements along the path (−3R1,−5R1)÷ (0, 0) at time
t = 8 sec.

Figure 5. Variation of the horizontal strain along the path (−5R1,−R1)÷ (5R1,−R1).

(iv) a normal force F =−σ0 uniformly distributed over the whole boundary of the half-plane.

In this example we study the influence of the shear modulus of the inhomogeneity on the hoop stress
at point A (the closest point to the boundary of the half-plane that is located on the intersection of the
boundary of the inhomogeneity and the axis of symmetry).

The Poisson’s ratio of elastic inhomogeneity is set to ν = 0.35, while the shear modulus is varied from
µinh = 10−3σ0 to µinh = 8 · 105σ0. It is convenient to normalize µinh by the instantaneous shear modulus
of the viscoelastic matrix µ|t=0 = 8000σ0. This value is equal to the elastic modulus E1 in constitutive
model I, as the dashpot does not exhibit instantaneous deformation (see Figure 2, left). Ten terms are
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Figure 6. Variation of the normalized stresses at the point (−2.28R1,−2.3R1) located
inside the viscoelastic matrix (NSt = 10).

Figure 7. Variation of the normalized stresses at the point (−2.28R1,−2.3R1) located
in the viscoelastic matrix (NSt = 2).

used in the procedure of numerical inversion of the Laplace transform, (34), and the number of Fourier
terms Mk required to achieve the accuracy level εspec = 10−5 is the following:

Type of load Far-field stress Concentrated force Force over a segment Force over the boundary
Mk 37 209 34 22
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The fact that the hoop stress at point A is equal to the stress σxx(t) allows for additional verification of
the method and the computer code. Consider the case when the shear modulus of the inhomogeneity is
close to zero and far-field stress is applied parallel to the boundary of the half-plane. For the inhomogene-
ity located far away from the boundary of the half-plane, the stresses in the vicinity of the inhomogeneity
will not be affected by that boundary and will be the same as in the case of a full plane. In addition, the
stresses for this case do not depend on time, and are exactly the same as the stresses in the corresponding
“elastic” problem: σxx/σ

∞
= 3. The hoop stress found by the present method for µinh = 10−3σ0 and

zcenter = (0,−2000R) agrees with the elastic solution up to 6 significant digits for any moment in time.
The variation of hoop stress at point A versus the shear modulus of the inhomogeneity is shown

in Figures 8–11 for all types of loading. The plots reveal that the hoop stresses vary greatly with the
variation of the shear modulus of the inhomogeneity. However, in all four cases, the hoop stresses
exhibit an asymptotic behavior when µinh/µ→ 0 (the case of a hole) or µinh/µ→∞ (the case of a
stiff inhomogeneity). In case (i), the hoop stress is tensile (Figure 8), while in case (iv) it is compressive
(Figure 11). The hoop stress changes sign for two remaining cases of loading (Figures 9 and 10).

The hoop stress at point A depends greatly on the separation distance between the inhomogeneity
and the boundary of the half-plane. The investigation of this dependency for the case of a hole located
in a viscoelastic half-plane is given in [Pyatigorets et al. 2008]. It is interesting to compare the results
obtained by the present approach with the results presented in the latter paper. It has been found that
the hoop stresses obtained by the present method for µinh = 10−3σ0 match with the results provided by
Pyatigorets et al. [2008] up to the third decimal number for any moment in time.

5.3. Example with two inhomogeneities (model II). Two inhomogeneities with different elastic prop-
erties are considered in this example. The geometry of the problem is shown in Figure 12. Both inho-
mogeneities have the same radii R and their centers are located on the same horizontal line y =−1.4R.

Figure 8. Variation of the normalized hoop stress at point A for loading case (i).
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Figure 9. Variation of the normalized hoop stress at point A for loading case (ii).

Figure 10. Variation of the normalized hoop stress at point A for loading case (iii).

The separation distance between the inhomogeneities is 0.4R. The far-field stress σ0 acts parallel to the
boundary of the half-plane. The bulk material of the half-plane behaves according to constitutive model
II. The properties of the elastic inhomogeneities are as follows:

• Left inhomogeneity: ν = 0.35, µ= 32000σ0 (very rigid inhomogeneity);

• Right inhomogeneity: ν = 0.35, µ= 400σ0 (very soft inhomogeneity).
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Figure 11. Variation of the normalized hoop stress at point A for loading case (iv).

The distribution of maximum shear stresses is found for different moments in time. The maximum
shear stress at a point is given by the expression

τmax(z, t)= 1
2

(
σ1(z, t)− σ2(z, t)

)
,

where σ1(z, t) is the major in-plane principal stress and σ2(z, t) is the minor in-plane principal stress. The
location of maximum shear stress can provide valuable information about the initiation and propagation
of cracks.

The accuracy parameter εspec is set to 10−5. To achieve this accuracy 51 terms in Fourier series (Mk =

25) are required for each inhomogeneity. The number of terms NSt used in the algorithm for the numerical
inverse Laplace transform is set to 8. It was found that when one uses 10 terms in approximation (34),
the results of the approximation begin to diverge at certain points of the space domain. For additional
verification of the results obtained in this example a finite element model was built. The solution found
using our approach (for NSt = 8) shows very good agreement with the one obtained via finite elements.

Figure 12. Problem geometry for Example 3.
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Figure 13. Contours of τmax(z, t)/σ0 at time t = 0 sec.

Figure 14. Contours of τmax(z, t)/σ0 at time t = 5 sec.

The contour plots of τmax(z, t)/σ0 are given in the next three figures for three moments in time: t =
0 sec, t = 5 sec, and t = 300 sec. At the start (Figure 13), the highest shear stress concentration is
seen to be localized between the soft inhomogeneity and the boundary of the half-plane. At the same
time the stresses inside the inhomogeneity are much lower than in the surrounding bulk material. These
results are expected as the distribution of stresses is similar to the one observed for the problem of the
perforated half-plane. The stresses inside the stiff inhomogeneity are about the same magnitude as in
the surrounding matrix. The next snapshot (Figure 14) reveals that stresses inside the inhomogeneities
increase rapidly approaching the magnitude of the far-field stress σ0 inside the stiff inhomogeneity. The
distribution of the stresses in the matrix also changes considerably, but the maximum magnitude of τmax
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Figure 15. Contours of τmax(z, t)/σ0 at time t = 300 sec.

decreases from the level of 2σ0 to the level of σ0. The distribution of stresses at large times (exemplified
by Figure 15) becomes symmetric relative to the line x = 0. At time t = 300 sec the magnitude of the
maximum shear stress almost reaches the level of 2σ0 again, but the maximum stresses are localized
inside the inhomogeneities.

The symmetric distribution of maximum shear stresses observed at large times (despite the fact that
the material properties of the inhomogeneities are very different) allows one to suggest that for the case
of constitutive model II and constant loading, the stresses at large times do not depend on the material
properties of the viscoelastic matrix and elastic inhomogeneities. To support this conclusion, stress
components are found at a number of points inside the half-plane for several different sets of material
properties of the matrix and inhomogeneites. The illustrative results for the case of vertical stress σyy

are presented in Figures 16 and 17. The first set of material properties corresponds to that stated above
in the current example. The second set is

E1 = 1000σ0, E2 = 6000σ0, η1 = 3000σ0 · sec, η2 = 9000σ0 · sec, K = 24999σ0,

Left inhomogeneity: ν = 0.4, µ= 1200σ0,

Right inhomogeneity: ν = 0.2, µ= 16000σ0.

The stresses are found at the points A= (−0.4R,−1.4R) and A′ = (0.4R,−1.4R) located inside the left
and right inhomogeneities, respectively, and at the points B = (−0.8R,−0.2R) and B ′ = (0.8R,−0.2R)
located inside the matrix. The results, presented in Figures 16 and 17, reveal that the stresses at large
times, indeed, do not depend on the material properties, although they depend on the geometry of the
problem and on the loading, meaning stresses are statically determined. Similar behavior of stresses is
observed for other types of loading considered in the present paper. As a hole can be treated as inhomo-
geneity with zero elastic properties the same conclusion can be made for the case of more complicated
geometries including multiple holes and elastic inhomogeneities. We emphasize that the strains and
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Figure 16. Variation of the normalized vertical stress at points A and A′.

Figure 17. Variation of the normalized vertical stress at points B and B ′.

displacements depend on the material properties even when time is large. These results are supported by
the results from the finite element analysis.

Note that the numerical analysis for the case when the viscoelastic matrix is described by constitutive
model I reveals that the stresses do not exhibit asymptotic behavior at large times. It is the viscous flow
introduced by the combination of dashpots in the Burger model that is responsible for the steady solution
at large times.
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5.4. Asymptotic behavior at large times (model II). In some cases, it is possible to find analytically the
behavior of the time-dependent stresses at large times. To illustrate this, we consider the case of a single
inhomogeneity in the full plane. For this problem system (6) reduces to the single equation

− 2
∫

L

ûh(τ ; s)
(τ − ξ)2

dτ +
∫

L
ûh(τ ; s)

∂2K1(τ, ξ)

∂τ∂ξ
dτ +

∫
L

ûh(τ ; s)
∂2K2(τ, ξ)

∂τ̄ ∂ξ
dτ

+
κ̂(s)

2µ̂(s)

[∫
L
σ̂ h(τ ; s)

∂K1(τ, ξ)

∂ξ
dτ −

∫
L
σ̂ h(τ ; s)

∂K2(τ, ξ)

∂ξ
d τ̄
]

+
κ̂(s)−1
2µ̂(s)

∫
L

σ̂ h(τ ; s)
τ − ξ

dτ +π i
κ̂(s)+ 1
2µ̂(s)

σ̂ h(ξ ; s)= 2π i
κ̂(s)+ 1
4µ̂(s)

(
1+ g2(ξ)

)
σ̂∞(s), (42)

where L is the boundary of the hole occupied by the inhomogeneity. As there are only two terms g0(ξ)≡ 1
and g2(ξ) on the right-hand side of Equation (42), the only nonzero Fourier coefficients B̂m(s) present
in approximations (19) are B̂−1(s) and B̂1(s). These coefficients are found from the solution of (42) and
can be expressed as

B̂−1(s)=
σ̂∞(s)

4
κ̂(s)+ 1

µ̂(s)+ κ̂(s)µd
R, Re B̂1(s)=

σ̂∞(s)
8

κ̂(s)+ 1
µ̂(s)+ 2µd/(κd − 1)

R, (43)

where R is the radius of the inhomogeneity, and µd and κd are its shear modulus and Kolosov–
Muskhelishvili parameter, respectively.

As an illustration, we investigate the behavior of the Kolosov–Muskhelishvili potential ϕ(z, t) at t→
∞. It follows from (15) that

ϕ̂(z, s)=−
µd − µ̂(s)

µ̂(s)+ κ̂(s)µd

R2

z− zc

σ̂∞(s)
2
+
σ̂∞(s)

4
z, z ∈matrix,

ϕ̂(z, s)=
µd

κd − 1
κ̂(s)+ 1

µ̂(s)+ 2µd/(κd − 1)
(z− zc)

σ̂∞(s)
4

, z ∈ elastic disc,

(44)

where zc is the complex coordinate of the center of the inhomogeneity.
The behavior of the potential in the time domain at the time t→∞ corresponds to the behavior of its

Laplace transform at s→ 0. Equations (40) give

µ̂(s)→ 0, κ̂(s)→ 1 when s→ 0. (45)

Using (44) and (45) and not accounting for the behavior of σ̂∞xx (s) at s→ 0 (this quantity should be
transformed back in the time domain), we get

ϕ̂(z, s)=
σ̂∞(s)

4

[
z− 2R2

z−zc

]
, z ∈matrix, s→ 0,

ϕ̂(z, s)= (z− zc)
σ̂∞(s)

4
, z ∈ elastic disc, s→ 0.

(46)
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Angle, deg t = 0 sec t = 5 sec t = 500 sec Equation (47)

Circular contour located inside the matrix (r = 1.1R)

0 1.359325 2.511734 2.652893 2.652893
15 1.311184 2.3092 2.431448 2.431447
30 1.179662 1.755867 1.826447 1.826446
45 0.99999999 1.00000011 1.00000012 1
60 0.820338 0.244133 0.173554 0.173554
75 0.688816 −0.3092 −0.431447 −0.431447
90 0.640676 −0.511733 −0.652893 −0.652893

Circular contour located inside the inhomogeneity (r = 0.8R)

0–360 1.076923 1.006881 1.00000006 1

Table 1. The values of σxx(z)+ σyy(z) found numerically and from (47).

Finally using (11) and (46) one arrives at

σxx(z)+ σyy(z)= σ∞
[

1+ 2 Re
( R

z−zc

)2
]
, z ∈matrix, t→∞,

σxx(z)+ σyy(z)= σ∞, z ∈ elastic disc, t→∞.

(47)

It follows from expressions (47) that, at large times, the sum of the horizontal and vertical stresses
inside the inhomogeneity is constant and equal to the value of the far-field stress. The results given by (47)
can be used as the benchmark solution. Consider a single inhomogeneity located far from the boundary
of the viscoelastic half-plane subjected to far-field stress σ∞. Let R = 1 and zc = (5R,−2000R). We
assume that the viscoelastic matrix obeys constitutive model II, νd = 0.2, and µd = 16000σ∞. Table 1
shows the results for the combination σxx(z)+ σyy(z) calculated at several points located on two circular
contours cocentrical with the boundary of the inhomogeneity. The first contour is located inside the
inhomogeneity and its radius is r = 0.8R; the radius of the contour located outside the inhomogeneity
is r = 1.1R. For both contours the angle is defined similarly to the angle shown in Figure 1b. Due to
the symmetry of the problem the values of σxx(z)+ σyy(z) are given for the first quarter of the complex
plane only. As one can see from Table 1, the combination σxx(z)+ σyy(z) tends to the results prescribed
by (47) when time is sufficiently large.

6. Conclusion

We have shown that the proposed method of solution of the problem of a semi-infinite, isotropic, linear
viscoelastic half-plane containing multiple, nonoverlapping circular inhomogeneities is efficient and ac-
curate. As the upper boundary of the half-plane may be subjected to different loading conditions, the
method can be successfully used in the modeling of indentation processes.

An important feature of the algorithm is that most of the derivation, including space integration and the
Laplace transform, is performed analytically. In the case of the perforated half-plane, when the method
reduces to the one presented in [Pyatigorets et al. 2008], the inversion of the Laplace transform can be
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also performed analytically. However, in the general case of the inhomogeneities, it has to be performed
numerically.

An algorithm for numerical inversion of the Laplace transform proposed by Stehfest is used in the
present work. It is found that for the case of constant boundary conditions and for the constitutive models
presented in the paper, the algorithm provides accurate results. The results of the numerical simulations
indicate that the Stehfest algorithm does not provide accurate results for those problems where time-
dependent boundary conditions are prescribed. However, the method described in the present paper is
not restricted by the use of any particular procedure for the numerical inversion of the Laplace transform.

The major advantage of the algorithm is its time efficiency: problems containing large arrays of
inhomogeneities (tens/hundreds) can be accurately solved in a relatively small time on a standard single-
processor PC (seconds or minutes if the solution is found at a few spatial points and several hours if
the number of points is tens or hundreds of thousands). The calculation of viscoelastic fields can be
effectivelly parallelized on multiprocessor/multicore machines. A multithreading architecture is imple-
mented in the current version of the computer code that allows one to additionally speed up calculations
on multiprocessor machines. The present method allows one to easily modify constitutive viscoelastic
models in the computer code if the expressions for the transformed shear modulus and the Kolosov–
Muskhelishvili parameter are known.

Several numerical examples are considered in the paper. Interesting results are obtained from the
study of the hoop stress at a point on the boundary of a single inhomogeneity located in the vicinity of
the boundary of the half-plane. The study reveals that the hoop stress greatly depends on the material
properties of the inhomogeneity and can be tensile or compressive depending on the time moment and
shear modulus of the inhomogeneity. The results obtained for constitutive model II (Example 3) show
that the state of the stresses is statically determined at large times, with an asymptotic behavior as t→∞
determined only by the geometry of the problem. Nevertheless, the value of t when the stresses approach
the asymptotic behavior depends on the material parameters.

One of the future developments of the approach may include the consideration of imperfect interfaces
between the inhomogeneities and the matrix. Cracks or inhomogeneities of more general geometry can
also be incorporated, although the method would have to employ the boundary element technique.

Appendix A

The operator 3̂kk is the Laplace transform of the corresponding operator presented in [Dejoie et al. 2006]:

3̂kk(ξ ; s)=−
1
Rk

{
2 Re B̂1k +

Mk−1∑
m=1

m B̂−mk gm+1
k (ξ)+

Mk+1∑
m=2

B̂mk g1−m
k (ξ)

}
. (A.1)

The operator Ĝkk is given by

Ĝkk(ξ ; s)=
1
Rk

{
2
(
µk
κk−1

κ̂−1
µ̂
− 1

)
Re B̂1k

+

(
µk
µ̂
− 1

) Mk−1∑
m=1

m B̂−mk gm+1
k (ξ)+

(
µk
κk

κ̂
µ̂
− 1

) Mk+1∑
m=2

B̂mk g1−m
k (ξ)

}
=−

1
Rk

{
2α̂2k Re B̂1k + α̂1k

Mk−1∑
m=1

m B̂−mk gm+1
k (ξ)+ α̂3k

Mk+1∑
m=2

B̂mk g1−m
k (ξ)

}
. (A.2)
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Expression (A.2) differs from (A.1) by the presence of additional terms in front of unknown Fourier
coefficients B̂−mk , Re B̂1k , and B̂mk only. All other operators Ĝ jk can be obtained in a similar way from
the corresponding expressions given in [Dejoie et al. 2006].

Appendix B

Potentials for the k-th elastic disc derived from (13):

ϕ̂(z, s)=
2µk

κk − 1
Re B̂1k g−1

k (z)+
2µk

κk

Mk+1∑
m=2

B̂mk g−m
k (z)

=
2µk

κk − 1
1
α̂2k

Re B̂1k g−1
k (z)+

2µk

κk

1
α̂3k

Mk+1∑
m=2

B̂mk g−m
k (z), (B.1)

ψ̂(z, s)=− 2µk
κk−1

z̄k
Rk

Re B̂1k−
2µk
κk

[ z̄k
Rk
+gk(z)

] Mk+1∑
m=2

m B̂mk g−(m−1)
k (z)−2µk
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k (z)

=−
2µk
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−
2µk
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[ z̄k
Rk
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m=2

mB̂mk g−(m−1)
k (z)− 2µk

α̂1k

Mk−1∑
m=1

B̂−mk g−m
k (z). (B.2)

Similar expressions are used in [Mogilevskaya et al. 2008] for the calculation of elastic potentials.

Potentials for the matrix derived from (15) and (16):

ϕ̂plane(z; s)=
2µ̂
κ̂+1

N∑
k=1

Mk−1∑
m=1

B̂−mk gm
k (z)+

σ̂∞(s)
4

z, (B.3)

ψ̂plane(z; s)=−
κ̂−1
κ̂+1

Nh∑
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ϕ̂aux(z; s)=
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where
h j (z)=

Rj

z−z j
. (B.7)
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The potentials ϕ̂F (z; s) and ψ̂F (z; s) are due to the use of Flamant’s fundamental solution, and they
do not depend on the displacements or stresses at the boundaries of the holes. The expressions for these
potentials are given in [Pyatigorets et al. 2008].
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