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Thin films are usually submitted to high residual compression stresses which cause them to delaminate
and buckle. We focus on the case in which delaminated areas take the form of long rectangular strips.
The most commonly observed buckling equilibria that develop on such strip-delaminated areas are the
straight-sided wrinkle, the row of bubbles, and the telephone cord wrinkle. An analytical model, based
on elastic rods with hinges and taking into account the contact between film and substrate, is set up
for the study of the post-buckling regime of the transition from straight-sided wrinkles to bubbles. The
existence of snap-through is investigated; previous numerical studies revealed that this phenomenon can
sometimes occur. The present analytical approach excludes numerical artifacts that can easily arise due
to the high sensitivity of this problem to initial imperfections. The model reveals a critical bubble aspect
ratio associated with the snap-through, and the existence of several simultaneous bubble equilibria.

1. The thin film secondary buckling problem and its mechanical description

The mechanical behavior of stressed multilayers and thin films has been the object of several investiga-
tions over the past twenty years in the fields of solid mechanics [Hutchinson and Suo 1991; Moon et al.
2004; Evans and Hutchinson 2007; Tvergaard and Hutchinson 2008] and materials sciences [Gille and
Rau 1984; Abdallah et al. 2008]. Coatings are involved in a wide range of technological applications
from microelectronic devices to thermal barrier coatings used in aero-engines.

High residual compressive stresses tend to arise in thin films deposited on substrates. The stress levels
can be high and can reach, for instance, a few GPa in the case of thin metallic films prepared by sputtering
deposition methods. The films may consequently delaminate and buckle spontaneously under the effects
of high stress. Delamination and buckling are closely related; buckling occurs on the delaminated areas
of the film where the flat equilibrium shape is no longer stable. Many buckling shapes can be observed
on a delaminated area depending on the area’s shape and on the stresses present in the film.

In the present text, we shall focus our attention on equilibria developing on rectangular areas of infinite
length, which we shall refer to as “strip-delaminated” areas. The most common buckling equilibria on
such domains are the straight-sided wrinkle, the row of bubbles, and the telephone cord wrinkle. Evidence
from experiment [George et al. 2002] and analytical theory [Audoly 1999] suggests that both the bubbles
and the telephone cord equilibria can result from the buckling of the straight-sided wrinkle. In those
studies the delaminated strip was modeled as a von Karman plate and the perturbation method was used
on the straight-sided wrinkle. Since the straight-sided wrinkle is itself a post-buckling state of the flat film
(a primary buckling), the two other equilibria are often referred to as “secondary buckling” equilibria. A

Keywords: mechanical properties of thin films, static buckling, instability, variational and optimizational methods, elastic rods
with hinges models.
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stability diagram of the different secondary buckling equilibria has been recently determined [Parry et al.
2006]. The boundaries of the stability domains of the different equilibria are associated with critical
values of some nondimensional loading parameters, stress level, elastic properties, delaminated strip
width, and film thickness. The delaminated strip was also modeled as a plate, and the stability domains
have been obtained through finite element calculations, taking into account large displacements and the
contact between film and substrate. This allows one to follow the buckled structure in the advanced post-
critical regime. Investigation of these secondary buckling equilibria is still active [Jagla 2007; Gruttmann
and Pham 2008; Song et al. 2008].

Numerical exploration by means of the finite element method has proved to be valuable for gaining
a better understanding of thin film secondary buckling phenomena. It has enabled us to follow the post-
critical paths far from the straight-sided wrinkle equilibrium [Parry et al. 2006]. Nevertheless, because
it consists in following along equilibrium branches, using initial imperfections with shapes designed to
guide the solution toward the desired equilibrium branch in the neighborhood of the bifurcation point,
this type of exploration is “local” in the sense of the loading space: it does not offer a global vision and
understanding of the whole equilibrium branch structure. For a given loading and for a chosen set of
parameters, the exact number of possible branches (that is, of possible buckling states) is not known a
priori. It is consequently possible to miss a bifurcation point or snap-through.

In this context, a simplified model based on elastic rods with hinges has been developed in order
to study analytically the secondary buckling of the strip-delaminated structure, especially the transition
from straight-sided wrinkle to bubbles. A two-parameter model, capable of characterizing the straight-
sided buckle to bubbles transition, has been set up. Such simplified models have proved to be valuable in
analyzing post-critical buckling phenomena [Thompson and Hunt 1973; Arbocz et al. 1987]. The idea is
to provide intrinsic characteristics of the transition, explicitly investigating the parameters’ dependence
and avoiding numerical artifacts.

The equations derived from the simplified model have to be simple enough to be solved by analytical
methods, or at least to involve only very basic numerical tools. In the meantime, the model has to be
realistic enough to conserve the post-critical behavior of the original structure. As we will show, the
simplified model fulfills the above requirements.

Although the model is simplified compared to the original thin film, it shows behavior similar to thin
films, and, therefore, can help by giving some explanation of the buckling behavior for such films. The
phenomena are qualitatively well reproduced, and the critical values (critical a/b ratio, critical load) can
also be predicted quantitatively with good accuracy.

2. Experimental results for the strip-delaminated thin films buckling problem

In this section, we present experimental results for the uniaxial compression of nickel thin films on
polycarbonate substrates leading to strip buckling patterns. A summary of the experimental observations
related to secondary buckling patterns is made.

Recent experiments [Coupeau et al. 1998] have been carried out on nickel thin films deposited on poly-
carbonate substrates using in sifu atomic force microscopy (AFM) imaging together with a compression
device. Uniaxial compression of the substrate is performed, with two purposes (Figure 1).
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Figure 1. Uniaxial compression of a nickel thin film on a polycarbonate substrate. Left:
Nickel thin film on polycarbonate substrate. Equibiaxial stress of magnitude oy in the
film. Middle: An uniaxial compression is applied to the substrate leading to strip-shaped
delamination and straight-sided wrinkle formation. This structure is stable because of
the high transversal compression. The small arrows indicate the stress variations in the
film. Right: As the external compression is released, the straight wrinkle bifurcates into
arow of bubbles. The stress state is back to the initial equibiaxial stress of magnitude og
in the adherent parts of the film.

« The first purpose is to induce the strip-delamination pattern on the film; a network of parallel strips
develops perpendicularly to the compression axis (Figure 1, middle; oy, is the stress induced in the
substrate by the experimental device).

» The second purpose is to modify the initially equibiaxial stress state in the film (Figure 1, left), and
hence the loading applied to the delaminated strips. The variation of the stress state in the film due
to external compression is depicted in the middle part of the same figure.

Denote by o; and o; the stress components in the adherent part of the film, taken in the transversal
and longitudinal directions of the strip, respectively (these are principal values, as the compression di-
rection is perpendicular to the strips). The loading applied to the delaminated part of the film is in fact
a displacement prescribed by the substrate along the boundaries of the delaminated area. The values o;
and oy are directly related to this imposed displacement.

Before applying external compression, the film is only submitted to an equibiaxial compression state
due to the internal stress (o, = g; = o) (first and left parts of Figure 1). During the uniaxial compres-
sion of the substrate, the stress component in the film becomes more compressive in the compression
direction (that is, in the transversal direction of the strip) whereas the stress component perpendicular to
the compression direction (that is, in the longitudinal direction of the strip) becomes less compressive
(middle part of same figure). This behavior results from the difference between the Poisson’s coefficients
of the two materials (Vaim < Vsubstrate)- Lhe ratio of stress components in the longitudinal and transversal
directions of the strip (g;/0;) is a critical parameter which triggers the transition between the straight-
sided equilibrium and the secondary buckling equilibria (bubbles or telephone cord).

Secondary buckling occurrs while the external compression is released (Figure 1, right). As a matter of
fact, a large external compression promotes a transversal stress component higher than the longitudinal
one, leading to a stable straight-sided wrinkle (Figure 1, middle). While the external compression is
released, the o;/0; ratio increases, destabilizing the straight-sided wrinkle and a bubble or telephone
cord equilibrium then arises.
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The only irreversible step of the experiment is the delamination of the interface, which determines
the width of the strips during the first compression. The buckling itself is purely elastic (reversible) and
the experiment can be repeated with multiple cycles. It is worth noting that the delaminated strip width
does not evolve during the successive loading/unloading. The interaction of debonding with buckling of
the film is not studied in this article. Many studies on this topic have been published (for example see
[Thouless et al. 1992; Faulhaber et al. 2006]).

The reversibility of buckling in the above described experiment allows one to observe, in-situ, different
areas of the film and to follow the different equilibria in their post-critical regime while the external
compression is modified. Remarkable observations are:

(a) both bubbles and telephone cords can be found on the same sample;

(b) the transition from straight-sided wrinkle to bubbles is characterized by snap-through under partic-
ular conditions;

(c) some bubbles are rather shallow, remaining on top of the straight-sided wrinkle, whereas others are
much deeper, settling down to the substrate level, as observed in Figure 2.

These experimental observations reveal the strong nonlinear character of the problem. Transitions occurr
in configurations where large out-of-plane displacements are involved. The film-substrate contact is a
source of nonlinearity as well. The wrinkle-to-bubbles transition is thus particularly complex.

The questions arising in point (a) were addressed in [Parry et al. 2006]. It was found that, for a given
loading, bubbles tend to appear on the narrowest strips whereas telephone cords develop on wider ones.

The question pointed out in point (b), the snap-through in the wrinkle-to-bubbles transition, has been
explored in [Parry et al. 2005] by means of the finite element method. The length-over-width ratio for
the bubbles turns out to be a critical parameter for the nature of the transition.
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Figure 2. AFM image of a row of bubbles. Left: Detail of a row formed after the
collapse of a straight-sided wrinkle. The other wrinkles in the neighborhood have a
telephone cord buckling pattern. Two points are spotted, both located between two suc-
cessive bubbles. Right: A slight depression is observed at point o, whereas the film is
completely redeposited on the substrate at point £.
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Figure 3. Structure sensibility to initial imperfections. Left: Mechanical model used in
finite element computations. One unit cell (Iength a, width b) of the delaminated strip
is modeled as a plate, with prescribed displacements at edges. Initial shape imperfection
is on the order of b/1500. The straight-sided wrinkle bifurcates into a bubble structure
(top right), or into a telephone cord structure (bottom right).

The two principal aims of the simplified model are to investigate point (c), which has not been ad-
dressed previously, and to explore further point (b). The latter point is difficult to address using plate
theory and numerical methods because of the multiplicity of parameters and sensitivity of the secondary
buckling to initial imperfections.

An example of this sensitivity is illustrated in Figure 3. In this example, a plate of length a and width
b relies on a rigid support (Figure 3, left). The plate is submitted to displacements along its boundaries.
The displacement components are normal to the plate edges. This plate represents one unit cell of the
buckling mode: b is the strip width and « is the length of one bubble or the telephone cord spatial
period. Two buckling calculations are carried out using two different initial geometric imperfections.
The imperfections are very small, their amplitude being on the order of 5/1500. In the first calculation
(Figure 3, right top), the imperfection shape is “symmetric”, imitating a bubble. As the amplitude of
the prescribed displacement increases, the plane structure first bifurcates in a straight-sided wrinkle; the
secondary buckling under a bubble shape then occurs. In the second case (Figure 3, right bottom), an
“antisymmetric” imperfection inspired by the telephone cord shape is introduced; the structure follows
the same evolution as the process just described, from the plane structure to the straight-sided buckle,
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but it finally bifurcates into a telephone cord shape as the loading is increased. These calculations show
the key dependence of the numerical results on the initial imperfection used to carry out the calculation.

3. The simplified rod and spring model for buckling and post-buckling

The simplified system is composed of elastic rods, connected by hinges (Figure 4). The bending stiffness
is obtained by introducing rotational springs between the rods. The arrows represent the prescribed load
or displacement applied perpendicularly to the edges.

—> Imposed force
or displacement

Figure 4. Rods and springs structure. The variables , ¢, and 6 are the rotations of the
rods with respect to the horizontal plane. The arrows stand for imposed forces or dis-
placements.

The structure depicted in Figure 4 is one unit cell of width b and length a of the buckled structure
that arises during secondary buckling. It represents a structure of spatial periodicity a, a straight-sided
wrinkle, or a flat structure.

A state of deformation is characterized by two angular parameters ¢ and . For convenience, a third
parameter ¢ is introduced which is a function of the two degrees of freedom ¢ and y (0 = 6(p, y)).
When ¢ = 0 and 6 = vy, the straight-sided wrinkle can be recognized. The value # = 0 indicates the point
at which the post-critical regime is advanced enough such that the bubble edges come in contact with the
substrate. All the other values ¢, v, and @ describe states that are in the post-critical secondary buckling
regime. It is worth noting here that the telephone cord buckle cannot be described by this model. In order
to do so, the introduction of one additional parameter is necessary which would not allow us to preserve
the simplicity and the clarity of our statements. The present study focuses on the wrinkle-to-bubbles
transition.

The potential energy V of the structure is defined as

V = E) + ES — Wexs (1)

where Egl is the bending elastic deformation energy, £}, the stretching elastic deformation energy, and
Wext the work of external forces. The bending part of the elastic deformation energy is composed of the
following terms:

Eb=1C1y?+1C10> + 1Cap* + C30(y - 0), )
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where C; and C, are the pure bending stiffness coefficients associated with bending around the Ox; and
Ox, axes, respectively, and C3 is the shear stiffness coefficient. The shear energy is chosen to be the
simplest polynomial that vanishes for p =0 and v — 0 = 0.

It is necessary to carefully choose these three coefficients to obtain a realistic behavior of the simplified
model. In order to find the coefficients, the behavior of the bars system is identified with the behavior of a
rectangular plate of same dimensions (length a and width b) at the onset of buckling. The identification of
the critical loads, for a well chosen set of buckling modes, allows for the determination of the coefficients.

For this identification step, the structure is loaded in its initial (flat) plane by forces applied normal to
the edges (see Figure 5). Denote by f the force per unit length of the structure edge, so the total load
applied on an edge parallel to the x| direction is fa. This load is distributed on the four hinges, with
fa/4 at the extremities and fa/2 in the middle (as suggested by the periodicity conditions). The same
argument holds for the load applied along the edges parallel to the x; direction.

The two chosen buckling modes that we wish to use for identification are:

o The straight-sided wrinkle (Figure 5, left), characterized by ¢ = 0 (hence 8§ = ), arising from
the flat equilibrium. This buckling mode does not activate shear, and makes it possible to identify
coefficients C; and C».

o The bubble mode (Figure 5, right), arising from the flat equilibrium. This mode activates shear, and
allows for the determination of Cs.

fa/4

AT

-

fas =7 T>foia

Figure 5. Buckling modes used for bending stiffness identification. Left: Straight-
sided wrinkle mode. Right: Four times clamped plate or “deposited bubble” structure.

As the identification is made for incipient buckling, it is assumed that the deformation occurrs without
stretching of the middle plane. In this case, the potential energy of the bars structure is written as

V =13C10%(p, y) +5C1y> + 5C20° + C3p (v — 0(p, y))
~2(rda- COS(p)g) — 2(fg(1 —c0s0(p, )4) —2(fg(1 —cos)%). O

We now describe the first step of the identification process, that is, the determination of C; using the
straight-sided wrinkle equilibrium (Figure 5, left). It is possible to find an exact solution of the von
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Karman equation for this straight-sided wrinkle problem, for example, [Hutchinson and Suo 1991]. The
critical value f. of the force per unit length associated with this buckling mode is f. = 4w 2D /b? (with
D the flexural stiffness of the plate). As far as the bars structure is concerned, this equilibrium is charac-
terized by ¢ = 0 and § = . The critical value of the load is f. =2C;/(ba). We deduce that

b
C :27r2D%, C2:2752DE. 4)

We next describe the second step of the identification process, that is, the determination of Cs using the
bubble equilibrium (Figure 5, right). There is no exact solution for the buckling problem of a rectangular
plate clamped along all edges. Nonetheless, a good approximation for the solution to this problem is

w(x,y):%(l—cos 277[)c)(1—cos 277[y) 5)

An approximate critical buckling load is obtained by setting the work of external forces AW equal to
the bending energy AUy, of the plate for any amplitude wy, of the lateral deflection. These two expressions
AW and AUy can be written as

a b
=g [ () () s

AU D /“ /b (azw n 82w)2 21 )(6211) o%w ( o%w )2) dxd
= — —t—) - -V — xdy,
=2 )y Jo \\axz ™ 5y2 ox% oy? 0x0y Y

which provides the value for the approximate critical buckling load,

fo 4z?D 2a* +3+3a*
T 3aX(1+a)

(6)

with a = a/b. Finite-element parametric studies show that this analytical formula for the bubble buckling
load is quite accurate.

We now calculate the critical load associated with the system of bars. The potential energy given by
equation (3) is used here. The relationship between the angles is sin & = sin y — (a/b) sin ¢, which under
the small displacement hypothesis becomes § = w — (a/b)p. The bubble equilibrium is characterized
by 6 = 0. Taking into account these equalities yields

_ 4x?D3C3/(Dx?)a* 43+ 3a"
T op? 3a2(1 + a?) ’

@)
from which C3 = 72D is identified.

4. The unilateral buckling problem with two degrees of freedom

The displacements along the delaminated areas of the film are in fact imposed by the substrate. Let
us call u; and u, the two components of the displacement imposed on the edges of the strip (Figure 6,
left). We introduce the notation u| = %ae 1 and up = %bgz, where ¢; and &, are the biaxial strains in the
adherent part of the film, due to the substrate action. During loading, the lengths of the rods change as
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Figure 6. System of elastic rods under prescribed displacement. Left: Displacements
uy and u, prescribed on the edges of the structure. Right: Relationships between dis-
placement and current rod lenght.

illustrated in the case of the transversal rods, with rotation identified by the angular variable y in Figure
6, right.

In order to introduce the stretching energy component into the rod system, we have to identify an
equivalent compression stiffness for each rod. This is done by matching the uniaxial compression stift-
ness of the rod system with that of a plate with the same dimensions. An illustration is given in Figure 7.
The total compression force acting on the edge parallel to direction x| is F = ¢ ha. For a displacement
AL of the edge, the stiffness of the plate is denoted K, with F = KAL. Since ¢ = E(2QAL/b), we
identify K = 2E(a/b)h. This stiffness is distributed between the middle rod (k' = E(a/b)h) and the
side rods (k" = %E (a/b)h for each rod, for symmetry reasons).

The same arguments hold for compression in the other direction (x; direction). The global stiffness
is then K =2FE(b/a)h. It is distributed among the different rods as well.

I In :)
! — [ e_phoa
i f=0c.h : 2 b
| —
i — |
a | — E— O
i «— k:Eh%
; < |
| — |
: — ]
] > ]
—_—— — i h a
k=g
b/2 > b

Figure 7. Rod-and-spring structure. The variables , ¢ and 8 are the rotations of the
rods with respect to the horizontal plane. The arrows stand for imposed forces or dis-
placements.
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The next step is to express the length variation for each rod as a function of the angular variables. An
example is depicted in Figure 6, right, for the middle transversal rod which is associated with the rotation
parameter . The initial length for this rod is b/2. For a given value of w, the length L of the rod is
given by %b = L cos i 4+ uy. The length variation of the rod is

AL = 9(1— 1_82).
2 cos i

The contact between the structure and the support, assumed to be rigid, is managed by the introduction
of a reaction force, denoted R, exerted “upwards” by the support on the mobile lateral hinges (Figure 8).

Uz/'

Figure 8. Contact force R due to the rigid support, applied to the central hinges when
they come into contact with the support.

The vertical displacement d of a lateral hinge is linked to the lateral displacement and to 8 by

b b
d= (i—uz) tan = 5(1 — &) tan 6. (8)
The displacement d and the reaction R satisfy the conditions

In order to take into account the unilateral contact, we introduce the potential energy of the system, which
reads, in a nondimensional form V =V /(z°D),

. - 1 2 =~
Vv =a82+a1//2+5g02+§g0(l// —9)+k618%

+1€a(1 ! _81)2+1€a(1 — 1_892)2+1€a(1 - 1(;‘;2)2—&1(0), )

where

-, A= ——.
b 272D
At equilibrium, 4 and d (@) satisty the complementary conditions

A>0,  2d(0)=0.
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In the following, we will omit the symbol ~ and handle only nondimensional values. Note that k
expresses the competition between the stretching stiffness and the bending stiffness. Also note that the
cosine terms account for the geometric nonlinearities. The notation &1 = pe¢, €2 = ¢ is introduced for the
prescribed strains, with p, the biaxial prescribed displacement ratio.

5. Analysis of the equilibria

The rod system has two angular degrees of freedom, ¢ and w. The shape of the potential energy indi-
cates that the underlying equilibrium equations of the systems are nonlinear. The equilibrium equations
are solved for the rod system subjected to displacements U = (u, u3) as a simplified model for the
delaminated film strip subjected to biaxial deformation & = (g1, €). A sensitivity study of equilibrium
stability with respect to the various parameters is carried out in order to characterize the transition from
straight-sided wrinkle to bubbles.

The model experiment to which the results of this study can be compared is the previously described
case of a 50 nm nickel thin film on a Polycarbonate substrate. A Young’s modulus of 160 GPa has been
experimentally determined for the film by using nano-indentation. The Poisson ratio is v = 0.31. The
width b of the delaminated area is around 3 um. Using these data, a value of approximately 1000 is
found for the parameter k.

Due to the fact that the substrate is relatively compliant compared to the film, the boundaries of the
delaminated film can move slightly toward each other during delamination, leading to a relaxation in the
direction x, (along the width of the delaminated strip). Hence ¢; is smaller than ¢; in the experimental
case. The parameter p is set to 1.2 here in order to fit the non-equibiaxial loading conditions of the
experiment.

The two variable parameters of the study are the aspect ratio of the unit cell a/b, accounting for
the spatial periodicity of the bubble distribution, and the loading parameter &, representing the level of
compressive deformation prescribed by the substrate.

For each pair of parameters (¢, a/b) a two-step procedure is carried out. The first step is the search
of equilibria for which the system does not come into contact with the rigid support (8 > 0, 1 =0). We
will describe such equilibria as “contact-free”. The second step is to check the existence of a contact
equilibrium (¢ =0, 1 > 0). The potential energy can be computed for the different equilibria, and stability
of the contact-free equilibria can be studied.

5.1. Search for contact-free equilibria (0 > 0, A = 0). We set Vi(¢, w,&) = V(p, w, 1 =0,¢). The
equilibrium equations for the contact-free equilibria are given by

oV
8_1//1 = f1(¢= l//,((,‘) :0,
(10)
ovq
a_ = f2(¢7 v, 8) :0
1

The method consists in plotting the curves €; and €, representing f; =0 and f> = 0, respectively, in the
(¢, ) plane limited to the (v > 0, 8(p, w) > 0) area for a given value of the loading parameter ¢. Each
couple of coordinates (i, ¢) at an intersection point of the two curves corresponds to an equilibrium
state.
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Once a particular equilibrium (¢, ¥1) has been identified, the Hessian matrix for the potential energy
(62V/6u,~8uj for 1 <i <2,1<j<2)is computed with u = (p, y) in order to determine the shape of
the potential energy in the neighborhood of equilibrium. The two eigenvalues, A and A, of this Hessian
matrix are computed and their sign is analyzed.

(a) If A, and A, are both strictly positive, the equilibrium is at a local strict minimum of the potential
energy.

(b) If 41 and A, are both negative, the equilibrium is at a maximum of the potential energy.

(c) If 41 and 4, have different signs, the equilibrium is at a saddle point of the potential energy.

Following the second variation stability criterion, only case () is associated with a stable equilibrium.
As we shall see, two types of equilibria are discovered this way. The first one is the expected straight
sided wrinkle (SSW) equilibrium, with ¢ = 0 and y > 0. The second one is a shallow-bubble (SB)
equilibrium, with y > 6 > 0. This last equilibrium can represent experimentally observed equilibria that
are characterized by shallow undulations at the top of SSW.

5.2. Search for contact equilibria (6 = 0, A > 0). Our model allows for the existence of a contact
equilibrium subjected to a nonzero reaction force from the support (4 > 0). This is the representation of
the deep-bubble (DB) equilibrium, experimentally observed when the film comes into contact with the
substrate as bubbles form from the SSW equilibrium.

Write Vo(y, 1,¢) = V(p = (b/a)y, vy, A, ¢). The equilibrium equations in the case of contact yield

oV-
8_2 :gl(l//,l,{;‘) :Oa
v (11)
oVs
— = = A =0.
Y gy, 4, ¢)

For a particular set of values for (a/b, ), the solution to the above system indicates if a contact equilib-
rium exists (solution with y > 0 and 4 > 0), as well as the value of y for the given equilibrium (that is,
the bubble height).

5.3. Results. Three different post-critical behaviors can by identified, depending on the a/b ratio. We
will address the problem of the equilibrium transition in light of three cases corresponding to the ratios
a/b=0.9, 1, and 1.1. These cases are in the range of those observed experimentally. For each case,
deformation levels from low to high are considered. Increasing the deformation level gives rise to new
equilibria and can also trigger a change in the stability of those equilibria. The results are depicted in
Figures 9, 10, and 11. Curves € and ‘¢, have been drawn in solid and dashed lines, respectively. Each
intersection point of the curves indicates the existence of an equilibrium. The trivial planar equilibrium
(p =0, w =0) and the SSW equilibrium (¢ = 0, y #~ 0) are easily identified.

The potential V has also been plotted in each case in order to observe its shape in the neighborhood
of each equilibrium. It is possible to see whether the equilibrium is a minimum, a maximum, or a saddle
point of the potential, and hence to indicate its stability. Only the part where y > £ ¢ (that is, & > 0) is
relevant. The other part shows the existence of a bilateral equilibrium, which is not possible here because
of the rigid support.
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Figure 9. Equilibria for a/b = 0.9. Top: ¢ = 0.002; planar equilibrium (¢ =0, y = 0)
and straight-sided equilibrium ¢ = O can be identified on the vertical axis. Middle:
& = 0.004; a stable shallow-bubble equilibrium arises, and the straight-sided equilibrium
is unstable. Bottom: & = 0.015; same equilibria as for ¢ = 0.004.
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Figure 10. Equilibria for a/b = 1. Top: & = 0.002; planar equilibrium (¢ =0, y = 0)
and straight-sided equilibrium ¢ = 0 can be identified on the vertical axis. Middle:
& = 0.004; deep-bubble equilibrium is arising, and the other equilibria are unstable.
Bottom: & = 0.015; same observation as for ¢ = 0.004.
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Figure 11. Equilibria for a/b = 1.1. Top: ¢ = 0.001; planar equilibrium (¢ =0, v = 0)
and straight-sided equilibrium ¢ = O can be identified on the vertical axis. Middle:
& = 0.004; A shallow bubble equilibrium (unstable) and a deep bubble equilibrium
are identified. Bottom: & = 0.010. The same equilibria can be identified for higher
deformation levels.
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Short bubbles (a/b = 0.9). The case of short bubbles is illustrated in Figure 9 for a/b = 0.9. A stable
SB (shallow-bubble) equilibrium rapidly arises as the deformation level is raised. This buckling mode,
characterized by values of ¢ that are rather small compared to y can be connected to experimental obser-
vations of small undulations (or incipient bubbles) on top of straight-sided wrinkles. It is experimentally
observed that these undulations are short. As the deformation level ¢ increases, these undulations become
deeper.

There is no deep-bubble equilibrium for this a /b ratio (no solution for the contact equilibrium problem).
It is interesting to note that there are no experimental observations of short deep bubbles. We expect these
to arise for higher levels of a/b.

Intermediate case (a/b = 1). For small values of the deformation ¢ (Figure 10, top), the SSW (straight-
sided wrinkle) equilibrium is stable. There is no other equilibrium, except the trivial flat equilibrium,
which is unstable.

Over a critical value of the deformation, the SSW becomes unstable. The existence of a deep-bubble
equilibrium arises simultaneously with this loss of stability (Figure 10, middle and bottom). The potential
energy of the DB (deep-bubble) equilibrium is lower than that of the SSW (s equilibrium, and in fact
occupies the potential energy minimum. When losing its stability, the SSW will hence evolve toward a
DB equilibrium. It is interesting to see, from the shape of the curves, that the transition cannot evolve
smoothly. Because of the absence of a SB equilibrium, the structure cannot continuously evolve from
SSW to DB. Snap-through is to be expected.

Longer bubbles (a/b = 1.1). The case a/b > 1.1 is illustrated in Figure 11. For small values of &,
the SSW is the only nonplanar equilibrium (top) and is stable (at a potential energy minimum). As ¢
increases, an SB and a DB equilibria arise (middle and bottom), and the SSW loses its stability. The SB
equilibrium is unstable and the system evolves to the DB equilibrium at the potential energy minimum.

It is worth noting that the SSW and the SB equilibria are close to each other in the (y, ¢) space. Some
defects on the wrinkle could trigger the shallow-bubble saddle-point mode in a transient way, which
would lead to a snap-through to the deep-bubble equilibrium. This phenomenon has been observed both
numerically and experimentally over a critical a/b ratio of the bubbles [Parry et al. 2005].

6. Conclusion

The results of this study clarify and give an explanation for various experimental observations of the
post-critical buckling of delaminated films. First of all, some undulations are sometimes experimentally
observed on the top of the straight-sided wrinkles (Figure 2). These undulations are short and shallow
and neighbor areas with deep bubbles that are obviously longer. This is in agreement with the conclusion
that the shallow bubbles equilibrium is stable for small values of a/b.

Experimental observations show that above a given length of the bubbles there is a transition between
the straight-sided wrinkle and a bubble equilibrium where the edges of the bubbles are touching the sub-
strate. It is also observed that for a critical value of a/b, between 1.1 and 1.2, the transition is subcritical
[Parry et al. 2005]. This is in good agreement with the results of the rod model, both qualitatively and
quantitatively, because it has been shown that for a critical value of the a/b ratio the shallow-bubble
equilibrium becomes unstable and that the deep-bubble equilibrium is stable. If some undulations are
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present on the top of the straight-sided wrinkle, due to defects or imperfections, the saddle-point shallow-
bubble equilibrium can be briefly met immediately preceding the deep-bubble equilibrium with an abrupt
transition.

The ability of this model to accurately represent the transitions in the post-critical regime of this
buckling film system (qualitatively but also quantitatively, and with only a few variables) encourages
further exploration and motivates work that will model the trigger behavior of plates and films for various
post-critical regimes.
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