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NUMERICAL HOMOGENIZATION TECHNIQUES FOR THE EVALUATION OF
MECHANICAL BEHAVIOR OF A COMPOSITE WITH SMA INCLUSIONS

VALERIO ALECCI, SILVIA BRICCOLI BATI AND GIOVANNA RANOCCHIAI

Numerical procedures are developed for the homogenization and evaluation of the stress field in a com-
posite as a consequence of the presence of embedded SMA (shape-memory alloy) wires. In particular,
the elastic field developed at the end of the SMA wire self-strain process is studied, knowledge of which
is necessary to evaluate the feasibility of such a hybrid composite.

First, the numerical procedures are applied to the study of both a representative volume element (RVE)
included in a theoretically infinite periodic medium and a RVE located near the medium free boundary,
in order to evaluate the tangential stress field generated at the end of the fiber; then they are applied to
the study of a plate able to bend after the effect of self-strain of the SMA wire.

Observations are reported about the obtained results and about the similarities and the differences
between the two problems.

1. Introduction

In the early 1990s, as the exciting potential of hybrid composites [Ahmad et al. 1990] came to be under-
stood, researchers investigated a range of problems, from the mechanical aspects of such materials [Boyd
and Lagoudas 1994; Barrett and Gross 1996; Aboudi 1997] to their construction, characterization, and
production [Wei et al. 1997]. More recently, significant attention has been given to polymeric matrix
adaptive composites [Bidaux et al. 1994], cement matrix composites [Zheng et al. 2001], metal matrix
(aluminum), and carbon or glass fiber-reinforced matrix composites [Wei et al. 1997]. Particularly, in
[Baltá et al. 2002; Xu et al. 2002; Zheng et al. 2002; Murasawa et al. 2004; Tsoi et al. 2004], some
specimens of composite material with integrated SMA (shape-memory alloy) wires are presented.

An interesting analysis of the interfacial quality in activated shape-memory alloy composites (CSMA)
appeared in [Zheng et al. 2003]. Qualitative aspects were experimentally evaluated by differential scan-
ning calorimeter, and quantitative results were obtained assuming that the behavior of the two phases,
fiber and matrix, was linearly elastic. The radial and circumferential stress was calculated from the
thermoelasticity solution provided by Hecker et al. [1970] to evaluate the residual stresses in composite
cylinders originated during the cooling of the composite from fabrication temperatures.

Recently, works by Marfia and Sacco [2005] and Marfia [2005] were published, concerning mi-
cromechanical modeling of SMA-wire-reinforced materials. The authors proposed two homogenization
procedures based on the following assumptions: the martensite volume fraction depends on the wire
temperature and only on the normal stress acting in the fiber direction, and the inelastic strain occurs along
the fiber direction. A finite element model in the two-dimensional setting for SMA hybrid composite
plates was proposed by Daghia et al. [2006]. Finally, [Marfia and Sacco 2007] presents a nonlinear
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laminate finite element able to reproduce both superelasticity and a memory effect for a laminated plate
containing one or more ply made of SMA reinforced composite. These authors apply numerical ho-
mogenization procedures in order to develop the overall mechanical response of a CSMA, as a step of
evolutive multiscale analysis.

The use of homogenization techniques seems quite apt to analyze the problem of the stress field
induced by the self-strain of a portion of material, as the basic formulas of homogenization techniques
were derived simulating the homogeneous deformation of an ellipsoidal region surrounded by elastic
material [Eshelby 1957]. The development of numerical homogenization techniques for periodic media
in the 80’s [Duvaut 1984; Suquet 1985] produced the analytical solution for homogenization problems
in which the shape of the periodic cell is by far dissimilar to ellipsoid, elliptic cylinders, or ribbons. In
particular, several applications were developed in order to deduce at first in-plane elastic characteristics of
masonry panels, characterized by two-directional periodicity under a plane stress assumption, generalized
plane strain, and three-directional modeling [Anthoine 1995; 1997]; recently, out-of-plane characteristics
of masonry walls were deduced via numerical homogenization [Cecchi et al. 2005; Milani et al. 2006].

In this paper the development of a numerical procedure for the homogenization and the evaluation of
the stress field in a composite as a consequence of the shape-memory effect of embedded SMA wires
are described. In particular, the elastic field developed at the end of the self-strain process of the SMA
wire is studied, neglecting the intermediate stages. The stress state that is produced in the composite at
the final stage is the most severe of the whole load history and knowledge of it is necessary to evaluate
the feasibility of such a hybrid composite.

At first, the numerical homogenization procedure is applied to the study of an infinite medium, then
to the study of a plate able to bend after the effect of self-strain of the SMA wire.

The paper is organized as follows: Section 2 is devoted to the homogenization procedure and to the
evaluation of the elastic field produced by the activation of the SMA wires, for a three-dimensional solid;
attention was focused on the boundary condition and on the possible load conditions; the derivation of
the null condition for the average stress is reported in the Appendix; the results obtained for a case study
are reported. Section 3 is devoted to the homogenization procedure and to the evaluation of the elastic
field produced by the activation of the SMA wires embedded in a plate; the results for a case study are
reported. Finally, conclusions are reported in Section 4.

2. Elastic field in a three-dimensional solid

2.1. Homogenization. The composite material subjected to analysis is a matrix-fiber composite made
of resin and aligned SMA wires (150µm in diameter) assumed to be in a regular array according with
Figure 1. The span between the wires is 0.6 mm, and as a consequence, the volume fraction of the
inclusion is about 5%. The two phases are assumed to be isotropic with the following elastic constants:
E = 70000 MPa and ν = 0.33 (fiber), and E = 20000 MPa and ν = 0.4 (matrix). The values indicated
for the SMA fiber represent the effective properties of a typical Ni-Ti alloy, while the Young’s modulus
and Poisson’s ratio of the matrix might agree with those of a composite matrix made of epoxy resin with
glass additives inside.

Homogenization techniques aim at describing the behavior of a heterogeneous material by means of
the laws of a homogeneous material that is equivalent in some sense. The problem is not trivial when the
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Figure 1. Left: schematic representation of the composite with embedded SMA fibers
and localization of the unit cell. The plane shown is perpendicular to the fiber length.
Right: region subjected to numerical analysis (continuous line).

parameters to be determined are not additive (extensive) quantities, as in the case of elasticity. Elastic
coefficients in fact, like other intensive quantities, cannot be directly averaged in the volume of the body,
as they take part in the functional laws among additive quantities.

We wish to produce a macroscopically homogeneous stress field in a heterogeneous body; that is,
every representative volume element (RVE) is subjected to the same stress state.

The homogenized elastic tensor at a point x being T (x)= K (x)D(x), the local constitutive relation
the between the stress and strain tensors can be defined as

〈T 〉 = K hom
〈D〉, (2-1)

where
〈T 〉 = 1

V

∫
V

T dV , 〈D〉 = 1
V

∫
V

DdV . (2-2)

To calculate the components of K hom, we must produce an elementary strain state, one of the form

D1 =

1 0 0
0 0 0
0 0 0

 , D2 =

0 0 0
0 1 0
0 0 0

 , . . . , D6 =

0 0 0
0 0 1
0 1 0

 . (2-3)

To do this, Hashin’s lemmas are commonly used when dealing with nonperiodic heterogeneous materials,
which guarantee that 〈T 〉 = T if T n = 〈T 〉n on ∂V and T is divergence free, and 〈D〉 = D if u = Dx
on ∂V .

When dealing with periodic heterogeneous materials the periodic cell represents the RVE; if the cell
is sufficiently far from the boundary, stress and strain are periodic fields and periodicity conditions may
be assumed on the border of the periodic cell, that is t = T n antiperiodic and u = 〈D〉x+ up, where up

is periodic, that is assumes the same value on the boundary of the cell.
The last equality can be written

D(u)= 〈D〉+ D(up) (2-4)

or

u1=d11x1+d12x2+d13x3+uper
1 , u2=d21x1+d22x2+d23x3+uper

2 , u3=d31x1+d32x2+d33x3+uper
3 .

The field equations of elasticity, neglecting the body forces, are

div
(
K (x)D(u)

)
= 0 (2-5)
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and substituting the expression of displacement from (2-4):

div
(
K (x)D(up)

)
+ div

(
K (x)〈D〉

)
= 0. (2-6)

K (x) is the local value of the elastic tensor and is constant within each phase and discontinuous on
the border between the materials. For this reason the second term of (2-6) takes the form of a body force
spread over the interface ∂S between the phases:

f = (K2− K1)〈D〉nδ∂S, (2-7)

where n is the unit vector normal to ∂S from phase 2 to phase 1 [Suquet 1985].
If we solve with FEM analysis the problem of (2-6) assigning f from (2-7) as produced by an el-

ementary homogeneous strain tensor, the homogenized elasticity tensor can be calculated from (2-1),
where 〈D〉 is the imposed elementary strain, D(up) is the result of the numerical analysis and, due to
the linearity of the model, superposition of the elastic state applies:

〈T 〉 = 1
V

∫
V

K
(
D(up)+〈D〉

)
dV . (2-8)

The elements of the homogenized elasticity tensor are calculated separately producing the different
elementary strain tensors in the numerical model, by means of (2-7).

A solution of (2-6) by means of FEM analysis can be achieved with the proper boundary conditions
on the cell chosen as the representative volume element of the homogenization problem; this choice is
crucial. It is well known that several representative volume elements can be chosen to describe a periodic
geometry, associated with the appropriate frame of reference and with appropriate integers representing
the periods of the geometry [Anthoine 1995]. Usually the smallest one is thought to be the most useful,
as the number of unknowns to be determined in the FEM calculation is fewer. On the contrary, as it
will be shown, the use of a symmetric RVE may be preferable to a smaller one, because of the ease in
imposing boundary conditions [Suquet 1985].

Assume for the periodic solid of Figure 1 a representative volume element characterized by two sym-
metry planes and an orthogonal frame of reference. Actually, the plane orthogonal to the fiber can be
thought of as a symmetry plane as well. The volume subjected to numerical analysis (see Figure 2) is
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Figure 2. Element subjected to numerical analysis in the case of RVE far from the boundary.
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one-quarter of the representative volume element. In this case, it is evident that the periodicity planes
represent, also, symmetry planes with respect to the composite pattern.

The body forces applied to the interface between the two materials and deduced from (2-6) and from
the elementary strain states, are in turn symmetric and skew symmetric. In particular, when unit strain
tensors D1, D2, and D3 are applied, the stress vector field in the interface is symmetric, and, due to the
symmetry, the constraints prevent the boundary of the RVE from performing displacements normal to
the boundary itself. This means that, on the boundary, up has no components out of the boundary planes.
The final deformed RVE will display undistorted planes, which are not deformed with respect to the
displacement component orthogonal to the plane itself. Figure 3 shows strain fluctuation, homogeneous
strain, and total strain for the RVE chosen for the analysis of the composite under investigation,

When unit strain tensors D4, D5, and D6 are applied, the stress vector field in the interface is skew
symmetric, and, due to the symmetry, the constraints prevent the boundary of the RVE from performing
displacements parallel to the boundary itself. This means that, on the boundary, up has no components
on the boundary planes. The final deformed RVE will display planes not deformed with respect to the
displacement components parallel to the planes.

According to several authors, the elementary strain can be otherwise imposed directly on the RVE
with the so called displacement method [Lukkassen et al. 1995]. In this case the boundary conditions
must be compatible with the periodicity but must impose, in turn, the desired boundary displacement;
for example the homogeneous strain D1 can be directly imposed substituting the boundary condition
on the displacement u1 = D1x1 in place of the homogeneous boundary condition u1 = 0. The other
boundary conditions are not as easy to visualize as in the previous case and an accurate analysis of the
displacement field and of the algebraic representation of the periodicity conditions is necessary.

As a comparison, the homogenization procedure was performed with the closed-form method de-
scribed by Zhao and Weng [1990], which makes use of the elastic solution derived by Eshelby [1957]
in the case of an infinitely extended matrix containing an ellipsoidal inhomogeneity. Here, the theory
of Mori and Tanaka [1973] was not applied to extend Eshelby’s solution in order to account for the
reciprocal influence of inclusions, since the latter is not significant when the volume fraction is lower
than 10%. Eshelby’s solution was employed to determine stress and strain localization tensors in the
inclusion and the average localization tensors in the matrix.

Figure 3. Fluctuation of strain, homogeneous strain, and total strain.
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Model k11 = k22 k33 Ex = Ey Ez G yz = Gzx Gxy

Closed-form 44298.6 45558.4 21264.1 22461.0 7717.5 7682.5
Numerical RVE far from body boundary 44320.8 45559.1 21302.7 22461.2 7021.2 6923.4

Numerical RVE near body boundary 44612.3 − − − − 6927.2

Table 1. Main components of stiffness tensor, Young’s modulus, and shear modulus for
RVE determined by means of the closed-form procedure and numerical homogenization
(in units of MPa).

According to the classical homogenization procedure [Suquet 1985], the homogenized stiffness tensor
K hom is obtained by the average of the stiffness tensors of the phases weighed with the strain localization
tensors Bi (x): K hom

= c1K1〈B1(x)〉+ c2K2〈B2(x)〉, where c1 and c2 are the concentration factors, K1

and K2 the stiffness tensors, and B1(x) and B2(x) the localization tensors of the two phases.
Table 1 reports the homogenized elastic constants of the composite material determined with the

numerical homogenization procedure described, along with those computed by means of the closed-form
homogenization procedure.

2.2. Self-strain induced by SMA activation. In order to evaluate the strain state induced by the activa-
tion of the SMA wires, it is sufficient to apply on the boundary of the wire within the composite, the
surface stress that would have produced the self-strain in the wire out of the composite; this approach
follows the one proposed by Eshelby [1957]. In particular, the strain state produced by the activation of
the SMA is purely deviatoric and can be represented by a strain tensor of the type

D′ = r

− 1
2 0 0
0 − 1

2 0
0 0 1

 , (2-9)

where r represents the axial self-strain capability of the wire. The stress vector field to be applied on the
surface of the wire in the composite takes the form

f = (K2)D′nδ∂S, (2-10)

where n is the outward unit normal vector. Owing to the geometric symmetry of the cylinder representing
the SMA wire, the stress field is symmetric with respect to the planes that define the RVE. For this reason
the boundary of the RVE in the final stage will be undistorted, as it is in the case of the homogenization
of the strain tensors D1, D2, and D3. It is necessary to produce a constraint system on the RVE that
forces this kind of deformation; this can be achieved by imposing on the boundary of the RVE the
same constraint as in the homogenization procedure, that is, preventing the boundary of the RVE from
performing displacements normal to the boundary. When this is done, only the fluctuating part of the
strain is computed, while the homogeneous part has to be determined subsequently.

The stress state corresponding to the fluctuating part of displacement can be computed from the elastic
state obtained via the numerical analysis of the RVE, simply subtracting from the elements constituting
the SMA inclusion the stress corresponding to the self-strain, so that equilibrium is reintroduced on the
boundary of the SMA wire:
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Model 〈εx 〉 = 〈εy〉 〈εz〉

Numerical RVE far from body boundary 0.003455 −0.007591
Numerical RVE near body boundary 0.001610 −

Table 2. Average strain of the composite material produced by a self-strain r = 5%.

T =−(K2)D′ in V2. (2-11)

In order to determine the homogeneous part of the strain field to be superimposed on the fluctuating
part determined by the numerical analysis, the condition that the volume average of stress has to be zero
in a body subjected to self-strain induced by internal causes is usually introduced:

〈T 〉 =
6∑

j=1

α j 〈T (D j )〉+

∫
RVE

T num dV = 0. (2-12)

This is formally a set of six equations in six unknowns, but the average stresses corresponding to
D4, D5, and D6 vanish because of the symmetry conditions, so the forth, fifth, and sixth equations are
identities. The proof of this argument is given in the Appendix.

Table 2 reports the values of the average strain produced in the composite by the activation of the
SMA wires, and also, on the last line, the results of the analysis of an RVE supposed to be near to the
border of the body. The periodicity conditions are modified, as the x3 axis is no longer a direction of
periodicity. The analysis has been performed on a RVE long enough to represent, in correspondence
with the mean plane, the behavior of the RVE analyzed before and supposed as far from the boundary.
Figure 4 reports the tangential stress on transversal cross sections of the RVE in correspondence with a
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Figure 4. Normal and tangential stress (MPa) in the elements of inclusion correspond-
ing with interface, as a function of the distance from the symmetry plane (mm).
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progressively larger distance from the boundary of the body. These results can be employed to evaluate
the tangential stresses that are generated at the end of the fiber and to check the feasibility of such a
composite once the adhesion capability of the two phases is known.

3. Elastic field in a plate

In this paper attention is focused on the bending of a plate produced by the self-strain of an embedded
SMA wire. The plate is supposed free from constraints and made of a resin characterized by low elastic
modulus and high break deformation, which also supports the relatively large strain capability of the SMA
wire. The polyester resin Distitron® 166 UV was selected for the analysis and tested in compression
according to [ISO 604 1993]. The experimental campaign carried out on three different polymer materials
is described in [Alecci and Ranocchiai 2007].

The eccentricity of the wire with respect to the middle plane of the plate produces the bending of the
plate, and is the cause of the coupling of the normal strain and moments, as well as the curvature and
normal stress resultants.

3.1. Homogenization. The geometry of the medium is shown in Figure 5. The RVE and the coordinate
system are shown in Figure 6. The SMA wire was 500µm in diameter and, as a consequence, the volume
fraction of the inclusion is about 2%. The two phases are assumed to be isotropic with the following
elastic constants: E = 70000 MPa and ν = 0.33 (fiber), and E = 900 MPa and ν = 0.4 (matrix). The
periodicity condition is valid along the x1 and x3 axes. The linear segments orthogonal to the middle
plane are assumed to remain linear after the deformation and rotation is assumed small.

The strain periodic displacement field that respects the periodicity conditions and guarantees the kind
of deformation assumed previously is that proposed by Anthoine [1995]:

u1 = d11x1+ d13x3+ x2(χ11x1+χ13x3)+ uper
1 ,

u2 =−
1
2χ11x2

1 −
1
2χ33x2

3 −χ13x1x3+ uper
2 , (3-1)

u3 = d31x1+ d33x3+ x2(χ31x1+χ33x3)+ uper
3 .

Note that the coefficients representing the average strain components (d11, d13, . . .) have only indices
1 and 3, as the homogenization procedure according to the periodicity directions is significant; also the
coefficients χ11, χ13, . . . have only indices 1 and 3, as they represent the average curvature components

( )

22

( )

x1 

x3 

x2 

(a) (b)

Figure 5. Left: schematic representation of the composite plate with embedded SMA
fibers and localization of the unit cell. The plane shown is perpendicular to the fiber
length. Right: region subjected to numerical analysis (continuous line).
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Figure 6. Plate element subjected to numerical analysis.

of the plate having extension in the x1x3 plane. Also the periodic displacement components uper
1 , uper

2 ,
and uper

3 depend on the three variables x1, x2, and x3, but they are periodic only in the axes x1 and x3.
It is convenient to perform the numerical homogenization in the framework of the displacement

method, that is imposing one at a time the homogeneous strain components and average curvature
components by means of the corresponding displacements on the boundary, as shown in (3-1) and with
the proper boundary conditions. The values of normal stress components and of moment components
resulting from the processing of the numerical analysis permits us to deduce the components of the
constitutive matrix of the plate:

N11

N33

N13

M11

M33

M13


=



A11 A13 A14 B11 B13 B14

A13 A33 A34 B13 B33 B34

A14 A34 A44 B14 B34 B44

B11 B13 B14 D11 D13 D14

B13 B33 B34 D13 D33 D34

B14 B34 B44 D14 D34 D44





d11

d33

2d13

χ11

χ33

2χ13


. (3-2)

The stiffness matrix reported here is often represented partitioned into submatrices A, B, and D. Its
symmetry and the symmetry of the submatrixes are a consequence of the symmetry of the elasticity
tensor.

When imposing symmetric strain components, like d11, d33, χ11, and χ33, the displacement compo-
nents uper

1 and uper
3 are zero respectively on the planes orthogonal to the n1 and n3 unit vectors belonging

to the boundary of the RVE, representing symmetry planes; this means that the nodes on the boundary
cannot move out of the planes. On the contrary, the displacement out of the plane uper

2 must be kept free
from constraints also on the external boundary of RVE, normal to n2. The upper and lower surfaces of
the plate have to be left free from constraints. This allows a symmetric deformation of the RVE.
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When imposing skew symmetric strain components, like d13 and χ13, the displacement component
uper

1 is zero on the boundary plane orthogonal to the n3 unit vector and uper
3 is zero on the boundary plane

orthogonal to the n1 unit vector. This allows a skew symmetric deformation of the RVE.
For this reason, coefficients A14, A34, B14, B34, D14, and D34 are zero, as can be deduced observing

that, from a macroscopic point of view, the plate is orthotropic and that axes 1 and 3 are orthotropy axes.
The results obtained by the homogenization procedure are reported in Table 3.

3.2. Self-strain induced by SMA activation. According to the method applied in Section 2.2, a surface
stress vector field has to be applied on the boundary of the wire within the matrix of the RVE, which
would have produced the self-strain if the wire was out of the matrix. The vector field is described in
(2-10).

The stress system is again symmetric with respect to planes x1 = 0 and x3 = 0, so that the boundary
constraints must be chosen as to prevent antisymmetric displacements. In this case, u1 must be zeroed
on the boundary planes of periodicity normal to the n1 unit vector, and u3 must be zeroed on planes of
periodicity normal to the n3 unit vector. Vertical displacements u2 are allowed by the requirement for
symmetry.

As in the previous case, the analysis reproduces the fluctuating part of strain, while the stress state can
be computed by subtracting the stress corresponding with the self-strain from the elements constituting
the SMA inclusion, according to (2-11), so that the equilibrium is reintroduced on the boundary of the
SMA wire.

In order to determine the homogeneous part of the strain field to be superimposed on the fluctuating
part determined by the numerical analysis, the condition that the volume average of the stress has to
be zero in a body subjected to self-strain induced by internal causes is introduced. This time the plate
normal stress and moments have to be zeroed by adding the plate strain components able to produce the
opposite values of internal force; these can be computed by knowing the plate stiffness of (3-2) reported
in Table 3.

Average strain and curvature produced by a self-strain of r = 3% are reported in Table 4. The stress
distribution on the plane x3 = 0 is reported in Figure 7.

A11 (N/mm) A13 (N/mm) A33 (N/mm) A44 (N/mm)
3891.75 1549.29 9159.54 2335.13

B11 (N) B13 (N) B33 (N) B44 (N)
70.85 24.65 2704.77 42.56

D11 (N mm) D13 (N mm) D33 (N mm) D44 (N mm)
3866.28 1544.43 5264.49 2326

Table 3. Components of the constitutive matrix of the plate.

〈d11〉 〈d33〉 〈χ11〉 〈χ33〉

0.006231 −0.016608 0.003022 −0.007949

Table 4. Average strain and curvature produced by a self-strain of r = 3%.
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Figure 7. Normal stress (MPa) σx (left) and σz (right) in the plate element subjected to
numerical analysis.

We note that the curvature tensor is negative definite at every point of the mean surface of the RVE,
which is then a hyperbolic surface.

4. Conclusions

Numerical procedures have been described for the homogenization and the evaluation of the stress field
in a composite as consequence of the shape-memory effect of embedded SMA wires. Such procedures
proved suitable for the study of self-strain induced by SMA activation. In particular, it was shown that
the individuation of the boundary conditions is strictly dependent on the choice of the RVE, and that it is
simpler if the boundary constraints are individuated when the boundary of the RVE is also a symmetry
plane for the composite.

As was expected, the stress state determined in the RVE, at the end of the SMA wire activation process,
far from boundary is quite similar to the stress state in the symmetry plane of the RVE located near to the
boundary. Nevertheless, this last case analysis is useful in order to evaluate the tangential stresses that
are generated at the end of the fiber, the first step for the design of a real composite, once the adhesion
properties of the constituents are experimentally investigated.

The analysis of a composite plate can produce the homogenized stiffness matrix of the plate, and the
average main curvatures and strain of the composite plate, under the small rotation assumption.



1686 VALERIO ALECCI, SILVIA BRICCOLI BATI AND GIOVANNA RANOCCHIAI

Appendix: Derivation of the null average stress condition

The assumption of null average stress relies on the theory of dislocation. Volterra, in 1907, first used
the term “distorsione”, which Love [1927] translated as “dislocation”; nowadays the word dislocation is
mainly used to indicate the defects of crystal lattices and the theory of dislocation explains the plasticity
and work hardening of crystals.

When a body is not subjected to external forces, that is load and constraint forces, an eigenstrain
produces an internal stress field. The body is free from constraints or it is constrained such as to be an
isostatic system. This is the case of pretensioned, prestressed, reinforced concrete beams. The condition
that average stress is null in the pretensioned, prestressed beam sections is usually employed and is a
special case of (2-12), following simple equilibrium considerations. Equation (2-12) acquires particular
interest when dealing with homogenization problems, because average stress is one of the basic quantities
used in homogenization theory. Equation (2-12) can be easily proven by means of Signorini’s theorem
[Gurtin 1981].

In the case of no body forces acting on a finite region � and supposing that T is smooth, Signorini’s
theorem states that:

V (�)〈T 〉 =
∫
∂�

(T n⊗ r)d A, (A.1)

where V (�) is the volume of the body, T the stress tensor, n the unit vector normal to the boundary ∂�,
and r the position vector. If a portion �1 of a body is subjected to an eigenstrain (see Figure 8), a surface
stress state develops, opposite and equal on the two opposite sides of the boundary between �1 and �2,
being �2 its complementary part. We can write Signorini’s formula for the two regions:

V (�1)〈T1〉 =

∫
∂�1

(T1n1⊗ r)d A, V (�2)〈T2〉 =

∫
∂�2

(T2n2⊗ r)d A.

Since n1 =−n2, ∂�1 = ∂�2, and T1n1 =−T2n2 (from the equilibrium condition), we have

V (�1)〈T1〉 =

∫
∂�1

(T1n1⊗ r)d A =
∫
∂�2

−(T2n2⊗ r)d A =−V (�2)〈T2〉,

that is

V (�1)〈T1〉+ V (�2)〈T2〉 = 0, (A.2)

which is equivalent to (2-12).

Ω1 

Ω2 

Figure 8. A region subjected to eigenstrain produces interfacial stress vector.
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