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PREFACE:
NEW TRENDS IN THE THERMOMECHANICAL MODELING OF SOLIDS

ANDREI CONSTANTINESCU AND NGUYEN QUOC SON

This special issue of JoMMS contains some contributions presented at the International Conference on
Thermo-Mechanical Modeling of Solids organized by the Laboratoire de Mécanique des Solides (LMS)
of the École Polytechnique, Paris, in July 2007.

The LMS was founded in 1961 jointly by Professors Jean Mandel and Pierre Habib as a mechanics
research center bringing together researchers from the École Polytechnique, the École des Mines, the
École Nationale des Ponts et Chaussées and the Centre National de la Recherche Scientifique (CNRS).

Professor Jean Mandel (1907–1982) graduated from the École Polytechnique in 1927 with highest
honors, allowing him to join the prestigious Corps des Mines. His academic career started at the École
des Mines of Saint-Étienne in 1932, and continued at the École des Mines of Paris in 1948. From 1951
to 1973 Mandel was a professor of mechanics at the École Polytechnique, where he held the prestigious
chair occupied by Lagrange, Cauchy and Poisson. He is well known for his contributions to continuum
mechanics, most notably in viscoelasticity, plasticity and geomechanics. His influence extended far
beyond his research fields: at the École Polytechnique and in the LMS, several generations of researchers
have been shaped by close interaction with Jean Mandel.

The conference was an occasion for the LMS to honor our colleagues Huy Duong Bui, Ky Dang Van,
Minh Phuong Luong, Jean Salençon and Joseph Zarka, who started their scientific careers at the LMS
in the sixties.

Huy Duong Bui graduated from the École Polytechnique in 1959 and obtained his Doctorat d’État in
1969. His contributions in plasticity and fracture mechanics were crucial for the safety assessment of
structures in the nuclear industry. His favorite topic has always been duality. He extended the duality
scheme from elasticity to plasticity and further to fracture mechanics [Bui 1978; 2006], and was the first
to give the dual expression of the energy release rate in terms of the J-integral. In the field of inverse
problems he proposed a series of methods and closed-form solutions based on the reciprocity gap [Bui
1973], which serves as a measure of the loss of duality. Bui is the author of several books and a member

From left to right: Huy Duong Bui, Ky Dang Van, Minh Phong Luong, Jean Salençon and Joseph Zarka.
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of the French Academy of Sciences, the European Academy of Sciences and the French Academy of
Technology.

Ky Dang Van graduated from the Ecole Nationale des Ponts et Chaussées and obtained a Doctorat
d’État in 1971. His contribution to fatigue theory which is based on a multiscale analysis of the materials
at the grain size level and on the concept of shakedown. His what is broadly known as the Dang–Van
criterion which is an efficient procedure to estimate the life-time of structures [Fayard et al. 1996; Ballard
et al. 1995; Dang Van and Maitournam 1993]. The Dang Van criterion has since been adopted in a variety
of companies in the automotive and the aerospace industries. His scientific impact has been recognized
by many awards including the Wallenberg prize of the Swedish Academy of Engineering the Alexandre
Darracq prize of the French Academy of Science and the Silver Medal of the CNRS.

Minh Phong Luong is a graduate of the École Nationale des Ponts et Chaussées and obtained his
Doctorat d’État in 1964. His area of competence is geomechanics and geotechnical engineering, with
a special emphasis in earthquake engineering. He made important contributions to granular materials
[Evesque et al. 1993] and developed a novel technique for the prediction of lifetime using using infrared
thermography [Luong 1995; 1998]. He has several notable results in nondestructive testing of engineering
materials. His contributions were patented and used in various industrial applications. He is a recipient
of the Henri Courbot prize of the French Academy of Science and several other awards from professional
associations.

Jean Salençon graduated with high honors from École Polytechnique in 1959, which allowed him
to join the prestigious Corps des Ponts et Chaussées. He obtained his Doctorat d’État in 1969. One
of his major contributions is the the reformulation of yield design using the sophisticated mathematical
convexity theory. His results were used in the formulation of standards and computational codes broadly
used in civil engineering. His other research interests lie in earthquake engineering. Professor and Head
of the Department of Mechanics at École Polytechnique and École Nationale des Ponts et Chaussées for
years, Salençon is well known his extraordinary classes in different disciplines of mechanics [Salençon
1980; 2001; 2005; 2009]. He is currently the president of the French Academy of Science, and a member
of the Istituto Lombardo (Milan).

Joseph Zarka graduated from École Polytechnique in 1962 and obtained his Doctorat d’État in 1968.
His main contributions are in multiscale aspects of the polycrystalline plasticity and in the numerical
analysis of inelastic structures, including the development of fast algorithms [Zarka et al. 1990]. His other
contributions are in optimization techniques and in the domain of nondestructive testing. His current
research interests are centered on the optimal design of materials and structures based on automatic
learning including applications in areas such as control of fabrication and survey of structures. He was
honored by the French Academy of Science with the Fourneyron prize and by the Swedish Academy of
Engineering with the Wallenberg prize.

The present generation of LMS researchers is mostly composed of the students and collaborators of
Huy Duong Bui, Ky Dang Van, Minh Phuong Luong, Jean Salençon, and Joseph Zarka. Their presence
is constantly felt in the LMS because of the high standards of scholarship and intellectual honesty they
transmitted to all of us.
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CORRUGATION MODELS AND THE ROARING RAILS ENIGMA:
A SIMPLE ANALYTICAL CONTACT MECHANICS MODEL
BASED ON A PERTURBATION OF CARTER’S SOLUTION

LUCIANO AFFERRANTE AND MICHELE CIAVARELLA

Corrugation in railways, and especially short pitch corrugation (30–80 mm), is still considered something
of an enigma, despite extensive research. Models based on repeated impacts or differential wear, such as
Grassie and Johnson’s (1985) and Bhaskar et al.’s (1997), seem not to be conclusive, or not to suggest
the correct wavelength.

Further models have been suggested, either linear (Frederick, Valdivia, Hempelmann, Vassilly and
Vincent) or nonlinear (Mueller), but most suggest a constant frequency mechanism invariably connected
to vertical resonances of the system either in the low frequency range (50–100 Hz, the resonance of the
vehicle’s unsprung mass on the track stiffness referred to here as the “P2 resonance”, close to the Hertz
contact resonance), or at about 1000 Hz (pinned-pinned resonance, in which the rail vibrates almost as
if it were a beam pinned at sleepers), or even higher frequencies still (1700–1800 Hz). The experimental
data available, by contrast, do not fit these frequency ranges. The discrepancy is tentatively explained
with “contact filtering” and varied traffic ideas, but do not convince completely.

In this paper, we stress the importance of wheel inertia in coupling the oscillations of normal load,
with the variations of tangential load and longitudinal creepage. A simple zeroth order perturbation
of the classical rolling contact solutions is suggested, which obtains good qualitative agreement with
experimental evidence. The model also leads to the recognition that vertical resonances are not crucial
in explaining corrugation, as believed in previous models, since we use an extremely simple model
of an Euler beam with no elastic support, having no resonances. Important factors for the growth of
corrugation are the friction coefficient and the tractive ratio. High longitudinal creepage is needed to
promote rapid development, and this can arise from curving, hunting motion or misaligned axles, and
is probably exacerbated by high contact conformity, since this increases the fluctuating component of
longitudinal creepage due to the movement of the contact point. With discrete supports, we expect a
modulation of corrugation wavelength and amplitude, but this requires a separate investigation, not just
the inclusion of pinned-pinned resonance.

1. Introduction

Corrugations have been observed and studied for more than a century, and many tentative explanations
have been put forward, but none seems convincing for short-pitch rail corrugation (“roaring rails” ) in
the range of 20–80 mm wavelength [Grassie and Kalousek 1993]. This is because a nonproportional
increase in corrugation wavelength with increasing trains speed is observed, as in Figure 1 of [Bhaskar
et al. 1997a], which displays data from a 1911 BR report, David Harrison’s thesis data (1979), and the
Vancouver SkyTrain metro system data.

Keywords: short pitch corrugation, wear, rail-wheel contact, rolling contact, friction instabilities.
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This makes simple vertical resonance models unsuccessful, and calls for nonlinear effects, or a thresh-
old. For example, a simple mass vertically suspended on a spring-and-damper system — a model used
to attempt to explain corrugation of roads, a process known in North America as washboarding (see
[Both et al. 2001] and references therein, the more recent [Hoffmann and Misol 2007], and also http://
en.wikipedia.org/wiki/Washboarding and its external links) predict that instability occurs for all wave-
lengths larger than a critical value linearly dependent on speed, which depends on the properties of the
vehicles and the road surface. However, the wavelength observed in roads seems typically to correspond
to frequencies one or two orders of magnitude higher than the lowest vertical resonance of the system.

Similar troubles emerge when attempting to use such simple models for railway corrugation, since the
Hertz spring contact resonance model suggested by Carson and Johnson [1971], and observed in twin-
disk machines in [Johnson and Gray 1975], suggests a frequency which is highly damped, and hence
the normal impact mechanism inducing plastic deformations is observed only at higher wavelengths.
Frederick [1987], from BR research, reports that plastic deformation occurs on the peaks where at the
short-pitch corrugation frequency corresponds indeed the peak of the normal force, but not on the troughs.
There is a need to an alternative explanation for short pitch corrugation, perhaps competing with the
plastic deformation mechanism. Indeed, Frederick also reports that high plastic deformation resistant
material show corrugation quickly, although the increase of wear resistance slows the rate of formation.
Other general observations were given in the well known paper [Grassie and Kalousek 1993], namely
that short pitch corrugation is (i) primarily observed on high-speed track, at 100–250 km/h; (ii) mainly on
tangent track and on large radius curves with relatively low axle loads; and (iii) with wheel-rail excitation
in the frequency range 350–2800 Hz. The first two observations clearly point at a phenomenon which
requires sufficient energy to develop and probably sufficient creepage.

A model based on differential wear was then proposed by Grassie and Johnson [1985]. They cal-
culated the frictional energy dissipation in the slip zone of the contact patch as a wheel rolls over a
sinusoidally corrugated rail. However, since they assumed a constant longitudinal creepage (perhaps
under the assumption that the large mass of the vehicle would stop the rotational speed of the wheel
to change?), the phase of wear remained very close to the peak of normal force (close to the crests),
promoting a mechanism for reduction of corrugation in the frequency range of interest. There was no
maximum in the energy dissipation at a particular fixed wavelength independent of vehicle speed, and at
typical speeds, the predicted phase did not correspond to a wear maximum in the troughs of an existing
corrugation.

This attempt certainly became well known in railways industries and other academic contexts where
corrugation was heavily studied, mainly BR, Berlin University, and later Chalmers in Sweden. Assuming
that Grassie and Johnson showed longitudinal creepage removed corrugation, the possibility of traction
or braking was not included in some later models, and a fortiori the inertia of the wheel and the rotational
dynamics of the system were neglected. We can gather this impression from Frederick, head of research at
BR, who in a discussion to the paper [Hempelmann and Knothe 1996] asks why not including longitudinal
creepage, since it is known to be generally larger than lateral creepage, “although likely to suppress
corrugation”.

Frederick [1987] first suggested a perturbation analysis of the nonlinear relationships between normal
and tangential forces, creepage and wear, and using complex functions transfer functions, valid for both
longitudinal as well as lateral creepage, for defining conditions for which the phase of dissipation would
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be such that the component out-of-phase with the initial wave could progress. Unfortunately, many
details of the models are very crudely represented. The corrugation is found to be enhanced if there is in
the initial rail energy in the frequency range 800–900 Hz which correspond to surface profile positioned
near or over a sleeper, attributed to a high vertical impedance and low lateral impedance of the rail.
Frederick suggests that it may be possible that extending the analysis to lower frequencies, another high
impedance may be found when the sleepers vibrate in antiphase to the rail. The results are however
probably affected by the many assumptions in the model.

To explain the discrepancies, Frederick [1987] and Valdivia [1988b; 1988a] have introduced the idea
of a “contact filter” , so that in fact the dynamic contact force is mostly amplified in a narrow band of
frequency. In particular, for lower speed traffic, the filter makes the pin-pin frequency band “inactive”
because it would produce corrugation at less than 1.5 times the contact patch length (i.e. about 20 mm).
The 300–400 Hz band is then active (P2 resonance), but that, again, roughly produces corrugations of
the observed wavelength. Mixed traffic can reinforce waves of roughly the same pitch. However, this
idea of “contact filter” was never really validated.

Significant progress was made by the group of Prof. Knothe in Berlin, and at the Charmec research
centre of Chalmers University in Sweden. Groß-Thebing [1993] looked at the transient dynamics effect
devising a numerical method using the program CONTACT by Kalker defining generalized complex
Carter coefficients to define the tangential load harmonic oscillations due to perturbation of the steady
state for harmonic creepage. This code was used in [Hempelmann and Knothe 1996; Hempelmann
1994] but unfortunately, concentrating on lateral creepage alone. Hempelmann also attempts to take into
account the discrete nature of support of the rail, although with a spurious Fourier analysis not allowing
for parametric resonance; in [Hempelmann and Knothe 1996], the authors attributes the corrugation
wavelength to pinned-pinned resonance at about 1000 Hz. This resonant frequency (or more precisely,
the slightly higher antiresonance) may indeed have some effect in corrugation, but Hempelmann’s results
do not seem to show this, whereas Müller [1998] in his more sophisticated nonlinear version, seems to
conclude corrugation to correspond to the low vertical receptance at approximately 1000 Hz, although
he also shows that other structural dynamics effects can also dominate the profile development, e.g. the
high lateral rail receptance between 1600 and 1800 Hz and the low vertical rail receptance near 300 Hz.

Bhaskar et al. [1997a; 1997b] looked at the Vancouver SkyTrain tramway system where no traction
or braking is done at the wheels, yet longitudinal creepage “can arise from curving, hunting motion or
misaligned axles”, and indeed their reference case has three comparable components of steady creepage.
However, the fluctuating parts of creepage are only caused by conformity (“principal cause of fluctuating
longitudinal creepage was found to be the fluctuation in rolling radius due to the movement of the contact
point [see equation (27) in [Bhaskar et al. 1997a], which is almost in phase with the angular ripple at most
frequencies”), whereas rotational inertia of the wheelset is not included in the model, nor its complete
receptance. Incidentally, these authors also attempted to simplify the results of the Groß-Thebing method
fitting some results with a spring and dashpot in series at the contact: in particular, the stiffness of the
spring is estimated by from a static Mindlin problem, and the dashpot from the zero-th order perturbation
of the Carter-like steady state rolling contact solution. However, all this is based on a single fitting of
Groß-Thebing’s results with oscillating longitudinal creepage and constant normal load, so while it is
likely that the method has sufficient validation for pure oscillation of tangential load alone, the authors do
not indicate how to estimate energy dissipation in the general case, and indeed only use the damping term
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(no transient effects) in most later calculations — as it will be done in the present paper, which therefore
is the equivalent of their paper with no account of conformity of the contact, but with the addition of
inertia of the wheel and its dynamics.

It is surprising that the corrugation literature is vast and spans more than a century (Sato et al. [2002]
estimate about 1500 papers), yet true comparisons between models and a careful consideration of the
critical ingredients have not been attempted in the literature, leaving the impression that only extremely
sophisticated models (and accordingly, accurate measurements for many parameters) could reproduce
the phenomenon. We shall return to this later, when our simple model will indeed be developed in this
paper.

Towards a simple model. A recent paper [Grassie and Edwards 2008] attracted our attention and moti-
vated the present study. The first author is clearly one of the leading authorities in the field of corrugation,
being one of the authors of the influential paper [Grassie and Johnson 1985] two decades ago, which
however was unsuccessful in that the corrugation phase could not correspond to the trough of the profile.
Hence, it was natural to compare the approaches of the two papers to see what was wrong in the early
paper. [Grassie and Edwards 2008] distinguishes between corrugation initiated (i) as a result of a varying
normal load with essentially constant tangential load — applied traction and braking, steering forces or
a combination of the two — (ii) from a varying tangential traction with essentially constant normal load,
and (iii) occasionally as a result of a combination of the two. Case (i) is said to be associated to either
the resonance of the vehicle’s unsprung mass on the track stiffness referred to here as the “P2 resonance”
(typically in the range 50–100 Hz) or the “pinned-pinned resonance” of the rail (typically at much higher
frequencies, around 1000 Hz), in which this vibrates almost as if it were a beam pinned at sleepers. This
second resonance is called the “dominant wavelength-fixing mechanism for main-line corrugation”. This
association did not appear very rigorous, but one immediate reaction on this classification was that the
normal load would vary as a result of corrugation or roughness on the railway, and hence its oscillation
would indeed be in the range of high frequency. Therefore, it would be difficult to assume that tangential
load could be constant also in this frequency unless the inertia of the wheel were very low, giving the first
ingredient added in the present paper. However, the extremely simple analytical estimate of differential
wear from the energy dissipation in the steady state fluctuating only as a result of the fluctuations of
creepage from varying normal load, seem to qualitatively fit some experimental data. This results into a
brutally simple equation, but no check is made on the phase of the differential energy dissipation, which
had been the trouble in the earlier [Grassie and Johnson 1985]. Trusting Grassie’s intuition had pointed
in the correct direction, we were therefore motivated to investigate more.

We shall try to consider if it is possible to include only just enough ingredient to explain corrugation,
more precisely checking the issues raised by Grassie and Edward within a simple, analytical, perturbation
of a Carter solution, in the form including 3D effects in Bhaskar et al. Removing the hopes to include
transient effects with the spring+dashpot model, because we believe that the transient effects would
anyway require separate and sophisticated treatments, we permit nevertheless both tangential load and
creepage to oscillate. Then, we shall consider the phase of the differential energy dissipation, to see if
the negative conclusions of Grassie and Johnson apply also to this more general case.
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Figure 1. The model under investigation.

2. The model

We shall consider a 2D model with vertical and rotational degrees of freedom (Figure 1). The rail is
corrugated in the simple form

1 exp (ιωt) ,

where ω = 2πV/λ; here V is the velocity of the train and λ the corrugation wavelength. Finally, 1 is the
amplitude of corrugation, which is up to about 100µm when full unloading occurs and a linear model is
no longer possible, although the noise would become so large that this is prevented in most maintenance
strategies. We suppose the normal problem is independent of the tangential problem and results in a
normal force

P = P0+ P1 exp (ιωt) . (1)

We linearize about a given steady state, given by the mean value normal force P0 , tangential force Q0,
and creep ratio ξ0. We will linearize the contact stiffness in the vertical and tangential direction, and
make a perturbation of the steady state solution, to estimate the tangential velocities in the contact area.

The steady state creep ratio ξ0 is defined as the relative velocity of the rail with respect to the wheel

ξ0 = 1−
�0 R

V
=
∂u0

∂x
, (2)

where we are assuming braking conditions, so �0 R < V and ξ0 > 0.
In the transient conditions, the local sliding velocity is a function of both x and t . We can define the

transient creepage as the instantaneous rigid body velocity of the rail (V ) and that of the wheel (�(t)R)
— i.e. the rigid body creepage

ξ (t)= 1−
�(t)R

V
, (3)

The perturbative approach will work well if things don’t change too fast relative to the motion of the
contact region. In a solution with only longitudinal creepage, perturb (3) about �0, ξ0, to have

ξ − ξ0 =−
(�−�0) R

V
(4)
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We introduce a 3D solution equivalent to Carter’s; it is also described in [Bhaskar et al. 1997a, (5a)],
as the longitudinal creep ratio (we assume no lateral creep)

ξ = ξmax

[
1−

(
1−

Q
µP

)1/3
]
, (5)

where Q is the resulting tangential force which is only in the x-direction, and ξmax is given by1

ξmax =
3µ
C00

[
16P

9 (1− ν)2 R2
e G

]1/3

, (6)

with the Kalker’s creep coefficient expressed approximately as a function of a/b

C00 = 2.84+ 1.2
a
b
≈ 2.84+ 1.2

(
R1

R2

)2/3

, (7)

so that (5) can be rewritten as

Q = µP

(
1−

(ξmax− ξ)
3

ξ 3
max

)
.

It then follows that the dissipation in the steady state is

W0 = V ξ0 Q0 = µP0V
(

1−
�0 R

V

)(
1−

(ξmax− 1+�R/V )3

ξ 3
max

)
, (8)

where we have substitute for ξ the expression ξ = 1−�R/V and ξmax is a function of P , according to
(6). Hence, by differentiation, we obtain the zero-th order perturbation as

Q P =
∂Q
∂P

∣∣∣∣
P0,�0

=
2µξ0

ξmax

(
1−

ξ0

2ξmax

)
; (9)

Q� =
∂Q
∂�

∣∣∣∣
P0,�0

=−
3µR P0

V ξmax

(
1−

ξ0

ξmax

)2

; (10)

WP =
∂W
∂P

∣∣∣∣
P0,�0

=
2µV ξ 2

0

ξmax

(
1−

ξ0

2ξmax

)
= V ξ0 Q P; (11)

W� =
∂W
∂�

∣∣∣∣
P0,�0

=−
6µP0 Rξ0

ξmax

[
1−

3ξ0

2ξmax

(
1−

4ξ0

9ξmax

)]
. (12)

The fluctuating parts of tangential load and dissipation can therefore be written in the form

Q1 = Q P P1+ Q��1 (13)

W1 =WP P1+W��1 . (14)

1We are defining the Kalker coefficients as positive, for simplicity, and hence change the sign of the creep-load relationships
as more commonly found in the literature.
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Coupling with the dynamics. The dynamic equilibrium of the wheelset, which we simplify now with
no stiffness or damping, gives

Iw
d�
dt
= (Q− Q0) R (15)

where Iw is the inertia of the wheel. Moving to the oscillatory parts therefore, (15) reduces to

ιωIw�1 = Q1 R (16)

Substituting �1 from (16) into (13), we have

Q1 = Q P P1+ Q�
Q1 R
ιωIw

, (17)

and collecting Q1, we can write the tangential load oscillatory term in the perturbation as a function of
the oscillatory term in normal load only,

Q1 =
Q P

1− Q�R/(ιωIw)
P1. (18)

For dissipation, substituting �1 from (16) into (14), we have

W1 =W1 =WP P1+W�
R

ιωIw
Q1 = Q P

(
V ξ0+

W�

ιωIw/R− Q�

)
P1 (19)

In dimensionless form we can define the dissipated power Ŵ1 =W1/ (µP0V ξ0) as

Ŵ1 =
2ξ0

ξmax

(
1−

ξ0

2ξmax

)1−
6
ξmax
·

1− 3ξ0
2ξmax

(
1− 4ξ0

9ξmax

)
ι Îwζ +

3
ξmax

(
1− ξ0

ξmax

)2

 P1

P0
(20)

where we have introduced the following dimensionless terms

Îw =
IwV 2

2µP0a0 R2 ; ζ =
2ωa0

V
=

4πa0

λ
. (21)

where a0 is the semiwidth of contact in longitudinal direction

a0 =

(
3 (1− ν) R Re P0

4G Rr

)1/3

(22)

and Re =
√

R Rr with R the rolling radius of the wheel and Rr the other relative radius of curvature
between the wheel and the rail.

Because microslip and dissipation for a small imposed creep occur towards the rear of the contact,
whereas the present calculation associates dissipation with the position of the wheel, the lag of dissipation
at a point on the rail is overestimated by about 2πa0/λ= ζ/2. For this reason the phase of W1 is corrected
by introducing a phase lag of −2πa0/λ. However when the tractive ratio is large, near to full sliding
conditions, dissipation occur nearer the centre of the contact area. In this case the lag of dissipation at a
point on the rail is overestimated by about πa0/λ= ζ/4. In between full stick, and full slip, we assume
a linear variation of this correction.
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Vertical dynamic model. When the frequency of interest for corrugation is greater than about 500 Hz,
the dynamics is dominated by that of the rail described with a simple Euler beam model, not even
requiring the inclusion of the elastic supports usually described with Winkler foundations: an infinite
beam subjected to a stationary force and whose magnitude oscillates in time at frequency f = ω/2π .
The mathematical description of the beam model is obtained from the case of load moving with speed V
given in the Appendix, although it has certainly been obtained elsewhere previously. For validation and
comparison, we shall use the more sophisticated model of Bhaskar et al. [1997a; 1997b], where the rail is
continuously supported by uniformly distributed rail pads, sleeper mass and ballast. The effect of discrete
sleepers in that work was neglected, because the SkyTrain system has mostly a continuous support.

3. The model

Figure 2 shows the variation with the frequency of the amplitude and phase of the vertical receptance.
With solid line we plot the receptance of an infinite beam subjected to a force that moves at speed V ,
with dashed line the receptance of the model of rail presented in [Bhaskar et al. 1997a]. The comparison
is done for mrail = 56 kg/m, V = 27.8 m/s and Irail = 2.35× 10−5 m4 as typical values.

For their model, a sharp resonance peak is found at about 100 Hz, corresponding to a vibration mode in
which the loaded track vibrates as a whole on the flexibility of the ballast. However, this mode of vibration
has been associated with the long wavelength corrugations (greater than 200 mm), which display severe
plastic deformation in their troughs. Short pitch corrugation is associated with much higher frequencies
(corresponding to wavelength in the range of 20–80 mm), and for high frequencies we note the similarity
between the Bhaskar model and the present beam model in terms of the asymptotic value of vertical
receptance, for which we get (see Appendix)

Hrail =
exp (−ι3π/4)

2
√

2
(
m3

rail E Irail
)1/4

ω3/2
. (23)
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Figure 2. Vertical direct receptance (E = 207 GPa; mrail = 56 kg/m; mw = 350 kg;
V = 27.8 m/s; Irail = 2.35× 10−5 m4).
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Figure 3. Normal load P1/P0 (1 = 3.15× 10−5 m; E = 207 GPa; mrail = 56 kg/m;
mw = 350 kg; V = 27.8 m/s; Irail = 2.35× 10−5 m4).

Figure 3 shows the amplitude and phase of normal load P1. The normal load is evaluated as

P1 =
1

Hrail+ Hw + 1/kH
, (24)

where Hrail, Hw, 1/kH are receptance of rail and wheel, respectively, and the inverse of Hertz stiffness.
For Hw, we are simplifying the receptance with that of the concentrated mass,

Hw =−
1

mwω2 (25)

and for the Hertz stiffness we use the expression

kH =

[
6G2 P0 Re(

1− ν2
) ]1/3

. (26)

To distinguish the various contributions, Figure 3 plots each term of the equation above 1/Hrail,
1/Hwheel, and kH1 separately, together with the resulting sum normalized with respect the mean normal
load P0 (the value of 1= 3.15× 10−2 mm was taken such that the maximum value of P1/P0 is 1). The
dominant effect at low f is the wheel, then the rail at intermediate frequencies. The phase moves from
about 135◦ corresponding to the rail alone (somewhere near 300 Hz) down to 0◦ for the contact spring
alone at very high frequencies.

4. Differential energy dissipation

We start with nominal conditions (normal load P0 = 50 k N , creepage −0.4%, BR rail geometry and
wheels, mass of the wheel or wheelset 350 K g, but inertia reduced using the formula 0.75mwR2/2).
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Figure 4 shows contour plots of the real part of dissipation W1 (ten equally spaced contours from 0 to
the smallest value in the figure, which obviously is for the highest speed) with respect to the values
of wavelength λ and speed V for tractive ratio τ = Q0/µP0 = 0.1 and τ = 0.95 (left and right panes,
respectively) and for the simplified present model of the rail. Solid circles indicate the highest predicted
growth for a given speed. In the plots the lines at constant frequency which gives the best fit of the
minimum of real part of W1 and experimental data points are also shown for reference. Notice for
typical values of speed for which short pitch corrugation is observed (λ= 20–80 mm) the model gives
the highest predicted growth at almost constant frequency, but a large area where growth is possible, and
in good agreement with experimental data, except perhaps at the smallest speeds, where there seems to
be some additional “filtering”.

Figure 5 shows the same contour plots with the model of the rail in [Bhaskar et al. 1997a]. Similar
results to Figure 4 are observed, especially at low tractive ratio (Figure 5, left). However, at low speeds,
we have a new possible one or two other lines of possible growth at very low frequencies (about 180 Hz).
This regime becomes more important at high tractive ratio (Figure 5, right), showing that the additional
“filtering” is due to the low frequency receptance, deviating from the simpler Euler beam behaviour, i.e.,
due to the supports.

In Figure 6, left, we plot curves of the minima of dissipation (now in the dimensionless form Ŵ1 =

W1/W0 which removes the linear dependence on speed) for different tractive ratio τ . The minima are
evaluated by considering a window of variation for λ equal to 20–80 mm. It is clear that a constant value
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Figure 4. Contour plot of the real part of dissipation with respect to the initial undulation
of the corrugation in term of λ and V , for calculations made using the present model
(Euler beam for the rail): left, τ = 0.1; right, τ = 0.95. Solid circles indicate the highest
predicted growth for a given speed. Data points from Figure 1 of [Bhaskar et al. 1997a]
have been superimposed, as follows: open circles, BR survey (1911); triangles, Harrison
(1979); crosses, Vancouver Skytrain (1992).
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Figure 5. Counterpart of Figure 4 for calculations made using the model of [Bhaskar
et al. 1997a]; see that figure for the legend.
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Figure 6. Left: Variation with the speed V of the maximum growth of dissipation,
min(Ŵ1) for different tractive ratios. Right: Relation between the wavelength λ of corru-
gation and the speed V for which we have the maximum dissipation, for different values
of inertia of the wheelset (τ = 0.1). For both parts, 1= 3.15× 10−5 m; E = 207 GPa;
ν = 0.3; mrail = 56 kg/m; mw = 350 kg; Irail = 2.35× 10−5 m4; µ = 0.4; P0 = 50 kN;
R = 0.46 m; Rr = 0.23 m.
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Figure 7. Variation with the speed V of the maximum growth of dissipation, min(Ŵ1),
for different dissipation, for different values of inertia of the wheelset. (1 = 3.15×
10−5 m; E = 207 GPa; ν = 0.3; mrail = 56 kg/m; mw = 350 kg; Irail = 2.35× 10−5 m4;
µ= 0.4; τ = 0.1; P0 = 50 kN; R = 0.46 m; Rr = 0.23 m.)

indicates here a linear increase with speed, and the deviations occurring mostly at high tractive ratio, are
due to the switching from one frequency line to the other.

Figure 6, right, shows the relation between the wavelength λ of corrugation and speed V for which we
have the maximum growth of dissipation for different inertia of the wheelset. In particular, the limit cases
of constant tangential force (Iw→ 0) and constant creepage (Iw→∞) are plotted and compared with
a typical case of inertia (Iw = 27.77 kg m2). The limit cases can be considered as bounds for the values
of (λ, V ) which give growth of corrugation, and also explain why the assumptions of constant tangential
load or constant creepage are significantly in error, particularly when considering also Figure 7 with the
value of the dimensionless minima of Ŵ1 for the same cases of inertia considered in Figure 6. Again we
can notice that constant tangential force and creepage bound the maximum growth of corrugation.

In Figure 8, for fixed speed (V = 30 m/s), we plot the variation of the minimum of Ŵ1 with the tractive
ratio and inertia of wheelset, respectively. In the first case we have a monotonic decrease of the minimum
of Ŵ1 (i.e. an increase of predicted exponential growth of corrugation) with τ . In the latter, an increase
of the inertia Iw corresponds to a decrease of dissipation.

5. Discussion

Grassie and Johnson [1982a; 1982b; 1982c; 1982d] improved and extended beam models also to excita-
tion on vertical, longitudinal and lateral excitation, using also careful experiments to compare the results.
However, the wheelset dynamics has so many narrow resonances that its role is neglected. In the few
cases where it is included, its role however seems crucial, perhaps even larger than what it really is, when
considering other effects.
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Figure 8. Variation with the tractive ratio τ (left) and with the inertia Iw (right) of the
maximum growth of dissipation, min(Ŵ1), for fixed speed V = 30 m/s (1 = 3.15×
10−5 m; E = 207 GPa; ν = 0.3; mrail = 56 kg/m; mw = 350 kg; Irail = 2.35× 10−5 m4;
µ= 0.4; P0 = 50 kN; R = 0.46 m; Rr = 0.23 m; for the panel on the right, τ = 0.1.)

For example:

(a) Tassilly and Vincents [1991a; 1991b] introduce the wheelset behaviour in full curve via its frequency
response function, showing predominantly transversal wear on the leading wheelset corresponding
to its first bending mode, and longitudinal wear on the rear one, related to the first torsional mode
of the wheelset.

(b) Diana et al. [1998] suggest that the model of Tassilly and Vincents does not justify the case of
changing corrugation with a simple change of the pad stiffness, as observed in the Milano subway
they analyze. They notice corrugation wavelength is not driven by vertical resonances — neither
the P2 frequency nor the pinned-pinned frequency (first bending mode) could correspond to the
frequency of corrugation, and all the other higher resonant frequencies of the wheelset on the track
do not change with the change from the stiff to the soft superstructure. Therefore they proposed a
mechanism based on the discrete nature of the support and its periodic change of stiffness.

(c) Elkins et al. [1998], in a study of North American transit railways suggest the second torsional
resonance of wheelset also at about 300 Hz as the fixing mechanism.

The closest to our model is in [Diana et al. 1998], the first part of which proposes a simple wheel with
concentrated inertia and mass, rolling over a corrugated rail, in turn supported by a structure with periodic
change of stiffness. The contact mechanics is simplified with a relationship similar to a Carter solution,
although linear in normal load. However, their model is purely integrated in time, and results only for one
specific case are illustrated, whereas here we explore fully the behaviour of the system by a perturbation
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analysis, permitting to explore the growth of corrugation as a function of all the crucial various parameters.
The model shows significant enhancement of corrugation growth with the periodic change of stiffness,
which we shall include in later studies. This could be interpreted as inducing parametric resonance on
the system, as studied by some authors more in the context of noise than corrugation (see, for example,
[Wu and Thompson 2006; Sheng et al. 2006; Wu and Thompson 2004]). However, from these same
studies, we expect that corrugation is enhanced in its growth and also modulated in amplitude, but not
necessarily will change significantly its wavelength.

Hence, it seems surprising that the corrugation wavelengths may have been frequently associated to
the pinned-pinned resonance at about 1000 Hz [Hempelmann and Knothe 1996; Müller 1999; 2000;
1998; Grassie 2005].2. Surprisingly, Hempelmann’s thesis [1994], in Figure 7.15, has a full comparison
of wavelength-speed like our Figure 1, two regimes are predicted around a 400 Hz line and around a
1450 Hz one, the first value not too far from one of our predictions. In [Hempelmann and Knothe 1996],
reference to the 1450 Hz regime disappears, and instead there is a suggestion to the highest growth at the
pinned-pinned resonance at 1060 Hz. Mueller, in his sophisticated nonlinear model [1999; 1998], seems
to confirm Hempelmann’s results, adding that other structural dynamics effects can also dominate the
profile development, e.g. the high lateral rail receptance between 1600 and 1800 Hz and the low vertical
rail receptance near 300 Hz. A detailed comparison is not possible but clearly would be interesting.

6. Conclusions

This note suggests a very simple model permitting a closed form treatment and full exploration of the
phenomenon of corrugation with its possibly most crucial factors. The rotational dynamics of the wheel,
which surprisingly is missing in many models, couples with the rotational dynamics with the vertical
dynamics via the contact mechanics at the interface, leading to a strong effect of the train speed on the
possible phase between normal load and local wear.

The results explain why Grassie and Johnson [1985] could not suggest an adequate mechanism, as
the predicted phase corresponds to very large vehicle speeds, whereas our model shows that the phase
between normal load and differential wear varies largely with speed, and hence should be included to
justify the phenomenon.

The corrugation growth is found strongly increasing with the tractive ratio, and hence in stopping
or departing conditions, the corrugation growth should be very high. This may explain the second
observation of Grassie and Kalousek [1993], since a low normal load may increase the tractive ratio,
and this may dominating over the decrease due to the fact that wear is also proportional to the dynamic
normal load in turn proportional to the steady state mean value. A large inertia of the wheel may lower
the speed for corrugation growth.

Appendix: Dynamic response of the rail

We consider the problem of an infinite beam subjected to a force that moves at speed V and whose
magnitude oscillates in time at frequency f = ω/2π (where ω is the pulsation of the oscillation). In the

2Grassie reports that the pinned-pinned resonance is more precisely given as “about 800 Hz in the UK, for a sleeper spacing
of 0.75 m and 56 kg/m rail, whereas in much of continental Europe it is more commonly about 1200 Hz because of the closer
sleeper spacing (0.6 m) and heavier rail section (60 kg/m).”
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steady state the vertical displacement of the beam will be of the form

u =U (x − V t) exp (ιωt) (27)

The equation on the motion for the beam, except under the load, is

dT
dx
=−mü,

where T is the shear force and m is the mass of the beam per unit length. From the linear elastic theory
of the beam we also have

E I
du2

dx2 = M,
d M
dx
= T,

where E I is the flexural rigidity of the beam and M is the bending moment. It follows that

E I
d4u
dx4 +m

d2u
dt2 = 0.

Now we introduce the damping in the above equation by adding the term Cu̇, giving

E I
d4u
dx4 +m

d2u
dt2 +C

du
dt
= 0, (28)

where C is a damping coefficient.
By using (27) in (28) and cancelling the common factor exp (ιωt), we obtain

E IU I V
+m

(
V 2U ′′− 2ιVωU ′−ω2U

)
+C

(
−V U ′+ ιωU

)
= 0.

If we introduce the following dimensionless variable ξ defined as

V ξ
ω
= x − V t,

in which case
U ′ (x − V t)=

ω

V
U ′ (ξ)

etc., we obtain

KU I V (ξ)+U ′′ (ξ)− 2ιU ′ (ξ)−U (ξ)+ Ĉ
(
−U ′ (ξ)+ ιU (ξ)

)
= 0,

where

K =
E Iω2

mV 4 =
4π2 E I
mV 2λ2 (29)

is a dimensionless flexural rigidity and

Ĉ =
C

mω
� 1.

Noting that the parameter λ= 2πV/ω is the wavelength of the implied corrugation.
The problem is therefore governed by the dimensionless parameters K and Ĉ and the phase shift

between the excitation force and implied corrugation will be a function only of these parameters.
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Solution. Equation (28) has the solution

U (ξ)= A exp (sξ) ,

where A is an arbitrary complex constant and s satisfies the fourth degree polynomial equation

K s4
+ s2
− 2ιs− 1+ Ĉ (−s+ ι)= 0

To avoid the complex coefficient in this equation, we can write

s = ισ,

giving
Kσ 4
− σ 2
+ 2σ − 1+ Ĉ (−ισ + ι)= 0. (30)

For Ĉ = 0 the solutions of (30) are

σ1,2 =
1±
√

1− 4k
2k

; σ3,4 =
−1±

√
1+ 4k

2k
,

where k2
= K .

We notice that all the roots are real if k < 1/4 and hence K < 1/16. For K > 1/16, σ1,2 are complex
and σ3,4 are real. This in turn implies that roots for s are either all pure imaginary, or else two are
complex and two are imaginary. The imaginary roots correspond to waves of constant amplitude, so it
is difficult to know what to do about conditions at infinity. Physically, this corresponds to the fact that
the undamped beam can support free vibrations and if the wavelength of these are suitably chosen, they
can be combined to give a travelling wave of any given speed. We can get around it by imposing a small
amount of damping.

Our concern is with the two real roots σ3,4 and we anticipate that for small Ĉ we can modify them in
the form

σ3 =
−1+

√
1+ 4k

2k
+ Ĉg3 (k) ; σ4 =

−1−
√

1+ 4k
2k

+ Ĉg4 (k) .

Differentiating (30) with respect to Ĉ , we have(
4Kσ 3

− 2σ + 2− Ĉι
) dσ

dĈ
− ι (σ − 1)= 0,

and hence
dσ

dĈ
=

ι (σ − 1)

4Kσ 3− 2σ + 2− Ĉι
.

Substituting σ = σ3 and Ĉ = 0, we obtain:

g3 (k)=
dσ

dĈ
=−

ι

2
√

1+ 4k
.

which shows that ιg3 (k) is always positive, hence the real part of the modified root s3 is positive.
Next substitute σ = σ4 so that

g4 (k)=
dσ

dĈ
=

ι

2
√

1+ 4k
.
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Apart from the ι factor, this is positive for all k and hence ιg4 (k) < 0 and the real part of the modified
root s4 is negative.

Boundary conditions. We construct a solution for the region ξ > 0 using the roots with negative real
part,so

U (ξ)= A1 exp (s1ξ)+ A4 exp (s4ξ) .

For ξ < 0, we use the roots with positive real part giving

U (ξ)= A2 exp (s2ξ)+ A3 exp (s3ξ) .

We require continuity in u and its first two derivatives (the second derivatives to achieve continuity of
bending moment M), giving

A1+ A4 = A2+ A3, A1s1+ A4s4 = A2s2+ A3s3, A1s2
1 + A4s2

4 = A2s2
2 + A3s2

3 . (31)

The final equation comes from the requirement that the shear force has a discontinuity of magnitude
F0 exp (ιωt) at the origin. In other words

T
(
0+
)
− T

(
0−
)
= F0 exp (ιωt) ,

which implies
E Iω3

V 3

(
U ′′′

(
0+
)
−U ′′′

(
0−
))
= F0. (32)

We therefore have

A1s3
1 + A4s3

4 − A2s3
2 − A3s3

3 =
F0V 3

E Iω3 .

The receptance will be determined by the complex ratio between F0 and the displacement under the load
which is

u0 = A1+ A4. (33)

It will be a function of K (and hence of the frequency f ). Notice that this is physically meaningful only
above the value of K that makes g3 (K ) > 0. Further the result will be only slightly affected by g3 and
g4 as long as these are small, and hence we can simplify the problem by setting these to zero.

Large K limit. Consider the case where K � 1, which is equivalent to V → 0 in view of (29). In other
words, in this limit, we should recover the solution for an oscillating load that is stationary at the origin.
The roots then tend to the values

s1 =−
1
√

k
; s2 =

1
√

k
; s3 =

ι
√

k
; s4 =−

ι
√

k
,

and from the boundary conditions (31), (32) and (33), we then get

u0 =−
F0 (1+ ι)

4
(
m3 E I

)1/4
ω3/2

.

Thus,

u (0)= u0 exp (ιωt)=−
F0 (1+ ι)

4
(
m3 E I

)1/4
ω3/2

exp (ιωt) ,
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which we can rewrite as

u (0)=
F0

2
√

2
(
m3 E I

)1/4
ω3/2

exp (ι (ωt − 3π/4)) .

Thus, the displacement lags from the force by 3π/4= 135◦.
The vertical receptance can hence be written as

Hrail =
u (0)

F0
=

exp (−ι3π/4)

2
√

2
(
m3 E I

)1/4
ω3/2

.
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STABILITY AND MEMORY EFFECTS IN A HOMOGENIZED MODEL
GOVERNING THE ELECTRICAL CONDUCTION IN BIOLOGICAL TISSUES

MICOL AMAR, DANIELE ANDREUCCI, PAOLO BISEGNA AND ROBERTO GIANNI

We present a macroscopic model of electrical conduction in biological tissues. This model is derived via
a homogenization limit by a microscopic formulation based on Maxwell’s equations, taking into account
the periodic geometry of the microstructure. We also study the asymptotic behavior of the model for
large times. Our results imply that periodic boundary data lead to an asymptotically periodic solution.
The model is relevant to applications like electric impedance tomography.

1. Introduction

In this paper we deal with a model of electrical conduction in composite media and, specifically, conduc-
tion in biological tissues. The classical governing equation is

� div.�rut C �ru/D 0 ; (1-1)

which is derived from the Maxwell equations in the quasistationary approximation (see for example,
[Novožilov and Yappa 1978]). Here, u is the electrical potential and �, � are the permittivity and the
conductivity of the material, respectively. The geometry of the composite media we have in mind is
a periodic array of the unit cell depicted in Figure 1. More precisely, we look at a phase E

�
1

which
models the cell cytosol, coated by a shell � � which models the cell membrane, included in a phase
E
�
2

which models the extracellular fluid [Foster and Schwan 1989]. In particular, the permittivity � in
E
�
1

and E
�
2

is lower, and the conductivity � is higher, than in � �. The diameter of the cell is of the
order of tens of micrometers, while the width of the membrane is of the order of ten nanometers. This
suggests that the thin shell � � could be preferably modeled as a two dimensional interface � , in order
to get a simpler model and, possibly, a better understanding of the effect of the geometric features of the
microscopic structure. This simpler model can be obtained from Equation (1-1) via a concentration-of-
capacity procedure [Amar et al. 2006], leading to Problem (2-1)–(2-6), below. In particular, Equation
(2-3) takes into account the conductive/capacitive behavior of the concentrated membrane. As shown in
(2-3), the electric potential jumps across the interface � , and its jump satisfies a dynamical condition
(roughly speaking, in the form of a hyperbolic differential equation on the interface itself).

Our model is designed to investigate the response of biological tissues to the injection of electrical
currents in the radio frequency range, that is, the Maxwell–Wagner interfacial polarization effect [Foster
and Schwan 1989; Bisegna et al. 2001], at higher frequencies than those considered in [Amar et al.
2003; 2004b; 2005; 2006; 2008]. This effect is relevant to clinical applications like electric impedance
tomography and body composition [De Lorenzo et al. 1997; Bronzino 1999].

Keywords: asymptotic decay, stability, homogenization, memory effects, electrical conduction, biological tissues.
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Figure 1. The periodic cell Y . Left: before concentration; � � is the dark gray region,
and E� D E

�
1
[ E

�
2

is the union of the light gray and white regions. Right: after
concentration; � � shrinks to � as �! 0.

Problem (2-1)–(2-6) contains a small parameter ", coinciding with the period of the microstructure.
The typical structure of the periodic array we have in mind is given in Figure 2. Some applications
deal with measurements of the electric potential at the macroscopic (body) scale: this suggests that
it would be advantageous to investigate the homogenization limit of Problem (2-1)–(2-6) when we let
"! 0. Extensive surveys on this topic are, for example, in [Bensoussan et al. 1978; Sánchez-Palencia

Figure 2. Left: an example of admissible periodic unit cell Y D E1 [E2 [ � in R2.
Here E1 is the light gray region and � is its boundary. The remaining part of Y (the
white region) is E2. Right: the corresponding domain ˝ D˝"

1
[˝"

2
[� ". Here ˝"

1
is

the light gray region and � " is its boundary. The remaining part of ˝ (the white region)
is ˝"

2
.
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1980; Lions 1981; Attouch 1984; Bakhvalov and Panasenko 1989; Oleinik et al. 1992; Sánchez-Hubert
and Sánchez-Palencia 1992; Jikov et al. 1994; Braides and Defranceschi 1998; Cioranescu and Donato
1999]. It turns out that the partial differential equation obtained in the limit is nonstandard; see (3-39)
below. Indeed, it is an equation exhibiting memory effects, that is, it contains explicitly the history of
the unknown and hence is markedly different from the Laplace equation presently used as a standard in
the bioelectrical impedance literature [Bronzino 1999].

Our model can be compared to some papers where homogenization theory is applied to linear station-
ary elliptic problems involving imperfect interfaces arising in fields like elasticity [Lene and Leguillon
1981] or heat conduction [Lipton 1998]. See also [Donato et al. 2007; Sánchez-Palencia 1980], where
hyperbolic problems with interfaces are considered in the framework of elastodynamics and electrody-
namics.

In view of the applications, it is also of interest to study the time evolution of the homogenized
potential (see Section 2). In particular, it is of interest to show that time-harmonic boundary data elicits
a time-harmonic solution for large times. In this regard, following the same reasoning as that presented
in [Amar et al. 2008], it is enough to prove that the solution u0 of (3-39) exponentially decays to zero
as time increases, provided that a zero Dirichlet boundary condition is assigned (see Theorem 2.1 and
Corollary 2.2).

From a mathematical point of view, the asymptotic behavior of evolutive equations with memory is
a classical problem [Fichera 1979; Slemrod 1981; Fabrizio and Morro 1988; Lazzari and Vuk 1992],
currently drawing much interest in the literature [Lazzari and Nibbi 2002; Giorgi et al. 2001; 2005;
Medjden and Tatar 2005; Appleby et al. 2006]. We note that the exponential decay of the memory
kernel, in general, does not imply the existence of bounded solutions, as shown by a counterexample
presented in Section 5 (see also, [Fichera 1979; Fabrizio and Morro 1988]).

We finally note that our methods could be easily applied to study the homogenization problem and
the time-asymptotic behavior of Kelvin–Voigt viscoelastic composites with coated inclusions.

2. Position of the problem and main results

We look at the homogenization limit ("! 0) of the following problem for u".x; t/:

� div.�ru"t C �ru"/D 0 in .˝"1 [˝
"
2/� .0;C1/; (2-1)

Œ.�ru"t C �ru"/ � ��D 0 on � " � .0;C1/; (2-2)

.˛="/@Œu"�=@t C .ˇ="/Œu"�D ..�ru"t C �ru"/ � �/
.2/ on � " � .0;C1/; (2-3)

u".x; t/D 0 on @˝ � .0;C1/; (2-4)

ru".x; 0/DG".x/ in ˝"1 [˝
"
2; (2-5)

Œu"�.x; 0/D S".x/ on � ". (2-6)

The operators div and r act with respect to the space variable x; ˝ D˝"
1
[˝"

2
[� ", where ˝"

1
and

˝"
2

are two disjoint open subsets of ˝, and � " D @˝"
1
\˝ D @˝"

2
\˝; � is the normal unit vector

pointing into ˝"
2
; the typical geometry we have in mind is depicted in Figure 2. We refer to Section 2

for a precise definition of the structure of ˝"
1
, ˝"

2
, � ".
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Moreover, we assume that

˛ > 0 I ˇ � 0 I � D �1 > 0 ; � D �1 > 0 in ˝"1;

� D �2 > 0 ; � D �2 > 0 in ˝"2;
(2-7)

where �1, �2, �1, �2, ˛, and ˇ are constants. From a physical point of view, � " represents the cell mem-
branes having capacitance ˛=" and conductance ˇ=" per unit area, whereas ˝"

1
(respectively, ˝"

2
) is the

intracellular (respectively, extracellular) space, having permittivity �1 (respectively, �2) and conductivity
�1 (respectively, �2).

Since u" is not, in general, continuous across � ", we have set

u.2/" WD trace of u"j˝"
2

on � " ; u.1/" WD trace of u"j˝"
1

on � " ; and Œu"� WD u.2/" �u.1/" :

A similar convention is employed for the current flux density across the membrane .�ru"t C �ru"/ � �.
We assume that the restrictions of G" to ˝"

1
and ˝"

2
are gradients of scalar fields, and that G" strongly

converges in L2. Moreover, we assume that S" 2H 1.˝/, and that S"=" strongly converges in L2. These
assumptions are introduced in order to rule out the appearance of an initial layer (see [Amar et al. 2009]).
Further assumptions on G" and S" are introduced in the next paragraph.

Geometry. Following [Amar et al. 2004b], we introduce a periodic open subset E of RN , so that ECzD

E for all z 2ZN . For all "> 0 we define˝"
1
D˝\"E, ˝"

2
D˝ n"E, � "D˝\@."E/. We assume that

˝, E have a regular boundary, say of class C1 for the sake of simplicity. We also employ the notation
Y D .0; 1/N , E1 D E \ Y , E2 D Y nE, � D @E \ Y . We stipulate that E1 is a connected smooth
subset of Y such that dist.E1; @Y / > 0. Some generalizations may be possible, but we do not dwell on
this point here. Finally, we assume that dist.� "; @˝/ > 
" for some constant 
 > 0 independent of ",
by dropping the inclusions contained in the cells ".Y C z/, z 2ZN which intersect @˝ (see Figure 2).
For later usage, we introduce the set

ZN
" WD fz 2ZN

W ".Y C z/�˝g : (2-8)

Energy estimate. Multiply (2-1) by u" and integrate by parts. Using (2-2)–(2-6), we arrive, for all t > 0,
to the energy estimate

ˆ
˝

�

2
jru".x; t/j

2 dxC

ˆ t

0

ˆ
˝

� jru".x; �/j
2 dx d� C

˛

2"

ˆ
� "

Œu".x; t/�
2 d�

C
ˇ

"

ˆ t

0

ˆ
� "

Œu".x; �/�
2 d� d� D

ˆ
˝

�

2
jG".x/j

2 dxC
˛

2"

ˆ
� "

S2
" .x/ d� : (2-9)

We assume that ˆ
˝

�

2
jG".x/j

2 dxC
˛

2"

ˆ
� "

S2
" .x/ d� < 
 ; (2-10)

for a constant 
 independent of ". In fact (2-9), coupled with the Poincaré’s inequality (Lemma 4.1), is
a main tool in the rigorous proof of convergence of u" to its limit. In particular, up to a subsequence, u"
converges weakly in L2.˝ � .0;T // as "! 0 to a limit u0, for every T > 0. The equation satisfied by
u0 will be formally derived via a homogenization procedure in Section 3.
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Exponential decay.

Theorem 2.1. Let ˝"
1
; ˝"

2
; � " be as before. Assume that (2-7) holds, and that the initial data G" are

gradients of scalar fields and together with S" satisfy (2-10). Let u" be the solution of (2-1)–(2-6). Then

ku". � ; t/kL2.˝/ � C."C e��t / a.e. in .0;C1/; (2-11)

where C and � are positive constants independent of ". Moreover, if ˇ > 0, or else if S" has null mean
average over each connected component of � ", it follows that

ku". � ; t/kL2.˝/ � C e��t a.e. in .0;C1/: (2-12)

This result easily yields the following exponential time-decay estimate for the limit u0 under homoge-
neous Dirichlet boundary data:

Corollary 2.2. Under the assumptions of Theorem 2.1, if u"! u0 weakly in L2.˝ � .0;T // for every
T > 0, then

ku0. � ; t/kL2.˝/ � C e��t a.e. in .0;C1/: (2-13)

3. Formal homogenization

To establish the notation, we summarize here some well known asymptotic expansions needed in the
two-scale method (see, for example, [Bensoussan et al. 1978], [Sánchez-Palencia 1980]). Introduce the
microscopic variables y 2 Y , y D x=", assuming

u" D u".x;y; t/D u0.x;y; t/C "u1.x;y; t/C "
2u2.x;y; t/C : : : : (3-1)

Note that u0, u1, u2 are periodic in y, and u1, u2 are assumed to have zero integral average over Y .
Recalling that

divD
1

"
divy C divx ; r D

1

"
ry Crx ; (3-2)

we compute, for example,

ru" D
1

"
ryu0C

�
rxu0Cryu1

�
C "

�
ryu2Crxu1

�
C : : : : (3-3)

We also stipulate

G" DG".x;y/DG0.x;y/C "G1.x;y/C "
2G2.x;y/C : : : ; (3-4)

S" D S".x;y/D S0.x;y/C "S1.x;y/C "
2S2.x;y/C : : : ; (3-5)

where the restrictions of G0.x; �/, G1.x; �/, : : : to E1 and E2 are the gradients of scalar fields. According
to Equation (2-10), recalling that j� "jN�1 � 1=", we assume S0 � 0 in (3-5). Moreover, according to
the assumption on the strong convergence of G" and S"=", the functions G0.x;y/ and S1.x;y/ do not
depend on y, that is G0.x;y/DG0.x/ and S1.x;y/D S1.x/.

For the sake of brevity, we introduce the operator

D WD �
@

@t
C � : (3-6)
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Applying (3-2)–(3-3) to Problem (2-1)–(2-6), one readily sees, by matching corresponding powers of
", that u0 solves,

�D�yu0 D 0 in .E1[E2/� .0;C1/; (3-7)

ŒDryu0 � ��D 0 on � � .0;C1/; (3-8)

˛
@Œu0�

@t
CˇŒu0�D .Dryu0 � �/

.2/ on � � .0;C1/; (3-9)

ryu0jtD0 D 0 on E1[E2; (3-10)

Œu0�jtD0 D 0 on � . (3-11)

Reasoning as in Section 2, we obtain an energy estimate for (3-7)–(3-11), which implies that Œu0�D 0

for all times, and

u0 D u0.x; t/ :

Next, we find for u1 that

�D�yu1 D 0 in .E1[E2/� .0;C1/; (3-12)

ŒD.ryu1Crxu0/ � ��D 0 on � � .0;C1/; (3-13)

˛
@Œu1�

@t
CˇŒu1�D .D.ryu1Crxu0/ � �/

.2/ on � � .0;C1/; (3-14)

ryu1jtD0Crxu0jtD0 DG0 on E1[E2; (3-15)

Œu1�jtD0 D S1 on � . (3-16)

Since both u0 and G0 do not depend on y, Equation (3-15) implies ryu1jtD0 D 0 on E1[E2.
In order to represent u1 in a suitable way, let g 2L2.E1[E2/ and s 2L2.� / be assigned such that

the restrictions of g to E1 and E2 are gradients of scalar fields, and consider the problem

�D�yv D 0 ; in .E1[E2/� .0;C1/; (3-17)

ŒDryv � ��D 0 ; on � � .0;C1/; (3-18)

˛
@Œv�

@t
CˇŒv�D .Dryv � �/

.2/ on � � .0;C1/. (3-19)

ryvjtD0 D g on E1[E2; (3-20)

Œv�jtD0 D s on � . (3-21)

where v is a periodic function in Y , such that
´

Y v.y; t/ dy D 0. Define the transform T by

T.g; s/.y; t/D v.y; t/ ; y 2 Y ; t > 0 :

Then, introduce the cell functions �0 W Y ! RN and �1 W Y � .0;C1/! RN , whose components �0
h

and �1
h
. � ; t/, hD 1, . . . , N , are required to be periodic functions with vanishing integral averages over
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Y for t � 0. The function �0
h

of the components of �0 satisfies

���y�
0
h D 0 in E1[E2; (3-22)

Œ�.ry�
0
h� eh/ � ��D 0 on � ; (3-23)

˛Œ�0
h�D .�.ry�

0
h� eh/ � �/

.2/ on � . (3-24)

The initial value �1
h
. � ; 0/ of the components of �1 satisfies

���y�
1
h. � ; 0/� ��y�

0
h D 0 ; in E1[E2; (3-25)

Œ.�ry�
1
h. � ; 0/C �.ry�

0
h� eh// � ��D 0 on � ; (3-26)

..�ry�
1
h. � ; 0/C �.ry�

0
h� eh// � �/

.2/
D ˛Œ�1

h. � ; 0/�CˇŒ�
0
h� on � . (3-27)

Finally, �1
h

is defined for t > 0 by

�1
h D T

�
ry�

1
h. � ; 0/; Œ�

1
h. � ; 0/�

�
: (3-28)

Straightforward calculations show that u1 may be written in the form

u1.x;y; t/D��0.y/ � rxu0.x; t/�

ˆ t

0

�1.y; t � �/ � rxu0.x; �/ d�

CT
�
ry.�

0
�G0.x//;S1.x/C Œ�

0� �G0.x/
�
.y; t/ ; (3-29)

so that

Du1.x;y; t/D���0.y/ � rxu0t .x; t/� .��1.y; 0/C ��0.y// � rxu0.x; t/

�

ˆ t

0

.D�1/.y; t � �/ � rxu0.x; �/ d�

CDT
�
ry.�

0
�G0.x//;S1.x/C Œ�

0� �G0.x/
�
.y; t/ : (3-30)

Next we find for u2 that

�D

�
�yu2C 2

@2u1

@xj@yj
C�xu0

�
D 0 ; in .E1[E2/� .0;C1/; (3-31)

ŒD.ryu2Crxu1/ � ��D 0 on � � .0;C1/; (3-32)

.D.ryu2Crxu1/ � �/
.2/
D ˛

@Œu2�

@t
CˇŒu2� on � � .0;C1/. (3-33)

ryu2jtD0Crxu1jtD0 DG1 on E1[E2; (3-34)

Œu2�jtD0 D S2 on � . (3-35)

Let us find the solvability conditions for this problem. Integrating by parts the partial differential equa-
tions (3-31) solved by u2, both in E1 and in E2, adding the two contributions, and using (3-32), we get
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�ˆ
E1

C

ˆ
E2

�
D

�
�xu0.x; t/C 2

@2u1

@xj@yj

�
dy D�

ˆ
�

ŒDrxu1 � �� d� : (3-36)

Thus, we obtain�
�0

@

@t
C �0

�
�xu0 D 2

ˆ
�

ŒDrxu1 � �� d� �
ˆ
�

ŒDrxu1 � �� d� D
ˆ
�

ŒDrxu1 � �� d� ; (3-37)

where

�0 D �1jE1jC �2jE2j I �0 D �1jE1jC �2jE2j : (3-38)

Then, we substitute the representation (3-29) into Equation (3-37) and, after simple algebra, obtain the
homogenized equation for u0 in ˝ � .0;C1/ as

� div
�

Krxu0t CArxu0C

ˆ t

0

B.t � �/rxu0. � ; �/ d� �F

�
D 0 ; (3-39)

where the matrices K, A, B.t/, and the vector F.x; t/ are defined as follows:

K D �0I C

ˆ
�

�˝ Œ��0.y/� d� ; (3-40)

AD �0I C

ˆ
�

�˝ Œ��1.y; 0/C ��0.y/� d� ; (3-41)

B.t/D

ˆ
�

�˝ Œ.D�1/.y; t/� d� ; (3-42)

F.x; t/D

ˆ
�

ŒDT
�
ry.�

0
�G0.x//;S1.x/C Œ�

0� �G0.x/
�
.y; t/�� d� : (3-43)

Equation (3-39) is complemented with the initial condition

rxu0jtD0 DG0 ; on ˝. (3-44)

Finally, integrating Equation (3-39) over time, changing the order in the double integral that results,
and using (3-44), we obtain also the following formulation

� div
�

Krxu0C

ˆ t

0

�
AC

ˆ t�s

0

B.�/ d�
�
rxu0. � ; s/ ds�KG0�

ˆ t

0

F. � ; �/ d�
�
D 0 ; (3-45)

which shows that the homogenized equation has exactly the form of an equation with memory of the
type derived in [Amar et al. 2003; 2004b] and studied in [Amar et al. 2004a].

4. Time-exponential asymptotic decay: proof of Theorem 2.1

The case ˇ > 0 is quite simple. We introduce the space

H 1
" .˝/ WD fv 2L2.˝/ W vj˝"

i
2H 1.˝"i /; i D 1; 2I v D 0 on @˝g : (4-1)



STABILITY AND MEMORY EFFECTS IN A HOMOGENIZED MODEL 219

It turns out that, for all v 2H 1
" .˝/,

ˆ
˝

� jrvj2 dxC
ˇ

"

ˆ
� "

Œv�2 d� � �
�ˆ

˝

�

2
jrvj2 dxC

˛

2"

ˆ
� "

Œv�2 d�
�
; (4-2)

for �Dminf2�1=�1; 2�2=�2; 2ˇ=˛g. Taking v D u". � ; t/ in the previous estimate and using equations
(2-9), (2-10), and the differential version of Gronwall’s Lemma, we obtain

ˆ
˝

�

2
jru". � ; t/j

2 dxC
˛

2"

ˆ
� "

Œu". � ; t/�
2 d� � 
 e��t ; a.e. in .0;C1/; (4-3)

and (2-12) follows from Poincaré’s inequality (Lemma 4.1).
Now we consider the case ˇ D 0. We introduce the space zH 1=2.� "/ �H 1=2.� "/ of the functions

which have a null average over each connected component of � ", that is, on ".� Cz/, for each z belonging
to the set ZN

" defined in (2-8). We decompose the initial datum S".x/ in (2-6) as S".x/DS".x/C zS".x/,
where

S".x/D

 
".�Cz/

S" d� DW C"z on each ".� C z/; z 2ZN
" I

zS".x/ 2 zH
1=2.� "/ ;

(4-4)

and the initial datum G".x/ in (2-5) as G".x/DG".x/C zG".x/, where G".x/D 0 and zG".x/DG".x/.
Accordingly, the solution u" to Problem (2-1)–(2-6) is decomposed as u"C Qu". Clearly,

u".x; t/D

(
0 for .x; t/ 2˝"

2
� .0;C1/ ;

�C"z for .x; t/ 2 .".E1C z//� .0;C1/; z 2ZN
" :

(4-5)

Using the previous equation, we compute

ˆ
˝

ju"j
2 dx D

X
z2ZN

"

ˆ
".E1Cz/

ju"j
2 dx D "N

jE1j

X
z2ZN

"

ˇ̌̌̌  
".�Cz/

S" d�
ˇ̌̌̌2
: (4-6)

On the other hand, by Hölder’s inequality, we estimate

X
z2ZN

"

ˇ̌̌̌ 
".�Cz/

S" d�
ˇ̌̌̌2
�




"N�1

ˆ
� "

S2
" d� : (4-7)

Hence, as a consequence of (2-10), it follows that

ku". � ; t/kL2.˝/ � C " ; (4-8)

where C is a constant independent of ".
In order to obtain an estimate for Qu", we introduce the space

zH 1
" .˝/ WD fv 2H 1

" .˝/ W Œv� 2
zH 1=2.� "/g ; (4-9)
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and, using Lemma 4.2 and Remark 4.3 below, we compute, for every v 2 zH 1
" .˝/,ˆ

˝

� jrvj2 dx �
X

z2ZN
"

ˆ
".YCz/

� jrvj2 dx �
˛z�

"

X
z2ZN

"

ˆ
".�Cz/

Œv�2 d� D
˛z�

"

ˆ
� "

Œv�2 d� ; (4-10)

where z� is defined in (4-15) and is independent of ". Hence,ˆ
˝

� jrvj2 dx � �

�ˆ
˝

�

2
jrvj2 dxC

˛

2"

ˆ
� "

Œv�2 d�
�
; (4-11)

for �D .maxf�1=.2�1/; �2=.2�2/gC 1=.2z�//�1.
On the other hand, reasoning as in Section 2 and using (4-4) and (2-10), we get that Qu" satisfies the

energy estimate
ˆ
˝

�

2
jr Qu".x; t/j

2 dxC

ˆ t

0

ˆ
˝

� jr Qu".x; �/j
2 dx d� C

˛

2"

ˆ
� "

Œ Qu".x; t/�
2 d� < 
 : (4-12)

Hence, by using (4-11) written for Qu". � ; t/ and the differential version of Gronwall’s Lemma, we obtain
ˆ
˝

�

2
jr Qu". � ; t/j

2 dxC
˛

2"

ˆ
� "

Œ Qu". � ; t/�
2 d� � 
 e��t ; a.e. in .0;C1/; (4-13)

and (2-11) follows from Poincaré’s inequality (Lemma 4.1) and (4-8).

Lemma 4.1 (Poincaré’s inequality [Hummel 2000; Amar et al. 2004b]). Let v belong to the space
H 1
" .˝/ introduced in Equation (4-1). Then,

ˆ
˝

v2 dx � C

�ˆ
˝

jrvj2 dxC "�1

ˆ
� "

Œv�2 d�
�
: (4-14)

Here C depends only on ˝ and E.

Lemma 4.2 [Amar et al. 2008]. Set zH 1.Y / WD fv 2L2.Y / W vjEi
2H 1.Ei/; i D 1; 2; Œv� 2 zH 1=2.� /g,

where zH 1=2.� / is comprised of the functions of H 1=2.� / with null integral average. Then,

Q� WD min
v2 zH 1.Y /; Œv� 6�0

ˆ
Y

� jrvj2 dy

˛

ˆ
�

Œv�2 d�
> 0 : (4-15)

Remark 4.3 [Amar et al. 2008]. The change of variables y D x=" applied to Equation (4-15) yields

min
v2 zH 1."Y /
Œv�6�0

ˆ
"Y

� jrvj2 dx

˛

"

ˆ
"�

Œv�2 d�
D Q� > 0 ; (4-16)

where zH 1."Y / WD fv 2L2."Y / W vj"Ei
2H 1."Ei/; i D 1; 2; Œv�2 zH 1=2."� /g, zH 1=2."� / is comprised

of the functions of H 1=2."� / with null integral average, and Q� is the positive constant introduced in
Lemma 4.2.
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5. A counterexample

As pointed out in the Introduction, the structure of (3-39) is not enough to imply that the solution expo-
nentially decays to zero, nor does it imply the solution’s boundedness, even if an exponentially decaying
memory kernel and source are considered. Indeed, let �D .�1; 1/, �> 0; a> 0, b 2 R, and f .x/; h.x/
be smooth functions. Consider the problem8̂̂̂<̂

ˆ̂:
�

�
u0xt C au0xC b

ˆ t

0

e��.t��/u0x.x; �/ d� Cf .x/e��t

�
x

D 0 ;

u0.˙1; 0/D 0 ;

u0x.x; 0/D h.x/ :

(5-1)

Multiplying the previous equation by e�t , we obtain

u0xxt e�t
C au0xxe�t

C b

ˆ t

0

e��u0xx.x; �/ d� D f 0.x/ : (5-2)

Setting v.x; t/D u0xxe�t and differentiating with respect to t , Equation (5-2) can be rewritten as

vt t C .a��/vt C bv D 0 ;

which must be complemented with the initial conditions(
v.x; 0/D h0.x/ ;

vt .x; 0/D f
0.x/C .�� a/h0.x/ :

This last equation has an explicit solution (if .�� a/2� 4b > 0) of the form,

v.x; t/D C1.x/ exp
�
�� aC

p
.�� a/2� 4b

2
t

�
CC2.x/ exp

�
�� a�

p
.�� a/2� 4b

2
t

�
;

where C1.x/ and C2.x/ are easily determined by using the initial conditions, thus implying that

u0xx.x; t/D C1.x/ exp
�
��� aC

p
.�� a/2� 4b

2
t

�
CC2.x/ exp

�
��� a�

p
.�� a/2� 4b

2
t

�
:

Hence, u0 can be obtained by integrating twice with respect to x and using the previous mentioned
boundary conditions.

Note that in general, if b is negative and �b > �a, the first exponential tends to infinity as t !C1.
With the exception of particular choices of the initial data, C1 is different from zero, and hence solutions
to Problem (5-1) do not, in general, decay exponentially in time.
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THERMAL EFFECTS OF COLLISIONS:
DOES RAIN TURN INTO ICE WHEN IT FALLS ON FROZEN GROUND?

ANNA MARIA CAUCCI AND MICHEL FRÉMOND

Dedicated to H. D. Bui, V. K. Dang, G. Del Piero, J. Salençon, J. Zarka.

The phase changes produced by the thermal effects of collisions are investigated. The behaviour of warm
rain falling on a deeply frozen ground is predicted. The ice-water phase change involves microscopic
motions that are taken into account in the predictive theory.

1. Introduction

Consider warm rain falling on frozen ground, or hailstones falling on warm ground. We will investigate
the thermal consequences of such collisions. Does the rain freeze, turning into the “black ice” that can
make paved roads so hazardous in winter? Does the hailstone melt? We will investigate these very
fast phase changes due to collisions, providing a scheme for the thermomechanical theory of collisions
involving phase change.

The classical ice-water phase change involves microscopic motions, which, in our view, must be taken
into account in the macroscopic predictive theory. The basic idea we have developed is to account for the
power of the microscopic motions in the power of the interior forces [Frémond 2001; 2007]. We modify
the expression of the power of the interior forces and assume it depends on the liquid water volume frac-
tion velocity, dβ/dt , which is clearly related to microscopic motion. The consequences of this assumption
give the basic equations of motion, one for macroscopic motion and another for microscopic motion.

We assume the collisions are instantaneous, and thus it is wise to assume that the resulting phase
changes are also instantaneous; the very fast evolution of the liquid water volume fraction β is described
by a discontinuity with respect to time. The discontinuities of the liquid water volume fraction [β]
intervene in nonsmooth equations of motion, accounting for microscopic motion. Moreover, when phase
change occurs, the temperatures are discontinuous with respect to time.

In Section 2, we derive the equations of motion for a collision of two balls of ice. The balance laws
are given in Section 3 and the constitutive laws in Section 4. In Section 5, examples of phase changes
produced by the thermal effects of collisions are described: the collision of two pieces of ice (Section
5.2), and the collision of a warm droplet of rain falling on frozen ground (Section 6).

2. The equations of motion

Let us consider the system made of two balls of ice, B1 and B2, which move along an axis and collide.
Note that such a system is deformable, because the relative position of the balls changes. For the sake

Keywords: predictive theory, collisions, phase change, black ice.
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of simplicity, we assume the balls to be points. We restrict our investigation of the motion and of the
thermal evolution to collisions of the two balls. The smooth evolution is straightforward.

In the following discussion, we use indices 1 and 2 to denote physical quantities relative to the balls
B1 and B2. The indices − and + are used to designate the quantities before and after the collision. The
time discontinuity of a function t 7→A(t) is denoted by

[A] =A+−A−.

The equations of motion are derived from the principle of virtual work which introduces different
contributions: the virtual works of the acceleration, interior, and exterior forces [Frémond 2001; 2007].

The virtual work of the acceleration forces is

Tacc(U, V )= m1[U1]
V+1 + V−1

2
+m2[U2]

V+2 + V−2
2

,

where m1 and m2 are the masses of the two balls, U = (U1,U2) their actual velocities, and V = (V 1, V 2)

are the macroscopic virtual velocities.
The virtual work of the interior forces, Tint, is a linear function of the virtual velocity fields; in

particular, it is chosen to depend on the system velocity of deformation, D(V )= V 1− V 2, and also on
[δ] = ([δ1], [δ2]), where δ1 and δ2 are the virtual liquid water volume fractions of the two balls in the ice-
water phase change, the actual volume fractions being β1 and β2. It is worth noting that [δi ] = (δ

+

i − δ
−

i ),
i = 1, 2, is analogous to dδi/dt , which represents, in a smooth evolution, a virtual velocity of phase
change. This latter quantity is clearly related to microscopic motion.

We choose the virtual work of the interior forces as

Tint(D(V ), [δ])=−P int D
(V++V−

2

)
− A1[δ1] − A2[δ2],

where P int is the interior percussion that intervenes when collisions occur, and A = (A1, A2) are the
interior microscopic works.

Assuming no exterior percussion, for instance when there is no hammer stroke, and no exterior elec-
trical, radiative, or chemical impulse, the virtual work of the exterior forces is Text(V )= 0.

The principle of virtual work,

∀V , [δ] : Tacc(V )= Tint(D(V ), [δ]),
gives easily the equations of motion

m1[U1] = −P int, m2[U2] = P int (2-1)

A1 = 0, A2 = 0. (2-2)

Remark 2.1. We have assumed that there is no exterior impulse inducing phase change. In case there is
one, for instance an electrical impulse, or a chemical impulse able to produce a phase change, Aext

1 , the
equation of motion (2-2) becomes A1 = Aext

1 .

3. The laws of thermodynamics

The laws of thermodynamics are the same for the two balls.



THERMAL EFFECTS OF COLLISIONS 227

3.1. The first law. We first consider each ball separately. For B1, the first law of thermodynamics is

[E1] + [K1] = Text
1 (U)+C1, (3-1)

where E1 is the internal energy of the ball, K1 its kinetic energy, Text
1 (U) the actual work of the percus-

sions which are exterior to ball B1, and C1 = T+1 (B
+

1 + B+12)+ T−1 (B
−

1 + B−12) the heat impulse provided
to the ball at the time of collision. This quantity includes the heats T1 B1 received from outside the system,
and the heats T1 B12 received from inside, that is, from the other ball. We assume that these heats are
received at a temperature of either T+1 or T−1 .

The theorem of kinetic energy for ball B1 is

[K1] = Tacc
1 (U)= Tint

1 ([β1])+Text
1 (U)=−A1[β1] +T ext

1 (U),

with Tint
1 ([δ1])=−A1[δ1]. It gives, with the first law of thermodynamics (3-1),

[E1] = C1−Tint
1 ([β1]) = T+1 (B

+

1 + B+12)+ T−1 (B
−

1 + B−12)+ A1[β1]

= T 1(6B1+6B12)+ [T1](1B1+1B12)+ A1[β1], (3-2)

with the notations

T = T++T−

2
, 6B = B++ B−, 1B = B+−B−

2
,

retained in the sequel.

Now we consider the system as a whole. The internal energy of the system is the sum of the internal
energies of its components, E1 and E2, to which an interaction internal energy, Eint, may be added, giving
E= E1+E2+Eint.

The first law of thermodynamics for the system is [E] + [K] = Text(U)+C, where K is the kinetic
energy of the whole system and C is the exterior heat impulse received by the system in collision, given
by C= T+1 B+1 + T−1 B−1 + T+2 B+2 + T−2 B−2 .

The theorem of kinetic energy, that is, the principle of virtual power with the actual velocities

[K] = Tacc(U)= Tint(D(U), [β1], [β2]
)
+Text(U),

and the first law of thermodynamics gives

[E] = C−Tint(D(U), [β1], [β2]
)
= C+ P int D

(U++U−

2

)
+ A1[β1] + A2[β2]. (3-3)

Combining (3-2) and (3-3) we obtain

[E] = [E1] + [E2] + [E
int
]

= T 1(6B1+6B12)+ [T1](1B1+1B12)+ A1[β1]

+ T 2(6B2+6B21)+ [T2](1B2+1B21)+ A2[β2] + [E
int
]

= T+1 B+1 + T−1 B−1 + T+2 B+2 + T−2 B−2 + P int D
(U++U−

2

)
+ A1[β1] + A2[β2]

= T 16B1+ [T1]1B1+ T 26B2+ [T2]1B2+ P int D
(U++U−

2

)
+ A1[β1] + A2[β2].
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Then

[Eint
] = P int D

(U++U−

2

)
− T 16B12− [T1]1B12− T 26B21− [T2]1B21. (3-4)

This relationship is interesting because only interior quantities intervene.

3.2. The second law of thermodynamics. Again we start with each ball separately. Let S1 be the entropy
of ball B1. The second law of thermodynamics is

[S1] ≥ B+1 + B−1 + B+12+ B−12 =6B1+6B12, (3-5)

where the quantity on the right-hand side is the sum of the exterior entropy impulses B1 received from
outside the system and the entropy impulses B12 received from ball B2.

By means of relationship (3-2), the second law of thermodynamics gives

[E1] − T 1[S1] ≤ [T1](1B1+1B12)+ A1[β1],

or, by introducing the free energy 9 = E− T S,

[91] +S1[T1] ≤ [T1](1B1+1B12)+ A1[β1]. (3-6)

The free energy of ball B1 is

91(T1, β1)=−C1T1 log T1−β1
L
T0
(T1− T0)+ I (β1),

where C1 is the heat capacity, L is the latent heat at the phase change temperature T0, and I is the
indicator function of the interval [0, 1] (see [Moreau 1966–1967]), which takes into account the internal
constraint on the volume fraction 0≤ β1 ≤ 1. We set

9̂1(T1, β1)=−β1
L
T0
(T1− T0)+ I (β1).

Then
[91] = [−C1T1 log T1] + [9̂1], (3-7)

where

[9̂1] = 9̂1(T+1 , β
+

1 )− 9̂1(T−1 , β
−

1 )= 9̂1(T+1 , β
+

1 )− 9̂1(T+1 , β
−

1 )+ 9̂1(T+1 , β
−

1 )− 9̂1(T−1 , β
−

1 ) (3-8)

and

9̂1(T+1 , β
−

1 )− 9̂1(T−1 , β
−

1 )=−β
−

1
L
T0
[T1]. (3-9)

In view of (3-7)–(3-9), inequality (3-6) transforms into

[91] +S1[T1] = [−C1T1 log T1] + 9̂1(T+1 , β
+

1 )− 9̂1(T+1 , β
−

1 )−β
−

1
L
T0
[T1] +S1[T1]

≤ [T1](1B1+1B12)+ A1[β1].

(3-10)

Since
[−C1T1 log T1]

[T1]
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has a limit when [T1] → 0, we introduce the notation

[−C1T1 log T1] +

(
S1−β

−

1
L
T0

)
[T1] = −S1[T1]. (3-11)

From (3-10), we have

9̂1(T+1 , β
+

1 )− 9̂1(T+1 , β
−

1 )≤ [T1](1B1+1B12+S1)+ A1[β1]. (3-12)

It is reasonable to assume that there is no dissipation with respect to [T1] as there is no dissipation with
respect to dT1/dt in a smooth evolution

1B1+1B12+S1 = 0; (3-13)

then, inequality (3-12) becomes

9̂1(T+1 , β
+

1 )− 9̂1(T+1 , β
−

1 )≤ A1[β1]. (3-14)

Turning now to the system as a whole, its entropy is given by the sum

S= S1+S2+Sint, (3-15)

where Sint is the interaction entropy. The second law of thermodynamics is

[S] = [S1] + [S2] + [S
int
] ≥ B+1 + B−1 + B+2 + B−2 =6B1+6B2. (3-16)

In the sequel, we choose constitutive laws such that laws of thermodynamics (3-5) and (3-16) are
satisfied. They will be such that (3-5) and

[Sint
] ≥ −6B12−6B21 (3-17)

are verified.
Let us get inequalities equivalent to (3-17). Let

2=
T1+T2

2
.

From (3-4) and (3-17), we have

[Eint
] −2[Sint

] ≤ P int D
(U++U−

2

)
− T 16B12− [T1]1B12

− T 26B21− [T2]1B21+2(6B12+6B21). (3-18)

Introducing the free energy of interaction 9 int
= Eint

−2Sint, inequality (3-18) can be written as

[9 int
] +S

int
[2] ≤ P int D

(U++U−

2

)
− T 16B12− [T1]1B12

− T 26B21− [T2]1B21+2(6B12+6B21), (3-19)

where

S
int
=
(Sint)++ (Sint)−

2
, [2] =

[T1]+[T2]

2
.
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We assume 9 int is a smooth function of 2. Then when [2] tends to 0 and 2+ and 2− have limits

lim
[2]→0

2+ = lim
[2]→0

2− =2,

we have

lim
[2]→0

(
[9 int
]

[2]
+S

int
)
= 0,

since

lim
[2]→0

[9 int
]

[2]
=
∂9 int

∂2
(2), lim

[2]→0
S

int
= Sint(2),

and the Helmholtz relationship

Sint(2)=−
∂9 int

∂2
(2).

Therefore, we can put

[9 int
] +S

int
[2] = −Sint

[2], (3-20)

and, from (3-19), we find

0 ≤ P int D
(U++U−

2

)
− T 16B12− [T1]

(
1B12−

Sint

2

)
− T 26B21− [T2]

(
1B21−

Sint

2

)
+2(6B12+6B21). (3-21)

It is reasonable to assume that there is no dissipation with respect to [T1] and [T2] as there is no dissipation
with respect to the dT/dt’s in a smooth evolution

1B12−
Sint

2
= 0, 1B21−

Sint

2
= 0; (3-22)

then

0≤ P int D
(U++U−

2

)
− T 16B12− T 26B21+2(6B12+6B21). (3-23)

But

T 16B12+ T 26B21 =2(6B12+6B21)+ δT
6B21−6B12

2
, (3-24)

where the difference in temperature, δT , is defined by δT = T 2− T 1. Finally, inequality (3-23) yields

0≤ P int D
(U++U−

2

)
− δT

6B21−6B12

2
; (3-25)

this last relationship links mechanical and thermal dissipations.
On the other hand, from (3-25), by means of (3-24) and assuming no dissipation with respect to [T1]

and [T2], it follows that (3-21) is satisfied; thanks to (3-20), inequality (3-21) yields

[9 int
] ≤ P int D

(U++U−

2

)
− T 16B12− [T1]1B12− T 26B21

− [T2]1B21+2(6B12+6B21)−S
int
[2]. (3-26)
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Substituting the identity [9 int
] = [Eint

] − [2]S
int
−2[Sint

] into (3-26), we have

−2[Sint
] ≤ −[Eint

] + P int D
(U++U−

2

)
− T 16B12− [T1]1B12

− T 26B21− [T2]1B21+2(6B12+6B21); (3-27)

this in turn, by virtue of (3-4), entails −2[Sint
] ≤2(6B12+6B21), which is inequality (3-17).

As a consequence, the following theorem holds.

Theorem 3.1. Let 9 int be a smooth function of 2. We assume (3-22) holds, that is, there is no dissipation
with respect to [T1] and [T2]. If (3-4) is satisfied, then (3-17) and (3-25) are equivalent.

4. The constitutive laws

For ball B1, we split the interior force A1 into a possibly nondissipative part, indexed by nd, and a
dissipative part, indexed by d:

A1 = And
1 + Ad

1. (4-1)

The interior force And
1 is defined by the free energy 91(T1, β1) as

And
1 ∈ ∂91(T+1 , β

+

1 )=−
L
T0
(T+1 − T0)+ Andr

1 , (4-2)

where the subdifferential ∂91 [Moreau 1966–1967] is computed with respect to β+1 and the reaction Andr
1

is such that
Andr

1 ∈ ∂ I (β+1 ). (4-3)

The dissipative interior force Ad
1 is defined by

Ad
1 ∈ ∂81([β1]), (4-4)

and satisfies
Ad

1[β1] ≥ 0, (4-5)

where 81([β1]) is a pseudopotential of dissipation [Moreau 1970] and the subdifferential is computed
with respect to [β1].

For the system, we choose the pseudopotential of dissipation

8

(
D
(U++U−

2

)
, δT , χ

)
,

which depends on the velocity D
(
(U++U−)/2

)
, on the thermal heterogeneity δT , and on the quantity

χ = D(U−/2) depending on the past, to ensure the noninterpenetration of the two balls [Frémond 2001;
2007].

The constitutive laws are relationships (4-2)–(4-5) and(
P int,

6B21−6B12
2

)
∈ ∂8

(
D
(U++U−

2

)
, δT , χ

)
, (4-6)

where the subdifferential set of 8 is computed with respect to the first two variables.
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Remark 4.1. The reaction to the internal constraint 0 ≤ β+ ≤ 1 is in general dissipative, because
∂ I (β+)(β+−β−) may be different from zero — in fact, positive. Thus, the reaction is dissipative, as we
may expect. This property is not true in a smooth evolution where the internal constraint is workless or
nondissipative, because

∂ I (β)
dβ
dt
= 0, almost everywhere.

Remark 4.2. From (4-6), applying the classical properties of pseudopotentials [Moreau 1970] we see
that inequality (3-25) is satisfied.

Theorem 4.3. If the constitutive laws (4-2) and (4-4) are satisfied, then inequality (3-14) holds and the
internal constraint 0≤ β+1 ≤ 1 is verified.

Proof. If And
1 ∈ ∂91(T+1 , β

+

1 ), then, using the definition of subdifferential, we have

9̂1(T+1 , β
+

1 )− 9̂1(T+1 , β
−

1 )≤ And
1 (β

+

1 −β
−

1 )= And
1 [β1];

with (4-5), resulting from (4-4), the previous inequality entails

9̂1(T+1 , β
+

1 )− 9̂1(T+1 , β
−

1 )≤ And
1 [β1] + Ad

1[β1] = A1[β1].

Since ∂91(T+1 , β
+

1 ) 6=∅, the internal constraint 0≤ β+1 ≤ 1 is verified. �

Theorem 4.4. Assume (3-13) and (3-22) hold, that is, there is no dissipation with respect to [T1] and
[T2]. If the first laws of thermodynamics (3-2) and (3-3) and the constitutive laws (4-2), (4-3), (4-4) and
(4-6) are verified, then the second law of thermodynamics holds for each ball and for the system.

Proof. Due to Theorem 4.3 and relationships (3-7)–(3-9), we find

[91] = [−C1T1 log T1] + 9̂1(T+1 , β
+

1 )− 9̂1(T+1 , β
−

1 )−β
−

1
L
T0
[T1]

≤ [−C1T1 log T1] + A1[β1] −β
−

1
L
T0
[T1].

(4-7)

On the other hand, we have

[91] = [E1] − [T1S1] = [E1] − [T1]S1− T 1[S1]. (4-8)

From (3-2), (4-7) and (4-8), it follows that

T 1[S1] ≥ [E1] − [T1]S1+ [C1T1 log T1] − A1[β1] +β
−

1
L
T0
[T1]

= T 1(6B1+6B12)+ [T1](1B1+1B12)+ A1[β1] − [T1]S1

+[C1T1 log T1] − A1[β1] +β
−

1
L
T0
[T1]

= T 1(6B1+6B12)+ [T1](1B1+1B12+S1),

with S1 defined as in (3-11). From the previous inequality, assuming no dissipation with respect to [T1]

(relationship (3-13)), we obtain
[S1] ≥6B1+6B12, (4-9)

that is, the second law of thermodynamics for ball B1.
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It is worth noting that, if (4-9) holds for each ball, then, in view of (3-15) and (3-17), we have

[S] = [S1] + [S2] + [S
int
] ≥ 6B1+6B12+6B2+6B21−6B12−6B21 = 6B1+6B2,

which is the second law of thermodynamics for the system. Therefore, all that is necessary is proving
that our hypotheses imply (3-17). Due to the constitutive law (4-6), inequality (3-25) is satisfied, and,
from Theorem 3.1, our conclusion follows. �

5. Examples of thermal effects with phase changes

We choose a pseudopotential of dissipation, 8, without nondiagonal terms, for example

8

(
D
(U++U−

2

)
, δT , D

(U−
2

))
=8mech

(
D
(U++U−

2

)
, D
(U−

2

))
+
λ

4
(δT )2;

with this choice, the mechanical problem is split from the thermal one. The thermal constitutive law is

6B21−6B12 =−λδT . (5-1)

Let us recall that the free energies chosen for the balls are

9i (Ti , βi )=−Ci Ti log Ti −βi
L
T0
(Ti − T0)+ I (βi ), i = 1, 2.

We choose the free energy of interaction 9 int
= 0; we have Sint

= 0 and, from relationships (3-22),
1B12 = 0, 1B21 = 0.

Now, we suppose that the macroscopic mechanical problem is solved, that is, we know the quantity
P int D(U++U−)/2 and we assume no external percussion work A1 = A2 = 0, due to the equations of
motion (2-2); the thermal equations are

[S1] = [C1 log T1] +
L
T0
[β1] = C1 log

T+1
T−1
+

L
T0
[β1] =6B1+6B12,

[S2] = [C2 log T2] +
L
T0
[β2] = C2 log

T+2
T−2
+

L
T0
[β2] =6B2+6B21,

[E1] = C1[T1] + L[β1] = T 1(6B1+6B12)+ [T1]1B1,

[E2] = C2[T2] + L[β2] = T 2(6B2+6B21)+ [T2]1B2,

[Eint
] = P int D

(U++U−

2

)
− T 16B12− T 26B21 = 0,

where the mechanical dissipation P int D
(
(U++U−)/2

)
is positive due to the properties of pseudopoten-

tials of dissipation. These equations are completed by the description of thermal relationships between
the system and the outside and by the equations of microscopic motion

0= Ai = And
i + Ad

i ∈ −
L
T0
(T+i − T0)+ ∂ I (β+i )+ ∂8i ([βi ]), i = 1, 2.
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We assume the collision is adiabatic, that is, no heat is exchanged with the exterior:

T+1 B+1 + T−1 B−1 = T 16B1+ [T1]1B1 = 0,

T+2 B+2 + T−2 B−2 = T 26B2+ [T2]1B2 = 0,

and we have the equations

[S1] = C1 log
T+1
T−1
+

L
T0
[β1] =6B1+6B12,

[S2] = C2 log
T+2
T−2
+

L
T0
[β2] =6B2+6B21,

C1[T1] + L[β1] = T 16B12, C2[T2] + L[β2] = T 26B21,

P int D
(U++U−

2

)
= C1[T1] + L[β1] +C2[T2] + L[β2], (5-2)

C2
[T2]

T 2
+

L

T 2
[β2] −C1

[T1]

T 1
−

L

T 1
[β1] = −λδT . (5-3)

The last two equations give the temperatures T+1 and T+2 after the collision, and the first give the entropic
heat exchanges, 6B1 and 6B2, with the outside.

We assume also small perturbations, that is T±i = T0+ θ
±

i , |θ
±

i | � T0. We can write (5-2) and (5-3) as

P int D
(U++U−

2

)
= C1[θ1] + L[β1] +C2[θ2] + L[β2], (5-4)

C2
[θ2]

T0
+

L
T0
[β2] −C1

[θ1]

T0
−

L
T0
[β1] = −λ

(
θ−2 − θ

−

1 +
[θ2]

2
−
[θ1]

2

)
, (5-5)

and we get the system

C1[θ1] =
1
2

(
P int D

(U++U−

2

)
− 2L[β1] + λT0

(
θ−2 − θ

−

1 +
[θ2]

2
−
[θ1]

2

))
, (5-6)

C2[θ2] =
1
2

(
P int D

(U++U−

2

)
− 2L[β2] − λT0

(
θ−2 − θ

−

1 +
[θ2]

2
−
[θ1]

2

))
, (5-7)

where the volume fractions β1 and β2 satisfy the equations of microscopic motion

0 ∈ −
L
T0
(T+1 − T0)+ ∂ I (β+1 )+ ∂81([β1]), (5-8)

0 ∈ −
L
T0
(T+2 − T0)+ ∂ I (β+2 )+ ∂82([β2]), (5-9)

which are equivalent to

θ+1 ∈ ∂ I (β+1 )+
T0

L
∂81([β1]), (5-10)

θ+2 ∈ ∂ I (β+2 )+
T0

L
∂82([β2]). (5-11)
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It is easy to prove that Equations (5-6), (5-10), and (5-7), (5-11), giving the temperatures and phase
fractions θ+1 , θ

+

2 and β+1 , β
+

2 , have unique solutions.

5.1. Collision of two pieces of ice at the same temperature. The temperatures after the collision are
equal. Equations (5-6) and (5-10) show that they do not depend on λ.

We consider two identical balls of ice, C1 = C2 = C , at the same temperature, θ−, before the collision.
The balls have the same temperature and volume fraction, denoted by θ+ and β+, after the collision:

θ−1 = θ
−

2 = θ
−, θ+1 = θ

+

2 = θ
+,

β−1 = β
−

2 = 0, β+1 = β
+

2 = β
+.

(5-12)

We know that the smooth ice-water phase change is not dissipative. Thus we assume we’re not in a
nonsmooth situation; there is no dissipation with respect to the volume fractions’ discontinuities [β1]

and [β2]:
81([β1])=82([β2])= 0. (5-13)

Equations (5-6) and (5-7) give
C[θ ] = 1

2 (T− 2Lβ+), (5-14)

where

T= P int D
(U++U−

2

)
≥ 0.

Because of (5-13), we find easily from the equations of microscopic motion (5-10) and (5-11)

θ+ ∈ ∂ I (β+). (5-15)

Theorem 5.1. (1) If T≤−2Cθ−, then β+ = 0: the ice does not melt and has temperature (5-14) after
collision.

(2) If T ≥ 2(L − Cθ−), then β+ = 1: the ice melts. The liquid water has temperature (5-14) after
collision.

(3) If −2Cθ− < T< 2(L −Cθ−), then 0< β+ < 1: after collision there is a mixture of ice and liquid
water with temperature θ+ = 0.

Proof. (1) If T≤−2Cθ−, then, from (5-14), it follows that C[θ ]+Lβ+≤−Cθ−. The previous inequality
entails

θ+ ≤−
L
C
β+ ≤ 0;

therefore, in view of (5-15), we obtain β+ = 0.
Cases (2) and (3) are easily proved. �

The results of the theorem agree with what is expected: A violent collision produces a phase change
whereas a nonviolent collision does not. Violent means dissipative, that is, T large.

Remark 5.2. In the case where the phase change, for another material, is dissipative, we choose the
pseudopotential of dissipation as

8i ([βi ])=
c
2
[βi ]

2, i = 1, 2,
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where c is a positive constant. Thus, the equations of motion (5-8) give

L
T0
θ+1 ∈ ∂ I (β+1 )+ c[β1],

L
T0
θ+2 ∈ ∂ I (β+2 )+ c[β2],

and we have the equations

C[θ ] = 1
2(T− 2Lβ+),

L
T0
θ+ ∈ ∂ I (β+)+ cβ+.

The following result is easily proved, assuming (5-12) before collision.

Theorem 5.3. (1) If T≤−2Cθ−, then β+ = 0 and there is solid with θ+ < cT0/L.

(2) If T≥ 2(L −Cθ−+ cCT0/L), then β+ = 1 and there is liquid with θ+ ≥ cT0/L.

(3) If −2Cθ− <T< 2(L−Cθ−+ cCT0/L), then 0< β+ < 1 and there is a mixture of solid and liquid
with θ+ = cT0β

+/L.

When there is dissipation the collision has to be more violent to melt the solid balls. The phase
change occurs with temperature slightly above T0, as is the case for dissipative phase changes [Frémond
and Visintin 1985; Frémond 2001; 2005].

5.2. Collision of two pieces of ice at different temperatures. When two pieces of ice at different tem-
peratures collide, the dissipation due to the collision may be large enough to melt the warmest of them.
We look for conditions on the state quantities before the collision and on the dissipated work, such that
this phenomenon occurs. We expect that the temperatures before collision cannot be very cold and that
the dissipated work has to be large.

We assume that there is no dissipation with respect to [β1] and [β2], that is,

81([β1])=82([β2])= 0,

and thus the equations of microscopic motion are, from (5-10) and (5-11),

θ+1 ∈ ∂ I (β+1 ), θ+2 ∈ ∂ I (β+1 ). (5-16)

The two identical pieces of ice before collision satisfy β−1 = β
−

2 = 0, θ−1 ≤ 0, θ−2 ≤ 0. We look for
conditions such that ball 1 melts and ball 2 remains frozen:

β+1 = 1, β+2 = 0. (5-17)

Thus from (5-16), we have

θ+1 ≥ 0, θ+2 ≤ 0. (5-18)

The values of λ and C depend on the relative importances of the volumes and surface areas of the
pieces of ice. We study the two cases, when λ is either small or large with respect to C (see Remark
5.4).
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Suppose λ is small with respect to C/T0. Equations (3-1) and (3-12) give

P int D
(U++U−

2

)
= C1[θ1] + L[β1] +C2[θ2] + L[β2],(C2

T0
+
λ

2

)
[θ2] +

L
T0
[β2] −

(C1

T0
+
λ

2

)
[θ1] −

L
T0
[β1] = −λ(θ

−

2 − θ
−

1 ).

We suppose λ to be small with respect to Ci/T0, i = 1, 2 and we get

P int D
(U++U−

2

)
= C1[θ1] + L[β1] +C2[θ2] + L[β2],

C2

T0
[θ2] +

L
T0
[β2] −

C1

T0
[θ1] −

L
T0
[β1] = −λ(θ

−

2 − θ
−

1 ),

which gives the system

C1[θ1] =
1
2

(
P int D

(U++U−

2

)
− 2L[β1] + λT0(θ

−

2 − θ
−

1 )

)
,

C2[θ2] =
1
2

(
P int D

(U++U−

2

)
− 2L[β2] − λT0(θ

−

2 − θ
−

1 )

)
,

(5-19)

where the volume fractions β1 and β2 satisfy the equations of microscopic motion (5-16).
Equations (5-19) give with C1 = C2 = C , and (5-17)

C[θ1] =
1
2

(
T− 2L + λT0(θ

−

2 − θ
−

1 )
)
, C[θ2] =

1
2

(
T− λT0(θ

−

2 − θ
−

1 )
)
. (5-20)

By means of (5-20), conditions (5-18) are satisfied if and only if

(2C − λT0)θ
−

1 + λT0θ
−

2 +T− 2L ≥ 0, (5-21)

λT0θ
−

1 + (2C − λT0)θ
−

2 +T≤ 0, (5-22)

with θ−1 ≤ 0 and θ−2 ≤ 0. Because of our hypothesis on λ, we have

2C − λT0 > 0. (5-23)

• If T< 2L , inequalities (5-21) and (5-23) show that it is impossible to satisfy system (5-21), (5-22)
with θ−1 ≤ 0 and θ−2 ≤ 0. Thus, if the dissipation is small, it is impossible to melt one piece of ice.
Both remain frozen.

• If T ≥ 2L , it is possible to find temperatures (θ−1 , θ
−

2 ) satisfying the system (5-21), (5-22) with
θ−1 ≤ 0, θ−1 ≈ 0 (θ−1 = 0 if T = 2L), and θ−2 < θ−1 . Thus, if the dissipation is large, one piece of
ice melts, and the other one remains frozen. The temperature of the coldest piece of ice has to be
sufficiently cold.

Examples are given in Figures 1 and 2 for λ= 0 and λ= 100, T= 10L , with L = 3.33×105, C = 106,
and T0 = 273.
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Figure 1: The case λ = 0 and T = 10L with L = 3.33 × 105 , C = 106. The inequali-
ties (5.24), (5.25) have solutions if θ−1 is negative and satisfies θ−1 ≥ −(T − 2L)/2C, equality
on the blue line, and θ−2 ≤ −T /2C, equality on the green line. The point (θ−1 , θ−2 ) has to
belong to the set M
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Figure 2: The case λ = 1000 and T = 10L with L = 3.33 × 105 , C = 106. The inequali-
ties (5.24), (5.25) have solutions if point (θ−1 , θ−2 ) belongs to the set M which is defined by
the blue and green lines of (5.24), (5.25) and θ−1 ≤ 0 , θ−2 ≤ 0

Nov 2 2008 05:20:06 PST
Version 2 - Submitted to JoMMS

Figure 1. The case λ=0 and T=10L with L=3.33×105 and C=106. The inequalities
(5-21) and (5-22) have solutions if θ−1 is negative and satisfies θ−1 ≥ −(T− 2L)/2C ,
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Figure 2. The case λ = 1000 and T = 10L with L = 3.33× 105 and C = 106. The
inequalities (5-21) and (5-22) have solutions if point (θ−1 , θ

−

2 ) belongs to the set M
which is defined by the blue and green lines of (5-21), (5-22), and θ−1 ≤ 0, θ−2 ≤ 0.
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Now suppose instead that λ is not small with respect to C/T0. We have [β1] = 1 and [β2] = 0, and (5-4)
and (5-5) give

T= C[θ1] + L +C[θ2], (5-24)

C
[θ2]

T0
−C
[θ1]

T0
−

L
T0
=−λ

(
θ−2 − θ

−

1 +
[θ2]

2
−
[θ1]

2

)
. (5-25)

From (5-24), we get

[θ2] =
1
C

(
T−C[θ1] − L

)
; (5-26)

substituting (5-26) into (5-25), we obtain

θ+1 =
2C

2C + λT0
θ−1 +

λT0

2C + λT0
θ−2 +

T− L
2C
−

L
2C + λT0

,

θ+2 =
2C

2C + λT0
θ−2 +

λT0

2C + λT0
θ−1 +

T− L
2C
+

L
2C + λT0

.

(5-27)

Conditions (5-18) are satisfied if and only if

2C
2C + λT0

θ−1 +
λT0

2C + λT0
θ−2 +

T− L
2C
−

L
2C + λT0

≥ 0, (5-28)

2C
2C + λT0

θ−2 +
λT0

2C + λT0
θ−1 +

T− L
2C
+

L
2C + λT0

≤ 0. (5-29)

Since θ−1 ≤ 0 and θ−2 ≤ 0, to satisfy (5-28) a necessary condition is

T− L
2C

≥
L

2C + λT0
.

Thus the dissipation has to be large in order to melt one of the pieces of ice.

• If λ < 2C/T0, the system (5-28), (5-29) has solutions (θ−1 , θ
−

2 ), θ
−

1 , and θ−2 ≤ 0, if

T− L
2C

≥
L

2C − λT0
>

L
2C + λT0

;

in agreement with the case λ negligible; see the left halves of Figures 3 and 4. If λ is small, only
the mechanical effect warms the balls whereas the conduction has a negligible effect. We have
θ−2 ≤ θ

−

1 ≤ 0 and θ+2 ≤ 0 ≤ θ+1 . The warmest piece of ice melts in the collision and the coldest
remains frozen.

• If λ > 2C/T0, the system (5-28), (5-29) has solutions θ−1 and θ−2 ≤ 0 if

T− L
2C

≥−
L

2C − λT0
>

L
2C + λT0

,

see the right halves of Figures 3 and 4. If C is small, that is, if the heat capacity is negligible, it is
difficult for the system to store energy (the only possibility for storing energy is with a phase change).
Since we have assumed the system to be adiabatic, the heat has to remain in the system and very
large temperature variations occur: the effect of conduction is added to the mechanical effect and it
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Figure 3: Condition (5.31), curve (1), and condition (5.32), curve (2). In order to have
the ball number 1 unfrozen after collision while the ball number 2 remains frozen, the
temperatures θ−1 and θ−2 have to be in the hatched triangles

• If λ < 2C/T0, system (5.31), (5.32) has solutions (θ−1 , θ−2 ), θ−1 , θ−2 ≤ 0, if

T − L

2C
≥ L

2C − λT0
>

L

2C + λT0
;

in agreement with the case λ negligible, Figures 3(a) and 4(a). If λ is small,
only the mechanical effect warms the balls whereas the conduction has a neg-
ligible effect. We have

θ−2 ≤ θ−1 ≤ 0 and θ+
2 ≤ 0 ≤ θ+

1 .

The warmest piece of ice melts in the collision and the coldest remains frozen.

• If λ > 2C/T0, system (5.31), (5.32) has solutions θ−1 , θ−2 ≤ 0 if

T − L

2C
≥ − L

2C − λT0
>

L

2C + λT0
,

see Figures 3(b) and 4(b). If C is small, i.e., if the heat capacity is negligible, it
is difficult for the system to store energy (the only possibility to store energy is
with a phase change). Since we have assumed the system to be adiabatic, the
heat has to remain in the system and very large temperature variations occur:
the effect of conduction is added to the mechanical effect and it increases the
temperature of the coldest ball. Therefore, the coldest ball before collision
becomes the warmest and vice versa. We have

θ−1 ≤ θ−2 ≤ 0 and θ+
2 ≤ 0 ≤ θ+

1 .
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λ < 2C/T0 λ > 2C/T0

Figure 3. Condition (5-28), curve (1), and condition (5-29), curve (2). For ball 1 to be
unfrozen after collision while ball 2 remains frozen, the temperatures θ−1 and θ−2 have to
be in the hatched triangles.
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Figure 4: The curve y1 (λ) = L/ (2C − λT0) versus λ in blue, the curve y2 (λ) = −y1 (λ)
in red, and the curve y3 (λ) = L/ (2C + λT0) in green. The quantity (T − L)/2C has to be
in the blue domain M for the ball number 1 to melt. Thus the collision has to be violent
enough, i.e., T large enough for the ball number 1 to melt
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λ < 2C/T0 λ > 2C/T0

Figure 4. The curve y1(λ)= L/(2C − λT0) versus λ in blue, the curve y2(λ)=−y1(λ)

in red, and the curve y3(λ)= L/(2C + λT0) in green. The quantity (T− L)/2C has to
be in the blue domain M for ball number 1 to melt. Thus the collision has to be violent
enough, that is, T large enough, for ball number 1 to melt.

increases the temperature of the coldest ball. Therefore, the coldest ball before collision becomes
the warmest and vice versa. We have θ−1 ≤ θ

−

2 ≤ 0 and θ+2 ≤ 0≤ θ+1 . In the extreme situation where
λ =∞, formulae (5-27) show that θ+1 = θ

−

2 and θ+2 = θ
−

1 . When the thermal dissipation is very
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large the temperatures exchange. Let us note that the same result holds for the velocities when the
mechanical pseudopotential of dissipation,

8mech
(

D
(U++U−

2

)
, D
(U−

2

))
,

involves a quadratic potential

k
(

D
(U++U−

2

))2

;

see for instance [Frémond 2001] or [Frémond 2007, page 51]. When the mechanical dissipation
parameter k =∞, the velocities exchange, U+1 = U−2 , U+2 = U−1 , if the two balls have same mass,
see [Frémond 2001] or [Frémond 2007, page 53].

In the extreme situation where the heat capacity is zero, C = 0, the system cannot store energy
except by changing phase. The energy L which is needed to melt the piece of ice has to be equal
to the dissipated work T and the discontinuities of temperature are opposite due to (5-24) extended
by continuity.

• If λ= 2C/T0, then, from (5-25), we have( C
T0
+
λ
2

)
(θ+2 − θ

+

1 )=
L
T0
+

( C
T0
−
λ
2

)
(θ−2 − θ

−

1 )=
L
T0
;

this entails θ+2 > θ+1 , which forbids having θ+1 ≥ 0 ≥ θ+2 . In this situation, conduction and heat
storage have opposite effects and cancel each other.

Remark 5.4. The assumption λ > 2C/T0 is often not realistic because λ is proportional to the contact
surface of the two pieces of ice and C is proportional to the volume of the pieces of ice. To have
λ > 2C/T0, the contact surface has to be large compared to the volume — for instance, when the two
pieces of ice are thin sheets. But in this case the contact surface with the atmosphere is also large
in contradiction of the adiabatic assumption in the collision. Thus the assumption λ > 2C/T0 is not
consistent with the adiabatic collisions, that is, collisions without heat exchange with the exterior.

6. Does rain give black ice when falling on frozen ground?

6.1. An application of the previous results. We may consider as a simplifying approximation that the
ground behaves like a ball of frozen water. Thus we use the previous results and assume that λ is small
with respect to C/T0 and that there is no dissipation with respect to [β1] and [β2]:

81([β1])=82([β2])= 0.

A droplet of rain and the frozen ground before collision satisfy β−1 = 1, β−2 = 0, θ−1 ≥ 0 and θ−2 ≤ 0.
We look for conditions such that the droplet of rain freezes, becomes black ice, and the ground remains
frozen:

β+1 = 0, β+2 = 0. (6-1)

Thus from (5-16), we have
θ+1 ≤ 0, θ+2 ≤ 0. (6-2)
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We assume that the collision is adiabatic and, for consistency, that λ is small with respect to C/T0.
Equations (5-6) and (5-7), with C1 = C2 = C , and using (6-1), give

C[θ1] =
1
2

(
T+ 2L + λT0(θ

−

2 − θ
−

1 )
)
, C[θ2] =

1
2

(
T− λT0(θ

−

2 − θ
−

1 )
)
.

By means of (5-20), conditions (6-2) are satisfied if and only if

(2C − λT0)θ
−

1 + λT0θ
−

2 +T+ 2L ≤ 0, λT0θ
−

1 + (2C − λT0)θ
−

2 +T≤ 0, (6-3)

with θ−1 ≥ 0 and θ−2 ≤ 0. Because of the hypothesis 2C − λT0 > 0, it is always possible to satisfy
conditions (6-3) by having θ−2 negative enough, that is, by having the ground very cold. The maximum
value of θ−2 is given by θ+1 = 0. It is

θ−2 =−
T+ 2L
λT0

−
2C − λT0

λT0
θ−1 , or θ−2 =−

T+ 2L
λT0

−
2C
λT0

θ−1 ,

because λ is small with respect to C/T0. As may be expected, the maximum value of θ−2 is negative and
decreasing when the dissipated work T is increasing and when θ−1 is increasing [Caucci and Frémond
2007; Caucci 2006].

6.2. Another assumption: the ground is massive and its temperature remains constant. We assume the
ground temperature remains constant in the collision. We get this property if the heat impulse capacity
C2 is very large compared to C1. Thus we let C2 =∞ in formulas (5-6) and (5-7) and get the equations

C1[θ1] =
1
2

(
P int D

(U++U−

2

)
− 2L[β1] + λT0

(
θ−2 − θ

−

1 −
[θ1]

2

))
,

and θ+1 ∈ ∂ I (β+1 )— see (5-10) — assuming no dissipation with respect to [β1]. They give(
C1+

λT0

4

)
[θ1] + L[β1] =

1
2

(
T+ 2L + λT0(θ

−

2 − θ
−

1 )
)
,

and (
C1+

λT0

4

)
θ+1 + L∂ I ∗(θ+1 ) 3

(
C1+

λT0

4

)
θ−1 +

1
2

(
T+ 2L + λT0(θ

−

2 − θ
−

1 )
)
,

where I ∗(θ+1 )= pp(θ+1 ) is the dual function of I (pp(x) is the nonnegative part of x). Assuming λ is
small with respect to C/T0, we have

C1θ
+

1 + L∂ I ∗(θ+1 ) 3 C1θ
−

1 +
1
2

(
T+ 2L + λT0(θ

−

2 − θ
−

1 )
)
,

with the following solutions:

(1) If

C1θ
−

1 +
1
2

(
T+ 2L + λT0(θ

−

2 − θ
−

1 )
)
≤ 0, θ+1 ≤ 0, θ−2 ≤

(λT0− 2C1)

λT0
θ−1 −

(T+ 2L)
λT0

,

the droplet freezes. Its temperature is

θ+1 = θ
−

1 +
1

2C1

(
T+ 2L + λT0(θ

−

2 − θ
−

1 )
)
.



THERMAL EFFECTS OF COLLISIONS 243

(2) If 0≤ C1θ
−

1 +
1
2

(
T+ 2L + λT0(θ

−

2 − θ
−

1 )
)
≤ L , the droplet freezes partially at 0◦C :

θ+1 = 0.

(3) If L ≤ C1θ
−

1 +
1
2

(
T+ 2L + λT0(θ

−

2 − θ
−

1 )
)
, the droplet does not freeze. Its temperature becomes

θ+1 = θ
−

1 +
1

2C1

(
T+ λT0(θ

−

2 − θ
−

1 )
)
.

Note that the conditions for the droplet to freeze are similar under the two assumptions. The occurrence
of black ice on roads due to rain falling on deeply frozen ground is predicted by this theory.

6.3. A more realistic assumption: the temperature of the ground is not uniform after collision. Under
the two previous assumptions, the temperature of the ground is uniform after collision. It is clear that
there is a local increase of the temperature where the droplet hits the ground but the temperature remains
constant at some distance. Thus an interesting assumption is that the temperature of the ground is not
uniform after collision: the temperature discontinuity [θ2] becomes a function of x . This predictive
theory is given in [Frémond 2001]. It is better but it has the disadvantage that closed form solutions are
not available.

7. Conclusions

The thermomechanical theory of collisions involving phase change we have investigated is in agreement
with everyday experiments.

We considered the collision of two pieces of ice. When they have different temperatures and collide,
the dissipation due to the collision may be large enough to melt the warmest of them. We looked for con-
ditions on the state quantities before the collision and on the dissipated work such that this phenomenon
occurs. We showed that, if the dissipation is large, one piece of ice melts and the other remains frozen.
For this to happen, the temperature of the coldest piece of ice has to be sufficiently cold.

We also studied the problem of warm rain falling on frozen ground, asking whether the rain freezes
or the frozen ground thaws. We proved that the droplet of rain freezes if the ground is very cold. For this
to occur, the temperature of the ground has to be lower than a maximum temperature, which decreases
as the dissipated work and the temperature of the rain increase.
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FIELDS OF STORED ENERGY ASSOCIATED WITH LOCALIZED
NECKING OF STEEL

ANDRÉ CHRYSOCHOOS, BERTRAND WATTRISSE,
JEAN-MICHEL MURACCIOLE AND YVES EL KAÏM

This paper describes an experimental procedure for the simultaneous determination of heat sources and
mechanical energy involved locally during a heterogeneous tensile test. This procedure involves two
complementary imaging techniques: digital image correlation (DIC) and infrared thermography (IRT).
The first technique gives displacement fields from which strains are derived while the second provides
temperature fields with which the heat sources are estimated using a local form of the heat equation.
Moreover, a method based on integration of equilibrium equations under the plane stress assumption is
used to determine the stress distribution during the test. The distribution of the local deformation energy
developed by the material is then assessed using stress and strain-rate fields.

Tensile tests were performed on thin flat steel samples. The results revealed early and gradual devel-
opment of strain localization within the gauge part of the specimen. Energy balances were performed
inside and outside the necking zone based on the assumption that the thermoelastic part of the behaviour
remains linear and isotropic. Finally, indirect estimate of the stored energy led us to compute the time
course of the local Taylor–Quinney coefficient.

Introduction

The conversion of mechanical energy into heat has been investigated in a wide range of materials by
many researchers, including [Taylor and Quinney 1934; Schmidt et al. 1945; Chrysochoos and Martin
1989; Rittel 1999]. Using different experimental arrangements (calorimeter [Shenogin et al. 2002], ther-
mocouples [Zehnder et al. 1998], IR sensors [Guduru et al. 2001; Chrysochoos and Louche 2000]), these
studies gave similar results, showing that a variable amount of mechanical energy is converted into heat
during inelastic transformation. Such techniques generally provide a macroscopic estimate of the Taylor–
Quinney coefficient that links mechanical and dissipated energies. Here macroscopic means at the scale
of the sample gauge part. This coefficient plays a key role in the modelling of plasticity each time the
dissipated energy has to be introduced within a pure mechanical elastic-plastic framework. It has been
used to compute the plastic strain-induced heat without having to invoke a particular thermodynamic
framework [Batra and Chen 2001; Campagne et al. 2005; Rusinek et al. 2007]. Moreover, we stress that
this coefficient is nearly always regarded as a constant material parameter, independent of the loading
path and strain hardening history. In such particular cases, the stored energy ratio is then equal to
the ratio of the stored energy rate, as we will see hereafter. This latter ratio often appears in the heat
equation associated with anisothermal viscoplastic models developed to describe dynamic localization
mechanisms [Mercier and Molinari 1998; Rosakis et al. 2000]. Nevertheless, in the case of heterogeneous

Keywords: digitial image correlation, infrared thermography, dissipation, stored energy, plasticity, localization.
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loading (necking, shear bands, etc.), energy fields are then both representative of the material behaviour
combined with structure effects. Under such conditions, the overall Taylor–Quinney coefficient can no
longer be only representative of the material behaviour.

In this paper, we present a specific setup for local estimate of different terms of the energy balance
for quasistatic, heterogeneous tests. This setup combines two imaging techniques, that is, digital image
correlation (DIC) and infrared thermography (IRT). The experimental design enables us to estimate the
local distribution of deformation energy rate developed by the material and heat sources induced by
the loading. DIC techniques are now commonly used to measure displacement and strain fields on the
surface of thin specimens [Chu et al. 1985]. Besides, IRT camera performances have been considerably
improved with the advent of infrared focal plane array sensors (IRFPA). These new cameras provide
IR films with fine spatial resolution, low thermal noise, and reasonably high frame rates for quasistatic
mechanical tests.

In what follows, we first review the theoretical background used to define the energy balance. We then
describe the different devices involved in the setup and experimental procedure. In the third part, we
detail the data processing procedures and their validation. Finally, we present and discuss some results
obtained during straining of an interstitial-free steel (commercial grade: IF–Ti).

Energy balance and heat equation

To draw up the energy balance, we worked within the classical formalism of generalised standard mate-
rials [Halphen and Nguyen 1975] which are sometimes used to deal with material behaviours [Lemaitre
and Chaboche 1985], particularly in plasticity [Lubliner 1991]. In this framework, the thermodynamic
state of each volume element of the material is characterised by a finite set of variables. In the case of
plasticity, this set includes the absolute temperature T , a strain tensor denoted by ε, and a vector α whose
components characterize the microstructural state of the material. The chosen thermodynamic potential
associated with such a state variable set is the Helmholtz free energy ψ(T, ε, α).

The dissipation is a volume heat source associated with irreversible processes induced by deformation
mechanisms and heat diffusion. Its definition is classically derived from the local expression of the 2nd
principle of thermodynamics defining the irreversible entropy source. As usual, we suppose that the
intrinsic (mechanical) dissipation d1 and the thermal dissipation d2 are separately positive. With the
chosen set of state variables, d1 is defined by

d1 = σ : D− ρ
∂ψ

∂ε
: ε̇− ρ

∂ψ

∂α
· α̇ ≥ 0, (1)

where ρ is the mass density, σ is the Cauchy stress tensor, and D the Eulerian strain-rate tensor. The
superimposed dot represents the time derivative. Naturally, the equality d1 = 0 corresponds to mechani-
cally reversible processes. Note that the intrinsic dissipation d1 is the difference between the deformation
energy rate w•def, and the sum of the elastic w•e and stored w•s energy rates

w•def = σ : D, (2)

w•e +w
•

s = ρ
∂ψ

∂ε
:ε̇+ ρ

∂ψ

∂α
· α̇, (3)
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In Equations (2) and (3), the notation ()• means that the variation of () is path-dependent. These
different energies are therefore not state functions a priori. We define the corresponding energy variations
by

wx =

∫ t

t0
w•x dτ,

where x symbolizes the energy type (for example, deformation, elastic, stored) while t0 and t are re-
spectively the times of initial and current states. Similarly, the dissipated energy variation is defined
by

wd =

∫ t

t0
d1 dτ.

Temperature variations within the sample are governed by the heat equation. Combining the first and
second principles of thermodynamics, we derive its following local expression

ρCṪ + divq= d1+ re+w•tec+w•tmc, (4)

where C stands for the specific heat capacity at constant ε and α, while q is the heat influx vector.
Assuming a Fourier’s law of heat conduction (q =−k grad T , where k is the constant isotropic conduc-
tion coefficient), the left hand side of Equation (4) becomes a partial derivative operator applied to the
temperature field T .

Heat sources responsible for temperature variations within the specimen are gathered on the right hand
member of Equation (4). They correspond to the intrinsic dissipation d1, the external volume heat supply
re, and thermomechanical couplings w•tec and w•tmc. The term w•tec represents the famous thermoelastic
coupling (that is, Lord Kelvin’s term), and w•tmc represents all other possible thermomechanical couplings
associated with interactions between the temperature and microstructure. In the general case, the sum
w•tec+w

•
tmc reads

w•tec+w
•

tmc = ρT
∂2ψ

∂T ∂ε
: ε̇+ ρT

∂2ψ

∂T ∂α
· α̇.

In the following, we will assume that the thermoelastic part of the behaviour remains linear and
isotropic. We will also neglect all other thermomechanical couplings. This latter hypothesis is justified
by the fact that temperature variations remain relatively small, thus inducing no microstructure variation
(no self-induced annealing). We thus introduce w•h as the overall heat source defined by w•h = d1+w

•
tec

and verifying

ρC θ̇ − k1θ = w•h + re (5)

with θ being the local temperature difference T − T0, where T0 is the current room temperature.
In this setting, the stored energy ratio can then be defined by

Fw =
ws

win
=
wdef−we−wd

wdef−we
=

ws

ws+wd
.

The difference wdef−we represents the inelastic work win. In the case of plastic hardening at finite
strain, the elastic energy generally remains very low relative to the deformation energy so that Fw ≈
1−wd/wdef.
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As often supposed in the literature, the stored energy ratio is considered as a constant regardless of
the initial hardening state and the loading path (typically Fw = 0.1). In this particular case, the ratio of
the stored energy rate is also constant and equal to the stored energy ratio itself

Ḟw =
d
dt

( ws

win

)
=
winw

•
s −w

•

inws

w2
in

= 0⇒ Fw• =
w•s
w•in
= Fw. (6)

Conversely, if the stored energy ratio changes, it is no longer equal to the stored energy rate ratio.

Experimental procedure

The experimental tests involved performing, at room temperature, displacement-controlled tensile load-
ing at constant velocity (v0 = 250µm s−1). The following constant dimensions were allocated to the
gauge part of the specimen: the gauge length L0 and depth D0 were 50 and 0.3 mm, respectively. Con-
versely, the width W0(X) might depend on the longitudinal Lagrangian coordinate X to force, for exam-
ple, the development of the strain localization around a given cross-section. We chose W0 = 12.5 mm
for samples with constant W0. The depth was set at a particularly low measurement to ensure the plane
stress hypothesis and legitimate the hypothesis of uniform strain in the depth direction. A simultaneous
record of infrared and visible images was performed on each side of the sample surface L ×W during
tensile straining. Figure 1 illustrates the experimental set-up designed for this purpose. It involves a
MTS hydraulic testing machine (frame: 100 kN, load cell: 25 kN), a Cedip Jade III infrared camera and
a Camelia 8M high resolution CCD camera. The optical axis of both cameras was set perpendicularly
to the frame of the testing machine, and it remained fixed during the test.

The main characteristics of the two cameras are given in Table 1. The chemical composition of the
material tested is given in Table 2.

Each camera was controlled by a separate computer. A specific electronic device was designed to
synchronise the frame grabbing of the two cameras. The principle of this device is as follows. A fre-
quency generator is used to produce the trigger signal of the master camera. This frequency is divided
or multiplied by an integer factor to generate the trigger signal of the slave camera. Each time an image
acquisition is completed, the analogical signals provided by the machine sensors are digitised, and the

Figure 1. Experimental set-up.
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image size (pix) scale factor frame rate (Hz)
(µm pix−1)

IR: Cedip Jade III 320×240 524 25
CCD: Camelia 8M (binning: 4×4) 875×575 136 5

Table 1. Main camera characteristics.

time is given, on each acquisition computer, by a common clock having a 0.1 ms period. Using this
device, we estimated that the synchronisation error between the two cameras was less than 0.05 ms.

Data processing

This section briefly reviews the numerical processing principles developed to determine the different
energy fields. We focus particularly on the validation procedure improvements to check the data process-
ing.

Visible images. The surface of the specimen observed by the visible CCD camera is speckled with white
paint in order to obtain a random pattern defining the local optical signature of each material surface
element (MSE). A classical digital image correlation algorithm allowed us to determine the in-plane
components of the displacement field on a regular rectangular grid. The in-plane velocity and strain
components were derived from the displacement data by a numerical differentiation method based on a
local polynomial approximation of the displacement field [Wattrisse et al. 2001a]. The local time fitting
of displacement fields involves a 2nd order polynomial while the local space fitting is associated with
a coupled 1st order polynomial of the two in-plane coordinates. The choice of the approximation zone
AZ is very important in the differentiation process. The optimized AZ depends on the signal-to-noise
ratio and the amplitude of the sought derivatives. The image processing remains then relevant as long as
the localization zone is greater than AZ . The camera resolution led us to choose centred AZ spanning
around ±2.5 s by ±3.5 mm by ±3.5 mm. In such conditions, the incertitude on strain measurements was
estimated at 5× 10−4 [Wattrisse et al. 2001a].

Using the kinematical data obtained by the DIC algorithm, we constructed the local stress distribution,
assuming a quasistatic, plane stress, isochoric transformation. For each acquisition time t , corresponding
to an applied load F(t), the tensile component of the stress tensor σxx was assumed to be homogeneously
distributed over each cross-section S(X, t)=W (X, t)× D(X, t) of the specimen

σxx(X, t)=
F(t)

S0(X) · exp(−εxx(X, t))
(7)

C Mn P S Si Al N Ti

% (w) 0.003 0.15 0.007 0.007 0.007 0.02 0.003 0.06

Table 2. Chemical composition of the tested steel [Béranger et al. 1994].
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where ε henceforth represents the Hencky strain, derived from displacement fields after a standard polar
decomposition of the transformation gradient tensor. The independence of εxx from the Y coordinate (that
is, the width direction) was confirmed by the experimental observations while the independence from
the Z coordinate (that is, the depth direction) was legitimated by the small sample thickness. The two
other stress components (shear: σxy and contraction: σyy) were computed by integrating the momentum
equations [Wattrisse et al. 2001b]

σxy(X, Y, t)=−
∂σxx

(
x(X, Y, t), t

)
∂x

y(X, Y, t),

σyy(X, Y, t)=
∂2σxx

(
x(X, Y, t), t

)
∂x2 ·

(
y(X, Y, t)2

2
−

W 2
0 (X) exp(−εxx(X, t))

8

)
.

The deformation energy locally developed by the material w•def (X, Y, t) was then estimated using
Equation (2)

w•def = σxx Dxx + 2σxy Dxy + σyy Dyy .

Thermal images. The infrared camera records the thermal radiations of the observed scene. Using the
pixel calibration protocol described in [Honorat et al. 2005], we deduced the temperature variations of the
specimen induced by the mechanical loading. To filter thermal data, local least-squares approximation of
temperature fields was performed using the same set of polynomials as the one already used for visible
images. In standard conditions, we estimated that the peak-to-peak thermal noise was about 200 mK
(that is, before data filtering) and the range of the thermal noise dropped to 20 mK for standard filtering
parameters. Moreover, the order of magnitude of the spatial resolution (in terms of pixel size) was about
0.4 mm and the temporal resolution was considered to be equal to the 0.04 s.

By integrating the heat Equation (4) over the depth of the sample [Chrysochoos and Louche 2000],
and defining the mean thermal disequilibrium over the thickness between the sample and its surroundings
by 2= θ − θ ref, we obtained the following 2D differential equation:

ρC2̇− k
(
∂22

∂x2 +
∂22

∂y2

)
+ ρC

2

τ 2D
th
= w•h. (8)

The external heat supply re defined in Equation (4) is here taken into account by monitoring the
uniform temperature variations θ ref

= T ref
−T ref

0 of an unloaded reference specimen of the same geometry
placed near the specimen in the field of view of the IR camera

re = ρC θ̇ ref
+
θ ref

τ 2D
th
.

The parameter τ 2D
th represents a time constant characterising heat losses by convection and radiation

between the sample surfaces and the surroundings, and 2̇= ∂2
∂t +v ·grad2 is the particular time derivative

of 2, v representing the velocity vector.
Table 3 presents the different thermophysical parameters used in the heat source computations.
An overall estimate of the incertitude on heat sources should take into account every possible error

sources associated with: (i) temperature accuracy, (ii) knowledge of the thermophysical parameters,
(iii) relevance of the thermal modelling (heat exchanges, source distribution), and its identification, (iv)
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Figure 2. Calibration target: visible image (left); IR image (right).

mapping between kinematic and thermal data, (v) image processing robustness (derivation of discrete
noisy temperature fields). Limiting the error analysis to items (i) and (v), we estimated the incertitude by
computing the heat sources distribution from set of IR images of a nonloaded specimen. The parasitic
sources derived from the image processing then gave an order of magnitude of the relative incertitude on
the heat source fields. We found about a mean value of parasitic heat source of about 1.8×10−5 W mm−3

for a standard deviation of 2.7× 10−5 W mm−3.
In the case of localized flow, the time derivative should take the convective term v · grad2 induced by

the material flow into account. Once more, in accordance with the plane stress assumption, the smallness
of the sample thickness and the high thermal diffusivity of the tested material, the depth-wise averaged
temperatures were assumed to remain close to the surface temperatures. This enabled us to compute the
convective term using the kinematic and thermal data.

Reference speckle and infrared images were mapped using a calibration target (see Figure 2). Com-
paring the visible and infrared images of the target, we determined the rigid body movements and the
scale factor ratios between the two cameras.

For each acquisition time, the thermal data given by the IR camera (measured in the current, deformed
configuration) were linearly interpolated spatiotemporally using the positions of the deformed configura-
tion given by the DIC computation. This operation allowed us to track material particles associated with
the DIC mesh, and it thus enabled us to compute temperature variations in the Lagrangian configuration.
Figure 3 illustrates the distribution of temperature variations after 50 s of loading. Figure 3 (left) gives

ρ (kg m−3) C (J kg−1 K−1) k (W m−1 K−1) λ 106(K−1) T ref
0 (K) τ 2D

th (s)

7800 480 60 12.5 293 32

Table 3. Thermophysical parameters.
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Figure 3. Thermal images represented in the current configuration (O, x, y) (left) and
in the reference configuration (O, X, Y ) (right).

the temperature distribution in the current (Eulerian) configuration, while Figure 3 (right) shows the
temperature distribution brought back in the reference (Lagrangian) configuration. Both figures are
associated with a material zone, initially of 6 mm width, centred on the gauge part of the specimen.

To illustrate the temperature patterns throughout the test, we plotted, in a single diagram, the time
course of the temperature longitudinal profile captured in the middle of the sample width (y = Y =
0 mm). Figure 4 represents variations in the profile throughout the test, in the Eulerian configuration
(θ(x, y = 0, t), Figure 4, left) and in the Lagrangian configuration (θ(X, Y = 0, t), Figure 4, right).
In these figures, the horizontal axis represents the time while the vertical axis represents the sample
longitudinal axis in the current configuration (x in Figure 4 (left)) or in the initial configuration (X in
Figure 4 (right)). A conventional stress versus time curve was also superimposed in order to link the
local thermal data to the overall mechanical loading. The paths of three MSE (named A, B and C) were
plotted to illustrate the material flows. Element A is quite specific as it is the fracture point. Naturally,
as material particles remain fixed in the Lagrangian configuration, their paths are simple horizontal lines
in Figure 4 (right).

We can observe that the level curves in Figure 4 (left) appear to be noisier than those of Figure 4
(right). This is simply due to the fact that the Eulerian representation was here constructed without any
temperature filtering (crude data) unlike the Lagrangian one.

The temperature time and spatial partial derivatives were then computed using a local polynomial
fitting technique [Moreau et al. 2004]. Naturally, the spatial derivation was performed with respect to
the current deformed state. In the Lagrangian configuration, the particular derivative of the temperature
is equal to the partial time derivative 2̇= ∂2/∂t(X, Y = 0, t) and can thus be easily computed. Figure 5
(top left) gives the particular time derivative of the temperature during the test, while Figure 5 (top right)
shows changes in the convective term v (x, y = 0, t) ·grad2(x, y = 0, t). This latter term can here reach
up to 50% of the particular derivative and thus cannot be neglected in the time derivation. To more easily
understand the particular distribution of the convective terms during strain localization, the longitudinal
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Figure 4. Temperature profile variations during a tensile test performed on a IF–Ti steel
represented (δθ between two consecutive level curves: 0.66 K). The deformed configu-
ration (O, x, t) (left); and the reference configuration (O, X, t) (right).

thermal gradients ∂2/∂x(X, Y = 0, t = 80) and the longitudinal velocity profile vx(X, Y = 0, t = 80)
were plotted in Figure 5 (bottom) as functions of the Lagrangian coordinate X . The strain localization
zone is characterized by a high strain rate in the necking region and inversion of the thermal gradient
induced by the combined effect of the concentration of heat sources and heat diffusion.

Data processing validation

DIC and IRT image processing algorithms have been widely presented and checked in previous works
[Wattrisse et al. 2001a; Chrysochoos and Louche 2000]. In what follows, we tested the reliability of
the energy balance construction by comparing the overall heat sources w•h with the mechanical energy
rate w•def developed by the material. Indeed, as the elastic deformation energy and the heat induced by
thermoelastic coupling remain small in plasticity, the plastic work and dissipated energy must be of the
same order of magnitude.

Hereafter, the validation mainly deals with the local deformation energy. As it is experimentally
impossible to impose a heterogeneous distribution of mechanical energy on a structure, we chose to check
the image processing through numerical tests. A displacement-controlled tensile test was simulated using
a finite element code (Cast3M) and a Prager elastoplastic model with linear kinematic hardening. We per-
formed a three-dimensional computation in order to account for the triaxiality effect in the development
of the neck. Furthermore, to obtain localized stress and strain patterns consistent with the development
of necking, we used an initial geometry corresponding to an already necked specimen. To facilitate the
three-dimensional FE computation (no need of remeshing due to mesh distortion), we chose to simulate
the straining on a thicker specimen of about 2 mm (to be compared with the 0.3 mm of the real specimens).
We were thus able to reproduce localized flow using a simple and thus easily identifiable homogeneous
model. Figure 6 shows the initial geometry of the specimen used in the computation, measured by a
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Figure 5. Time derivation of the temperature field: particular derivative (0.06 K s−1) be-
tween two level curves (top left); convective term (0.04 K s−1) between two level curves
(top right); and Ox profiles of the longitudinal thermal gradient and velocity at t = 80 s
(bottom).

3-axis measurement machine. It clearly highlights the presence of the neck in the middle of the sample
(X, Y )= (0, 0).

The material properties used in the FE computation are given in Table 4. The upper side of the sample
was fixed and a vertical displacement was imposed on its lower side. We deduced the mechanical energy
rate distribution w•def (X, Y, Z , t) from the stress and strain-rate patterns given by the computation. By
averaging this quantity over the specimen depth, we obtained the time patterns of the 2D distribution
of the mechanical energy rate w•def(X, Y, t) = 1/D0

∫ D0/2
−D0/2

w•def(X, Y, Z , t)d Z . We also extracted the
in-plane components of the displacement vector of points located on the sample surface to analyze.
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Figure 6. Initial geometry of the specimen used in the finite element computation.

The numerical displacement fields represented the kinematic data obtained by DIC. They were used to
compute the in-plane strain-rate D(X, Y, t) and the stress tensors σ(X, Y, t) with the data processing
described in the previous section.

In Figure 7, we compared the distribution of w•def given by the finite element simulations with those
associated with the depthwise-averaged tensor product σ : D. Figure 8 shows the longitudinal profile
of the w•def and σ : D integrated over slides of equivalent length (1X = 0.827 mm) D0 × W0(X)×
1X of the specimen. As expected, the mechanical energy was localized in the neck. Even in this
highly heterogeneous triaxial situation, we obtained a satisfactory correlation on the distribution, and
quantitatively good estimates of the mechanical energy rate amplitudes.

Experimental results

DIC analysis reveals variations in various kinematical data such as the Eulerian strain-rate tensor D, and
the acceleration vector γ . Figure 9 (left) shows the spatiotemporal diagram of the strain-rate component
Dxx(X, Y = 0, t), and Figure 9 (right) illustrates variations in the axial components of the acceleration
vector γX (X, Y = 0, t). All the results presented here correspond to the same displacement-controlled
test, with a conventional strain-rate ε̇c of about of 5× 10−3 s−1, performed on IF–Ti steel.

At the beginning of the test, Dxx was lower than ε̇c throughout the test section of the specimen
because of the finite elastic stiffness of the testing machine frame. The early and steady narrowing
of the level curves indicates that the necking region (located around point A) gradually concentrates
before the maximum load is reached. This also means that the gauge part of the sample is no longer
uniformly strained (and stressed), thus complicating extraction of the material response and consequently
its modelling and identification.

Figure 9 (right) shows that the acceleration amplitude is negligible compared with the gravity acceler-
ation, which is classically ignored in the case of quasistatic tensile tests. This experimental result and the

Young modulus E (MPa) Poisson ratio ν Yield stress σ0 (MPa) Hardening modulus H (MPa)

210000 0.3 315 5200

Table 4. Material properties used for the finite element computation.
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Figure 7. Distribution of the deformation energy rate given by the finite element code
(left) and computed as σ : D (right).

sample geometry (thin specimen) confirms the hypotheses used in the stress calculation (see section on
Data processing). At the beginning of the test, uniform acceleration profiles of “significant” level (that
is, 10−5 m s−2) can be observed. They are induced by a combination of the mechanical gaps and finite
stiffness of the testing machine and the time fitting of displacement data. As it was already shown in a

Figure 8. Longitudinal profiles of the deformation energy rate received by equally-
spaced, 0.827 mm width, slices of the sample derived from kinematical data with the
equilibrium equations (computed as σ : D) and directly computed within the FE code.
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Figure 9. Spatiotemporal variation in Dxx(X, 0, t), 10−3 s−1 between two level curves
(left) and γX (X, 0, t), 0.002 mm s−2 between two level curves (right). Different profiles
of gx acceleration at t = 40, 70, 80 s are also shown (bottom).

previous paper [Wattrisse et al. 2001b], a steady concentration of level curves of positive and negative
acceleration, distributed on both sides of the necking zones, can be clearly observed. The section where
the fracture will take place (that is, MSE A) is then characterized by zero acceleration. This cross-section
can be easily predetermined on the basis of Figure 9 (bottom) where acceleration profiles captured at
time t = 40 s, 70 s, and 80 s intersect in a given cross-section. It seems like the specimen knew where
the crack would take place a long time before the crack occurred. Moreover, the odd distribution of
acceleration profiles with respect to MSE A is consistent with a symmetric strain distribution centred on
the neck.

The heterogeneity of the specimen response can also be clearly observed in Figure 10, illustrating
variations in the longitudinal distribution of tensile stress throughout the test.



258 A. CHRYSOCHOOS, B. WATTRISSE, J.-M. MURACCIOLE AND Y. EL KAÏM

Figure 10. Mechanical response. Time duration of σxx(X, 0, t), 25 MPa between two
level curves (left); stress-strain diagrams of the three MSE A, B and C with the conven-
tional stress-strain response of the specimen (right).

As expected, the stress was rather homogeneous in the sample gauge part at the beginning of the test.
A stress concentration appeared in the necking zone as localization developed. Combining the local stress
and strain measurements, we plotted the local stress-strain correspondence in the MSE, denoted A, B and
C (Figure 10, right). All the curves describe a unique path at the beginning of hardening. Nevertheless, as
the imposed macroscopic strain εC increased, the stress amplitudes at A, B and C rapidly diverged. Once
the structure started to soften, σxx decreased in sections in which the strain-rate vanished (B and C), while
it continued to increase in the section of the current necking zone. It thus seems that softening of the
sample, translated by a nonmonotone load-elongation curve, was induced by heterogeneous hardening
accompanied by elastic unloading in cross-sections outside the localization zone.

Figure 11 (left) presents the spatiotemporal distribution of the deformation energy rate during strain
hardening. The data processing was stopped before the rapid growth of localized necking in order to
consider relatively low temperature, stress and strain-rate gradients. In the late stages of localization,
the spatial resolution of the method was not sufficient to catch the high thermal and high kinematical
gradients. Investigations require then to change the scale of observation or the data processing parame-
ters. The gradual narrowing of level curves observed in Figure 11 (left) again highlights the progressive
development of localization, but now in terms of deformation energy.

The different terms on the left-hand side of Equation (8) were successively calculated to estimate the
overall heat source. Figure 11 (right) shows heat source variations along the longitudinal axis of the sam-
ple. Again, the contour plot revealed progressive narrowing of the level curves. We obviously attributed
the concentration of heat sources to the development of dissipative mechanisms due to localization of
hardening and damage.

The intrinsic dissipation was deduced from Equation (8). For simplicity, we assumed a linear, isotropic
thermoelastic behavior. The quantity w•tec was determined using the computed stress data and following
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Figure 11. Spatiotemporal variations in energy rates: w•def(X, 0, t) (left); w•h(X, 0, t) (right).

the approximated definition

w•tec ≈−λT0tr(σ̇ ), (9)

where λ stands for the linear thermal dilatation coefficient. The validity of this approximation is mainly
due to the smallness of λ. In previous papers we already underlined that Equation (9) holds true as long
as

9Kλ2

ρC
T ≈

9Kλ2

ρC
T0� 1,

where K is the bulk elastic modulus.

Figure 12. Spatiotemporal variations in d1(X, 0, t) (left); w•s (X, 0, t) (right).
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During elastic loading and in the early stages of plasticity, the intrinsic dissipation was very small (see
Figure 12, left), and then increased with hardening. The same trends could be observed in the d1 and w•h
patterns.

According to Equations (1)–(3), the stored energy rate was then estimated by the relation

w•s = w
•

def− d1−w
•

e .

The local evaluation of stored energy rate obtained via Equation (6) must be considered with caution
owing to the successive approximations. Nevertheless, we decided to show a detailed picture of the
stored energy rate in Figure 12 (right). The distribution appears to be heterogeneous and concentrated in
the vicinity of the necking region.

The energy distributions (wdef(X, Y, t), wd(X, Y, t), ws(X, Y, t), . . . ) were computed by integrating
the corresponding energy rates over time. Figure 13 (left) shows variations in the different energies
involved in the energy balance at MSE A, B and C for the same macroscopic applied load. These energies
are plotted with respect to the local strain reached at each point. The test heterogeneity is noted by the
fact that the curves corresponding to the three points are not identical: the trends are fairly similar, but the
energy levels reached are not the same (they increase as they get close to the localization zone). Note that
we did not observe significant decrease of the stored energy for large strain, particularly in the necking
zone. We have to mention that this last result then differs from findings recently published by Oliferuk
and Maj [2007] who observed strong decreases of the (overall) stored energy at the maximum load
defining the famous Considère instability point. It is worth noting that the method developed to estimate
the dissipated energy used an electrical analogy, these authors tuning in Joule’s effects to determine the
dissipated heat, the adjustment of the electrical power being controlled by the thermal response.

Figure 13 (right) shows variations in the Taylor–Quinney stored energy ratio Fw with the local strain
reached at MSE A, B and C. We observed negative values of the stored energy at the beginning of
strain hardening induced by an underestimate of the thermoelastic source intensity. This poor estimate
was associated with disputable values of standard thermoelastic constants extracted from the literature.

Figure 13. Energy balance at MSE A, B and C: variations in the stored ws, dissipated
wd and inelastic win energies (left); local Taylor–Quinney ratio Fw (right).
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This effect on the stored energy ratio is here naturally amplified by the computation of a ratio involving
two small noisy amounts of energy. Once the anelastic energy becomes significant, the Fw variations
are fairly similar from one point to another: rapid increase during the first stages of hardening, until a
maximum is reached (Fw ≈ 0.25), followed by a small decrease (Fw ≈ 0.2). Further tests on different
steel grades are under way to confirm these trends. Contrary to most literature results, in this study the
Taylor–Quinney coefficient distributions were determined on relatively small volume elements (typically
around 1 mm3). The main advantage is to reduce the effects of localization on the energy balance. In
return, the signal–to–noise-ratios are lower, so well controlled data processing techniques are required.

Conclusions

In conclusion, we designed a set-up that combined DIC with IRT. Many technical difficulties were
overcome and the first results presented in this paper are encouraging. Both imaging techniques gave
similar spatial distributions and temporal patterns concerning heat sources and mechanical energy rates
throughout the test (especially during strain localization). The capabilities of the imaging techniques
allowed us to check the local quasistatic character of strain localization. Despite the low acceleration
intensities, the kinematical image processing showed that the cross-section where the crack initiated was
early characterized during hardening by zero acceleration, dividing the gauge part of the sample into
two parts where the accelerations were positive and negative, respectively. The combination of thermal
and kinematical data illustrated that heat involved by matter convection could represent up to more than
50% of the overall heat sources. This underlined the necessity of combining DIC with IRT as soon as
localization occurs.

However, several metrology problems remain. The next stage is to increase the signal-to-noise ratios of
both cameras to obtain more reliable quantitative results. Moreover, the data processing will be improved
in order to better account for the last localization stages. The fine knowledge of the material parameters
involved in the heat conduction equation, and their possible variations with the material state, are critical
for the heat source computation. Collaborations are under way with several research teams, within the
framework of the French National Research Agency program, to better characterize the influence of
hardening and damage on the thermophysical properties of materials.

Local determination of dissipated and stored energies is essential to test the reliability of the constitu-
tive equations proposed in thermomechanical formalism of plasticity and damage. This could give rise to
a method for separating hardening from damage, inasmuch as the latter is purely dissipative, unlike the
first one. This should be performed on elastoplastic cohesive zone models used to numerically manage
fracture in heterogeneous materials.
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PREDICTION OF DRYING SHRINKAGE BEYOND THE PORE
ISODEFORMATION ASSUMPTION

OLIVIER P. COUSSY AND SÉBASTIEN BRISARD

The paper aims at assessing how, for a porous material whose pore size distribution is experimentally
known, the variation in pore deformation with pore size might affect predictions of drying shrinkage.
Unsaturated poroelasticity is first revisited in a general macroscopic thermodynamic framework irrespec-
tive of any morphology of the porous space. Saturation is shown to be a state function of capillary
pressure governing the change in the solid-fluid interface energy; it can be experimentally obtained from
a knowledge of pore size distribution only. Unsaturated poroelastic properties are then determined under
three homogenization schemes: the standard Mori–Tanaka scheme, the self-consistent scheme, and the
differential homogenization scheme extended to unsaturated conditions. Except for the Mori–Tanaka
scheme, the function weighting the fluid pore pressure in the poroelastic constitutive equations is found
to depart from the pore volume fraction the liquid occupies. As a result the pores do not deform uniformly.
This departure roughly accounts for the difference in deformation between pores of different sizes and
subjected to the same pressure, and it is found to significantly affect predictions of drying shrinkage, in
particular for cement paste.

Drying shrinkage of water-infiltrated materials is relevant to many kinds of materials and disciplines:
cement-based materials in civil engineering [Baroghel-Bouny et al. 1999], woods in the building industry
[Santos 2000], plants in botany [Kozlowski and Pallardy 2002], soils in soil science [Chertkov 2002],
gels in physical chemistry [Smith et al. 1995], vegetables in foods engineering [Ratti 1994], tissues in
biomechanics [Gusnard and Kirschner 1977], etc. The mechanism of drying shrinkage is well known.
When a porous material is subjected to an outer relative humidity lower than its initial inner relative
humidity, the vapour thermodynamic imbalance forces the porous material to exchange water vapour
with the outer atmosphere, so that the outer relative humidity progressively takes hold within the material.
In turn liquid water simultaneously evaporates in order to maintain the vapour-liquid equilibrium. This
causes the decrease of the degree of liquid saturation. The shrinkage of the porous material finally results
from the lowering in liquid pressure induced by the desaturation process at the gas-liquid water interface.
While the kinetics of drying is governed by transport phenomena [Mainguy et al. 2001], asymptotic
drying shrinkage is governed by the outer relative humidity only, since, asymptotically, the value of the
air pressure tends toward the atmospheric pressure.

The macroscopic modeling of drying shrinkage has been addressed by many authors; see [Bazant
and Wittmann 1982; Coussy et al. 1998], for example. In the last decade the development of micro-
poromechanics [Dormieux et al. 2006a] has provided new tools to assess the influence of microstructure

Keywords: drying, unsaturated, poroelasticity, homogenization scheme, pore size distribution, homogenization, drying
shrinkage.
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upon drying shrinkage [Chateau and Dormieux 2002], and in particular the influence of pore shape and
geometry changes [Chateau et al. 2003].

In most approaches to the mechanical behaviour of unsaturated porous materials, such as geomaterials
[Lewis and Schrefler 1998; Hutter et al. 1999], and to the subsequent prediction of their drying shrinkage,
the pore volume fraction occupied by a fluid is generally taken as the weighting factor for the fluid
pore pressure in the constitutive equations. This approach results from the assumption that all pores
(irrespective of their size) undergo the same deformation when subjected to the same pressure. Owing
to their disparity in size and shape, this assumption is questionable.

The main goal of this paper is to draw attention to how the difference in deformation undergone by
pores can quantitatively be taken into account in predicting drying shrinkage for a material whose pore
size distribution is experimentally known. In Section 1 the poroelasticity of unsaturated porous solids is
considered within a general macroscopic thermodynamic framework, irrespective of the morphology of
the porous space. Saturation is shown to be a state function of the capillary pressure governing the change
in the solid-fluid interface energy and can be determined from a knowledge of the pore size distribution
only. In Section 2, following the methods developed in [Dormieux et al. 2006a], we determine the unsat-
urated poroelastic properties with the help of three homogenization schemes: the standard Mori–Tanaka
scheme, the self-consistent scheme and the differential homogenization scheme extended to unsaturated
conditions. Except for the Mori–Tanaka scheme, the function weigthing the fluid pore pressure in the
poroelastic constitutive equations departs from the pore volume fraction that the liquid occupies. Using
these homogenization schemes and adopting the experimental pore size distribution appropriate for a typ-
ical cement paste, our analysis reveals (Section 3) that this departure may significantly affect predictions
of drying shrinkage and ultimately of failure for a water-infiltrated material subjected to drying.

1. Unsaturated poroelasticity

Capillary pressure curve. Consider an element of a porous solid of overall volume V , with initial
porosity φ0, so that its porous volume is φ0V . For the time being, we assume that the porous solid
is undeformable, so that its porosity remains constant. The porous solid, initially fully saturated by a
wetting liquid denoted by subscript L, is progressively invaded by a nonwetting gas denoted by subscript
G. At a given time the fractions of the porous volume φ0V occupied by the liquid and by the gas are SL

and SG. We write

φL = φ0SL, φG = φ0SG, SL+ SG = 1, (1-1)

where φJ is the partial porosity related to phase J (= L or G).
Assuming no hysteresis, the first and second laws of thermodynamics combine to give the isothermal

incremental free energy balance

µL dn L+µG dn G− dA = 0 (1-2)

[Coussy 2004], where µJ and n J are respectively the chemical potential and the number of moles per
unit of volume V relative to phase J, and A is the Helmholtz free energy of the whole matter contained
in the volume V . The standard isothermal Gibbs–Duhem equality applied to phase J reads

φJ dpJ− n J dµJ = 0,
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where pJ is the pressure related to phase J. Let F denote the Helmholtz free energy of the system once
the bulk phases L and G are removed. Owing to the additive character of energy we can write

F = A− (µLn L+µGn G−φL pL−φG pG) . (1-3)

The three last equations combine to give

pL dφL+ pG dφG− dF = 0. (1-4)

Since in (1-3) the bulk liquid and gas phases have been removed and the porous solid is assumed to be
undeformable, the free energy F reduces to the surface energy of the interfaces between the phases and
the solid matrix. Denoting by U the surface energy of these interfaces per unit volume, we write

F = φ0U. (1-5)

Substituting (1-1) and (1-5) in (1-4) we get

pG− pL =−
dU
dSL

, (1-6)

which shows that the liquid saturation SL is a state function of the capillary pressure pG− pL. We write

SL =$ (pG− pL) , (1-7)

where $ describes the so-called capillary curve. The macroscopic capillary curve can receive a simple
microscopic interpretation at the pore scale. At that scale the mechanical equilibrium of the current
gas-liquid interface is governed by the Laplace law according to

pG− pL =
2γGL

r
, (1-8)

where γLG is the energy per unit of surface of the gas-liquid interface and r is the mean curvature radius.
As illustrated in Figure 1 for a cement paste, standard porosimetry provides the cumulated porous volume
fraction S (r) of pores having a pore entry radius smaller than r . For a given value of the capillary pressure
pG− pL, pores having an entry radius smaller than the one given by (1-8) will still remain filled with
liquid, while pores with larger entry radius will be invaded by the gas. As a consequence we write

SL = S(r). (1-9)

Combining (1-8) and (1-9) we get

SL = S
( 2γGL

pG− pL

)
, (1-10)

which provides an explicit determination of the capillary curve.

Unsaturated state equations of poroelasticity. Now consider a deformable porous solid and denote by
σi j and εi j the stress and strain components. The free energy balance (1-4) is extended to

σi j dεi j + pL dφL+ pG dφG− dF = 0, (1-11)
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Figure 1. Cumulative pore volume fraction 1− S(r) of pores having a pore entry radius
greater than r for a typical cement paste (extracted from [Huang and Feldman 1985]).

where σi j dεi j accounts for the strain work. Since the porous space now deforms, instead of (1-1) we
write

φL = φ0SL+ϕL, φG = φ0SG+ϕG, SL+ SG = 1, (1-12)

where ϕJ accounts for the change in the partial porosity φJ due to deformation only. In contrast to the
standard Eulerian configuration referring to the current deformed configuration, as recently introduced
in [Coussy 2007], the saturation SJ can be regarded as a Lagrangian saturation related to phase J, since
it refers to the undeformable configuration. More precisely, starting from full liquid saturation, φ0SLV
is the volume in the undeformable configuration whose solid walls will still be wetted in the current
deformed configuration [Coussy 2007]. This is sketched in Figure 2 for two distinct current deformed
configurations, the undeformed reference configuration pertaining to liquid saturated conditions at zero
pressure pL.

With regard to the undeformable porous solid, the free energy F of the deformable system obtained by
removing the bulk phases L and G now splits into the surface energy φ0U associated with the interfaces,
and the elastic energy 9S stored in the deformable solid matrix. Accordingly expression (1-5) transforms
into

F = φ0U +9S. (1-13)

Substitution of (1-12) and (1-13) into (1-11) yields

σi j dεi j + pL dϕL+ pG dϕG− d9S−φ0
(
(pG− pL) dSL+ dU

)
= 0. (1-14)
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Figure 2. Unlike the case of disconnected porous networks, for a porous solid formed
of connected pores embedded in a solid matrix the Lagrangian saturation SJ does not
remain constant, since either fluid, the gas G or the liquid L, can invade the porous solid
or recede from it.

When the porous solid is deformable, in contrast to the previous section, even when SL is held constant,
U can change because it is affected by the deformation of the solid-fluid interface. The change in U is
then due to the work produced by the pressure difference exerted on the solid-fluid interface and made
possible by the solid-fluid surface energy γSG or γSL. However, because of the low values of γSG and γSL

compared to the elastic energy, as the liquid saturation changes during the process of invasion by the gas,
the change in U is mainly due to the creation of new interfaces between the phases. According to the
analysis of the previous section, U can then still be considered as a function of the liquid saturation SL

only. Conversely, if we assume infinitesimal elastic deformations of the porous solid, the elastic energy
9S will be slightly affected by the variation dSL of the liquid saturation. As a result, (1-14) allows us to
conclude that (1-5) will still hold to a good approximation, while the free energy balance related to the
deformable porous solid obtained by removing the interfaces is

σi j dεi j + pL dϕL+ pG dϕG− d9S = 0, (1-15)

from which we derive

σi j =
∂9S

∂εi j
, pL =

∂9S

∂ϕL
, pG =

∂9S

∂ϕG
. (1-16)
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Letting WS = σi jεi j + ϕL pL + ϕG pG − 9S be the Legendre transform of 9S with regard to ϕJ we
alternatively get

εi j =
∂WS

∂σi j
, ϕL =

∂WS

∂pL
, ϕG =

∂WS

∂pG
. (1-17)

In the context of both infinitesimal deformation, and restricting to linear isotropic poroelasticity, the
expression of the elastic energy of the solid matrix, WS =9S, is

WS =
1

2K
(σ + bL pL+ bG pG)

2
+

1
2NLL

p2
L+

1
NLG

pL pG+
1

2NGG
p2

G+
1

4G
si j s jk, (1-18)

where σ = σkk/3 and si j represent the mean stress and the components of the deviatoric stress tensor.
Letting ε = εkk be the volumetric strain and substituting (1-18) in (1-17) we finally get

σ = K ε− bL pL− bG pG, si j = 2Gei j , (1-19)

ϕL = bLε+ pL/NLL+ pG/NLG, (1-20)

ϕG = bGε+ pL/NLG+ pG/NGG. (1-21)

K and G are therefore identified as the bulk modulus and the shear modulus of the dry porous solid with
no internal pore pressures.

When pL = pG we must retrieve the saturated case so that we have [Coussy 2004]

bL+ bG = b = 1− K
kS

and 1
NLL
+

2
NLG
+

1
NGG
=

1
N
=

b−φ0
kS

, (1-22)

where b and N are the poroelastic properties of the porous solid with uniform pore pressure, while kS

is the bulk modulus of the solid matrix assumed to be homogeneous. Using mesoscopic-macroscopic
considerations [Coussy 1991; 2007] or more refined upscaling methods [Dormieux et al. 2006a], it can
further be shown that

1
N JJ
+

1
NLG
=

bJ−φ0SJ

kS
. (1-23)

Provided that kS is known, these relations are independent of the porous solid considered. In contrast,
separate expressions for the poroelastic properties K ,G, bJ and N JK as functions of the porosity φ0 and
saturation SJ require specific information on the porous solid considered.

2. Estimates of the unsaturated poroelastic properties

Pore isodeformation. The first relation in (1-22) shows that bL and bG are not independent and allows us
to introduce a Bishop-like parameter χ (see [Bishop and Blight 1963]) depending on the liquid saturation
SLand such that

bL = bχ(SL), bG = b
(
1−χ(SL)

)
. (2-1)

The explicit determination of function χ(SL) requires additional information. One assumption, some-
times made implicitly [Coussy 2004] or explored explicitly [Chateau and Dormieux 2002; Dormieux
et al. 2006a; Coussy 2007], is the isodeformation of the porous volumes respectively occupied by the
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liquid and the gas in the absence of any pore pressure. This assumption amounts to writing

ϕL

φ0SL
=

ϕG

φ0SG
when pL = pG = 0. (2-2)

Substitution of (2-2) in (1-20) and (1-21) provides

bL

SL
=

bG

SG
. (2-3)

Substituting (2-3) in (1-22)1 we finally get the simple identifications

bJ = bSJ, χ = SL. (2-4)

From (1-23) and (2-4) it can easily be shown that the porous volumes occupied by the liquid and the gas
would still deform equally if they are subjected to the same pressure.

Mori–Tanaka and self-consistent schemes. When the pore isodeformation assumption is relevant, we
are left with the determination of the bulk modulus K and the shear modulus G as functions of the
porosity φ0. This can be achieved using upscaling procedures, the details of which we cannot go into
here; we will only recall well known results in view of their further application to the analysis of drying
shrinkage. (For a comprehensive and fruitful application of micromechanics to porous materials, see
[Dormieux et al. 2006a].)

Since the overall volumetric strain ε is the averaged volumetric strain, we can write, letting εS be the
volumetric strain of the solid matrix,

ε = (1−φ0)εS+ϕL+ϕG. (2-5)

The variation of volume ϕJV of a spherical void of initial volume φ0SJV , which is embedded within an
elastic matrix with k and g as bulk and shear moduli and which is subjected to the pore pressure pJ, can
be expressed in the form

ϕJ

φ0SJ
=

(
1+

3k
4g

)
ε0+

3
4g

pJ, (2-6)

where ε0 is the volumetric strain prescribed at infinity. If the spherical void is replaced by a spherical
solid inclusion with kS as bulk modulus, the volumetric strain εS of the latter is given by

εS =
3k+ 4g
3kS+ 4g

ε0. (2-7)

Substitution of (2-6) for J = L and G and (2-7) into (2-5) yields ε0 in the form

ε0 =
3kS+ 4g

3φ0kS+ 4g
×

4g
3k+ 4g

(
ε−

3φ0

4g
(SL pL+ SG pG)

)
. (2-8)
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In turn, substituting (2-8) in (2-6) we recover the constitutive equations (1-20) and (1-21) of unsaturated
poroelasticity and the associated relations (1-22)–(1-23), but now with the benefit of the new relations

bJ = bSJ, K = (1−φ0)
4kSg

3φ0kS+ 4g
, (2-9)

1
N JJ
= S2

J

(
1
N
−

3φ0

4g

)
+

3φ0SJ

4g
,

1
NLG
= SLSG

(
1
N
−

3φ0

4g

)
.

These relations agree with those given in [Dormieux et al. 2006a].
The homogenization schemes differ by the choice of the embedding medium with elastic properties

k and g. The Mori–Tanaka scheme consists in choosing the solid matrix as the embedding medium,
that is, k = kS and g = gS so that ε0 = εS. The self-consistent scheme consists in choosing as the
embedding medium the porous solid whose poroelastic properties we seek, that is, k = K and g = G.
The determination of the relations providing the missing relation involving the shear modulus G is much
less straightforward, since it corresponds to prescribing at infinity the deviatoric strain instead of the
volumetric strain [Dormieux et al. 2006a]. We limit ourselves to recalling the final result:

G = (1−φ0)
(9k+ 8g) gS

9k
(
1+ 2

3φ0gS/g
)
+ 8g

(
1+ 3

2φ0gS/g
) . (2-10)

In view of the explicit determination of K and G, further calculations lead us to rewrite (2-9) and (2-10),
with k = K and g = G, in the more convenient form

K
kS
= 1−φ0 (1+ 3K/4G) ,

G
gS
= 1− 5φ0

1+ 4G/3K
3+ 8G/3K

. (2-11)

Letting

A =
4G
3K
= 2

1− 2ν
1+ ν

, aS =
4gS

3kS
= 2

1− 2νS

1+ νS
, (2-12)

where ν and νS stand for the Poisson coefficients, relations (2-11) combine to give

2(1−φ0)

(
A−

φ0

1−φ0

)2

+
(
3−φ0− (2− 5φ0)aS

)(
A−

φ0

1−φ0

)
− 3

1− 2φ0

1−φ0
aS = 0. (2-13)

Retaining the solution of (2-13) that matches the solution φ0/ (1−φ0) for kS→∞, namely aS = 0, we
finally find

A−
φ0

1−φ0
=
(2− 5φ0)aS− 3+φ0+

√(
3−φ0− (2− 5φ0)aS

)2
+24aS(1− 2φ0)

4(1−φ0)
, (2-14)

which in turn can be substituted in the relation K
gS
=

4G
3AgS

and in (2-11)2.

Beyond pore isodeformation. The first relation in (2-9), which is identical to (2-4), holds irrespective
of the choice of the embedding medium. This is because the standard upscaling schemes considered
here are all based on the solution to the problem of a single inclusion embedded in an infinite medium.
Therefore neither absolute length scales (since the embedding medium is infinite) nor relative ones (since
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only one inclusion is considered at a time) can be introduced. Thus no scale effect associated with the
pore size distribution can arise from these models.

With a view toward accounting for this scale effect, we start by considering only two sizes of pores,
denoted respectively by subscript G (the larger pores occupied by the nonwetting gas) and subscript L
(smaller pores occupied by the wetting liquid), in conformity with the analysis we carried out in the first
section.

We assume scale separation between the smaller and larger pores, which is clearly a convenient over-
simplification, since the smallest pores occupied by the gas have a size comparable with the largest pores
occupied by the liquid. Within this assumption, the larger pores are embedded in a porous matrix. At
this scale we have

bG = 1−
K
κG

and
1

NGG
=

bG−φ0SG

κG
, (2-15)

where κG is the bulk modulus of the porous solid matrix consisting of the original solid matrix and of
the smaller pores forming the porous volume at pressure pL. The porosity φG

0 of this porous solid matrix
is the ratio of the porous volume at pressure pL to the overall volume from which we remove the porous
volume at pressure pG. Accordingly we write

φG
0 =

φ0SL

1−φ0SG
. (2-16)

From the general relation (1-23) the other poroelastic properties are then derived in sequence:

bL = b− bG =
K
κG
−

K
kS
,

1
NLG
=

bG−φ0SG

kS
−

bG−φ0SG

κG
,

1
NLL
=

bL−φ0SL

kS
−

1
NLG

. (2-17)

The assessment of the poroelastic properties requires the determination of κG. One might think of carry-
ing out this determination using the Mori–Tanaka scheme of the previous section, the expression for κG

being derived from (2-9)2 in the form

κG =
(
1−φG

0
) 4kSgS

3φG
0 kS+ 4gS

. (2-18)

However, when combining (2-16)–(2-18) it can easily be checked that relations (2-9) are preserved. This
is an unexpected result, for it can be shown that the two populations of pores do not sustain the same
volumetric strain when subjected to the same pressure. However, the macroscopic shrinkage turns out to
be equal to what it would be had the pore isodeformation assumption been valid (bJ = bSJ).

Turning our attention to the self-consistent scheme, we have

K = (1−φ0)
4kSG

3φ0kS+ 4G
, κG =

(
1−φG

0
) 4kSγG

3φG
0 kS+ 4γG

γG =
(
1−φG

0
) (9κG + 8γG) gS

9κG
(
1+ 2

3φ
G
0 gS/γG

)
+ 8γG

(
1+ 3

2φ
G
0 gS/γG

) , (2-19)

where γG is the shear modulus associated with κG. Explicit expressions for κG and γG can be obtained
with the help of the same procedure that led to (2-14) in the previous section. Substituting (2-19) in
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(2-15)1 and (2-17)1, while also using (2-16), we obtain

bG = b+φ0SL
1−G/γG

φ0+ 4G/3kS
and bL = bSL−φ0SL

1−G/γG

φ0+ 4G/3kS
. (2-20)

Since b = 1− K/kS, the expression (2-19) for K can be combined with (2-20) to give the following
expression for the quantity χ of (2-1):

χ = SL

(
G/γG+ 4G/3kS

1+ 4G/3kS

)
. (2-21)

As a consequence, relation (2-4) no longer holds, so the pores do not undergo the same deformation. The
remaining poroelastic properties N JK are obtained by substituting (2-18)–(2-20) into (2-17).

The third homogenization scheme we consider is the differential scheme. Whereas the use of this
scheme is well known to provide assessments of the elastic properties K and G of a porous solid, to the
authors’ knowledge it has never been used for the assessment of unsaturated poroelastic properties, and
thereby for the prediction of the drying shrinkage of a porous solid. As sketched in Figure 2, the original
idea of the differential scheme consists in progressively introducing the porosity by infinitesimal volume
fractions according to an iterative procedure. At a given stage of the iterative procedure the porosity
φ0S has already been introduced. The next step consists in removing a new volume fraction d f0 out of
the porous solid and replacing it by the same volume of pores. Since the fraction φ0S of d f0 already
consisted of pores, the incremental porosity φ0dS finally created is given by

d f0 =
φ0 dS

1−φ0S
. (2-22)

The removal of the fraction d f0 has transformed the current bulk and shear moduli κ and γ in the new
moduli κ+dκ and γ+dγ , which can be computed as those of a porous solid of porosity d f0 whose solid
matrix has κ and γ as bulk and shear moduli. Accordingly, in the left-hand side of (2-9)2 and in (2-10),
we replace K and G by κ + dκ and γ+ dγ , while on the right-hand side we replace kS, gS and φ0 by κ ,
γ and d f0. Retaining only the terms of main order with regard to the infinitesimals dκ , dγ and dS, we
finally get

dκ
κ
=−

φ0 dS
1−φ0S

(
1+ 1

a

)
,

dγ
γ
=−

5φ0dS
1−φ0S

×
1+ a

3+ 2a
, (2-23)

where

a =
4γ
3κ
. (2-24)

Integrating (2-23) and (2-24) over κ from kS to κG, over a from aS =
4gS
3kS

to aG =
4gG
3kG

, and over S
from 0 to SL = 1− SG, we obtain

κG

kS
=
|1− aG|

5/3

|1− aS|
5/3

aS

aG
;
|1− aG |

5

1+ aG
=
|1− aS|

5

1+ aS
(1−φ0SL)

6 , (2-25)

while the expression for the shear modulus γG is known through the relation γG = 3κGaG/4. The overall
properties are then determined by simultaneously letting κG = K and aG = 4G/3K in (2-25)1 and
letting aG = 4G/3K and SL = 1 in (2-25)2. For a given value of SL = 1− SG the unsaturated poroelastic
properties bJ and N JK are then derived by combining relations (2-25), (2-15) and (2-17).
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Figure 3. Bishop parameter χ= bL/b versus liquid saturation SL under three homogeni-
zation schemes. For the two-step self-consistent and differential schemes, χ departs from
SL, showing that pores of different sizes do not deform equally under these schemes.

Although no simple expression can be obtained when χ is defined by (2-1), as was the case for the
previous two-scale self-consistent scheme, one can show that small and large pores do not undergo the
same deformation when subjected to the same pressure; yet, in contrast with Mori–Tanaka’s approach,
(2-4) no longer holds. Figure 3 plots χ= bL/b against SL for the Mori–Tanaka scheme (χ= bL/b= SL),
for the two-scale self-consistent scheme and for the differential scheme. For the two-scale self-consistent
and differential schemes the ratio χ= bL/b exhibits a significant lower value than the liquid saturation SL,
which is the expression of bL/b associated with pore isodeformation. In Figure 4 we plot the poroelastic
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coupling properties gS/N JK against SL for the Mori–Tanaka scheme and the differential scheme. In the
differential scheme, the coupling properties gS/N JK are not symmetric with regard to the line SL =

1
2 .

The properties gS/NLL and gS/NGL reach their maximum value for larger values than SL =
1
2 , and the

opposite holds for gS/NGG.

3. Drying shrinkage

The drying history of a water-infiltrated porous material is driven by Kelvin’s law

pL− patm =
RT
υL

ln h R, (3-1)

where R is the constant of ideal gases, T the temperature and υL the water molar volume; h R is the
relative humidity, that is, the ratio pV/pVS of the vapour pressure pV and the saturating vapour pressure
pVS that would prevail over liquid water at atmospheric pressure. At equilibrium the air pressure within
the porous material is atmospheric. With patm = pG Kelvin’s law and (1-10) combine to give

SL = S
(
−

2υLγGL/RT
ln h R

)
. (3-2)

This captures the fact that the pore entry radius, and consequently the liquid saturation, have to adjust to
the current relative humidity in order for the confined liquid water to remain in thermodynamic equilib-
rium with the current vapour pressure imposed by the current relative humidity. This is accompanied by
a depressurization of liquid water, which in turn provokes drying shrinkage.

Consider then a stress-free drying process so that σ = 0, starting from a reference initial state where
the porous material is saturated (SL = 1), the pore pressure is atmospheric (pL = patm) and the relative
humidity is 100%. With regard to a zero pore pressure state, the deformation ε0 related to the drying
initial state is provided by substituting the initial conditions in (1-19) with bL = b and bG = 0 so that

ε0 =
bpatm

K
. (3-3)

When the relative humidity is lowered below 100% and the gas pressure is maintained at atmospheric
pressure patm a drying shrinkage εdrying= ε−ε0 is observed and an associated extra elastic energy Wdrying

is stored whose respective intensity are obtained by substituting σ = 0, (2-1), (3-1) and (3-3) in (1-19)
and (1-18). We get

εdrying =−
bχ
K
(pG− pL)=

bχ
K

RT
υL

ln h R; Wdrying =

(
b2χ2

2K
+

1
2NLL

)(
RT
υL

ln h R

)2

. (3-4)

Under a specific homogenization scheme, the poroelastic properties b, K , χ and NLL are then known
as functions of the porosity φ0, the current liquid saturation SL and the matrix elastic properties kS and
gS. In addition the current liquid saturation SL is known through (3-2) as a function of the current relative
humidity h R and the pore size distribution. Adopting for the latter the data reported in Figure 1, we have
plotted εdrying and Wdrying against SL in Figure 5, top, for the various homogenization schemes explored
in this paper. Drying shrinkage exhibits a maximum in absolute value, achieved when the decrease in
liquid pressure induced by the decrease in relative humidity is exactly compensated by a decrease in the
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Figure 5. Normalized drying shrinkage (top) and elastic energy stored in the solid
matrix during drying (bottom) versus liquid saturation, under various homogenization
schemes. The cumulative volume fraction is assumed to depend on the pore entry radius
as in Figure 1.
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still wetted porous volume. In view of (3-4), this maximal drying shrinkage occurs when

pG− pL

χ
=−

d
dχ
(pG− pL) . (3-5)

As shown in Figure 6, this condition allows the graphical determination of the capillary pressure associ-
ated with maximal drying shrinkage.
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Figure 6. Graphical determination of the capillary pressure associated with maximal
drying shrinkage under the differential homogenization scheme. The cumulative volume
fraction is assumed to depend on the pore entry radius as in Figure 1.

As seen in the top half of Figure 5 the drying shrinkage predicted with the two-scale self-consistent
scheme is less significant than the one predicted with the one-scale self-consistent scheme. Actually the
bulk modulus K is the same for the two schemes while bL is smaller for the two-scale self-consistent
scheme (see Figure 7). In the bottom half of Figure 5 we see that the homogenization scheme affects
significantly the elastic energy stored in the solid matrix during the drying process. As a result the
difference of deformation of pores having a different size can significantly affects the strength of a
porous material subjected to drying if its fracture is brittle and governed by a threshold in the stored
elastic energy.

4. Discussion

The preceding results show that different homogenization schemes can dramatically affect the numerical
values of macroscopic shrinkage and the elastic energy stored in the material. The strength of a porous
material subjected to drying (if its fracture is brittle, and governed by a threshold in stored elastic energy)
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Figure 7. Sketch of the differential homogenization scheme for determining unsaturated
poroelastic properties.

could therefore be significantly affected as well. This should not come as a surprise, since the choice
of a homogenization scheme is already paramount to the values of the effective moduli of a composite
medium. Whether neglecting pore size distribution leads to an over- or underestimation of macroscopic
shrinkage is not clear, as can be seen in Figure 5; in fact, the numerical values found in the present study
should not be taken for granted.

Indeed, it should be emphasized that the pore-size distribution has only been taken into account very
crudely in this paper, and the assumption has been made that scale separation prevails between gas-
and liquid-filled pores, at each stage of the drying process (i.e., for all values of liquid saturation). This
strong assumption cannot be true of a continuous pore size distribution, since, as already stated, the largest
liquid-filled pores are of size comparable with the smallest gas-filled pores. Even if the experimental data
used in this paper (Figure 1) only imply continuity of the pore entry radii distribution (not the pore-size
distribution), it is in fact well-known that the pore-size distribution is indeed continuous in cementitious
materials, which effectively rules out our assumption.

Finally, it might be rightly argued that some of the homogenization schemes presented here were
used outside their well-documented range of applicability. Although both the Mori–Tanaka and the
differential schemes were designed for composites with bound inclusions as considered here, the self-
consistent estimate is usually associated with polycrystals [Kröner 1977]; the application of this scheme
to cementitious materials should therefore be considered with care. Regarding the differential scheme,
as has been argued elsewhere [Norris 1985], the pore-size distribution implicitly taken into account is
that of a large number of well separated families of spherical pores, which is not in contradiction with
the assumption made previously, but for the fact that the basic differential scheme used here requires
each family of pores to represent the same volume fraction.

The situation clearly calls for a clarification of the subtle effects of the pore-size distribution on the
macroscopic properties of a porous medium. Although some attempts have been made towards this end
[Bilger et al. 2007], this is still, to the authors’ knowledge, an open question.
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5. Concluding remarks

Unsaturated poroelasticity and homogenization schemes have been combined to reveal the effects of
nonuniform pore deformation upon the mechanical behaviour of a porous material subjected to drying.
This analysis can easily be extended to other confined phase transitions such as freezing [Coussy 2005;
Coussy and Monteiro 2007] or drying-induced crystallization of sea salts [Coussy 2006].

However, the present analysis is based upon the assumption that scale separation prevails between
the liquid- and gas-invaded pores. This assumption is in contradiction with the fact that the size of the
largest pores occupied by the liquid is comparable with the size of the smallest pores occupied by the
gas. This study should therefore only be considered as a first attempt at taking the pore-size distribution
into account for the estimation of macroscopic shrinkage. The reliability of this estimate would greatly
benefit from an upscaling method explicitly integrating pore-size distribution.

In addition, the internal stresses generated by the drying process might induce progressive cracking of
the solid matrix. This in turn could significantly alter the conclusions drawn from a reversible, poroelastic,
analysis. Further research is thereby needed to assess the effects of the size of the pores upon the ultimate
strength of porous materials subjected to confined phase transitions, microporomechanics [Dormieux et al.
2006b] being the appropriate tool for this issue.
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ON THE METHOD OF VIRTUAL POWER IN CONTINUUM MECHANICS

GIANPIETRO DEL PIERO

Dedicated to the memory of Paul Germain

The method of virtual power is generally used to produce balance equations for nontraditional continua
such as continua with various types of microstructure. Here I show that the expression of the internal
power can be deduced from that of the external power using a general invariance requirement due to Noll
and a generalized version of Cauchy’s tetrahedron theorem. In other words, the measures of deformation
and stress, as well as the balance equations, are determined by the expression chosen for the external
power and by the invariance assumptions. A pair of examples taken from the literature shows that both
ingredients are essential for defining a specific class of continua.

1. Introduction

In classical continuum mechanics, the balance laws of linear and angular momentum determine an in-
tegral identity, the equation of virtual power. On this identity is based the weak formulation of the
problems of motion and of equilibrium. A more recent choice is to consider the equation of virtual power
as primitive, and to deduce from it the balance equations. A reason for this alternative approach is the
difficulty met in formulating generalized versions of the balance equations, appropriate to nonclassical
continua. The method of virtual power of Germain [1972] is just a formalization of this new approach,
and his papers [Germain 1973a; 1973b] show how the method applies to some specific nonclassical
continua, such as second-gradient and micropolar continua.

To describe nonclassical continua within the classical approach is possible, at the price of introduc-
ing supplementary balance equations. For example Capriz [1989] introduces just one supplementary
equation, the equation of balance of micromomentum, and with it he succeeds in describing a variety of
microstructures.

Both approaches have some inconvenience. When introducing new balance equations, it is not clear
how many they should be, and which should be their motivation. For example, Capriz [1989, Section 8]
says that the supplementary equation is just a plausible form for the balance of micromomentum, justified
by the analogy with the form of the balance equation of linear momentum. Clearly, we are far from the
status of fundamental laws of mechanics attributed to the classical balance equations.

Even worse, when some form of the equation of virtual power is assumed as primitive, the expressions
of the external and internal power are not really arbitrary, due to the general belief that the classical

Keywords: foundations of continuum mechanics, virtual power, continua with microstructure, materials with microstructure.
This research has been supported by the Research Project Mathematical Models for Materials Science — PRIN 2005 of the
Italian Ministry for University and Scientific Research.
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balance equations should hold anyway. Thus, there is a tacit preselection of the possible forms of the
equation, in spite of its claimed status of a postulate.

Here I follow a different approach, first proposed by Noll [1974] in the context of classical continua.
This approach is based on two assumptions: one on the nature of the external actions, and one on the
invariance of the power under changes of observer. The first assumption determines the expression of the
external power, and the two assumptions together determine the balance equations. With the aid of the
divergence theorem, one obtains an expression of the internal power, which consists of a volume integral
involving the inner products of a certain number of internal forces by the corresponding generalized
deformations.1

In this way, the two basic assumptions determine a class of continua. Within each class, specific mate-
rials can be characterized by ad hoc constitutive assumptions, such as the existence of energy functions,
of dissipation potentials, or of explicit relations between internal forces and generalized deformations.
Both assumptions are essential in determining a class of continua. Indeed, the same form of the external
power can be associated with different invariance requirements, dictated by the differences in the physical
nature of the microstructures. This determines different classes of continua, each one with its own set of
balance equations. An example is provided in Section 5.

Besides the genuine balance equations coming from the invariance requirements, it is sometimes
convenient to introduce pseudo-balance equations, which are just mathematical devices transforming
area integrals into volume integrals. Though in the literature the two are frequently mixed together, it is
important to keep them separated. A clear distinction between genuine balance equations and pseudo-
balance equations is one of the purposes of the present work.

Section 2 shows the application of the proposed method to classical continua. In the next sections 3
and 4 the same method is applied to higher-gradient continua and to micropolar continua, respectively.
The last section deals with two examples taken from strain-gradient plasticity. In them, the expression
of the external power is the same as in a micropolar continuum, while the invariance assumptions are
different.

2. Classical continua

For a classical continuum occupying a three-dimensional region � of space, the assumed system of
external actions is a pair (b, s) formed by distance actions and contact actions, where b = b(x) is a
vector field on � representing the volume density of the body forces, and s = s(5, x) is a system of
vector fields acting at the boundary points x of each part 5 of �, and representing the surface density of
the contact force at x .2 The corresponding expression for the external power is

P(5, v)=

∫
5

b · v dV +
∫
∂5

s · v d A , (1)

1Instead of making assumptions on the nature of the external actions, one might fix a priori the structure of the set V of the
virtual displacements, and then define the external power by duality, that is, by identifying it with the most general continuous
linear functional on V. Whether or not to consider forces as primitive is a philosophical matter which has long been debated,
see Jammer [1957]. Whatever is the preference, the procedure proposed here applies.

2Throughout this paper it is assumed that all vector, or tensor, fields defined on the pair (5, x) are bouded almost everywhere,
and that the associated fluxes

∫
a5 s d A are additive on regions 5 with pairwise disjoint interiors [Gurtin and Martins 1976].
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where v = v(x) is a field of virtual displacements3 on �, and dV and d A are the volume measure and
the area measure, respectively.

The assumption that P is invariant under changes of observer is expressed by the equation

P(5, v)= P(5, v+ c+ω× x) , (2)

to be satisfied for all parts 5 of � and for all pairs of vectors c, ω. In view of the linear dependence of
P on v, this is true if and only if

P(5, c)= P(5,ω× x)= 0 (3)

for all 5 and for all vectors c, ω. That is, if and only if∫
5

b dV +
∫
∂5

s d A = 0 ,
∫
5

x × b dV +
∫
∂5

x × s d A = 0 , (4)

for all 5. These are the balance equations of the linear and angular momentum for a classical continuum.4

It has been proven by Noll [1959] that, as a consequence of the first balance equation, s depends on 5
only through the exterior unit normal n to ∂5 at x : s(5, x)= s(n, x). Then from Cauchy’s tetrahedron
theorem one deduces the linearity of the dependence on n, that is, the existence of a tensor T , the Cauchy
stress, such that s(n, x)= T (x) n, as well as the local forms of the two balance equations

div T + b = 0 , T = T T . (5)

Substituting into the expression of the external power and using the divergence theorem, one gets

P(5, v)=−

∫
5

div T · v dV +
∫
∂5

T n · v d A

=

∫
5

T · ∇ Sv dV ,

where ∇ Sv is the symmetric part of ∇v. The integral on the right is the internal power. In it, the integrand
function is the product of an internal force, the Cauchy stress, by a virtual generalized deformation, the
symmetric part of the gradient of the virtual displacement. As we see, in the proposed approach there are
not indeed two virtual powers, internal and external, but rather a single virtual power with two different
expressions, the first of which is given a priori, while the second is deduced from the first, using the
invariance assumptions.

3The fields v are usually called virtual velocities. I prefer displacements, since velocity suggests that physical time is
somehow involved. For consistency, I should then speak of virtual work instead of virtual power, but the latter term is so
generally used that I don’t dare go back to the more classical virtual work.

4In the past, an obstacle against this very simple deduction of the balance equations was that the power of the inertial actions
is not indifferent under Galilean changes of observer. Following ideas originating from Mach’s criticism of the Newtonian
concept of absolute space, Noll [1974] ruled out this difficulty by regarding inertia as the distance action “between the bodies
in the solar system and the masses occupying the rest of the universe” [Truesdell and Noll 1965, Sect. 18]. Accordingly, the
power of the inertial actions has to be invariant under changes of observer involving the whole universe, and not just a part of it,
as it is tacitly done when referring the change of observer to our planet or to a part of it, instead of to the whole universe.



284 GIANPIETRO DEL PIERO

3. Higher-gradient continua

Let us add to the virtual power (1) two terms in ∇v

P(5, v) =

∫
5

(b · v+ B · ∇v) dV +
∫
∂5

(s · v+ S · ∇v) d A , (6)

one associated with a second-orderer tensor field B = B(x) of body double-forces, and one with a system
S = S(5, x) of second-order tensor fields representing surface double-tractions. From the divergence
theorem ∫

5

B · ∇v dV =−
∫
5

div B · v dV +
∫
∂5

Bn · v d A . (7)

it follows that the power generated by a field of body double-forces is equal to the power generated by
a field b∗ =−divB of body forces, plus a system s∗ = Bn of surface tractions. Because the term B · ∇v
does not change substantially the expression of the virtual power, for simplicity it will be neglected in
what follows.

For the power generated by S, we first observe that the invariance assumption (3)1 still yields the
balance equation (4)1, so Equation (6) reduces to

P(5, v) =

∫
5

T · ∇v dV +
∫
∂5

S · ∇v d A . (8)

Then from the invariance assumption (3)2 one gets∫
5

T W dV +
∫
∂5

SW d A = 0 , (9)

with T W and SW the skew-symmetric parts of T and S, respectively. This equation is formally identical
with Equation (4)1, except for the fact that the integrand functions are now second-order tensors. Using
Noll’s theorem on the dependence on the normal and Cauchy’s tetrahedron theorem5 one deduces the
existence of a third-order tensor TW , skew-symmetric with respect to the first two indices, such that

SW
= TW n , SW

i j = TW
i jknk . (10)

Substituting Equation (10) into the balance equation (9) and then using the divergence theorem one gets

div TW
+ T W

= 0 , TW
i jk,k + T W

i j = 0 . (11)

Therefore, ∫
∂5

SW
· ∇v d A =

∫
∂5

TW n · ∇v d A

=

∫
5

(TW
· ∇∇v+ div TW

· ∇v) dV

=

∫
5

(
TW
· ∇∇v− T W

· ∇v
)

dV ,

5For an extension of Cauchy’s theorem to second-order tensors see Appendix A.
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and the expression (8) of the virtual power reduces to

P(5, v)=

∫
5

(
TW
· ∇∇v+ T S

· ∇v
)

dV +
∫
∂5

SS
· ∇v d A . (12)

As we see, the right-hand side has not yet the form of a single volume integral, except in the special case
of S skew-symmetric, which will be considered separately at the end of this section. To transform the
area integral into a volume integral, we introduce the field of the body forces B̃ defined by

B̃(x)=− lim
δ→0

∫
∂B(x,δ) SSd A

V (B(x, δ))
, (13)

where B(x, δ) is the three-dimensional ball of radius δ centered at x , and B̃ is symmetric because SS is
symmetric.6 By integration over a part 5 of the body, we get the pseudo-balance equation∫

5

B̃ dV +
∫
∂5

SS d A = 0 . (14)

I point out that this is not a proper balance equation, since it does not come from an invariance assumption.
It comes instead from the definition (13), which is instrumental to transforming a surface integral into a
volume integral. In fact, again from Noll’s and Cauchy’s theorems one deduces the existence of a third-
order tensor TS, symmetric with respect to the first two indices, such that SS

= TSn, and substituting into
the pseudo-balance equation and using the divergence theorem, the local pseudo-balance equation

div TS
+ B̃ = 0 (15)

follows. Then the area integral in (12) transforms as∫
∂5

SS
· ∇v d A =

∫
∂5

TSn · ∇v d A

=

∫
5

(
TS
· ∇∇v+ div TS

· ∇v
)

dV

=

∫
5

(
TS
· ∇∇v− B̃ · ∇v

)
dV ,

and after setting
T := TS

+TW , (16)

one has S = T n, div T+ T W
+ B̃ = 0, and the virtual power (12) takes the form

P(5, v)=

∫
5

(
T · ∇∇v+ (T S

− B̃) · ∇v
)

dV . (17)

We see that the internal forces are the third-order tensor S and the second-order tensor T S
− B̃, and that

the generalized deformations are the first two gradients of v. If we agree to label a class of continua
after the highest gradient of v which appears among the generalized deformations, then the classical

6For the regularity assumptions on SS ensuring the existence almost everywhere of the limit B̃, see Gurtin and Martins
[1976, Theorem 7].
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continuum is a first-gradient continuum, and the continuum defined by (6) and (3) is a second-gradient
continuum.

A special subclass of second-gradient continua is the one in which the external action S is skew-
symmetric. As said before, in this case the area term in (12) vanishes, and therefore there is no pseudo-
balance equation. Moreover, the power S ·∇v can be given the form m ·ω, where m and ω are the vectors
associated with S and with twice the skew-symmetric part of ∇v, respectively:

mi =
1
2

ei jk Sk j , ωi = ei jkvk, j . (18)

Because ω measures the local rotation at x , the vector m can be identified with a surface couple. Then,
since S skew-symmetric implies T = TW and TS

= 0, the first product in (17) takes the form

T · ∇∇v = TW
· ∇∇v = M · ∇ω , Ti jkvi, jk = Mi j eihkvh,k j = Mi jωi, j , (19)

where M is the second-order tensor associated with TW 7

Mi j =
1
2

eihk TW
kh j . (20)

In conclusion, for S skew-symmetric the two expressions (6), (17) of the virtual power simplify into∫
5

b · v dV +
∫
∂5

(s · v+m ·ω) dV ,
∫
5

(M · ∇ω+ T S
· ∇v) dV . (21)

The foregoing analysis can be easily generalized to higher-gradient continua. Notice that for all such
continua there are no invariance assumptions besides the classical assumptions (3).

4. Micropolar continua

In micropolar continua, with each point x is associated a finite set of vectors
α 7→ dα = dα(x), called the directors, each with fixed length and variable orientation. The virtual
power consists of the two terms appearing in Equation (1) plus two extra terms, representing the power
of the body and surface director forces βα, σ α, both multiplied by virtual changes να of the directors8

P(5, v, να)=

∫
5

(b · v+βα · να) dV +
∫
∂5

(s · v+ σ α · να) d A . (22)

While the first of the invariance axioms (3) remains unchanged, the second now requires the invariance
of the virtual power under simultaneous rigid rotations of the body and of the directors. That is,

P(5, c, 0)= P(5,ω× x, ω× dα)= 0, (23)

7In view of Equation (18)1, M can be seen as the unique second-order tensor such that Me is the vector associated with
TW e for all vectors e.

8Here and in the following, the repeated indices α are summed.
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for all 5 and for all vectors c, ω. The corresponding balance equations are∫
5

b dV +
∫
∂5

s d A = 0 ,∫
5

(x × b+ dα ×βα) dV +
∫
∂5

(x × s+ dα × σ α) d A = 0 ,
(24)

respectively. From the first equation still follows the existence of a Cauchy stress T such that s = T n
and div T + b = 0, and by substitution into the second equation one gets∫

5

(T W
+ (βα⊗ dα)W ) dV +

∫
∂5

(σ α⊗ dα)W d A = 0 . (25)

Using again Noll’s theorem on the dependence of the normal and Cauchy’s tetrahedron theorem, one
deduces the existence of a third-order tensor field TW

i jk , skew-symmetric with respect to the first two
indices, such that (σ α⊗ dα)W

= TW n, from which one gets the following local form of the second
balance equation

div TW
+ T W

+ (βα⊗ dα)W
= 0 . (26)

Then, ∫
5

T W
· ∇v dV =−

∫
5

(div TW
+ (βα⊗ dα)W ) · ∇v dV

=

∫
5

(TW
· ∇∇v− (βα⊗ dα)W

· ∇v) dV −
∫
∂5

(σ α⊗ dα)W
· ∇v d A ,

and the expression (22) of the virtual power transforms as

P(5, v, να)=

∫
5

(T · ∇v+βα · να) dV +
∫
∂5

σ α · να d A

=

∫
5

(
TW
· ∇∇v+ (T S

− (βα⊗ dα)W ) · ∇v+βα · να
)

dV

+

∫
∂5

(
σ α · να − (σ α⊗ dα)W

· ∇v
)

d A

=

∫
5

(
TW
· ∇∇v+ T S

· ∇v+βα · (να −∇Wv dα)
)

dV

+

∫
∂5

σ α · (να −∇Wv dα) d A .

The vectors
ϕα = να −∇Wv dα (27)

represent the local relative rotations between the directors and the body. As in the preceding section, to
transform the area integral into a volume integral we introduce a pseudo-balance equation. We define

β̃α(x)=− lim
δ→0

∫
∂B(x,δ) σ

αd A

V (B(x, δ))
, (28)
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so that ∫
5

β̃α dV +
∫
∂5

σ α d A = 0 . (29)

By the tetrahedron theorem, for each α there is a second-order tensor 6α such that

σ α =6α n , div6α + β̃α = 0 . (30)

Thus, ∫
∂5

σ α ·ϕα d A =
∫
∂5

6α n ·ϕα d A

=

∫
5

(div6α ·ϕα +6α · ∇ϕα) dV

=

∫
5

(−β̃α ·ϕα +6α · ∇ϕα) dV ,

and the virtual power takes the form

P(5, v, να)=

∫
5

(
TW
· ∇∇v+ T S

· ∇v+6α · ∇ϕα + (βα − β̃α) ·ϕα
)

dV . (31)

For this class of micropolar continua, the measures of stress are the tensors TW , T S, 6α and (βα − β̃α).
They are subject to the balance equations (5)1, (26) and to the pseudo-balance equation (30)2. The
measures of deformation are ∇v, ϕα and their first gradients. In particular, if the external actions βα and
σ α are balanced, that is, if Equation (29) is satisfied by β̃α = βα for all 5, the last term in Equation (31)
disappears.

5. Two examples from strain-gradient plasticity

For continua described by internal state variables one can still assume a virtual power of the form (22),
where now να are virtual variations of the state variables. They may be scalars, vectors, or tensors of
any order, according to the nature of the corresponding state variable. The physical nature of the state
variables also determines the appropriate invariance assumptions under changes of observer. Thus, in a
sense, the invariance assumptions are a part of the definition of a state variable.

In strain-gradient plasticity, a configuration of a body is characterized by the deformation gradient F
and by a state variable, the plastic distortion, identified with the plastic part of the strain gradient in its
decomposition F = Fe F p.9 A virtual variation of plastic distortion is a second-order tensor, which I
will denote by L .10 The assumed expression of the virtual power is

P(5, v, L)=
∫
5

b · v dV +
∫
∂5

(s · v+ S · L) d A . (32)

It includes a contact action S associated with L , while the corresponding distance action is neglected.
While for a micropolar continuum the virtual power is assumed to be invariant under simultaneous rigid

9Usually, a plastic continuum is regarded as a classical continuum subject to appropriate constitutive assumptions. Strain-
gradient plasticity deals with a continuum with a microstructure described by the plastic distortion.

10It is usually supposed that L is traceless, but I shall ignore this restriction.
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rotations of the body and of the directors, here the virtual power is assumed to be invariant under rigid
body rotations, associated with a null change of plastic distortion.11 Then we have the conditions

P(5, c, 0)= P(5,ω× x, 0)= 0 , (33)

and the resulting balance equations are the equations (4) of the classical continuum instead of the equa-
tions (24) of the micropolar continuum. But there is a third condition, which comes from the invariance
of power under a rigid rotation of the intermediate configuration.12 It requires that the virtual power
associated with a rigid virtual rotation of plastic strain be zero

P(5, 0,W )= 0 , (34)

for all skew-symmetric tensors W .
From the first two invariance assumptions one again deduces the existence of a tensor field T such

that s = T n, div T + b = 0 and T = T T , so that (32) becomes

P(5, v, L)=
∫
5

T · ∇ Sv dV +
∫
∂5

S · L d A . (35)

From (34) it follows that ∫
∂5

SW d A = 0 , (36)

and from here, using again Noll’s and Cauchy’s theorems, one deduces the existence of a third-order
tensor field TW , skew-symmetric with respect to the first two indices, such that SW

= TW n and div TW
= 0.

Therefore, ∫
∂5

SW
· L d A =

∫
∂5

TW n · L d A =
∫
5

TW
· ∇L dV ,

and the virtual power reduces to

P(5, v, L)=
∫
5

(TW
· ∇L + T · ∇ Sv) dV +

∫
∂5

SS
· L d A . (37)

Once again, to eliminate the area integral a pseudo-balance equation is required. By defining a symmetric
tensor B̃ as in (13), we deduce the existence of a third-order tensor TS, symmetric with respect to the

11A change of observer transforms the deformation gradient F into QF , with Q a proper rotation. The equation QF =
QFe F p then suggests that we choose the intermediate configuration determined locally by F p in such a way that Fe and F p

transform into QFe and F p , respectively. With this choice, the intermediate configuration is left unchanged by a change of
observer. Then L = 0, and the condition Equation (33)2 follows. But there is nothing wrong in allowing the intermediate
configuration to rotate, see the following footnote.

12A rigid rotation R of the intermediate configuration transforms F p into RF p , leaving F unchanged. This corresponds to
v(x)= 0 and L(x)=W constant and skew-symmetric. Because this is just a change of orientation of an auxiliary configuration,
the power involved must be zero.
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first two indices, such that SS
= TS n and div TS

+ B̃ = 0. Then the area integral transforms as∫
∂5

SS
· L d A =

∫
∂5

TSn · L d A

=

∫
5

(
TS
· ∇L + div TS

· L
)

dV

=

∫
5

(
TS
· ∇L − B̃ · L S

)
dV ,

(38)

and the virtual power takes the form

P(5, v, L)=
∫
5

(T · ∇L + T · ∇ Sv− B̃ · L S) dV , (39)

with T = TS
+TW , S = Tn, and div T+ B̃ = 0. This is the only case considered in this paper, in which

a third balance equation appears. As discussed above, the supplementary equation is motivated by the
invariance of the virtual power under a rigid rotation of the intermediate configuration. The local form
of this balance equation is div TW

= 0, while div TS
+ B̃ = 0 is the pseudo-balance equation used to

transform the area integral in (37) into a volume integral.
Notice that if the external action SS is self-balanced, that is, if Equation (14) is satisfied by B̃ = 0 for

every 5, the term B̃ · L S disappears from (39). This occurs, for example, if S is skew-symmetric. But in
this case there is no pseudo-balance equation, and the virtual power (39) further reduces to

P(5, v, L)=
∫
5

(TW
· ∇L + T · ∇ Sv) dV . (40)

Let me discuss two examples taken from Gurtin and Anand [2005] and Gurtin [2004]. In the former,
the authors assume the external power (32) and an expression of the internal power which, in the present
notation, takes the form

Pi (5, v, L)=
∫
5

(
T · ∇L + T · ∇ Sv+ (T p

− T ) · L
)

dV . (41)

They also assume that L and T p are symmetric, and that T is symmetric with respect to the first two
indices. By equating (32) and (41), they obtain the equation of virtual power, from which they deduce
the classical balance equations (5), plus the relation S = T n and the microforce balance equation

div T+ T − T p
= 0 . (42)

If we compare (39) and (41), we see that they coincide if T p
− T =−B̃, that is, if div T+ B̃ = 0. Due

to the symmetry of B̃ and T, this is true if and only if our pseudo-balance equation div TS
+ B̃ = 0

holds. The expression (39) is slightly more general than (41), since it does not require the symmetry of
L , T p, and T. These symmetry assumptions can be regarded as restrictions defining a special subclass
of continua. This example shows that there is no need of assuming an expression for the internal power,
since (41) follows from (32) under the appropriate invariance assumptions.
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In [Gurtin 2004] the external power is taken as in (32) and the internal power is assumed to be

Pi (5, v, L)=
∫
5

(
P · curl L + T · ∇ Sv+ (T p

− T ) · L
)

dV, (43)

respectively. The tensor L is assumed to be nonsymmetric with the purpose of accounting for the power
dissipated by the Burgers tensor, whose virtual change is measured by curl L . From the equation of
virtual power he obtains the classical balance equations (5), the microforce balance equation

−(curl PT )T + T − T p
= 0 , (44)

and the relation S = T n, with
Ti jk = ek jh Phi . (45)

Then
div T =−(curl PT )T = T p

− T , T · ∇L = P · curl L , (46)

and the expressions (43) and (39) of the internal power coincide if T p
−T =−B̃, that is, if div T+ B̃ = 0.

But this is exactly what is required by the third balance equation div TW
= 0 and by the pseudo-balance

equation div TS
+ B̃ = 0. Thus, (43) is the expression of the internal power for the subclass of continua

obtained from the expression (32) of the virtual power, the invariance assumptions (33), (34), and the
supplementary assumption (45).

Appendix A: Proof of the Cauchy theorem for second-order tensors

Here I give a quick proof of Cauchy’s theorem for the balance equation∫
5

B dV +
∫
∂5

S d A = 0 , (A.1)

where B = B(x) and S = S(5, x) are second-order tensor fields. For every fixed vector e, the balance
Equation (4)1 holds with b = Be and s = Se. Then by Cauchy’s theorem there is a second-order tensor
T (e) such that

Se = T (e) n , div T (e)+ Be = 0 . (A.2)

These equations show that the dependence of T on e is linear. That is, there is a third-order tensor T

such that13

T[e] = T (e) Ti jke j = T (e)ik . (A.3)

Then from Equation (A.2),

Se = (T[e]) n Si j e j = Ti jke j nk ,

div (T[e])+ Be = 0 Ti jk,ke j + Bi j e j = 0 ,
(A.4)

and, from the arbitrariness of e,

S = T n Si j = Ti jknk ,

div T+ B = 0 Ti jk,k + Bi j = 0 .
(A.5)

13The choice of the summed index in (A.3)2 is arbitrary.
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NUMERICAL EXPLORATION OF THE DANG VAN HIGH CYCLE FATIGUE
CRITERION: APPLICATION TO GRADIENT EFFECTS

FELIX HOFMANN, GRATIELA BERTOLINO, ANDREI CONSTANTINESCU AND MOHAMED FERJANI

The objective of this paper is to show that a number of key features of the Dang Van high cycle fatigue
criterion can be observed using simple polycrystalline computational models.

This paper presents a series of numerical computations for an inclusion consisting of 156 grains
embedded in a homogeneous matrix. The grains are modeled using a polycrystalline single slip elasto-
plastic model, whilst the matrix is considered as elastic. As expected the numerical simulations confirm
the theoretical prediction on which the Dang Van fatigue criterion is based, that if a large enough number
of grains is considered under uniform loading, a grain with the least favourable lattice orientation will
always be present. This grain will constitute the weakest link in the assembly and thus its fatigue life
largely determines the fatigue life of the bulk material.

Next the question of stress-gradients in the high cycle fatigue regime is addressed. An example of
stress gradients appears around notches as they create stress concentrations in structures. It is a well
known problem that fatigue criteria have to be locally arranged using stress-factors or critical distances
in order to give satisfactory predictions. The work presented here shows that an analysis of the problem
at the grain scale explains the apparent discrepancy when using classical fatigue criteria. The discussion
is based on a numerical model of single slip crystal plasticity and the Dang Van fatigue criterion.

1. Introduction

Initially fatigue criteria were purely phenomenological, relying directly on the interpretation of experi-
mental results at the macroscopic scale. Starting with the pioneering paper of Orowan [1939] on grain
plasticity, the possibility of including grains scale effects within fatigue criteria was recognised. One
of the fatigue models including grain level phenomena in a macroscopic fatigue criterion is the Dang
Van–Papadopulos criterion [Dang Van 1993; Papadopoulos 1994; 1995; Dang Van and Papadopoulos
1999]. It states that fatigue does not occur if all grains reach an elastic shakedown state. In order to
estimate the stress-strain state at the meso scale a simple homogenisation scheme of a plastic inclusion
in an elastic matrix is considered. The keypoint of the homogenisation scheme is the assumption that
any macroscopic material point includes all possible grain lattice orientations. On this basis a simple set
of macroscopic formulae provide an estimate of the fatigue limit.

Since the initial Orowan grain models numerous refinements have been proposed and today com-
plex polycrystalline grain models are available [Asaro 1983; Kothari and Anand 1998], as well as the
computational power required for calculations comparable to experimental observations. Recent studies

Keywords: high cycle fatigue, fatigue criterion, polycrystalline plasticity, stress gradient, notch.
Part of the work presented in this paper was carried out by Felix Hofmann during a summer internship at the LMS funded by
the CNRS.
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of face centered cubic (FCC) crystal plasticity and fatigue predictions are, for example, presented in
[Saanouni and Abdul-Latif 1996; Bennet and McDowell 2003; Manonkul and Dunne 2004]. Based on
these models low cycle fatigue crack nucleation has been studied in [Dunne et al. 2007]. One can remark
that the polycrystalline models discussed in the preceding references are rather complex. However this
complexity will fade by the application of a phenomenological fatigue criterion.

This work revisits the Dang Van criterion (DVC) using a simple numerical polycrystalline model,
with the specific focus of interpreting the fatigue limit as a shakedown limit for each grain. As such the
proposed modeling will refine the initial closed-form homogenisation scheme.

Initially the proposed model will be used to illustrate the correct functioning of the criterion when
considering a group of grains in a representative material. When the applied stress is homogeneous at
the level of the representative volume element, the results of the classical closed-form homogenisation
scheme are obtained. However, when a stress gradient is applied, the homogenisation assumptions are
no longer valid and the numerical results illustrate the stress distribution in the grains. If the fatigue
criterion is interpreted as a shakedown limit for each grain, one obtains a natural explanation of the
“gradient effect” observed classically in fatigue experiments [Taylor 1999; Adib and Pluvinage 2003;
Naik et al. 2005].

In our particular case, we will focus, for convenience and simplicity, on a two dimensional plane
strain model of an austenitic steel with FCC crystal structure. However since we will show that the
underlying homogenisation assumption breaks down in the case of a steep stress gradient, the specific
case considered here (a two dimensional model and FCC structure) does not limit the generality of the
observations. In fact the results and conclusions can be readily extended to three dimensions, as well as
other crystallographic structures.

First a short overview of the basic assumptions of the Dang Van fatigue theory based on the shakedown
concept will be given. The next section outlines the models and the computations of the simulated
experiments. Finally the results are presented, firstly in the case of uniform loading, illustrating the DVC
and secondly demonstrating the effect of applying a stress gradient.

2. Main assumptions of the Dang Van fatigue criterion

The fatigue analysis presented next is based on the DVC as presented in [Dang Van 1993; Papadopoulos
1995; Dang Van and Papadopoulos 1999].

Let us consider a structure under cyclic mechanical loading. Its fatigue lifetime will be determined by
a number of mechanical fields: elastic and plastic strains, stresses, etc. computed over each cycle. The
underlying hypothesis is that, after a short initial period of a few cycles, the mechanical response of the
structure is stabilized, meaning that the fields will evolve in closed loops.

Fatigue phenomena can then be characterized at three scales:

(i) the microscopic scale of dislocations, which are the underlying elements of plastic deformation,
persistent slip bands, and elastoplastic strains;

(ii) the mesoscopic scale of grains, where fatigue and damage phenomena are concentrated either at the
grain boundary or in the interior;

(iii) the macroscopic scale of the structure, at which loads are applied and industrial design is performed.
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An inspection of the three scales during a cyclic loading would lead to different observations deter-
mined by the fatigue regime (see Figure 1):

• In the low cycle fatigue regime, physical observations at both macroscopic and mesoscopic scale
show extensive plastic strains. Moreover homogenisation theory shows that strains and stresses at
the two scales tend to be closer to each other with increasing plastic strain. This can be translated
into saying that the higher the applied load, the more similar mesoscopic and macroscopic scales
will behave.

• In the high cycle fatigue regime, two fatigue domains corresponding to finite and infinite lifetime
can be considered. Physical observations at the macroscopic scale show that structures are macro-
scopically in an elastic shakedown state. At the mesoscopic scale of the grains, it is now commonly
accepted that elastic shakedown occurs only in the case of infinite lifetime. If lifetime is finite, some
grains will be oriented such that they can not reach an elastic shakedown state, but will experience
a plastic shakedown or ratcheting state leading to failure after a finite number of cycles. The stress
concentration due to this mesoscopic failure marks the initiation of a macroscopic crack associated
with failure on the macroscopic scale.

Focusing on the case of high cycle fatigue, one can imagine a case where only one misoriented grain
is subject to plastic slip. Then a simple homogenisation scheme of a plastic inclusion in an elastic matrix
can be used to derive closed-form relations between mesoscopic and macroscopic fields.

Examples of possible homogenisation assumptions are [Cano et al. 2004]:

• Lin–Taylor supposes strain equality: ε = E. This is the hypothesis of the initial Dang Van or
Papadopoulos fatigue criterion.

• Sachs supposes stress equality: σ =6

• Kröner assumes σ =6−C : (I−P : C) : ε p, where C and P are respectively the fourth rank elastic
moduli and Hill tensors and σ and 6 are respectively the mesoscopic and macroscopic stresses. In
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Figure 1. Illustration of high and low cycle fatigue regimes on a Whoeler diagram.
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the particular case of an idealized spherical inclusion, P reads

P=
A

3K
J+

B
2µ

K, with A =
3K

3K + 4µ
, and B =

6
5

K + 2µ
3K + 4µ

,

where J= 1
3 I ⊗ I and K = I− J with I the fourth rank identity tensor.

If, in all the cases, the same elastic behaviour at the mesoscopic and the macroscopic scale is assumed,
the relation between mesoscopic and macroscopic fields can be written in the general form

σ =6−C∗ : ε p
=6+ ρ∗,

where ρ∗ should be interpreted as a mesoscopic residual stress field.
The particular case of each model is obtained depending on the form of C∗:

• for Lin–Taylor’s model, C∗ = C;

• for Sachs model, C∗ = 0;

• for Kröner’s scheme, C∗ = C : (I−P : C).

Assuming only one active slip system generates the plastic strain

ε p
=

1
2

∑
s

γ s(ms
⊗ ns
+ ns
⊗ms)=

∑
s

γ sαs, with αs
=

1
2 (m

s
⊗ ns
+ ns
⊗ms).

The mesoscopic shear and normal stress for a slip system s with slip plane normal ns and slip direction
ms can then be expressed as σ s

n = (σ : ns
⊗ ns) and τ s

= σ : ms
⊗ ns .

Using the previous definitions we can define a series of fatigue criteria.
For an individual grain, when considering all slip systems, we have infinite lifetime if and only if

max
s

max
t

(
τ s(t)+ aσ s

n (t)
)
< b,

where a and b are material constants and s is an index of the slip plane.
Looking at the macroscopic assembly of a number of grains g, this infinite lifetime criterion can be

extended to
max

g
max

s
max

t

(
τ s(t)+ aσ s

n (t)
)
< b,

where maxg refers to the most critical grain.
Under the assumption that the grain orientations statistically cover all directions [Papadopoulos 1994;

1995], this can be simplified to
max

t

(
τ(t)+ aσ H (t)

)
< b,

which is the classical DVC formulation. Here τ is the Tresca norm of the mesoscopic shear and
σ H
= 1/3 tr σ is the hydrostatic stress.

We can now recall that it is currently accepted that the Papadopoulos formulation of the criterion
provides practically equivalent predictions to the initial Dang Van formulation and can thus be expressed
as k∗+ aσ H

max < b, where k∗ denotes the smallest radius of a hypersphere encompassing the stress path
and σ H

max is the maximal hydrostatic stress.
It is common to represent the stress path in a mesoscopic shear τ(t) versus mesoscopic hydrostatic

stress σ H (t) diagram as schematically drawn in Figure 2. The line defined by the criterion is the frontier
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Figure 2. Illustration of the Dang Van criterion (DVC) in the τ , P plane.

between infinite life and fatigue. Component life for a load path contained completely below the DVC
line will be infinite. If any point of the load path is located above the DVC line, fatigue will occur.

The parameters a and b are generally obtained from the torsion and bending fatigue limits, t∞ and
f∞ respectively, as

a =
t∞− 1

2 f∞
1
3 f∞

, b = t∞.

3. The experiments and their modeling

The discussion will be based on the simulation of three different setups (see Figure 3):

(i) a repeated tensile experiment (in plain strain) on a box specimen

σ = σmax
1+ sin(t)

2
(ey ⊗ ey + νez ⊗ ez), t ∈ R;

(ii) an alternated shear experiment (in plain strain) on a box specimen

σ = τmax sin(t)(ex ⊗ ey + ey ⊗ ex), t ∈ R;

(iii) a repeated tensile experiment (in plain strain) on a notched specimen

σ = σmax
1+ sin(t)

2
(ey ⊗ ey + νez ⊗ ez), t ∈ R.

Shear alternated loading was chosen instead of repeated loading, as repeated loading required an exces-
sively large number of cycles to reach an elastic shakedown. This can be easily explained considering
that onset of first mesoscopic plasticity is reached at a macroscopic shear of τ ≈ 0.75τY where τY is the
yield limit in shear [Dang Van and Papadopoulos 1999]. Therefore the maximal macroscopic shear in
repeated loading is τmax = 2τ ≈ 1.5τY � τY .

All experiments were modeled using both a homogeneous specimen with a macroscopic homogenised
constitutive law and a specimen with a polygrain inclusion embedded within a homogenised elastic
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(a)

(c)

(b)

Polycrystalline grain mesh

Homogeneous matrix mesh

Figure 3. Illustration of the three different loading systems and the corresponding
meshes which have been analysed.

material matrix (see Figure 3). The grain inclusion and the constitutive models for the grains will be
described in the next section.

For simplicity the models were limited to two dimensions with plane strain condition. Loading was
applied in displacement control at the mesh boundaries.

Care was taken to always remain macroscopically in the elastic shakedown state. However at the
mesoscopic scale, some grains experience yielding and reach either a plastic or an elastic shakedown
state after a few cycles.

Once the stabilized stress and strain fields had been obtained, the stress results of the FEM computa-
tions were post processed in the following ways:

(DV1) Computation of the DVC for each slip system in each grain (slip system projection): The DVC
for each slip system is computed using the precise knowledge of the grain orientation and the slip
systems of the grain. Thus one can precisely compute the mesoscopic shear and hydrostatic stress on
each slip system, and compute the inequality in [Dang Van 1993] in each case in order to determine
the most critical grain and slip direction.

(DV2) Computation of the Dang Van fatigue criterion in each grain: The computation of the criterion in
each grain is done using the classical algorithms of the DVC with the mean stress field computed
over each grain as an input value.

(DV3) Computation of the Dang Van fatigue criterion for the homogenous structure: The computation
of the criterion is performed using the classical algorithms of the criterion with the stress field
computed from a homogenous elastic structure submitted to the same load. In this case only the hot
spot of the structure, the most critical point, is plotted in the mesoscopic shear-hydrostatic stress
diagram.
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Figure 4. Macroscopic and mesoscopic material behaviour compared with experimental
data averaged over a number of grains in a cyclic axial loading simulation.

4. The material

The material considered in this study corresponds to an austenitic steel with FCC crystallographic struc-
ture. The material behaviour during a cyclic tensile test is displayed in Figure 4 and has been modeled
at the macroscopic scale using an elastoplastic constitutive law with linear kinematic hardening.

At the mesoscopic scale the material was modeled based on a map of grains and lattice orientations
obtained from experimental observation. The grain boundaries were mapped by image processing of
electronic microscopy images. Lattice orientations were found by orientation imaging microscopy using
electron back scattering diffraction and were assigned in the form of Euler angles for each grain.

In this study a map of 156 grains was used (see Figure 5). Each grain was individually meshed in two
dimensions using linear 3 noded elements.

The material behaviour at the mesoscopic or grain scale is captured by a simplified phenomenological
elastoplastic constitutive law with linear kinematic hardening. It assumes that plastic deformation is
primarily caused by crystallographic slip, which applies to most cubic crystals and some hexagonal-
close-packed crystals as discussed by Weng [1983] or by Kowalczyk and Gambin [2004].

We assumed that the applied stress resolved along the slip direction on the slip plane (to give a shear
stress) initiates and controls the extent of plastic deformation. Yield begins on a given slip system when
the shear stress on this system reaches a critical value, the critical resolved shear stress, independent
of the tensile stress or any other normal stress on the lattice plane [Bertolino et al. 2007]. For FCC
lattice structure this assumption is acceptable, however in less symmetric lattices, there may be some
dependence on the hydrostatic stress.
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Figure 5. Grain contours of the microstructure used in this study.

For each grain g, the local yield criterion fg(σg) is obtained by the Schmid law. The individual yield
stress σ c

g depends on the active slip (gliding) system s

σ c
g =min

s

τ0

F s
g
,

where τ0 denotes the critical resolved shear stress (a material parameter) and F s
g the Schmid factor

computed for each slip system using the lattice orientation provided for each grain. All twelve slip
systems s of the FCC crystal structure were considered for the computation of σ c

g and are given in
Table 1. For clarity Figure 6 shows one of the FCC slip planes with its associated slip directions.

The macroscopic yield stress σy , the Young’s modulus E , and the macroscopic kinematic hardening
modulus H were identified from a macroscopic tensile test. The identification of the mesoscopic material
parameters was carried out using a square grain inclusion (see Figure 5) in a square elastoplastic matrix
(see Figure 3). The parameters were then adjusted to match the numerical homogenisation, that is, the
averaged response over all the grains, with the macroscopic behaviour. The complete set of macroscopic
material parameters is presented in Table 2.

It is important to note that, although the identification of the material parameters was carried out in
the plastic regime, it was ensured that loading during the actual simulations presented next was such that
the matrix always remained in the elastic regime.

Slip plane Slip direction

( 1 1 1) [ 1 −1 0], [−1 0 1], [ 0 1 −1]
( 1 −1 1) [ 0 −1 −1], [ 1 0 −1], [ 1 1 0]
(−1 −1 1) [ 0 −1 −1], [ 1 0 1], [−1 −1 0]
(−1 1 1) [ 0 1 −1], [ 1 0 1], [−1 −1 0]

Table 1. FCC slip planes and the associated slip systems.
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Figure 6. FCC crystal structure with one slip plane and its associated slip directions.

All finite element stress computations were performed using the object oriented finite element toolbox
[Cast3M 2008] which includes a number of preprocessing, solving, and postprocessing routines. Parts
of the postprocessing procedures were performed using MATLAB.

5. Results and discussion

The presentation of the numerical results is carried out by plotting the critical instant found for each grain
on a Dang Van plot (see Figure 7). The critical grain instances are computed by post processing scheme
1 from the stabilised stress trajectory in each grain once a shakedown state has been reached (see Figure
2).

First, to validate the proposed approach, it was essential to verify that for tensile and shear loading,
performed on the box specimen, the projection of mesoscopic shear onto crystal slip systems (post
processing method DV1) leads to similar results as the DVC (post processing DV3).

To ensure that the number of grains in the grain mesh constitutes a representative sample, two further
grain inclusions with randomly generated lattice orientations based on the same grain structure were
generated. Figures 8 and 9 represent plots of mesoscopic shear versus hydrostatic stress of the grain
critical instances for these three different distributions of lattice orientations (O1, O2, O3), when subjected
to macroscopic shear and tensile loading respectively.

E (GPa) ν σY (MPa) H (MPa) a b (MPa)
210. 0.3 670. 9500. 0.45 260.

Table 2. The macroscopic material parameters: E is Young’s modulus, ν Poisson ratio,
σY the yield limit, H the kinematic hardening modulus, and a and b Dang Van fatigue
parameters.
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Figure 7. Plotting scheme of grain critical instances.

5.1. No stress gradient: box specimen. In each simulation, the structure was subjected to 5 cycles and
the results from the last cycle were plotted. In both cases the homogeneous elastic solution has also
been represented (corresponding to postprocessing DV3). One can easily remark that the clouds of grain
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Figure 8. Three clouds of grain critical instances plotted in a Dang Van diagram of
mesoscopic shear versus mesoscopic hydrostatic stress for different lattice orientations
(O1, O2, O3) in the case of alternated shear loading.
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Figure 9. Three clouds of grain critical instances plotted in a Dang Van diagram for
different lattice orientations (O1, O2, O3) in the case of repeated tensile loading.

critical instances (see Figures 8 and 9) are just below the homogeneous critical instant and that the most
critical grain approximately coincides with the homogeneous solution.

If the applied load is below the fatigue limit it can be seen that the clouds of critical instances are
compact with a small range of mesoscopic hydrostatic stresses, corresponding to small pressures (see
Figure 10, σmax = S2 (shear loading) and Figure 11, τmax = T2 (tensile loading)). When loading is
increased the clouds of grain critical instances closely follow the homogenous elastic solution point. Also
the clouds spread out and the range of mesoscopic hydrostatic stress increases significantly (see Figure
10, σmax = S1 (shear loading) and Figure 11, σmax = T1 (tensile loading)). This is a direct consequence of
increased grain plasticity with increasing applied load, as the hydrostatic stress range is directly related
to the residual stress distribution in the individual grains. However when the residual stress average is
computed across all the grains it is close to zero as one would expect. This confirms that macroscopically
the homogeneous elastic solution can still be used as a reference.

The case of shear loading (see Figure 10) presents an interesting distribution of grain critical instances
in the case where practically no plastic deformation has been observed. The zero mesoscopic hydrostatic
stress observed in this case is coherent with and as expected for shear loading. As load increases however,
the range of mesoscopic hydrostatic stresses increases and the grain critical instances spread out, as a
result of the increase in grain plasticity.

5.2. Results and discussion: with stress gradient. Next we shall examine the behaviour of the grain
inclusion when exposed to a stress gradient. This gradient was introduced by means of a notch with a
stress concentration factor of approximately 5 (see Figure 3, configuration c)

One would expect the strain and stress distribution in the homogenous specimen to differ significantly
from that in the specimen containing the granular inclusion. However, they show considerable similarity
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Figure 10. Two clouds of grain critical instances plotted in a Dang Van diagram for two
different applied shear loads, τmax = S1, S2.

since we primarily remain in the elastic regime which is the same for both models and only a few grains
show small plastic deformations.

Figure 12 displays in a Dang Van diagram the grain critical instant clouds found in the case of repeated
tensile loading of the notched specimen. For the specimen containing the granular inclusion two different
clouds were computed:

• one by projecting the mesoscopic stresses onto the slip systems in each grain, and thus computing
greatest mesoscopic shear and hydrostatic stress (post processing DV1), and

• one by direct application of the DVC to each grain (post processing DV2).
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different applied tensile loads, σmax = T1, T2.
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Figure 12. Two clouds of grain critical instances plotted in a Dang Van diagram for the
case of repeated tensile loading for a notched specimen. The first cloud is computed
by projecting the mesoscopic stresses onto the most critical slip system (post processing
DV1), whilst the second cloud shows the application of the DVC to each grain (post
processing DV2).

The most critical point in the cloud obtained using the grain DVC (post processing DV2) is close to the
point obtained from the homogeneous solution (post processing DV3). This means that the most critical
grain will experience the same damage as the notch tip, as they both experience a similar stress path.

Let us recall however that the DVC searches the mesoscopic shear on the most critical plane. In reality
the likelihood that any slip system of the grain at the notch tip is aligned with the most critical plane
predicted by Dang Van is small. Therefore the grain actually experiences a smaller mesoscopic shear
amplitude on its active slip systems. Consequently we find that the second cloud obtained from the most
critical slip system in each grain (post processing DV1) is far below the homogeneous computation point.

It is important to understand the role of the stress gradient in this setting. Because of the high stress
gradient only a few grains located at the notch tip will experience the high stresses, reducing the chance
of alignment of a slip system with the most critical plane. The bulk of the grains will experience a much
lower stress approaching the far field stress applied to the boundaries of the notched specimen which is
much lower than the stress at the notch tip.

In contrast, if the stress gradients are small, as in the box specimen, all grains experience very similar
stresses and the likelihood that a slip system of a grain is aligned with the most critical plane predicted
by Dang Van is high.

Figure 13 shows the distribution of grain critical instances for a notched specimen loaded in tension
for a number of different randomly allocated sets of lattice orientations (O1, O2, O3). As the clouds
of grain critical instances occupy the same region of the Dang Van plot, the observed behaviour of the
notched specimen can be seen as representative of the general case for any set of randomly distributed
lattice orientations. A more quantitatively orientated investigation of the statistics of grain critical instant
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Figure 13. Three clouds of grain critical instances plotted in a Dang Van diagram for
different lattice orientations (O1, O2, O3) in the case of repeated tensile loading of a
notched specimen.

distribution and its distance to the point of the homogeneous solution would allow the definition of an
equivalent notch factor or a critical distance as usually employed in classical fatigue analysis.

When the applied load is increased (see Figure 14), the clouds of critical instances found from slip
system projection in each grain (post processing DV1) follow the homogeneous solution as expected.
However, we remark that the density of the cloud near the homogeneous solution is smaller than observed
in the case of the box specimen. This is a direct consequence of the high stress gradient which places
emphasis on a small number of grains independently of the bulk load.
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This observed behaviour is directly due to the breakdown of the underlying homogenisation assump-
tion of the Dang Van fatigue criterion. In the presence of a steep stress gradient with a characteristic length
scale of the same order as the local microstructural length scale, the assumption that at each material
point a uniform distribution of all lattice orientations is present fails. The local number of grains at each
material point is too small to constitute a macroscopic representative volume element. This breakdown
of the homogenisation assumption is phenomenologically captured in the notch factor or critical distance
concept in fatigue analysis.

Although the discussion here was based on a two dimensional model of an austenitic steel with
FCC crystal structure, this does not limit the generality of the presented results and conclusions. The
breakdown of homogenisation assumption when macroscopic loading and microstructural length scales
approach can be readily extended to three dimensions and other crystal lattice structures.

6. Conclusion

In this paper a number of numerical fatigue experiments using a simplified polycrystalline model at
the mesoscopic/grain scale have been presented. The impact of the applied stress gradient on fatigue
life prediction was shown considering the example of a notched specimen. It was shown that high
localization of stresses causes failure of the homogenisation assumptions as only few grains are exposed
to very high stresses. This failure implies a fundamental change in the application of fatigue criteria
in general and more particularly of critical plane criteria such as Dang Van criterion in cases of high
stress gradient. The results also provide a physical explanation for critical distances and notch factors
encountered in engineering practice and underline the fact that whenever the length scales of macroscopic
loading and local microstructure approach, difficulties with macroscopic homogenisation assumptions
will be encountered.

A finer quantitative analysis both at the meso and macroscopic levels should allow the development
of a better understanding and ability to predict fatigue for stress states involving high gradients such as
those found in notched or cracked specimens and bending experiments.
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CYCLIC APPROXIMATION OF THE HEAT EQUATION IN FINITE STRAINS
FOR THE HEAT BUILD-UP PROBLEM OF RUBBER

YOHAN LE CHENADEC, IDA RAOULT, CLAUDE STOLZ AND MAC-LAN NGUYEN-TAJAN

It is well-known that rubber exhibits hysteretic mechanical behavior and has a low thermal conductivity.
The main consequences are the heat generation and heat build-up phenomena which occur in a rubber
component when subjected to repeated deformations. Estimating the heat build-up temperature implies
the solution of a coupled thermomechanical problem. Due to the difference between the mechanical and
the thermal diffusion characteristic times, a cyclic uncoupled approach is often used to solve the heat
build-up problem.

In the uncoupled approach, the heat sources are first determined with a mechanical analysis, and the
heat equation is then solved on a fixed geometry. At finite strains, the geometry of the body varies
with the deformation but the foregoing method does not account for such changes in geometry. The
exact solution would require describing the body deformation while solving the thermal problem, but
this does not take advantage of the difference between the characteristic times of the thermal diffusion
and the mechanical behaviour, respectively, and the exact numerical resolution is therefore unnecessarily
time-consuming.

The purpose of the current work is to take into account kinematics in the thermal problem when
using a cyclic uncoupled approach. The heat problem is written in the reference configuration. That
implies that the problem is defined on a fixed domain: the initial configuration of the body. The changes
in geometry in the reference heat equation are thus described by mechanical time-dependent variables.
The cyclic assumption allows mean variables to be defined, for example the mean temperature. A time-
integration method and an approximation of the heat equation are developed, leading to a simplified
formulation with mechanical time-independent terms. This simplified heat problem is based on the
mean variables.

1. Introduction

Heat build-up is the rise in temperature caused by heat generation in a component subjected to repeated
deformation. It is characterized by a slow increase of the mean temperature until the steady-state tem-
perature field is reached; see Figure 1. A high frequency oscillation in temperature is superimposed
on the mean temperature, as seen on the second half of the figure. This oscillation is caused by ther-
moelastic effects: Gough [1805] first reported that the temperature of rubber increased when it was
stretched. Measurements have shown that the temperature first decreases until reaching a minimum
and then increases [Joule 1859; James and Guth 1943]. This thermoelastic inversion phenomenon has
been studied and is due to the competition between the thermal expansion and the entropic aspect of
rubber elasticity [Chadwick 1974; Treloar 1975]. This thermoelastic oscillation is not relevant in the

Keywords: thermomechanical couplings, heat build-up, heat equation, finite strains, rubber.
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Figure 1. Temperature of a rubber component subjected to a cyclic deformation
(0.5 Hz), measured with an infrared thermometer. The rectangle is enlarged on the right.

heat build-up problem; the heat build-up temperature is then defined as the actual temperature minus the
thermoelastic effect.

Heat generation is the conversion of applied mechanical energy into heat due to the hysteretic be-
haviour of rubber. The causes and consequences of heat generation have been extensively explored in
the literature [Medalia 1991; Meinecke 1991; Kar and Bhowmick1997a; 1997b; Park et al. 2000]. It is
generally attributed to molecular friction, but at large strains in natural rubber much of the hysteresis is
thought to be associated with strain-induced crystallisation [Toki et al. 2000; Trabelsi et al. 2003]. The
main consequence of hysteresis is to increase the temperature.

Estimating the heat build-up in a rubber component requires the solution of a coupled thermomechan-
ical problem, defined both by mechanical and thermal equations. Coupled or uncoupled methods are
available to solve the thermomechanical problem

(1) Fully-coupled algorithm where both thermal and mechanical variables are calculated at the same
time [Simo and Taylor 1991; Reese and Govindjee 1997].

(2) Staggered (fractional-step) methods that split the coupled thermomechanical problem into two sim-
pler problems [Armero and Simo 1992].

(3) Uncoupling the thermal and mechanical problems under the assumption of cyclic loading [Whicker
et al. 1981b; Sarkar et al. 1987; Ebbott et al. 1999]. Three analysis modules are needed: deformation,
dissipation and thermal modules. First the mechanical problem is solved for one cycle. Then the
dissipation is estimated and the thermal problem is solved for many cycles on one fixed geometry
until the rise of temperature is significant, whereupon the mechanical problem is updated using the
actual temperature.

The two first methods are exact and are indicated for solution of the thermoelastic problem over a
limited number of cycles [Holzapfel and Simo 1996; Reese and Govindjee 1997]. The last method is
often used in the literature for heat build-up problems since it offers a quicker solution.

The main difficulty of the thermomechanical problem lies in the coupling between the thermal and
mechanical variables. Thermomechanical coupling can be classified into four categories:
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(1) The dependence of stress on temperature [Anthony et al. 1942].

(2) Thermal effect of extension [James and Guth 1943; Treloar 1975].

(3) The heat generation produced by the hysteretic behaviour of rubber.

(4) The coupling between kinematics and the heat equation due to finite strains.

The dependence of stress on temperature is required for a very precise analysis of stress over a cycle but is
not essential when the main issue is the determination of the heat build-up temperature. The contribution
of the thermoelastic coupling to the dissipation over a stabilized cycle is actually zero [Lion 1997]. The
consequence is that it is not necessary to represent thermoelastic effects to estimate the heat build-up
temperature. The heat generation correspond to the heat sources: it is generally assumed that the loss
of energy is nearly completely converted into heat. The last type of coupling arises from the solution
of the thermal problem on a moving domain due to the cyclic deformation of the body. This coupling
is neglected in uncoupled cyclic solutions since the heat equation is solved on one fixed geometry and
not on the actual geometry. This coupling is negligible under the small strain condition, but it becomes
essential to account for it at large strains. The purpose of our work is to account for this coupling within
the cyclic uncoupled solving.

The paper is organized as follows: in Section 2 the cyclic uncoupled thermomechanical approach is
presented. In Section 3 the heat equation is approximated over a cycle in order to take into account
kinematics. Section 4 deals with numerical simulations of heat build-up of a specimen. Our conclusions
are summarized in the final section.

2. Cyclic uncoupled thermomechanical approach

Let us assume a cyclic mechanical loading. Our analysis is based on the difference between mechanical
and thermal diffusion characteristic times in heat build-up problems: the temperature increases slowly
and many mechanical cycles are needed to reach the steady-state temperature. This difference between
characteristic times cannot be emphasized by coupled thermomechanical algorithms since both thermal
and mechanical variables are calculated at the same time. Only an uncoupled approach is able to take
advantage of this difference in terms of time computation. The uncoupled cyclic algorithm is thus adopted
[Whicker et al. 1981b; Sarkar et al. 1987].

This algorithm is the following (see Figure 2): the mechanical problem is first solved, then the loss
of energy is estimated and put into the heat equation as heat sources. The thermal problem is solved
on a fixed geometry and a loop is finally created. This loop allows us to update material data with the
temperature. This algorithm uncouples the mechanical and the thermal solution in the sense that the heat
equation is solved over a interval bigger than the mechanical characteristic time. The most interesting
case is when the mechanical problem is solved for one cycle and the thermal problem is solved for
many cycles. This feature quickens the solving of the heat build-up problem. The cyclic uncoupled
thermomechanical algorithm is consistent with the definition of the heat build-up temperature given in
the introduction that neglects the thermoelastic coupling.

The uncoupled approach is accurate for small or medium strains. The deformation of the body is small
and the boundary value problem of heat equation can be solved on a fixed geometry and totally uncoupled
from the mechanical analysis. But if the strain is large enough to modify the geometry of the component
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Figure 2. Simplified diagram of the thermomechanical uncoupled approach proposed
in [Whicker et al. 1981a].

during the mechanical cycle, the solution of the thermal analysis will strongly depend on the choice of
the fixed geometry, independently of the configuration. That implies that it would be necessary at large
strains to follow the geometry deformation during the cycle to solve the thermomechanical problem. This
coupled solution does not take advantage of the cyclic uncoupling algorithm in terms of time. In the next
section a simplified heat equation, which accounts for the changes in geometry, is presented.

3. The simplified heat equation

In the case of periodic deformation, a method is developed to solve the heat equation with taking into
account the cyclic geometry deformation. The scheme of the solving is the following: first write the heat
equation in the reference configuration, then define mean variables such as temperature or thermal con-
ductivity, and finally integrate with respect to time and approximate the heat equation and the boundary
conditions.

3A. Kinematic description. A material point in actual (or Eulerian) configuration Ex is linked to its po-
sition in the reference (or Lagrangian) configuration EX by the motion Ex = 8( EX , t). The deformation
gradient F and the right Cauchy-Green strain tensor C are defined by

F =
∂8( EX , t)

∂ EX
and C = FTF. (3-1)

The transformation relations for the length, surface, and volume elements between the reference and the
actual configuration are given by

dEx = Fd EX , dEa = ds En = J F−Td EA, and dv = JdV with d EA = dS EN and J = det F. (3-2)

The density is obtained by ρ0( EX , t)= Jρ(Ex, t).

3B. Thermal conductivity. The thermal conductivity of rubber is generally isotropic in the natural state,
but it is sensible to think that it becomes anisotropic with the deformation. Previous models based on the
network theory related the thermal conductivity to the deformation [van den Brule 1989; van den Brule
and O’Brien 1990] . Measurements proved that the thermal conductivity of rubber actually changes with
the deformation [Tautz 1959; Broerman et al. 1999]. The conductivity is higher in the stretched direction
and lower in the compressed direction. The magnitude of this phenomenon depends on the material and
varies from 10 to 100% at stretch λ = 2. In the following, the thermal conductivity tensor k(C, T ) is
implicitly supposed to be dependent of the deformation.
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3C. The heat equation in the reference configuration. The local equation of the energy balance in the
actual reference and the boundary conditions are

ρc
∂T
∂t
= ρr − div Eq and Eq · dEa = hda(T − T∞) (3-3)

where c is the heat capacity, r(Ex, t) represents the generation of heat supplied from outside, div is the
divergence operator with respect to the coordinates Ex in the actual configuration and Eq(Ex, t) is the heat
flux. The latter is related to the temperature by Fourier’s law

Eq(Ex, t)=−k(C, T )grad T (3-4)

where k(C, T ) is the thermal conductivity tensor and grad is the gradient operator with respect to the
actual reference. Note that the boundary conditions represent either the natural convection with the
convection coefficient h and the far-field air temperature T∞, or the imposed temperature when h→∞.
These equations are written in the reference configuration

ρ0c
∂T
∂t
= ρ0 R−Div EQ, EQ · d EA =

da
dA

h︸︷︷︸
H( EX ,t)

dA(T − T∞), (3-5)

where Div is the divergence operator with respect to the reference configuration, R( EX , t)= r(Ex, t) is the
external heat production rate and EQ is the transported heat flux given by

EQ( EX , t)= J ( EX , t)F−1( EX , t)Eq(Ex, t). (3-6)

Fourier’s law and the relationship grad T = F−T E∇T between the Eulerian and Lagrangian gradient lead
to the Lagrangian expression of the heat flux

EQ( EX , t)=−J ( EX , t)
(
F−1k(C, T )F−T)( EX , t) E∇T ( EX , t). (3-7)

The reference thermal conductivity is given by

K (C, T )= J ( EX , t)
(
F−1k(C, T )F−T)( EX , t). (3-8)

The convection coefficient H in the reference configuration depends on time and takes into account
the variation of the surface along the deformation. Its expression is given by

H( EX , t)= h
da
dA
= h J

√
EN TC−1 EN . (3-9)

3D. Approximation of the heat equation. Suppose that the deformation is periodic with period P . A
mean temperature Tm function of time can be defined by

Tm( EX , t)=
1
P

∫ P/2

−P/2
T ( EX , t + τ)dτ (3-10)

and the temperature oscillation is

Ta( EX , t, τ )= T ( EX , t + τ)− Tm( EX , t) . (3-11)
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By extension, the mean and oscillatory variables are described by subscripts m and a. For the sake of
readability, the space variable EX will not be written anymore in the following. The mean conductivity
tensor is given at a fixed temperature Tm(t) by

K m(t)= K m(Tm(t))=
1
P

∫ P/2

−P/2
K (C(t + τ), Tm(t)) dτ. (3-12)

The oscillatory conductivity tensor is thus

K a(t, τ )= K (C, T )(t + τ)− K m(t). (3-13)

Given t , the heat equation becomes

ρ0c
∂T
∂τ
(t + τ)= ρ0 R(t + τ)+Div (K m(t)+ K a(t, τ ))

(
E∇T m(t)+ E∇T a(t, τ )

)
. (3-14)

The heat equation for Tm is obtained by the integration of (3-14) over one period

ρ0c
∂Tm

∂t
= ρ0 Rm +Div

(
K m(t) E∇T m(t)

)
+Div

(
1
P

∫ P/2

−P/2
K m(t) E∇T a(t, τ )dτ

)
︸ ︷︷ ︸

=0

+Div
(

1
P

∫ P/2

−P/2
K a(t, τ ) E∇T (t + τ)dτ

)
︸ ︷︷ ︸

A(t)

. (3-15)

The left-hand term is developed as

∂Tm

∂t
=
∂
( 1

P

∫ P/2
−P/2 T (t + τ)dτ

)
∂t

=
T (t + P/2)− T (t − P/2)

P
=

1
P

∫ P/2

−P/2

∂T (t + τ)
∂τ

dτ. (3-16)

As regards the boundary conditions, the same considerations lead to

− K m(t) E∇T m(t) EdA = Hm(t)dA (Tm(t)− T∞)+
1
P

∫ P/2

−P/2
K m(t) E∇T a(t, τ )dAdτ︸ ︷︷ ︸

= 0

+
1
P

∫ P/2

−P/2

(
Ha(t, τ )Ta(t, τ )dA+ K a(t, τ ) E∇T (t + τ). EdA

)
dτ︸ ︷︷ ︸

B(t)

. (3-17)

In the heat build-up problem of a rubber component, A(t) and B(t) are negligible. This approximation
is justified by one assumption linking the two characteristic times: the mechanical characteristic time
tmech is small compared to the thermal diffusion time ttherm = ρcL2/k where L is the characteristic
dimension.

Note that for rubber the thermal diffusivity is of the order of k/ρc ' 1.10−7 (Table 1). Typical
mechanical time for heat build-up problem ranges between 0.1 s and 1 s. The characteristic thermal
length corresponding to this mechanical time is then

√
kTmeca/(ρc)' 0.3 mm� L . This means that a

variation in the thermal problem during a mechanical cycle is limited at this scale. The conclusion to be
drawn is that at the macroscopic scale (of the order of one millimeter), the temperature oscillation due
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Parameter Value

Heat generation 2× 10−8 J m−3

Frequency 10 Hz
Thermal conductivity 0.23 W m−1 K−1

Convection coefficient 30 W m−2 K−1

Temperature 23 ◦C
Density 1.1
Heat capacity 1.45× 103 J Kg−1 K−1(23 ◦C)
Thermal diffusivity 1.44× 10−7 m2s−1

Table 1. Parameters used for the numerical simulation.

to the cyclic changes in the boundary conditions and in the conductivity is small compared to the mean
temperature: Ta � Tm . The regularity of the heat equation leads to E∇T a � E∇T m . These two conditions
imply that at the macroscopic scale, the terms A(t) and B(t) are negligible. The mean thermal problem
is then properly defined on the reference configuration.

This approximation finally leads to this simplification of the heat equation

ρ0c
∂Tm

∂t
= ρ0 Rm +Div K m(Tm) E∇T m (3-18)

with the boundary conditions

−K m(Tm) E∇T m · EdA = HmdA(Tm − T∞), (3-19)

where the heat flux is defined by EQm =−K m(Tm) E∇T m .
This problem is defined on the reference configuration and the thermal parameters are constant. The

thermal conductivity tensor is anisotropic and accounts for the mean path of the heat flux in the component
over a cycle. The mean convection coefficient represents the mean of the exchange with ambient air. The
resolution of this problem is also faster than the resolution of the coupled one, because the mechanical
time does not appear anymore.

4. Numerical simulation

The simplified heat equation has been tested through FE modeling. The modeled specimen is a 5 mm
radius cylinder. A sinusoidal deformation is imposed between stretches λ = 1 and λ = 2 (Figure 3).
The heat source is homogeneous and temperature-independent. For the sake of simplicity, the thermal
conductivity and the convection coefficient are supposed to be Eulerian constants. The value of the
parameters are given in Table 1 and are typical for a carbon-black-filled rubber. In this example, the
constitutive law has no importance. Four calculations have been undertaken:

• Fully-coupled calculation (50 increments per cycle).

• Uncoupled calculation on the maximal deformed geometry.

• Uncoupled calculation on the undeformed geometry.

• Uncoupled calculation with the simplified heat equation.
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q.n = 0

q.n = 0

q.n = 0

q.n = 0

λ(t) = 1.5 + 0.5 sin2πt

5 mm

Figure 3. Undeformed and maximal deformed geometry of the 5 mm radius cylinder.

The results are presented in Figure 4. Whereas the uncoupled calculation on a fixed geometry implies
an error of about 25% on the temperature compared to the fully-coupled solution, the error between
the approximated solution and the coupled one is less than one percent and the two solutions can be
considered to be equivalent. The time of calculation for the simplified problem is thus about three orders
of magnitude smaller than for the fully-coupled problem for this simple specimen.
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Figure 4. Left: Maximal temperature versus time for the four calculations. Right: Tem-
perature versus radial position.

5. Conclusions

The heat build-up temperature has been defined as the actual temperature minus the temperature change
due to thermoelastic effects. This heat build-up in rubber leads to a coupled thermomechanical problem.
Due to the difference between the mechanical and thermal characteristic times, the quickest way to
numerically solve this problem is to use a cyclic algorithm uncoupling the mechanical and the thermal
problems. Unfortunately, the uncoupling approach does not account for the changes in geometry during
the mechanical loading since the thermal problem is supposed to be solved on a fixed geometry. Under
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the cyclic assumption, an approximation of the heat equation has been developed and allows the use of
this algorithm at finite strains. This approximation is based on the integration of the heat equation and
the boundary conditions over one cycle. These equations are written in the reference configuration so
that the definition domain remains constant during one cycle. This approximation permits the use of the
powerful uncoupling algorithm at finite strains: a numerical simulation illustrates the usefulness of this
method.
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INELASTIC HEAT FRACTION EVALUATION FOR ENGINEERING PROBLEMS
INVOLVING DYNAMIC PLASTIC LOCALIZATION PHENOMENA

PATRICE LONGÈRE AND ANDRÉ DRAGON

The evaluation of the temperature produced during adiabatic dissipative processes for a large class of
engineering materials (metals and some polymers) remains a major subject of interest, notably in the
fields of high-speed machining and impact dynamics. The hypothesis consisting in considering the
proportion of plastic work dissipated as heat (quantified by the inelastic heat fraction β) as independent
on the loading path is now recognized as highly simplistic. Experimental investigations have shown
indeed the dependence of the inelastic heat fraction on strain, strain rate and the temperature itself.
The theoretical studies available nowadays are not entirely conclusive on various features regarding the
history dependence and the evolution of β. The present work attempts to provide a systematic approach
to the temperature rise and the inelastic heat fraction evolution for a general loading within the framework
of thermoelastic/viscoplastic standard modelling including a number of quantitative variants regarding
strain hardening/thermal softening and thermomechanical coupling description. The theoretical results
thus obtained are confronted with experimental data from the literature. An analysis of the effects of
various model simplifications on the evaluation of temperature growth with regard to conditions for
dynamic plastic localization occurrence is also carried out. It is shown that the value of critical shear
strain at localization incipience is strongly dependent on the level of simplification admitted.

1. Introduction

As a consequence of dynamic loading under (quasi) adiabatic conditions, many materials, and especially
high strength metallic ones, are subject to plastic deformation localization in the form of narrow bands.
This phenomenon, known as adiabatic shear banding (ASB), intervenes as thermal softening overcomes
strain hardening and is often the precursor of structural failure. Many experimental as well as theoretical
studies have been devoted to this deterioration process induced by thermal instability in terms of onset
conditions, collective band behaviour and postcritical response [Zener and Hollomon 1944; Recht 1964;
Marchand and Duffy 1988; Bai and Bodd 1992; Longère et al. 2005]. They all point out the crucial role
of temperature. An accurate knowledge of the heat Q̇ generated by the plastic work rate Ẇ p during
adiabatic dissipative evolution is thus needed. The quantity characterizing the proportion of plastic work
dissipated as heat is commonly denoted β, such that Q̇ = βẆ p, and is usually called the inelastic heat
fraction Taylor–Quinney coefficient [Taylor and Quinney 1934]. The engineering viewpoint consists in
supposing that the inelastic heat fraction coefficient β remains constant during any process. When simu-
lating numerically dynamic adiabatic problems using engineering computation codes, this assumption —
which supposes that the coefficient β may be postulated a priori — is useful in the sense that it allows for
accounting for thermomechanical couplings without solving the heat equation. In the literature, the value

Keywords: thermomechanics, viscoplasticity, inelastic heat fraction, nonlinear modelling, dynamics, localization.
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of β typically ranges from 80 to 100% [Campagne et al. 2005; Guo et al. 2005] — in other words, between
80% or 100% of the plastic work is supposed to be converted into heat. However many experimental
investigations have shown that the proportion of plastic work dissipated as heat is strongly dependent
on temperature, strain and strain rate. Starting from this crude fact, this paper aims at proposing a more
rigorous assessment of the temperature rate Ṫ and the related inelastic heat fraction coefficient β (as
an evolving quantity) for any three-dimensional loading path and thermoelastic/viscoplastic standard
materials by using irreversible thermodynamics concepts in the context of adiabatic processes. As an
application of this work, the consequences of various levels of simplification for evaluating both of the
aforementioned quantities are studied in the context of ASB dynamic plastic localization onset conditions.

According to the extensive review by Bever et al. [1973] concerning the experimental investigations
of the ratio a of the stored energy Ẇ s to the mechanical energy Ẇ (a = Ẇ s /Ẇ ) during various plastic
deformation processes, this ratio may be as expected strongly dependent on the loading path, on the
material and on the deformation magnitude. In the present work we are rather interested in the energy
adiabatically transformed into heat Q̇ as a linear function of the plastic deformation energy Ẇ p via
the so-called inelastic heat fraction β (β = Q̇ /Ẇ p). Particularly useful in the numerical simulation of
transient problems (crash, shock impact, etc.) for taking into account the thermomechanical coupling
under adiabatic conditions without solving the thermal problem, the inelastic heat fraction remains an
important subject of investigation, the accuracy of temperature measurement increasing thanks to the
improvement of the relevant devices. In this context, some experimental determination of heating during
plastic deformation at various strain rates tends to prove the dependence of the inelastic heat fraction on
strain, strain rate and temperature [Chrysochoos et al. 1989; Kapoor and Nemat-Nasser 1998; Oliferuk
et al. 2004]. Theoretical analyses [Aravas et al. 1990; Zehnder 1991] devoted to the subject agree with
the tendency mentioned above but qualitative results appear contradictory [Mason et al. 1994] depending
on the basic concepts used. The present work aims to propose an evaluation of the proportion of plastic
work dissipated as heat from a broad spectrum of thermoelastic/viscoplastic models within the internal
variables framework employing well-established thermodynamic concepts. With this aim in view, and
starting from the assumption of the existence of free energy and dissipation potential and applying the
first and second principles of thermodynamics, a class of characteristic constitutive three-dimensional
thermoelastic/viscoplastic models is investigated with respect to their capacity to reproduce the evolution
of β as a function of strain, strain rate and temperature. As the works by Rosakis et al. [2000] for one-
dimensional constitutive modelling and Clayton [2005] for crystalline plasticity based modelling, this
analysis strives to provide some complementary insight regarding heat generation versus dissipative
mechanisms involving strain, strain rate and temperature effects in dynamic plasticity. Comparison of
experimental and theoretical results concerning inelastic heat fraction evolution during some simple
loading is discussed showing striking effects and paradoxes.

A further item treated in the present work is the analysis of the effects of model simplifications in
the evaluation of temperature growth regarding conditions for dynamic plastic localization occurrence.
These conditions are obtained from a simplified analysis based on the theory of linear perturbation [Bai
1982; Clifton et al. 1984] in the form of a criterion relating the resolved shear stress to strain hardening,
thermal softening and viscosity parameters [Batra and Chen 2001; Longère et al. 2003] in the context
of adiabatic shear banding localization. The purpose of the present study is not to discuss or extend
the theory but to apply the method in order to obtain a practical criterion reproducing experimental
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observation — the reader can refer to [Molinari 1985; Fressengeas and Molinari 1985; Anand et al.
1987] for extensive methodological background. Various levels of simplification of the heat equation
formulation are consequently considered yielding corresponding criteria for ASB onset.

In Section 2 selected thermomechanical ingredients are recalled leading to the expression of the heat
equation in the case of thermoelastic/viscoplastic modelling. The context considered in this work con-
cerns loading at high strain rates for which adiabatic conditions can be assumed. Dissipative material
behaviour is thus supposed to be (visco)plastic and pressure insensitive. The strain rates range considered
is typically comprised between 102 and 104 s−1, and maximum value of temperature remains much lower
than the melting point.

In Section 3 several typical material behaviour models are studied including the combined effects of
isotropic strain hardening/softening, thermal softening and plastic viscosity. The influence of strain rate
and initial temperature as well as the influence of the functions used to describe the aforementioned
effects on the temperature rate and on the inelastic heat fraction are shown. A confrontation of the
theoretical results with experimental observations available in literature is also discussed.

In Section 4 three levels of simplification of heat equation are studied: first, due to its weak contribution
to temperature change the thermoelastic coupling is neglected ; second, thermodissipative couplings are
neglected as well ; finally the temperature rise is supposed to be directly linked to the plastic work rate via
the inelastic heat fraction assumed to have a constant value. The consequences of these simplifications
are examined in the context of thermal instability-induced dynamic plastic localization. With this aim in
view, the linear perturbation method is applied to the case of the simple shearing of a volume element
consisting of a thermo/viscoplastic material. The further parametric analysis shows how the value of the
critical shear strain at localization incipience is strongly dependent on the temperature rise evaluation
method.

2. Thermodynamic context and constitutive framework

The irreversible thermodynamics framework is used here to describe the thermoelastic-inelastic response
of a material [Perzyna 1966; Bataille and Kestin 1975]. For the first time, expressions of dissipated energy
and heat equation are given within the internal variable framework. The different levels of simplification
of the heat equation are then introduced in connection with the further study of heat evaluation at the
dynamic localization onset.

The instantaneous state of the material is described by a thermodynamic potential, namely the Helm-
holtz free energy per unit mass ψ(T, z) where T represents absolute temperature — which is supposed
to be a well defined entity within the thermodynamic framework employed — and z, a set of normal
variables. Gibbs’ relation takes the form:

ρ0ψ̇ = −ρ0sṪ + Z ż, s = −
∂ψ

∂T

∣∣∣∣
z
, Z = ρ0

∂ψ

∂z

∣∣∣∣
T
, (1)

where ρ0 represents the mass density in the initial configuration, s the entropy and Z the set of thermo-
dynamic (conjugate) forces associated with the state variables z.

According to the second law of thermodynamics, the mechanical part of dissipated energy is written
as

D = τ : d− Z ż ≥ 0, (2)
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where d represents the rate of deformation tensor and τ the Kirchhoff stress tensor defined as the Cauchy
stress tensor σ multiplied by the Jacobian determinant J of the deformation gradient F (J= det F), that
is, τ = Jσ .

Combination of the first law of thermodynamics and of Gibbs relation gives the local form of the heat
equation as

ρ0cz Ṫ + J div q− r = τ : d−
(

Z − T
∂Z
∂T

)
ż, (3)

where q is the heat flux vector per unit area, r the heat supply per unit volume, and

cz =−T
∂2ψ

∂T 2

∣∣∣∣
z

is the heat capacity at given z.
Equation (3) above relates thermal terms on the left side, including temperature rate Ṫ , heat conduction

div q, and heat supply r, to mechanical terms on the right side, including mechanical work rate τ : d and
other work rates Z ż, while the last term T ∂Z/∂T ż is referred explicitly to thermomechanical couplings.

The study is now reduced to thermoelastic/viscoplastic behaviour in the case of isotropic strain hard-
ening. The set of state variables is assumed in the form z ≡ (ee, p), where ee represents a measure of
moderate elastic strain, (ee

= ln V e ; Fe
= V e Q where Fe proceeds from the multiplicative split of the

deformation gradient F = Fe F p and where V e and Q represent the pure elastic stretching and the frame
rotation tensors respectively), and

p =
∫

t

√
2
3 d p
: d pdt

the isotropic strain hardening variable. The set of conjugate forces is thus given in the form Z ≡ (τ , R),
where R represents the isotropic hardening force (affinity).

The rate of deformation (symmetric part of the velocity gradient) d = [∂v/∂x]S is furthermore de-
composed into a reversible (‘elastic’) part

de
=

∇

ee
= ėe
−ωee

+ eeω,

(where ∇ designates the objective Jaumann derivative of a 2nd order tensor) and an irreversible part d p

such that d = de
+ d p [Sidoroff and Dogui 2001].

The mechanical dissipation in Equation (2) becomes

D = τ : d p
− R ṗ ≥ 0. (4)

The constitutive laws are thus expressed as

s = −
∂ψ

∂T

∣∣∣∣
ee,p

, τ = ρ0
∂ψ

∂ee

∣∣∣∣
T,p
, R = ρ0

∂ψ

∂p

∣∣∣∣
T,ee

. (5)

The free energy density ψ (T, ee
; p) is expressed in the form

ψ(T, ee
; p)= ψe(T, ee)+ψ th(T )+ψb(T ; p), (6)

where ψe(T, ee) is the recoverable energy including the isotropic linear thermoelasticity, ψ th(T ) is the
purely thermal energy, and ψb(T ; p) is the stored energy, which reflects the competition in the material



INELASTIC HEAT FRACTION EVALUATION FOR ENGINEERING PROBLEMS 323

between isotropic strain hardening and thermal softening. These contributions are written as

ρ0ψ
e(T, ee)=

λ

2
(Tr ee)2+µee

: ee
−αK (Tr ee)ϑ,

ρ0ψ
th(T )=−ρ0c0

(
T ln

T
T0
−ϑ

)
− h(0) f (T ),

ρ0ψ
b(T, p)= h(p) f (T )− h(0) f (0),

(7)

where λ and µ represent the Lamé elasticity constants, K = λ+ 2
3µ the bulk modulus, α the thermal

dilatation coefficient, c0 a thermal constant relative to heat capacity, ϑ = T − T0 the temperature rise,
h(p) the stored energy of cold work and f (T ) the thermal softening function. For simplification, the
thermoelasticity coefficients and c0 are supposed to be temperature independent.

From now on the elastic deformations will be considered as small (infinitesimal).
After partial derivation of Equation (6) with respect to (T, ee, p), thermodynamic forces (−s, τ , R)

are written as

−ρ0s =−αK Tr ee
− ρ0c0 ln

T
T0
− [h(0)− h(p)] f ′(T ), (8)

τ =
(
λTr ee

−αKϑ
)
δ+ 2µee, (9)

R = h′(p) f (T ). (10)

On the other hand, the heat capacity

cz =−T
∂2ψ

∂T 2

∣∣∣∣
z
= T

∂s
∂T

∣∣∣∣
z

takes the form

cz = c0+ T
[h(0)− h(p)]

ρ0
f ′′(T ).

Assuming a negligible contribution of the thermoplastic coupling term of this expression (this term is
always zero since f (T ) is an affine function), the heat capacity is supposed to be constant, that is, cz = c0.

By rewriting the mechanical dissipation equation (4) in the form D = Z̄ ˙̄z ≥ 0, Z̄ = (τ , R) represents
the set of thermodynamic forces associated to the set of fluxes ˙̄z =

(
d p,− ṗ

)
. Considering now time-

dependent plasticity and applying the normality rule with respect to the dual 9
(
Z̄
)

of the dissipation
potential, depending on Z̄ via the loading (yield) function F

(
Z̄
)

(that is, standard rule for ˙̄z), internal
state variable evolution laws are deduced from:

˙̄z =3
∂F

(
Z̄
)

∂ Z̄
, 3=

∂9(F)
∂F

≥ 0, (11)

where 3 represents the viscous multiplier governing dissipative mechanisms of plasticity.
Applying the normality rule to the present case yields

d p
=3

∂F
∂τ
; − ṗ =3

∂F
∂R
. (12)
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The yield function F
(
Z̄
)

in Equation (11) is assumed in the form of a Huber–von Mises criterion:

F (τ , R; T )= J2 (τ )− g(R, T ), (13)

where J2 (τ )=
√

3
2 s : s and s = τ − Tr τ

3 δ represents the stress deviator tensor.
The strain hardening function g(R, T ) in Equation (13) representing the Huber–von Mises surface

radius is expressed by
g(R, T )= R0 f (T )+ R(T, p). (14)

Evolution laws in Equation (12) are thus detailed as

d p
=

3
2
3

s
J2
; ṗ =3. (15)

The model is completed by the expression of the force potential in (11):

9(F)=
Y

m+ 1

〈
F
Y

〉m+1

, 3=

〈
F
Y

〉m

= H(F). (16)

Inverting Equation (16)2 and using (13), (14) and (15) yield

J2 = R0 f (T )+ R(T, p)+8(T, p, ṗ) (17)

with 8= H−1. According to Equation (15)1,2, the rate of plastic work τ : d p in (4) is thus given by:

τ : d p
= J2 ṗ = [R0 f (T )+ R(T, p)+8(T, p, ṗ)] ṗ. (18)

Furthermore Equation (3) becomes

ρ0c0Ṫ + J div q− r = τ : d p
+ T

∂τ

∂T
: de
−

(
R− T

∂R
∂T

)
ṗ. (19)

The context considered here concerns loading at high strain rate excluding heat supply and for which
conditions can be assumed as adiabatic (dynamic loading). Relation (19) is thus reduced to

ρ0c0Ṫ = τ : d p
+ T

∂τ

∂T
: de
−

(
R− T

∂R
∂T

)
ṗ. (20)

In Equation (20), τ : d p represents the plastic part of the mechanical work rate (plastic work rate), R ṗ
the stored energy rate (the difference τ : d p

− R ṗ represents the unrecoverable energy rate dissipated
by heating; see Equation (4)) , T (∂τ/∂T ) : de the thermoelastic coupling contribution which describes
cooling during a tensile loading and heating during a compressive one, and T (∂R/∂T ) ṗ the thermo-
plastic coupling contribution which expresses the stored energy release rate during the temperature rise
(see [Clayton 2005] for a similar approach).

In the following, the effects of strain hardening and thermal softening (acting both on isotropic hard-
ening force) on temperature rise are studied. Thermoelastic coupling contribution to temperature rise
is actually particularly significant in problems involving very high velocity impact and/or high pressure
shock loading. In the context of this work, velocity and pressure are considered moderate and thermoe-
lastic coupling is neglected.
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Accounting for Equation (18), relation (20) is thus reduced to

Ṫ =
1
ρ0c0

[
J2−

(
R− T

∂R
∂T

)]
ṗ. (21)

Injecting the expression (17) of the stress invariant J2 and the expression (10) for R yields

Ṫ =
R0 f (T )+ T h′(p) f ′(T )+8(T, p, ṗ)

ρ0c0
ṗ. (22)

Remark 1. Comparing the dissipation form in Equations (4) and (22) yields

ρ0c0Ṫ = D+ T h′(p) f ′(T ) ṗ. (23)

The dissipation is positive while the second term on the right side is negative ( f ′ being negative for
thermal softening material). The temperature increases if the dissipation is high enough to exceed the
thermomechanical coupling term which proceeds from T (∂R/∂T ) ṗ in Equation (21). The condition
for temperature growth is written from (23) as

R0 f (T )+8(T, p, ṗ) > T h′(p) f ′(T ). (24)

For R0 = 0, there is thus a competition between viscous and thermomechanical effects regarding temper-
ature changes. Neglecting this last contribution leads to the common relation

ρ0c0Ṫ = D. (25)

Furthermore, starting from the definition of the inelastic heat fraction β as β = ρ0cy Ṫ /τ : d p and under
the aforementioned assumptions, the following expression is deduced from (21):

β = 1−
R− T ∂R

∂T

J2
. (26)

Injecting the complete expressions of J2 and R from (17) and (10) gives

β = 1−
h′(p)

[
f (T )− T f ′(T )

]
[R0+ H ′(p)] f (T )+8(T, p, ṗ)

. (27)

Consequently the inelastic heat fraction β is explicitly a function of temperature, strain and strain rate.
Starting from relation (27), a series of comments can be made.

Remark 2. For cumulated plastic strain p2 > p1 close enough to consider that T1 ≈ T2 ≈ T , one can
write from (27):

β (T, p2, ṗ)−β (T, p1, ṗ)≈−
[
h′ (p2)− h′ (p1)

] f (T )− T f ′(T )
[R0+ h′(p)] f (T )+8(T, p, ṗ)

. (28)

Using the notation

χ =
f (T )− T f ′(T )

[R0+ h′(p)] f (T )+8(T, p, ṗ)
, (29)
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with χ > 0 as long as f (T )− T f ′(T ) > 0, which is the case for most (thermal softening) materials,
relation (28) is reduced to

∂β

∂p
≈−χh′′(p). (30)

According to (30), it is possible to conclude that for a material exhibiting strain hardening (h′′(p) > 0),
the inelastic heat fraction is decreasing for increasing strain, that is, ∂β/∂p < 0. Oppositely, for material
exhibiting strain softening (h′′(p) < 0), the inelastic heat fraction is increasing for increasing strain, that
is, ∂β/∂p > 0.

Remark 3. According to (27), β(T, p, ṗ) is equal to unity when h′(p)[ f (T )− T f ′(T )] = 0 which
is satisfied for a perfectly plastic material (h′(p)= 0) or for a material exhibiting a linear dependence
of strain hardening on temperature ( f (T ) = AT ). Finally, β = 1 for any loading path allowing for
f (T )= T f ′(T ).

Remark 4. Suppose now that f (T0) = ς (0 < ς < 1), f ′ (T0) = −ξ (ξ > 0), and let us note that
h′(0)= R1>0.

In this case, according to (27),

β0 = β (T0, 0, ṗ)= 1−
R1 (ς + ξT0)

(R0+ R1) ς +8(T0, 0, ṗ)
,

and for any R1 6= 0, one obtains β0 < 1.

Remark 5. Suppose finally that f (T )= 1− AT (A > 0), R0 = 0 and 8(T, p, ṗ)= h′(p) f (T )z( ṗ).
In this case

β (T, p, ṗ)= 1−
1

f (T ) [1+ z ( ṗ)]
= β (T, ṗ) .

Thus β does not depend on the plastic strain p. On the other hand, for a given strain rate ṗ, as f (T )
decreases with increasing temperature T , then β decreases with increasing temperature, and for a given
temperature T , as z ( ṗ) increases with increasing strain rate ṗ, then β increases with increasing strain
rate ṗ.

By employing the inelastic heat fraction considered as a constant, heat equation is reduced to

Ṫ =
β

ρ0c0
J2 ṗ. (31)

Injecting (17) into (31) yields

Ṫ = β

[
R0+ h′(p)

]
f (T )+8(T, p, ṗ)
ρ0c0

ṗ. (32)

Expression (32) above has to be compared with expression (22). In particular, the temperature rate here
is always positive (see Remark 1).

3. Application to usual models

Following conventional experimental procedures, material constants for most models are identified from
a series of tests carried out at various strain rates for a given initial temperature and/or at different
temperatures for a given nominal (generally low) strain rate. In this context, the respective contributions
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of separated effects of temperature, strain and strain rate can be determined during the material constant
numerical identification. The latter needs, for high strain rate (adiabatic) tests, the evaluation of heating
produced by the plastic work, that is, an expression for the inelastic heat fraction.

In this section, various thermodynamic and/or engineering models are studied in terms of stress in-
variant, temperature and inelastic heat fraction evolutions. Independently of the genuine temperature
evolution in the material, the influence of the choice of the model is pointed out. As usually assumed,
adiabatic conditions are supposed to prevail at strain rates higher than 100 s−1.

According to the methodology detailed previously, a series of mathematical functions available in
literature has been selected and reported in the following tables.

Tables 1–3 give the usual functions describing the effects of strain hardening/softening, thermal soft-
ening and strain rate, respectively. Corresponding abbreviations used later in the analysis are also given.

The Ramberg–Osgood (HRO) model in Table 1 for strain hardening has the form of a power law.
For n = 0, stored energy is linear (HL with HL=HROn=0) with respect to cumulated plastic strain
while the material is perfectly plastic; for n = 1, stored energy evolves as a quadratic function (HQ with

Ramberg–Osgood HRO Voce HV Strain softening HS

h(p) k pn+1

n+1
R∞[p+

1
k

exp(−kp)] −
R∞
k

exp(−kp)

h′(p) kpn R∞[1− exp(−kp)] R∞ exp(−kp)

h′′(p) nkpn−1 k R∞ exp(−kp) −k R∞ exp(−kp)

Table 1. Usual strain hardening/softening functions h(p).

Linear FL Power FP Exponential FE

f (T ) 1− AT 1−
(

T−Tr
Tm−Tr

)m

exp(−γ T )

f ′(T ) A > 0 −
m

Tm−Tr

(
T−Tr
Tm−Tr

)m−1

−γ. exp(−γ T )

f ′′(T ) 0 m(1−m)
(Tm−Tr )

2

(
T−Tr
Tm−Tr

)m−2

γ 2 exp(−γ T )

Table 2. Usual thermal softening functions f (T ).

additive type ADD multiplicative type MUL Exponential type EXP

ṗ = H 〈F〉 1/τ0 〈F/R0〉
m 1/τ0 〈F/R〉m ṗ0 exp 〈F/C R〉

τ0 〈Y/R0〉
m τ0 1/ ṗ0

8= H−1 Y ṗ1/m Rτ 1/m
0 ṗ1/m C R ln ( ṗ/ ṗ0)

Table 3. Usual strain rate functions H 〈F〉.
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HQ=HROn=1) of cumulated plastic strain and hardening is linear with respect to cumulated plastic
strain; for most metals the value of n is comprised between 0 and 1. The Voce (HV) model describes
strain hardening with saturation stress, the latter being represented by R∞. Finally, the strain soften-
ing model (HS) is retained in this study as an exponential decreasing function. On the other hand,
the combination of several strain hardening/softening functions is designated by linking corresponding
abbreviations. HMLRO designates, for example, hardening/softening behaviour (H) described using
multiple (M) functions including linear hardening (L) and Ramberg–Osgood (RO). HMSQ designates
hardening/softening behaviour (H) described using multiple (M) functions including softening (S) and
the quadratic hardening Ramberg–Osgood (Q) function.

The linear function (FL) in Table 2 for thermal softening can be considered as an approximation, for
low temperature changes, of a more complex dependence of material behaviour on temperature. The
power law (FP) accounts for melting point Tm and room temperature Tr in a power law expression as
proposed notably by Johnson and Cook [1983]. Finally a third thermal model (FE) is proposed in the
form of an exponential decreasing function which is valid in a wider range of temperature variations than
linear function (FL).

The additive type (ADD) and multiplicative type (MUL) functions in Table 3 are used to describe
phenomenologically the effects of plastic viscosity in bcc/hcp and fcc metals respectively. The origin
of the exponential type function (EXP) proceeds from physical considerations including the concept of
thermally activated plastic deformation mechanism.

In the multiplicative type (MUL) in Table 3, the strain rate function

8(T, p, ṗ)= Rτ 1/m
0 ṗ1/m

can be rewritten in the form
8(T, p, ṗ)= h′(p) f (T )g ( ṗ) ,

where g ( ṗ) = τ 1/m
0 ṗ1/m . In the same way, in the exponential type (EXP) in Table 3, the strain rate

function
8(T, p, ṗ)= C R ln ( ṗ/ ṗ0)

can be rewritten in the form
8(T, p, ṗ)= h′(p) f (T )g ( ṗ) ,

where g ( ṗ)= C ln ( ṗ/ ṗ0). These expressions may illustrate Remark 5.
Table 4 gives the abbreviations corresponding to models with or without initial yield stress, that is,

an initial (or no) nonzero value for the radius of the Huber–von Mises surface, see (14). Note that this
concept of initial yield stress may be entirely contained in the state potential (free energy) through a
contribution attributed to residual stresses induced by thermomechanical processes and described via a
quadratic strain hardening (HRO type model with n=1; see Table 1). As shown previously, the retained
viewpoint (nonzero value for the initial radius of the Huber–von Mises surface or residual stresses) is
not without consequence for heat evaluation (see (22) and Remark 1).

Remark 6. Consider the combination HL-FE-WYS (see Tables 1, 2 and 4 with HL=HROn=0) such
that ρ0ψ

b
= R1 p exp (−γ T ). The yield function is written as

F = J2 (σ )−
[
R0 exp (−γ T )+ R

]
.
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With initial yield stress WYS Without initial yield stress NYS

R0 f (T ) 0

Table 4. Existence of initial yield stress.

The strain hardening force and its derivative with respect to temperature are, respectively,

R = ρ0∂ψ
b/∂p = R1 exp (−γ T ) , T ∂R/∂T =−γ T R.

In this case, f (T0) = exp (−γ T0) > 0 and f ′ (T0) = −γ exp (−γ T0). As mentioned in Remark 4, the
initial inelastic heat fraction β0 is lower than unity.

In order to analyse the three-dimensional constitutive models built from the combination of strain
hardening and thermal softening functions in Tables 1–4, the loading path considered here is the simple
shearing. Designate by l = ∂v/∂x the velocity gradient tensor and li j its components. We are considering
here the simple shear loading such that v1 = 0̇x2. In this case, the components of the velocity gradient
tensor l are zero except l12 = ∂v1/∂x2 = 0̇ 6= 0.

A set of thermoelastic/viscoplastic models has been tested including various forms for strain hardening,
strain softening and their combinations. They all use the physical material constants reported in Table 5.

Evolution of the second invariant of the stress-deviator J2, temperature T and inelastic heat fraction
β is given versus shear strain e12 = γ12/2 (the strain tensor e is obtained by time integration of the
nonobjective strain rate tensor ė, with ė= d+ωe− eω) at various strain rates 0̇ and initial temperatures
T0 in Figures 1–5 for several models including strain hardening/softening, thermal softening and viscous
effects. Adiabatic conditions are assumed for strain rates higher than 100 s−1.

The physical feature of the numerical results obtained is further discussed in Section 3.1 by considering
experimental data from literature.

3.1. Strain hardening models. Consider the combination HV-FL-ADD-WYS (see Tables 1–4) summa-
rized in Table 6. As mentioned before, this combination may correspond to a bcc metal with saturating
strain hardening and linear approximation of temperature dependence (Figure 1), such as a high strength
martensitic steel.

Figure 1a shows the thermal softening induced under adiabatic conditions for simulations at different
plastic strain rates higher than 100 s−1. Figure 1b shows that the temperature rate is higher for higher
strain rate, while Figure 1e shows that the temperature rate is lower for higher initial temperature. At
1000 s−1 and for T0 = 300 K, the maximal value of temperature increase is close to 60 K.

According to Figure 1c–f, the initial value of β is equal to 1 whatever the strain rate and the initial
temperature. At large strain β converges to a value which depends on strain rate and initial temperature
with a rate (negative according to Remark 3) whose absolute value increases with decreasing strain

E (GPa) ν ρ0 (kg/m3) c0 (J/kg.K) α (K−1)

200 0,33 7800 420 10−6

Table 5. Physical steel like material constants.
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Figure 1. Influence of shear strain rate 0̇ and initial temperatures T0 on stress invari-
ant, heating and inelastic heat fraction for the HV-FL-ADD-WYS hardening model:
(a) stress invariant J2 versus strain e12, with T0 = 300 K; (b) temperature T versus strain
e12, with T0 = 300 K; (c) inelastic heat fraction β versus strain e12, with T0 = 300 K;
(d) stress invariant J2 versus strain e12, with 0̇ = 103 s−1; (e) temperature T versus strain
e12, with 0̇ = 103 s−1; (f) inelastic heat fraction β versus strain e12, with 0̇ = 103 s−1.

rate and increasing initial temperature. In other words, β depends explicitly on strain, strain rate and
temperature.

Consider next the combination HMLRO-FE-MUL-NYS (see Tables 1–4) summarized in Table 7. This
combination may correspond to a fcc metal with a power law strain hardening (n = 0.5) and exponential
dependence on temperature (Figure 2), such as an austenitic steel or a pure copper.
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h(p) f (T ) 8 (T, p, ṗ) R0

R∞
[

p+ 1
k exp(−kp)

]
1− AT Y ṗ1/m R2(1− AT )

R∞ (MPa) k A(K−1) R2 (MPa) Y (MPa s1/m) m

1000 20 10−3 1000 100 6

Table 6. Thermoviscoplastic material constants for HV-FL-ADD-WYS model.

In contrast to the previous case, the thermal softening induced under adiabatic conditions for simula-
tions at plastic strain rates greater than 100 s−1 does not seem to be really significant (see Figure 2a). In
fact, adiabatic thermal effects are present but they are here not able to compensate for strain and strain
rate hardening. Figure 2b shows that the temperature rate is higher for higher strain rate while Figure 2e
shows that the temperature rate is lower for higher initial temperature. At 1000 s−1 and for T0 = 300 K,
the maximal value of temperature increase is close to 28 K.

According to Figure 2c–f, the initial value of β is much lower than 1, increasing with increasing strain
rate and with decreasing initial temperature. As expected (see Remark 5), the rate of β is close to zero —
β does not depend explicitly on strain.

Consider finally the Johnson–Cook engineering model [Johnson and Cook 1983] as the combination
HMLRO-FP-EXP-NYS (see Tables 1–4) summarized in Table 8. This model, supposed to describe
any metal behaviour, is mainly employed in numerical simulations involving very high strain rates as
encountered notably in plate impact and shock.

In Figure 3a the thermal softening induced under adiabatic conditions for simulations at plastic strain
rates higher than 100 s−1 is not really significant. The temperature rate is seen to be higher for higher

h(p) f (T ) 8 (T, p, ṗ) R0 R1 (MPa) k n γ (K−1) τ0 (s) m

R1 p+ k pn+1

n+1
exp(−γ T ) Rτ 1/m

0 ṗ1/m 0 500 1500 0.5 10−3 10−4 10

Table 7. Thermoviscoplastic material constants for HMLRO-FE-MUL-NYS model.

h(p) f (T ) 8 (T, p, ṗ) R0

R1 p+ k(pn+1/n+ 1) 1−
(

T−Tr
T f −Tr

)m

C R ln ṗ
ṗ0

0

R1 (MPa) k (MPa) n T f (K ) Tr (K ) m ṗ0( s−1) C

600 1000 0.3 1800 100 1 1 0,05

Table 8. Thermoviscoplastic material constants for Johnson–Cook model.
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Figure 2. Influence of shear strain rate 0̇ and initial temperatures T0 on stress invariant,
heating and inelastic heat fraction for the HMLRO-FE-MUL-NYS hardening model:
(a) stress invariant J2 versus strain e12, with T0 = 300 K; (b) temperature T versus strain
e12, with T0 = 300 K; (c) inelastic heat fraction β versus strain e12, with T0 = 300 K;
(d) stress invariant J2 versus strain e12, with 0̇ = 103 s−1; (e) temperature T versus strain
e12, with 0̇ = 103 s−1; (f) inelastic heat fraction β versus strain e12, with 0̇ = 103 s−1.

strain rate (Figure 3b) and lower for higher initial temperature (Figure 3e). At 1000 s−1 and for T0 =

300 K, the maximum value of temperature increase is close to 10 K, which is not significant.
According to Figure 3c–f, the initial value of β is much lower than 1, increasing with increasing strain

rate and with decreasing initial temperature. As in the previous case, the rate of β is close to zero (see
also Remark 6).
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Figure 3. Influence of shear strain rate 0̇ and initial temperatures T0 on stress invariant,
heating and inelastic heat fraction for the Johnson–Cook hardening model: (a) stress
invariant J2 versus strain e12, with T0 = 300 K; (b) temperature T versus strain e12, with
T0 = 300 K; (c) inelastic heat fraction β versus strain e12, with T0 = 300 K; (d) stress
invariant J2 versus strain e12, with 0̇ = 103 s−1; (e) temperature T versus strain e12, with
0̇ = 103 s−1; (f) inelastic heat fraction β versus strain e12, with 0̇ = 103 s−1.

3.2. Strain softening models. Consider now the combination HS-FL-ADD-WYS (see Tables 1-4) sum-
marized in Table 9. This combination may correspond to a very high strength (strongly hardened) bcc
metal with a linear approximation of temperature dependence (see Figure 4), such as a very high strength
martensitic steel or a pure tungsten.
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Figure 4. Influence of shear strain rate 0̇ and initial temperatures T0 on stress invariant,
heating and inelastic heat fraction for the HS-FL-ADD-WYS softening model: (a) stress
invariant J2 versus strain e12, with T0 = 300 K; (b) temperature T versus strain e12, with
T0 = 300 K; (c) inelastic heat fraction β versus strain e12, with T0 = 300 K; (d) stress
invariant J2 versus strain e12, with 0̇ = 103 s−1; (e) temperature T versus strain e12, with
0̇ = 103 s−1; (f) inelastic heat fraction β versus strain e12, with 0̇ = 103 s−1.

Figure 4a shows the thermal softening induced under adiabatic conditions for simulations at plastic
strain rates higher than 100 s−1. According to Figure 4b, the temperature rate is higher for higher strain
rate while Figure 4e shows that the temperature rate is lower for higher initial temperature. At 1000 s−1

and for T0 = 300 K, the maximal value of temperature increase is close to 80 K.
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h(p) f (T ) 8 (T, p, ṗ) R0

−
R∞
k

exp(−kp) 1− AT Y ṗ1/m R2(1− AT )

R∞ (MPa) k A(K−1) R2 (MPa) Y (MPa s1/m) m

1000 20 10−3 1000 100 6

Table 9. Thermoviscoplastic material constants for HS-FL-ADD-WYS model.

According to Figure 4c–f, the initial value of β is lower than 1, increasing with increasing strain rate
and with decreasing initial temperature. The rate of β is positive (according to Remark 3) and its absolute
value which is high for small strain tends to 0 for large strain. β tends to unity (100%) for large strain.

Consider finally the combination HMSQ-FL-ADD-WYS (see Tables 1-4) summarized in Table 10.
This combination may correspond to a polymer type material (for which the thermomechanical frame-
work used in Section 2 may be applied) with a linear dependence on temperature (see Figure 5).

Figure 5a shows the thermal softening induced under adiabatic conditions for simulations at plastic
strain rates higher than 100 s−1. Figure 5b shows that the temperature rate is higher for higher strain rate
while Figure 5e shows that the temperature rate is lower for higher initial temperature. At 1000 s−1 and
for T0 = 300 K, the maximal value of temperature increase is close to 32 K.

According to Figure 5c–f, the initial value of β is lower than 1, increasing with increasing strain rate
and with decreasing initial temperature. The rate of β is initially positive, becomes zero for the minimum
of the stress-strain curve (see Figure 5a–d) and becomes negative afterwards (these different stages agree
with Remark 3). Its absolute value does not depend on strain rate and on initial temperature at the initial
stage (growing β) but depends on initial temperature afterwards.

3.3. Summary and complementary analysis. In the previous subsection a series of constitutive models
involving strain hardening/softening and thermal softening in the context of rate dependent plasticity has
been analysed in terms of evolution of stress invariant, temperature and inelastic heat fraction determined
from the heat equation under adiabatic constraint.

The first comment concerns the tendency deduced from Remark 2: for a strain hardening model, the
inelastic heat fraction decreases with increasing plastic deformation. This tendency has been notably
observed experimentally by Lerch et al. [2003] and Jovic et al. [2006] on aluminium alloy and stainless

h(p) f (T ) 8 (T, p, ṗ) R0

−
R∞
k1

exp (−k1 p)+ k2
p2

2
1− AT Y ṗ1/m R2(1− AT )

R∞ (MPa) k1 k2 A (K−1) R2 (MPa) Y (MPa s1/m) m

800 60 5000 10−3 500 100 6

Table 10. Thermoviscoplastic material constants for HMSQ-FL-ADD-WYS model.



336 PATRICE LONGÈRE AND ANDRÉ DRAGON

0

400

800

1200

1600

2000

0% 10% 20% 30% 40% 50% 60%

e12

J 2
 (

M
Pa

)

1e4 s-1

1e3 s-1

1e2 s-1

(a)

300

320

340

360

380

400

0% 10% 20% 30% 40% 50% 60%

e12

T
 (

K
)

1e4 s-1

1e3 s-1

(b)

0%

20%

40%

60%

80%

100%

120%

0% 10% 20% 30% 40% 50% 60%

e12

E

1e4 s-1

1e3 s-1

(c)

0

400

800

1200

1600

2000

0% 10% 20% 30% 40% 50% 60%

e12

J 2
 (

M
Pa

)

100 K

300 K

500 K

(d)

0

100

200

300

400

500

600

0% 10% 20% 30% 40% 50% 60%

e12

T
 (

K
)

500 K

300 K

100 K

(e)

0%

20%

40%

60%

80%

100%

120%

0% 10% 20% 30% 40% 50% 60%

e12

E

100 K

300 K

500 K

(f)

Figure 5. Influence of shear strain rate 0̇ and initial temperatures T0 on stress invari-
ant, heating and inelastic heat fraction for the HMSQ-FL-ADD-WYS softening model.
(a) stress invariant J2 versus strain e12, with T0 = 300 K; (b) temperature T versus strain
e12, with T0 = 300 K; (c) inelastic heat fraction β versus strain e12, with T0 = 300 K;
(d) stress invariant J2 versus strain e12, with 0̇ = 103 s−1; (e) temperature T versus strain
e12, with 0̇ = 103 s−1; (f) inelastic heat fraction β versus strain e12, with 0̇ = 103 s−1.

steel respectively. The inelastic heat fraction evolution they observe is qualitatively identical to what is
obtained numerically herein within the HV-FL-ADD-WYS model (see Figure 1c). Oppositely, according
to Remark 2, for a strain softening model the inelastic heat fraction increases and converges to unity. This
result (see Figure 4c for HS-FL-ADD-WYS model) can be compared with experimental ones obtained on
tungsten by Subhash et al. [1994]. A model combining both strain softening and strain hardening (HMSQ)
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allows for an increasing then decreasing inelastic heat fraction. This behaviour is typical of polymeric
materials, and the evolution of the inelastic heat fraction obtained numerically for HMSQ-FL-ADD-WYS
model (see Figure 5c) reproduces (qualitatively) very well experimental results for polycarbonate [Lerch
et al. 2003] and for glassy polymer [Rittel 1999].

The second comment concerns the particular case studied in Remark 5: for a multiplicative rate
dependent model (MUL and EXP) combined with the absence of initial yield stress (NYS), the inelastic
heat fraction is quasiconstant and its value is very low (see Figure 2b and Figure 3b), leading to weak
(and negligible) temperature increase (see Figure 2c and Figure 3c).

On the other hand, for strain hardening models with very similar behaviour, including HV-FL-ADD-
WYS, HMLRO-FE-MUL-NYS and Johnson–Cook ones, the maximum value of temperature increase
is observed for the former while the minimum value of temperature increase is observed for the latter.
Indeed, the corresponding conditions regarding thermomechanical behaviour let in the plastic dissipation
induced thermal softening in the first model. On the contrary, this can be hardly reproduced for the
Johnson–Cook model. A complete thermodynamics-based approach cannot be applied in this case. This
agrees with the experiment-based remark of Chrysochoos et al. [1989] concerning constitutive mod-
elling: some engineering models are not able to reproduce observed phenomena. In order to palliate
this deficiency, simplifications are usually done to evaluate temperature growth under adiabatic plasticity
conditions. As mentioned previously, they consist (often implicitly), first, in neglecting thermodissipa-
tive couplings (see Remark 2) and, second, in considering the inelastic heat fraction as a constant (see
Equation (50)). The consequences of these simplifications are now studied.

The heat equation (19) can be decomposed into various contributions. By designating Q̇ = ρ0c0Ṫ ,

D = τ : d P
− R ṗ ≥ 0, Ẇ τ

= T ∂τ
∂T
: de and Ẇ R

= T ∂R
∂T

ṗ, Equation (19) can be rewritten as

Q̇ = Ẇ , with Ẇ = D+ Ẇ τ
+ Ẇ R. (33)

Three cases are now distinguished depending on the terms retained on the right side of (33)1,2.
In the first case, called quasicomplete heat evaluation, thermoelastic coupling effects are neglected

due to their weak contribution to temperature change: Ẇ τ
= 0. Relation (33)2 is thus reduced to

Ẇ = D+ Ẇ R
=

[
J2−

(
R− T

∂R
∂T

)]
ṗ. (34)

In the second case, the heat equation (20) is further simplified by neglecting both thermoelastic and
thermoplastic couplings contributions (see [Voyiadjis and Abed 2006] for a similar simplification). The
resulting equation is here called a simplified heat evaluation. This means that Ẇ τ

= Ẇ R
= 0 and (33)2

becomes

Ẇ = D = [J2− R] ṗ. (35)

The last case is equivalent to the representation involving a constant inelastic heat fraction β— also
known as the Taylor–Quinney coefficient [Mason et al. 1994] — as is frequently done in engineering
problems. The resulting equation is here called a basic heat evaluation. The expression of work rate Ẇ
in (33)2 in this case reduces to

Ẇ = β J2 ṗ. (36)
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Figure 6. Influence of the simplifications made in the heat equation on stress invariant,
heating and inelastic heat fraction considering HV-FL-ADD-WYS hardening model (see
Table 6 and Figure 1 for comparison). (a) Stress invariant J2 versus strain e12; (b) tem-
perature T versus strain e12; (c) inelastic heat fraction β versus strain e12. In each case,
T0 = 300 K and 0̇ = 103 s−1.

Figures 6–10 show the evolution of the stress invariant, temperature and inelastic heat fraction for
a complete description, for a simplified one and finally, assuming a constant value of the inelastic heat
fraction, for the combinations used previously, namely the HV-FL-ADD-WYS type model (Figure 6),
the HMLRO-FE-MUL-NYS-type model (Figure 7), the Johnson–Cook model (Figure 8), the HS-FL-
ADD-WYS-type model (Figure 9) and the HMSQ-FL-ADD-WYS-type model (Figure 10).

Considering strain hardening models (see Figures 6, 7 and 8), the use of a constant value for β (part
c) leads to higher values for temperature (part b) causing a more significant thermal softening (part a).
This remark also holds concerning strain hardening/softening model in Figure 10. On the other hand the
different methods give very similar results in terms of temperature rates and material behaviour for strain
softening model.

4. Effects of heat evaluation method on dynamic plastic localization occurrence

This section aims at showing the influence of the choice of method for evaluating the plastic work-
induced heating on the determination of the conditions for dynamic plastic localization onset. The
localization phenomenon at stake is adiabatic shear banding (ASB) which constitutes a precursor of
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Figure 7. Influence of the simplifications made in the heat equation on stress invari-
ant, heating and inelastic heat fraction considering HMLRO-FE-MUL-NYS hardening
model (see Table 7 and Figure 2 for comparison). (a) Stress invariant J2 versus strain
e12; (b) temperature T versus strain e12; (c) inelastic heat fraction β versus strain e12. In
each case, T0 = 300 K and 0̇ = 103 s−1.

failure of structures submitted to dynamic loading and which intervenes as thermal softening overcomes
strain hardening [Marchand and Duffy 1988; Bai and Bodd 1992; Longère et al. 2003].

Conditions for ASB occurrence are commonly obtained from the linear perturbation method which is
in general applied in the case of simple shear under constant velocity boundary conditions. Assuming
negligible elastic effects, laminar viscoplastic flow and adiabatic conditions, the problem can be reduced
to a one-dimensional formulation [Bai 1982; Clifton et al. 1984; Molinari 1985; Batra and Wei 2006]
(see e.g. [Anand et al. 1987]) when three-dimensional generalization is presented). Admitting analytical
solutions, the linear perturbation method provides in this case a criterion of instability onset, which
is interpreted as the incipience of the adiabatic shear banding process, providing in fact the necessary
condition for the onset of formation of bands (possibility of a shear band type instability). In the case of
ASB phenomena, the extension of the one-dimensional loading criterion to a complex three-dimensional
loading can be performed today [Longère et al. 2003]. Simplifications are assumed in order to reproduce
qualitatively the different stages of deformation localization (weak and strong) as observed by Marchand
and Duffy [1988].

Starting from the governing equations (momentum balance, energy balance, kinematics and constitu-
tive law) in the case of simple shear in a (1, 2)-plane under adiabatic conditions and neglecting elasticity,
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Figure 8. Influence of the simplifications made in the heat equation on stress invari-
ant, heating and inelastic heat fraction considering Johnson–Cook hardening model (see
Table 8 and Figure 3 for comparison). (a) Stress invariant J2 versus strain e12; (b) tem-
perature T versus strain e12; (c) inelastic heat fraction β versus strain e12. In each case,
T0 = 300 K and 0̇ = 103 s−1.

one obtains the following system:
s12,2 = ρ0v̇1,

ρ0c0Ṫ = Ẇ ,

d12 =
1
2

(
v1,2+ v2,1

)
≈ d p

12 =
3
2 ṗ s12

J2
,

ṗ =3(s12, p, T ).

(37)

With J2 =
√

3s12, v1 = 0̇x2, v2 = 0 and 0 = 0̇t , the system (37) is reduced to
s12,2− ρ0v̇1 = 0,
ρ0c0Ṫ − Ẇ = 0,
v1,2−

√
3 ṗ = 0,

ṗ−3(s12, p, T )= 0.

(38)

A small perturbation δU = (δv1, δs12, δp, δT ) is now superimposed on the set of homogeneous solutions
U = (v1, s12, p, T ): U ⇒U + δU with δU <<U . Let the perturbation have a wave-like form:

δU =U exp ($ t + ikx2)=U exp [$Rt] exp [ik (ct + x2)] , (39)
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Figure 9. Influence of the simplifications made in the heat equation on stress invariant,
heating and inelastic heat fraction considering HS-FL-ADD-WYS hardening model (see
Table 9 and Figure 4 for comparison). (a) Stress invariant J2 versus strain e12; (b) tem-
perature T versus strain e12; (c) inelastic heat fraction β versus strain e12. In each case,
T0 = 300 K and 0̇ = 103 s−1.

where U is the perturbation magnitude, $ the wave pulsation, k the wave number, x2 the wave plane
normal,$R and$I the real and imaginary parts of the wave pulsation$ , and c=$I /k the wave velocity.

According to the right side of (39), the case $R = 0 points the transition between the stable and
unstable states:

(i) if $R > 0, the perturbation may grow with time and the instability mentioned is possible;

(ii) if $R < 0, the perturbation decreases with time.

The objective consists thus in looking for the conditions of the transition from the stable state to the
possible unstable state by studying the sign of $R .

After linearization and using the notations in Table 11 (see next page), the system (38) may be rewritten
as follows (see [Longère and Dragon 2007] for further details):

−ρ0$ ik 0 0
0 −ws −

(
wp +w ṗ$

)
(ρ0c0$ −wT )

ik 0 −
√

3$ 0
0 −2P12 ($ − B) −E



v̄1

s̄12

p̄
T̄

=


0
0
0
0

 , (40)



342 PATRICE LONGÈRE AND ANDRÉ DRAGON

0

400

800

1200

1600

2000

0% 10% 20% 30% 40% 50% 60%

e12

J 2
 (

M
Pa

)

Complete

Simplified

Constant

(a)

300

320

340

360

380

400

0% 10% 20% 30% 40% 50% 60%

e12

T
 (

K
)

Constant

Simplified

Complete

(b)

0%

20%

40%

60%

80%

100%

120%

0% 10% 20% 30% 40% 50% 60%

e12

E

Constant

Simplified

Complete

(c)

Figure 10. Influence of the simplifications made in the heat equation on stress invariant,
heating and inelastic heat fraction considering HMSQ-FL-ADD-WYS hardening model
(see Table 10 and Figure 5 for comparison). (a) Stress invariant J2 versus strain e12; (b)
temperature T versus strain e12; (c) inelastic heat fraction β versus strain e12. In each
case, T0 = 300 K and 0̇ = 103 s−1.

or otherwise:

[A]
{
Ū
}
= {0} . (41)

The determinant of the matrix [A] in (41), whose components are denoted ai j , is simply

det [A]= a11a22a33a44− a11a42a33a24+ a12a31 (a23a44− a43a24) . (42)

Basic Simplified Quasicomplete

ws
√

3β ṗ
√

3 ṗ
√

3 ṗ
wp 0 −Q ṗ − (Q− T Y ) ṗ
wT 0 −S ṗ T Z ṗ
w ṗ

√
3βs12

√
3s12− R

√
3s12− (R− T S)

Table 11. Expressions of wi .
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The spectral equation deduced from (41) and (42) is a third-degree polynomial in $ :

det [A]= a3$
3
+ a2$

2
+ a1$

1
+ a0, (43)

with 
a3 =
√

3ρ2
0c02P12,

a2 = ρ0[k2c0+
√

3 (Ews − 2P12wT )],

a1 =−k2
(
Ew ṗ +wT + ρ0c0 B

)
,

a0 = k2
(
BwT − Ewp

)
,

(44)

where

Pi j =
3
2
ᾱ

si j

J2
, B =−ᾱQ, E =−ᾱ

[
R0 f ′(T )+ S

]
, (45)

Q =
∂R
∂p
= h′′(p) f (T ), S =

∂R
∂T
= h′(p) f ′(T ), ᾱ =

∂3

∂F
. (46)

As observed by Marchand and Duffy [1988] and demonstrated by Molinari [1985], instability does
not imply localization rigorously. Thus the use of the linear perturbation method provides a necessary
condition only, leading to a possible lower bound for the effective localization incipience. The idea is
here to delay the instability onset, that is, push it towards an upper bound in the sense of approaching the
strong localization incipience. In other words we distinguish the instability point characterizing locally
the equilibrium between strain hardening and thermal softening (maximum of the shear stress-shear
strain curve in most cases) and the localization point beyond which shear stress drops strongly. The
linear perturbation method provides the instability point and we are looking, via a pragmatic engineering
evaluation approach, for the localization point which eventually succeeds the instability point.

Adiabatic shear banding occurs as thermal softening overcomes strain hardening. Before the instability
point, strain hardening is predominant and the material is necessarily stable, while past the instability
point, thermal softening becomes predominant and the material may become unstable. In the linear per-
turbation method, attenuating thermal softening allows consequently for pushing forward the instability
point and approaching the localization point (see [Longère et al. 2003; 2005; Longère and Dragon 2007,
for practical applications). Detection of plastic localization onset is essential to control a process of soft-
ening behaviour for three-dimensional modelling of thermoelastic/viscoplastic materials incorporating
adiabatic shear banding formation and growth.

It is notable that the approximate instability criteria in the sense given above can be applied for any
constitutive equations based on irreversible thermodynamics.

As mentioned previously, delaying the strong localization onset with respect to the supposed instability
onset is favoured by making f ′(T ) vanish in the linear perturbation method (concept of ‘upper’ bound
approximation). This approach is consequently used in the following.

Employing Table 11, when considering the basic evaluation, the coefficients a0–a3 in (44) become
a3 =
√

3ρ2
0c02P12,

a2 = ρ0[k2c0+ 3Eβ ṗ],

a1 =−k2
(
E
√

3βs12+ ρ0c0 B
)
,

a0 = 0.

(47)
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The spectral equation is, in this case, indeed reduced to a second-degree polynomial in$ and$ > 0 if and
only if a1a3 < 0. Accordingly, the condition for possible perturbation growth (instability occurrence) is

√
3s12 >

ρ0c0

β

(∂R/∂p)
−(∂R/∂T )

. (48)

According to Table 11, the coefficients a0 to a3 in (44) in the simplified evaluation become
a3 =
√

3ρ2
0c02P12,

a2 = ρ0[k2c0+ 3 ṗ(E + 2
√

3
P12S)],

a1 =−k2
[E(
√

3s12− R)− S ṗ+ ρ0c0 B],
a0 = k2 ṗ (E Q− BS),

(49)

with E + 2
√

3
P12S = 0 and E Q− BS = 0.

The corresponding components in (49) are thus expressed by
a3 =
√

3ρ2
0c02P12,

a2 = ρ0k2c0,

a1 =−k2
[E(
√

3s12− R)− S ṗ+ ρ0c0 B],
a0 = 0.

(50)

The spectral equation is once more reduced to a second-degree polynomial in $ and the condition for
perturbation growth is given by

√
3s12 > R−

ṗ
ᾱ
+ ρ0c0

(∂R/∂p)
−(∂R/∂T )

. (51)

Following the previous procedure for quasicomplete evaluation gives
a3 =
√

3ρ2
0c02P12,

a2 = ρ0[k2c0+ 3 ṗ(E − 2
√

3
P12T Z)],

a1 =−k2(E[
√

3s12− (R− T S)] + T Z ṗ+ ρ0c0 B),
a0 = k2 ṗ[E Q− T (EY − B Z)].

(52)

The spectral equation remains a third-degree polynomial in $ for which the condition of instability onset
is not trivial. In order to obtain a practical criterion in the sense of [Bai 1982], the condition for instability
onset is again deduced from the sign of the product a1a3.

The condition for perturbation growth in this case is given by

√
3s12 > R− T

(
∂R
∂T
−
(∂2 R/∂T 2)

(∂R/∂T )
ṗ
ᾱ

)
+ ρ0c0

(∂R/∂p)
−(∂R/∂T )

.

The conditions for dynamic plastic localization occurrence for the basic heat evaluation method, the
simplified heat evaluation method and the quasicomplete heat evaluation method, as defined above, are

√
3s12 >

ρ0c0

β

(∂R/∂p)
−(∂R/∂T )

,
√

3s12 > R−
ṗ
ᾱ
+ ρ0c0

(∂R/∂p)
−(∂R/∂T )

,
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√
3s12 > R− T

(
∂R
∂T
−
(∂2 R/∂T 2)

(∂R/∂T )
ṗ
ᾱ

)
+ ρ0c0

(∂R/∂p)
−(∂R/∂T )

.

(see [Longère and Dragon 2007]). The description of the postlocalization behaviour is not the purpose
of the present paper. But in order to visualize the drop in stress induced by adiabatic shear banding,
the ASB deterioration model developed by Longère et al. [2003] has been used. The details regarding
numerical calculations and corresponding algorithmic procedure can be found in [Longère et al. 2005].

Figures 11 and 12 give, respectively, the material response to shearing and the temperature evolution
for the three cases of heat evaluation (two values for β are given). According to Figure 11, the value of
shear strain at localization (critical shear strain) onset is close to 30% for basic evaluation with β = 1.0,
close to 32% for basic evaluation with β = 0.8, close to 35% for simplified evaluation, and close to 38%
for complete evaluation. In parallel, the influence of heat evaluation is shown in Figure 12, which gives
the evolution of temperature. According to the basic evaluation temperature increases until a value close
to 380 K while according to the quasicomplete evaluation, the maximum of temperature remains under
350 K. This difference of 30 K is enough to provoke a difference of 8% for the estimation of the critical
shear strain in the conditions prescribed here.
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Figure 11. Shear stress versus shear strain: T0 = 300 K; 0̇ = 103 s−1.
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Evaluation type β R0 (MPa) A (K−1)

Basic 1.0 1000 1. 10−3

0.8 1015 1.05 10−3

Simplified X 1050 1.1 10−3

Quasicomplete X 1080 1.15 10−3

Table 12. Material constants.

In this example, the shear stress-shear strain curves begin to diverge from each other when shear strain
is close to 10% (see Figure 11). As a consequence, the value of shear stress at the maximum of each curve
is different (the highest is obtained for the quasicomplete evaluation while the lowest is obtained for the
basic evaluation for β = 1). So, we are considering here next shear stress vs. shear strain curves with the
same maximum value of shear stress (see Table 12 for the new sets of material constants). Numerical
results including instability criterion are given in Figures 13 and 14. In these figures, the values of critical
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Figure 13. Shear stress versus shear strain: T0 = 300 K; 0̇ = 103 s−1.
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shear strain are lower than the previous ones (see Figure 11) but the tendency is preserved: critical shear
strain is greater for the quasicomplete evaluation.

5. Concluding remarks

Following an internal variable approach including strain, strain rate and temperature dependence in the
context of viscoplastic behaviour embracing a wide range of features involved for a large class of engi-
neering materials, a three-dimensional rather general expression of the evolving inelastic heat fraction
has been obtained. This relation allows us to conclude that for a strain hardening model, the inelastic
heat fraction decreases for increasing strain, and for a strain softening model the inelastic heat fraction
increases and converges to unity. These theoretical results are in agreement with experimental observa-
tions. However, depending on the formulation of the constitutive equations, these effects can be well
reproduced or totally erased. The choice of the constitutive laws in terms of strain hardening/softening,
thermal softening and strain rate dependence is thus crucial. Consequently some models are intrinsically
able to reproduce observed phenomena, notably the temperature rise induced by plastic deformation
under adiabatic conditions, while others are not. The latter fact sometimes invites selection of an arbitrary,
albeit conservative, empirical value for the (constant) inelastic heat fraction. But the use of a constant
value for the inelastic heat fraction constitutes a coarse and mostly conservative simplification which can
sometimes lead to erroneous results.

The quantitative investigation presented, which employs a spectrum of existing thermoviscoplastic
modelling variants at finite strain, aims to show some history effects on the evolution of the inelastic heat
fraction β in dynamic plasticity. It points out some limitations regarding commonly employed hypotheses
and simplifications concerning the variation of β in engineering applications. It indicates the need for
more involved experimental research and for enhanced description of thermomechanical couplings. The
multiscale aspects were deliberately set apart in this text, which, in some aspects, provides a critical
review of the field while remaining subject to the limits of phenomenological modelling. However, the
thermodynamical and physical status of absolute temperature with respect to microscopic heterogeneity
of, say, polycrystalline metals and other engineering materials, represents in itself a further challenge
and needs more clarification.
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Various modelling approaches using commercial numerical software have been proposed in the friction
stir welding literature. We initiate a comparative analysis of such modellings, involving aspects such as
the constitutive laws, the representation of the continuum medium and the contact between medium and
tool, and the definition of the heat sources. Numerical problems are also considered: contact definition,
mass scaling, and the use of the arbitrary Lagrangian Eulerian in ABAQUS/Explicit. Finally, we propose
numerical tests to explore the ability of a Lagrangian code with an ALE option to simulate the process.

1. Introduction

Friction stir welding (FSW) is a process developed by The Welding Institute in the early 1990s. Its
principle is simple: a rotating tool is plunged into the weld joint and is forced to translate along the joint
line between two pieces of plate material which are butted together. The tool is made of two parts: a
shoulder, which heats the sheet by friction (allowing the material to soften) and prevents the outflow of
material due to the compressive effort, and a pin, which stirs the material to avoid holes and makes a
compacts joint. The process is thus a combination of extruding, forging, and stirring. Figure 1 illustrates
a weld in a 7020-T6 aluminium alloy.

The specific strengths of the process lie in the joining of the material without melting and the conse-
quent ability to join hard-to-weld metals such as aluminium alloys, steel-aluminium, or copper-aluminium
couples. FSW is used for applications where the original metal characteristics must remain unchanged
as far as possible. Another advantage is that the weld can be made in all positions because no welding
pool is needed. However, the process requires a very rigid clamping on the backing bar to prevent the
abutting joint faces from being forced apart. In addition, the keyhole at the end of the weld can also be
considered a drawback.

Figure 1. Top view of the weld (left) and cut orthogonal to the welding direction (right).

Keywords: friction stir welding, numerical simulation, finite element.
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Objectives of the study. The thermomechanical conditions of FSW are very hard to determine exper-
imentally. The profile of the pin influences the process directly, as do weld parameters such as the
forging force applied to the tool and the rotational and feed speeds [Mishra and Ma 2005].

In order to optimize welding conditions for a given material and plate thickness, a lot of tests and
metallurgical and mechanical characterisations of the welded joint have to be performed. Finite element
method (FEM) simulations are widely used to obtain temperature and mechanical fields and to optimize
the process, lowering development costs. They provide a better understanding of the flow and heating
mechanisms of FSW.

A small but increasing number of papers dealing with FSW simulation have appeared in the literature.
Such simulations require the modelling of friction, mechanical and thermal behaviour, and kinematics;
they must also solve all the field equations. Though the mathematical laws are generally spelled out, their
implementation and the numerical treatment of the differential equations are often not clearly explained.

Figure 2 offers a schematic view of inputs, outputs, and defining constraints involved in a numerical
model. The inputs, on the left, consist of geometry, process parameters, and material grade. The outputs,
on the right, are the mechanical and temperature fields. The choices required for the model are shown
above the box.
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Figure 2. Schematic view of a numerical model.

This article highlights the points that require attention in FSW numerical simulations: mechanical for-
mulation, handling of contact, boundary conditions, and constitutive laws. It also illustrates the influence
of numerical parameters on the solution of the contact and field equations.

For the numerical simulation, we consider the finite element code ABAQUS/Explicit, which uses the
Lagrangian formulation and offers adaptive meshing. The explicit scheme is well adapted to the building
of process simulations.

Section 2 presents a state of the art modelling of the FSW process, consisting of the mechanical formu-
lation, the heat source model, and the physical model. Section 3 discusses numerical issues concerning
contact management, mass scaling, and adaptive meshing. A numerical analysis is proposed concerning
FSW simulation and accounting for some aspects of the previous discussion.
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Problems to be solved. Mechanically and numerically, two different but coupled problems have to be
solved in order to provide a realistic computational simulation of the process. The first is the heating of
the sheet, which softens the material, making it easy to stir. This heating is governed by the constitutive
equation, the friction law, the contact management, thermomechanical coupling, and the boundary condi-
tions (for example, heat exchange between the plates and the surrounding air and the anvil). The second
problem is the representation of the kinematics of the flow. The flow undergoes very large deformations
and controls the stirring and quality of the welded joint. Its description is therefore a fundamental clue.
The challenge in modelling is to provide a numerical tool able to predict the mixing of the materials and
the joint defaults.

Both features — large deformations and material stirring — are very difficult to solve numerically
using FEM. Computation time is also an obstacle in FSW simulation, especially for industrial uses,
and must be kept in mind.

2. Modelling the process

Compared to other joining processes, there are few studies of FSW in the literature, though in the last five
years a symposium has been established to bring together different teams and record their work. Most of
the papers published are devoted to experimental characterisations of the material created by FSW; only
a few deal with computational simulations. This is undoubtedly due to the complexity of the process,
which involves mechanical, thermal, and metallurgical phenomena all coupled together.

Mechanical formulations. Finite element simulations require discretization of the continuum medium.
The equations of a thermomechanical problem can be written in two different classical formulations:
Lagrangian and Eulerian. In the Lagrangian representation, the mesh is attached to material points
(also called particles), whereas in the Eulerian representation, the mesh is attached to spatial points.
Consequently, during the material flow, in the Lagrangian representation the mesh moves and follows the
material points, whereas in the Eulerian representation the mesh is fixed. A mixed representation called
the arbitrary Lagrangian Eulerian (ALE), developed to combine the advantages of the two previous ones,
allows the mesh to have a different velocity than the material flow.

The Lagrangian representation is the most often used in solid mechanics, where material flow is
limited. It consists in describing the movement of the continuum medium compared to a reference
configuration. For each particle, which is completely defined by its position at the initial time, the
classical equations for the continuum medium provide its current position and associated mechanical
fields. Thus the thermomechanical history of each particles is known.

For FSW simulation, this is relevant because the final properties of the joint depend on its metallurgical
state, which is strongly affected by the thermomechanical path of the particles [Chen and Kovacevic
2003a; 2003b; Gallais et al. 2004; Buffa et al. 2006b; 2006a; 2007; Fratini et al. 2007]. In addition,
deformations, residual stresses, and forces applied on tools can be determined [Chao and Qi 1999; Ulysse
2002; Zhang et al. 2005; Bastier 2006]. However, in FSW, the material is so deformed and distorted that
the quality of the mesh decreases during simulations, leading to numerical problems; therefore adaptive
meshing (as in ABAQUS [Song and Kovacevic 2003b; 2003a; Schmidt and Hattel 2004; 2005; Zhang
et al. 2005; 2007]) or remeshing (as in FORGE2005 [Fourment et al. 2004; Guerdoux and Fourment
2005], for example) is crucial in FSW simulations. In FORGE2005, to limit the size, the mesh is fine
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only in a region near the tool. This mesh constraint is attached to the tool. As the tool goes forward,
a remeshing is applied after some time increment which allows one to reduce distortions and to follow
the tool. An alternative solution is the use of smooth particle hydrodynamics (SPH) [Tartakovsky et al.
2006], which has a Lagrangian particle nature. The material is then represented as particles interacting
with each other. Other techniques based on natural element methods (NEM) have also been proposed to
model the material flow of the FSW process [Alfaro et al. 2008; 2007].

The Eulerian representation is mainly used in fluid mechanics and consists of observing particles
that pass successively through a spatial point. One determines the properties of the particle in terms of
time and spatial coordinates. For simulations, the mesh is fixed and the material flows through it. Conse-
quently, this representation does not capture deformations and free surfaces, and additional algorithms are
required to introduce free surfaces. In the case of FSW simulations, the Eulerian representation is more
appropriate for describing flow because it avoids mesh distortions, especially near the tool [Colegrove
et al. 2000; Colegrove et al. 2003; Seidel and Reynolds 2003; Colegrove and Shercliff 2004; Colegrove
and Shercliff 2005; 2006; Bastier 2006]. For this Eulerian approach the following commercial software
has been used: CASTEM [Bastier 2006], FLUENT [Colegrove et al. 2000; Colegrove et al. 2003; Seidel
and Reynolds 2003; Colegrove and Shercliff 2004; Colegrove and Shercliff 2005; 2006], and SYSWELD
[Feulvarch et al. 2005a; 2005b; 2007]. However one cannot obtain sheet distortions and residual stresses
because the strain history of the material is unknown.

For these reasons, the Eulerian representation is typically used for tool design analysing the material
blend as well as the force applied to the tool [Colegrove et al. 2000; Colegrove et al. 2003; Colegrove
and Shercliff 2004; Colegrove and Shercliff 2005; 2006], whereas the Lagrangian representation is used
when the final microstructure and residual stress are desired. Some authors have used first the Eulerian
formulation to obtain the temperature and flow field and then the Lagrangian formulation to compute
residual stresses [Bastier 2006].

Another difficulty is determining the zone under study, which has to represent the boundary between
“liquid” and “solid” material. The boundary conditions are not easy to estimate, in particular those
concerning heat flux between the two parts of the sheet (the part modelled and the part not modelled).

The hybrid ALE method enjoys the advantages of both representations, while avoiding their draw-
backs. In this formulation, the mesh changes during the flow but its velocity is different from that of the
material, and convective terms appear in the equilibrium equations depending on the difference between
the two velocities [Askes and Sluys 2000; Aymone et al. 2001; Gadala et al. 2002; Gadala 2004]. This
representation has been used in the last four years to simulate the FSW process, and it seems to provide
the most complete modelling. Indeed, the material flow [Xu and Deng 2002; 2003; Fourment et al. 2004;
Guerdoux and Fourment 2005], the forces applied on the tool [Schmidt and Hattel 2004; 2005], and the
microstructure [Xu and Deng 2003] all seem to be predictable using the ALE formulation.

ABAQUS/Explicit offers this possibility [Schmidt and Hattel 2004; 2005] via the repositioning of
nodes in order to decrease mesh distortions. This is a procedure of remeshing of the structure without
adding nodes which allows one to obtain elements with acceptable shape. But, even with the use of this
formulation, the mixing of the materials is not captured in simulations.

Figure 3, left, presents the year-by-year evolution in the number of scientific papers using one of these
three representations since the beginning of FSW modelling. Figure 3, right, shows the overall percentage
of use of these representations. The Lagrangian formulation was used earliest. The Eulerian formulation
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was then introduced, perhaps to avoid the problem of excessive mesh distortion and because material
flow is a crucial problem that needs to be understood if one is to get good information for industrial
applications. The ALE formulation is under development and is the most promising for providing a
complete numerical simulation.

To shorten computation times and reduce the difficulties linked to remeshing, one can work with
separate models for two distinct regions. The first deals with thermal diffusion in the sheets and needs
only a coarse spatial resolution. The second model deals with the region near the tool, which must
describe correctly contact conditions, large deformation of materials, and stirring. This model can be
based on FEM or on more original techniques such as SPH [Tartakovsky et al. 2006] or NEM [Alfaro
et al. 2008; 2007]. To couple the two models one can use the Arlequin method originally proposed in
Ben Dia 1998 (see also [Rateau 2003; Ben Dia and Rateau 2005]), or a similar technique called bridging
[Xiao and Belytschko 2004]. These coupling techniques can be considered adequate for FSW modelling.

Heat sources. In FSW, temperature plays a key role because it controls the mechanical resistance of the
material. During the process, heating comes from two sources: friction and plastic work. The first occurs
at the interface between the tool and the sheets, whereas the second occurs in the bulk of the material.
Temperature is the result of a thermal equilibrium written as

ρ C p
DT
Dt
= div(λ grad T )+ Q̇, (2-1)

where ρ is the material density, C p the specific heat, T the temperature, D/Dt the particle derivative
(material derivative), λ the thermal conductivity, and Q̇ the volumetric heat source strength, which we
can write as Q̇ = βσ : D, where D is the deformation velocity gradient tensor, σ is the stress tensor, and
β = 0.9.

Qsurf, the surface heat source due to friction, appears as a boundary condition in the interface between
the tool and the sheet:

Qsurf = λ grad(T ) · n, (2-2)

where n is the normal to the surface.
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To determine the temperature, three different approaches in the literature can be distinguished, ac-
cording to the desired objective (heating, material flow, microstructure, residual state, and so on). The
differences between these three approaches also come from the level of integration of the process param-
eters and tool geometry and the calculation time needed. It is always necessary to find a compromise
between completeness and computation time.

The first approach consists in using experimental measurements to determine the heat flux by an
inverse method. Chao and Qi [1999] and Dickerson et al. [2003] measured temperature using thermo-
couples to determine the heat flux. Several teams have used torque measurements to determine the power
involved in the process and so the heat flux [Dickerson et al. 2003; Shi et al. 2003; Khandkar et al. 2006;
Simar et al. 2004; Gallais et al. 2004].

The second approach is based on an analytical formulation of the heat flux

Qsurf = µFωα, (2-3)

where Qsurf is the heat flux, µ is the friction coefficient between tool and sheet, F is the plunge force, ω
is the rotational velocity, and α is a parameter related to the tool geometry.

This equation is then used either in analytical modelling using the Rosenthal equation [Rosenthal and
Schmerber 1938; Rosenthal 1941; Feng et al. 1998; Mandal and Williamson 2006], or in finite element
simulations using moving sources [Song and Kovacevic 2003b; 2003a; Chen and Kovacevic 2003a].

The last approach tends to calculate the heat flux directly by modelling the mechanical role of the
tool and so is clearly more predictive than the first approach. The geometry of the tool and its mechan-
ical interaction with the sheet is then determined by means of finite element simulations [Ulysse 2002;
Fourment et al. 2004; Schmidt and Hattel 2004; 2005; Guerdoux and Fourment 2005; Buffa et al. 2006b;
2006a; 2007; Fratini et al. 2007]. The heat generated by friction between tool and sheets is modelled
using the classical friction equation

Qsurf = τvs, (2-4)

relating the tangential stress τ to the sliding velocity vs through the friction parameters.
Clearly the contact conditions are critical for an accurate and realistic determination of the heat flux. If

the tangential stress and/or the sliding velocity are not well estimated, the heat flux is not well estimated.
The contact surface also plays an important role, because the total flux is given by the integration of (2-4)
over the whole surface.

Physical models. In this section, the constitutive equation and friction law commonly used for FSW
simulation are discussed.

Constitutive law. During the FSW process, the material is submitted to changes of temperature of a few
hundred degrees and to widely varying strain rates. Thus the constitutive equation has to capture the
strain-rate- and temperature-dependent behaviour over a large range of these parameters. In addition,
the behaviour of the material changes with deformation related to strain hardening and microstructure
evolution. In the literature, one can find both very simple and more sophisticated modellings involving
microstructural changes, all of them based on a viscoplastic formalism, whether or not using a plastic
threshold. For example, the model of [Myhr and Grong 1991a; 1991b] is used in [Bastier et al. 2006;
2008; Feulvarch et al. 2005a; 2005b; 2007; Feulvarch 2006]; it takes into account the dissolution of
precipitates due to the temperature evolution in aluminium alloys.
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In the viscoplastic formalism, two constitutive equations are more currently used. The first is the
Johnson–Cook relation, used for example by Schmidt and Hattel [2004; 2005], which phenomenolog-
ically accounts for the strain, strain rate, and temperature dependence of the material behaviour in an
uncoupled manner. It is written

σem =
(

A+ B[εpl
eq]

n )(1+C ln
ε̇

pl
eq

ε̇0

)(
1−

[ T−Tref
Tmelt−Tref

]m
)

(2-5)

where σeq, εpl
eq, ε̇pl

eq, and ε̇0 (1 s−1) are respectively the equivalent von Mises stress, the equivalent plastic
strain, the equivalent plastic strain rate, and the normalising strain rate, while A, B, C , n, Tmelt, Tref, and
m are material constants. The relation captures a plastic threshold and consequently accepts the presence
of residual stresses when the strain rate is reduced to zero.

Power law-type constitutive equations such as the Norton–Hoff model are also used [Fourment et al.
2004; Guerdoux and Fourment 2005]. They are currently combined with the Eulerian representation

σeq = 3K
(√

3ε̇eq
)m−1

ε̇eq, (2-6)

where K = K0(ε+ ε0)
n exp(β/T ) is the consistency, ε̇eq is the equivalent strain rate, and m, K0, ε0, n,

and β are material constants. Contrary to the Johnson–Cook equation, when the strain rate is reduced to
zero, no more stress exists within the material.

Contact law. For friction modelling, only two laws are found in the literature. The first, used mainly in
solid mechanics [Xu and Deng 2001; Xu and Deng 2002; 2003; Schmidt and Hattel 2004; 2005], is a
modification of Coulomb friction law

τ = µp, (2-7)

which expresses the tangential stress as a function of the contact pressure p and the friction coefficient
µ. It is modified in that the tangential stress is limited to τmax, a value related to the ultimate tensile
strength σu by τmax = σu/

√
3; see Figure 4.

The second friction law is the Norton law, currently used in fluid mechanics [Fourment et al. 2004;
Guerdoux and Fourment 2005; Feulvarch et al. 2005a; 2005b; 2007; Feulvarch 2006]. It expresses the
tangential stress in terms of the friction coefficient µ, the consistency K , and the differential velocity V :

τ =−µK |V |q−1V, (2-8)

where q is a material constant.

τmax

τ

p

µ

Figure 4. Modified Coulomb friction law.
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But the heat partition between sheet and tool is not really justified by the different authors. How much
heat is dissipated in the sheet? The only physical consideration used to determine this is the difference in
material effusivity of each part. This problem needs to be highlighted because it governs the temperature
evolution in the sheet, and so the final result. Moreover, the definition of friction must vary with the
velocity and temperature in the transient phase. For the steady state, even if the conditions are known,
the friction coefficient must be correctly evaluated.

3. Numerical issues

In addition to the thermomechanical modelling, algorithms have to be chosen to deal with the numer-
ical resolution of the thermal and mechanical equations of the problem. This section considers three
numerical issues in ABAQUS/Explicit: contact definition, mass scaling, and ALE use. These aspects are
unfortunately not analysed in the literature, although they strongly affect the numerical results.

3.1. Contact definition. We turn first to the management of contact between sheet and tool, and in par-
ticular the contact between shoulder and sheet. Contact problems are among the most delicate modelled
in the literature [Kikuchi 1982; Alart and Curnier 1991; Fortin and Glowinski 1983; Perić and Owen
1992; Simo and Laursen 1992; Wriggers 1995; Papadopoulos and Solberg 1998; Aggoune et al. 2006].

ABAQUS offers two main approaches for unilateral contact. The first is based on a hard contact defi-
nition and uses a Lagrange multiplier, representing the contact pressure, to enforce the contact constraint.
The second is based on a softened contact definition, postulating a regular relation between the contact
pressure and the overclosure between the master and slave surfaces.

Here we focus on the second approach, and ask whether the friction coefficient imposed in the input file
of ABAQUS/Explicit is respected. Only the interaction between the shoulder and the sheets is considered;
the interface between the pin and the sheet is not modelled, to uncouple the roles of each part of the tool.
The master surface is the tool, which is considered undeformable, and the slave surface is the sheet.

For the slave surface definition, two choices are offered by ABAQUS/Explicit: node-based, where the
contact forces are considered directly at the nodes, or element-based, where the reactions are calculated
on the surface of the elements. ABAQUS/Explicit warns that “a node-based surface should be used with
caution or not at all if accurate contact stresses are needed or if heat will be exchanged between the two
surfaces” [ABAQUS 2006]. To explore this recommendation more precisely, numerical computations
were performed using these two choices, as follows. The friction law is considered without the limitation
of the equivalent friction stress. The dwelling phase, where the tool is in contact with the sheets and
rotates around its own axis, is simulated. The friction coefficient is then postcalculated from the computed
stresses and must be compared with the coefficient imposed in the input file (µ= 0.3):

µ=
τeq

σ33
, (3-1)

where τeq =

√
σ 2

13+ σ
2
23 is the equivalent friction stress and σ33 is the normal stress (the index 3 corre-

sponds to the normal to the contact surface).
Figure 5 presents the postcalculated friction coefficient µ for four different elements, sketched in

white, in contact with the shoulder. It reveals that the element based definition allows µ to be closer to
the prescribed friction coefficient than the node based definition even though the value is not exactly the
one imposed in the input file. This confirms the ABAQUS/Explicit recommendation.
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Figure 5. Friction coefficient (left) calculated using node-based and element-based sur-
faces, for the four elements highlighted on the right.

3.2. Mass scaling influence. In a FEM, the dynamic problem is written for each node of the mesh as

P − I = Mü, (3-2)

where P , I , M , and ü represent respectively the applied forces, the internal forces, the mass matrix, and
the node acceleration.

ABAQUS/Explicit solves the equilibrium (3-2) by an explicit algorithm. The acceleration of each
node is determined as a function of its mass and forces applied to it:

ü|t = M−1(P − I )|t . (3-3)

The mass matrix used in this formulation is diagonal, which simplifies the explicit calculation. The node
velocities at time (t +1t/2) are determined by

u̇|t+1t/2 = u̇|t−1t/2+
1t |t+1t +1t |t

2
ü|t . (3-4)

Then, the displacements of nodes are determined by

u|t+1t = u|t +1t |t+1t u̇|t+1t/2. (3-5)

As shown by equations (3-3), (3-4) and (3-5), the dynamic computation in ABAQUS/Explicit does not
need a stiffness matrix decomposition. The solutions are given at the end of the time increment without
any iteration. So each increment needs little CPU time. However, the algorithm has a time cost related
to the mesh size. In fact, the time increment (1t) must be less than a certain limit, to ensure the stability
of the calculation and avoid fluctuations in the solution. This limit is the smallest time needed for an
elastic wave to propagate through a mesh element [Schmidt and Hattel 2005; ABAQUS 2006; Liu 2006;
Wang et al. 2007]:

1t =
Le

Cd
, (3-6)
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where Le is the length of the smallest mesh element and Cd is the celerity of elastic waves through the
element considered. For a solid in an elastic regime, we have

Cd =

√
E
ρ
, (3-7)

where E is the Young’s modulus and ρ the mass density of the material. Therefore, once the mesh is
determined, the simulation time is proportional to the real duration of the process to be simulated.

To reduce computation time without increasing the element size (which would compromise the simu-
lation quality at the contact surface), one can increase artificially the value of the density ρ, and so also,
according to (3-6) and (3-7), the value of 1t . This technique is known as mass scaling, and it used also
in other explicit software such as LS-DYNA [Liu 2006; Wang et al. 2007] and METAFOR [Papeleux
and Ponthot 2002].

To analyse the effect of mass scaling, we compared the friction coefficient obtained using four different
time increments in the previously described simulations. (The increment time was selected directly, and
ABAQUS/Explicit determines the corresponding mass factor.) Figure 6 shows the results obtained for the
same elements used in Figure 5. Clearly, for a high value of mass scaling (n3 and e3), fluctuations are im-
portant and the results are not physically acceptable, since the calculated friction coefficient is higher than
1. With less drastic mass scaling, the element-based friction coefficient displays a smaller dependence
on mass scaling than the node-based one. This again confirms the ABAQUS/Explicit recommendation,
and the element-based surface was chosen in further simulations.

3.3. ALE in ABAQUS/Explicit. Since large deformations occur during the process, mesh distortions
appear quickly in a Lagrangian finite element simulation. ABAQUS/Explicit offers an adaptive meshing
mode called ALE [Song and Kovacevic 2003b; 2003a; Schmidt and Hattel 2004; 2005; Zhang et al.
2005; 2007] which repositions nodes with no change in the number or connectivity of elements. Figure
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Figure 6. Influence of mass scaling on the calculated friction coefficient. Notation: “n”
and “e” stand for node- and element-based surfaces; the subscripts indicate increasingly
more drastic mass scaling (0 corresponds to 1t = 0.00008, or no mass scaling, while 1,
2 and 3 correspond to 1t = 0.0001, 0.0005, and 0.001, respectively).
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Figure 7. Von Mises stress distribution after a 5 mm translation with adaptive meshing
(left) and without it (right).

7 shows the von Mises stress distribution obtained with and without the adaptive meshing for a pure
elastoplastic simulation where the tool undergoes a 5 mm translation. The distortions clearly decrease
but do not vanish when the ALE method is used. The element in contact with the tool gets thinner and
thinner due to the adaptive meshing and finally the small thickness of the elements makes the calculation
diverge.

Two parameters must be chosen to perform the adaptive meshing: the frequency of node repositioning
and the number of mesh sweeps (the number of times the algorithm is used). Their values have to be high
enough to avoid distortions, but not so high as to degrade the information excessively. (When nodes are
moved during each sweep, the fields must be transferred to the new mesh, leading to a loss of information
due to interpolation.)

4. Numerical analysis

The preceding analysis can be of help in making certain modelling and numerical choices for FSW
simulations. Ultimately, a systematic exploration of such choices can clarify how the temperature field
is influenced by process parameters such as the plunge force or the translation and rotation speeds of the
tool. The results presented here are the first ones obtained after having chosen the parameters presented
in earlier sections.

Material and geometry. The tool is considered analytically rigid, which means in ABAQUS/Explicit
terminology undeformable and isothermal. It is made of two simple cylinders: an inferior rounded one
for the pin, with radius rp = 2.5 mm and height hp = 3 mm, and an upper one for the shoulder, with radius
re = 6.5 mm and height he = 5 mm as illustrated in Figure 8.

The sheet is modelled by the extrusion of a square of length Ls = 40 mm with a hole in the center of
diameter Ds = 5 mm and thickness Es = 4 mm. The anvil is also modelled by the extrusion of the same
square (without the hole) with thickness Ea = 5 mm.

The sheet is made of aluminium 2024-T3. The Johnson–Cook constitutive equation, (2-5), is chosen,
using the following parameters, taken from [Schmidt and Hattel 2004; 2005]:

A = 369 MPa, C = 0.0083, Tmelt = 502◦C, m = 1.7,
B = 684 MPa, Tref = 25◦C, n = 0.73.
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Figure 8. Tool used for simulations (dimensions in mm).

The tool and the anvil are made of classical steel. The physical properties (material conductivity λ,
specific heat C p, and density ρ) used for aluminium and steel are as follows:

λ (W m−1 K−1) C p (J kg−1 K−1) ρ (kg m−3)

Aluminium 140 920 2780
Steel 36 450 7800

Based on experimental observations, the constitutive equation for the anvil is limited to linear elasticity
(using a Young’s modulus of 2.1×105 MPa and a Poisson’s ratio of 0.3) in order to decrease computation
time and because only the behaviour of the sheet is being studied.

The process is decomposed into three steps, presented in Figure 9:

(1) Plunge (preexisting hole, 1 s): the tool is in contact with the sheet; a force F = 1200 N orthogonal
to the sheet is applied to the tool.

(2) Dwelling (beginning of tool rotation, 2 s): an additional angular velocity ω = 42 rad/s is imposed
on the tool.
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ω ω
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Figure 9. Boundary conditions of each step.
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(3) Translation (10 s): Eulerian faces are used to simulate the material flow in the sheet; material flows
through these faces with velocity V = 0.5 mm/s. This choice is helpful in decreasing mesh distortion.

Adaptive meshing is used only in steps 2 and 3, and is applied to the entire sheet with frequency 1
(at the end of each increment); the number of sweeps is 10. These parameters are chosen from the
optimization study performed previously.

The definition of the slave surface of the contact between tool and sheet is element based as justified
in Section 3.1.

For these simulations, about 50000 hexahedral elements with reduced integration (C3D8RT) were
used, and the computation time varied between 3 and 19 hours. The translation step accounts for most
of the CPU time overall.

Temperature results. As discussed, the use of mass scaling can decrease computation time but may lead
to loss of precision and hence predictability. Here we consider the effect of mass scaling on the calculated
temperature field. We chose three elements on the sheet, shown in Figure 10: element A is under the
shoulder and in contact with the pin; element B lies under the shoulder, 6 mm from the centre of the
sheet; and element C is 9.5 mm away from the centre of the sheet.

Figure 11 shows the calculated temperature evolution at these elements. The same values of 1t are
used as in Figure 6, reflecting increasingly drastic mass scaling. First, the temperature found is of the
same order as the experimental one observed in the test using conditions close to the numerical simulation.
The parameters are taken from the literature and consequently are not fitted to match experimental results.
Second, for elements A and B, fluctuations clearly appear for the whole simulation. This phenomenon
is magnified with the use of mass scaling. For element A, the mass scaling leads to an underestimation
of the temperature value, and for element B to an overestimation. Thus mass scaling can cause errors
in either direction in the calculation of temperature. For element C, which is far from the tool, there is
no fluctuation and mass scaling has only a weak influence. So the overall heating due to the tool is well
predicted but local results fluctuate and are not really accurate because mass scaling has an effect on the
management of the contact.

Figure 10. Position of elements in the sheet for the complete simulation.
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Figure 11. Increase in temperature for elements A (top), B (center), and C (bottom);
simulation using element-based surfaces with 1t equal to 0.00008 (e0), 0.0001 (e1),
0.0005 (e2), and 0.001 (e3). The time scale begins at 1 s because step 1 is omitted.

Material flow results. Understanding and controlling the material flow are crucial to the success of the
FSW process, are closely related to the temperature field. In view of the link between microstructure
evolution and the strain path of the particle [Xu and Deng 2003; Schmidt and Hattel 2004], we also
study the latter: Figure 12 shows the von Mises equivalent plastic strain partition in a cut perpendicular
to the welding direction. We can clearly associate the zone of highest equivalent plastic strain with
the thermomechanical affected zone (TMAZ). The vase shape of the TMAZ and the lack of symmetry
between the advancing and retreating sides are in good agreement with experimental observations and
numerical simulations found in [Xu and Deng 2003; Schmidt and Hattel 2004; Mishra and Ma 2005]. We
notice the presence of a highly deformed zone at the center of the TMAZ, corresponding to the nugget.
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Figure 12. Cross-section of the weld: von Mises equivalent plastic strain partition. AS
is the advancing side, RS the retreating side.

Figure 13 shows the results concerning the elements near the pin for different sections through the
sheet, perpendicular to the axis of the tool. The results come from an analytical calculation in which the
particle velocities are imposed on the contact surface and depend on the advancing speed, the angular
velocity, and the pitch of the pin.

Figure 13. Calculated angular velocity and flow velocity: under the shoulder (top left),
mid thickness (top right), and at the bottom of the weld (bottom). For each figure, the
advancing side is at the top and the retreating side is at the bottom.
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The results agree qualitatively with those in [Nandan et al. 2007]; see especially Figure 15 there,
showing how that material moves from the advancing side to the retreating side. This observation was
made using thin copper sheets as material markers. Quantitatively, our simulation results obtained are
close to those of Nandan et al. for the upper part of the weld (contact with the shoulder), except near
the tool on the advancing side where the material flow does not follow the movement of the tool. In
addition, in the bottom part of the weld the rotational motion of the pin does not affect the material flow.
It is similar to a flow around a fixed obstacle that does not stick to it. This phenomenon may come from
a too low normal stress at the pin/sheet interface, which does not provide high enough tangential stress.
In the upper part, the normal force is imposed on the tool and stirs the material. Note that a hole is still
present behind the tool, even though a small amount of material seems to be stirred behind the tool.

5. Conclusion

We have examined different approaches used in the literature and based on commercial codes to simulate
the FSW process, highlighting their strengths and weaknesses. The choice of an approach is motivated
by the desired predictive feature for the simulation.

From the viewpoint of kinematics, the ALE representation seems to be the most promising method to
reduce mesh distortions; it does not prevent computationally expensive remeshing but reduces it.

One way to reduce computation time is to use mass scaling. However, excessive mass scaling can
degrade the quality of the outputs. The technique of coupling two different models seems to provide a
good compromise, since it allows us to largely reduce or avoid remeshing.

For the model to be predictive, material mixing must be well described in order to predict defects like
void formation in the weld joint. This is possible if the complex geometry of the pin and the shoulder is
considered in the simulation.
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ANISOTROPIC THIN-WALLED BEAM MODELS: A RATIONAL DEDUCTION
FROM THREE-DIMENSIONAL ELASTICITY

FRANCO MACERI AND GIUSEPPE VAIRO

In this paper anisotropic thin-walled beam models are rationally deduced from three-dimensional elas-
ticity by means of a constrained approach. Consistent frictionless internal constraints on both stress and
strain dual fields are enforced through a modified Hu–Washizu functional obtained by a nonstandard
application of Lagrange multipliers. Beam theories accounting for different shear refinement levels are
justified, showing that this variational approach enables the development of new refined models, includ-
ing high-order nonconventional effects and enhancing standard treatments of shear deformation effects.
In agreement with the constrained problem, a locally equilibrated approximation of the stress field acting
on beam cross-section is recovered in closed form. Finally, cases of laminated thin-walled beams as
well as of unilateral conewise constitutive behavior (with special reference to bimodular materials) are
investigated.

1. Introduction

Thin-walled beams comprising anisotropic materials, such as thin-walled elements made of composite
fiber-reinforced polymer, are increasingly being used as primary and secondary members in structural
applications in many areas, including aeronautical, mechanical, biomechanical, and civil engineering.
The most common shapes include open cross-sections, such as I-, C-, L-, Z-shaped profiles, usually
produced by pultrusion technology.

Because of the beam’s specific geometry (two dimensions fairly smaller than the third) the analysis is
generally carried out by means of approximate one-dimensional models. However, thin-walled members
need treatments different from those adopted for classical rods because they can be very sensitive to shear
deformation effects, which challenge both the validity of the classical Bernoulli–Navier assumption on
cross-section deformation and Saint-Venant’s pure torsion theory [Kollbrunner and Basler 1969].

The first one-dimensional thin-walled beam theory was developed by Vlasov [1961; 1962], who as-
sumed that the section contour is invariant in its plane and that shear stresses in the middle surface of
the beam vanish, and so reached a new distribution law of longitudinal stresses in the cross-section (law
of sectorial areas). Vlasov’s theory includes extension, bending and torsion deformations of isotropic
homogeneous beams and describes the torsional shear stress flow as a superposition of two parts: the
Saint-Venant primary flow (pure torsion) and a secondary one, associated to the shear stresses induced by
the nonuniform warping of the cross-section. In spite of some inherent limitations, this theory represents
a general framework in which many authors have developed more refined theoretical and numerical
approaches for the analysis of thin-walled beams.

Keywords: thin-walled beams, constrained elasticity.
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The static behavior of thin-walled beams has been analyzed for instance in [Bauld and Tzeng 1984;
Ascione et al. 2000; De Lorenzis and La Tegola 2003; Erkmen and Mohareb 2006; Lee and Lee 2004;
Lee 2005], where different shear refinement levels are included. Bauld and Tzeng [1984] developed a
Vlasov-type theory for fiber-reinforced beams with thin-walled open cross-sections, which does not take
into account any shear effect. Ascione et al. [2000], improving the kinematics of the classical Vlasov
theory, included shear deformability using Timoshenko-type contributions enhanced through a Galerkin
approach. De Lorenzis and La Tegola [2003] generalized the exact theory of thin-walled isotropic beams
developed by Capurso [1964] to the case of transversely isotropic materials, including the effects of
restraints and of concentrated loads. Erkmen and Mohareb [2006], postulating statically admissible
stress fields in agreement with those coming out from the Vlasov’s theory, proposed a theoretical and
numerical torsional analysis for isotropic thin-walled beams including shear deformation effects on the
middle surface. Lee [2005] has recently employed a thin-walled beam model for the analysis of lami-
nated beams, based on a first-order shear-deformable beam theory (such as in [Maddur and Chaturvedi
1999]), accounting not only for shear deformation due to flexure but also for nonuniform warping effects
(analogously to [Cortı́nez and Piovan 2002]).

Starting from generalized Vlasov-type theories, including shear effects as well as first- and second-
order terms of rotational parameters, stability of composite thin-walled profiles has been analyzed in
[Cortı́nez and Piovan 2002; Fraternali and Feo 2000; Lee and Kim 2001; Saadé et al. 2004; Piovan and
Cortı́nez 2007]. Modified Vlasov-type theories have also been proposed in [Maddur and Chaturvedi
1999; Cortı́nez and Piovan 2002; Piovan and Cortı́nez 2005; 2007; Ambrosini et al. 2000] and elsewhere
for the theoretical and numerical analysis of the dynamical behavior of such structures.

Nevertheless, the rational deduction and justification of these theories from three-dimensional elas-
ticity and their consistent generalization for anisotropic materials as well as for nonconventional cases
(such as laminated beams or unilateral material behavior) can be truly considered as an open task yet.
Note that the deduction of thin-walled beam models in a consistent way is not only a speculative issue,
but leads to a safer and more complete technical use of these theories.

In the specialized literature, the rational deduction of structural theories is performed mainly through
two strategies: the asymptotic method and the constrained approach. The first, started in the mid-
seventies through the influence of several works addressing theories of plates and shells, was later
applied to rods and thin-walled beams [Trabucho and Viaño 1996; Rodrı́guez and Viaño 1997; Volovoi
et al. 1999; Hamdouni and Millet 2006]. Its main idea is that the three-dimensional solution of the
elasticity equations can be approximated through successive terms of a power series, where, for beams,
the slenderness ratio (between cross-section diameter and beam length) is taken as a small parameter.
Accordingly, under suitable hypotheses that ensure series convergence, different structural theories can
be rationally deduced as approximate solutions of an exactly stated problem, varying the series trun-
cation order. The constrained approach, by contrast, is based on a diametrically opposite concept: it
looks for an exact solution of a simplified constrained problem, based on approximate representations of
the unknown functions. The primary three-dimensional elastostatic problem is reduced to a consistent
simplified one (two-dimensional in the case of plates and shells, one-dimensional for beams), enforcing
suitable assumptions on strain and/or stress fields as internal frictionless constraints. That approach was
successfully employed for deducing classical plate and shell theories [Podio-Guidugli 1989; Bisegna
and Sacco 1997b] and theories of beams with solid sections [Lembo and Podio-Guidugli 2001; Maceri
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and Bisegna 2002]. To justify Kirchhoff–Love plate theory [Podio-Guidugli 1989] and the Timoshenko
beam model [Lembo and Podio-Guidugli 2001], a constrained approach was proposed based on strain
assumptions and on the concept of constrained material. By contrast, the constrained approach proposed
by Bisegna and Sacco [1997b] for deducing classical plate theories maintains the constitutive law given a
priori, and involves consistent assumptions on both strain and stress dual fields. Nevertheless, while strain
assumptions can be easily identified if the problem is characterized by special geometries, effective and
consistent stress assumptions can be sometimes not obvious. In order to overcome this difficulty, Maceri
and Bisegna [2002] showed how plates, shells and planar beams theories can be justified enforcing in a
consistent way the same constraints on both stress and strain dual fields.

In this paper, this dual-constraint approach is employed for justifying several anisotropic thin-walled
beam models, accounting for different levels of shear refinements. To this aim, the Hu–Washizu vari-
ational formulation of the three-dimensional elasticity problem is modified using Lagrange multiplier
theory [Antman and Marlow 1991]. Because of the simultaneous presence of constraints on dual spaces,
a nonstandard application of Lagrange multipliers is required.

As far as homogeneous beams are considered, an anisotropic model which does not account for any
shear deformations is deduced first, justifying the model of Bauld and Tzeng [1984] and reducing to the
classical Vlasov’s theory when isotropic constitutive symmetry is considered. The proposed approach
enables to take into account also nonconventional high-order effects, related to thickness and curvature of
the cross-section centerline. In detail, generalized expressions for warping function and torsion constant
are obtained, whose influence is investigated through simple numerical applications. Afterwards, a first-
order shear-deformable thin-walled beam model is rationally derived, justifying models involving Tim-
oshenko’s shear effects. This is the case of the model proposed in [Ascione et al. 2000] when Galerkin-
type contributions are neglected, and, for homogeneous beams, of the model analyzed in [Maddur and
Chaturvedi 1999]. In the framework of the dual-constraint approach, different shear refinement levels can
be also accounted for. This is proved including shear effects due to nonuniform warping (e.g., models
in [Lee 2005; Cortı́nez and Piovan 2002]) and drawing some strategies to deduce a new branchwise
model, for multibranch beam cross-sections, including branch-depending Timoshenko’s and warping
shear effects.

A more accurate evaluation of stresses on beam cross-section with respect to those obtained by consti-
tutive relationship represents an issue of great technical interest when, for instance, damage of composite
thin-walled beams is addressed. To this aim, in agreement with the constrained problem, approximated
locally equilibrated stresses acting on beam cross-section are recovered in closed form.

Finally, the dual-constraint approach is successfully employed to rationally deduce models for the
analysis of laminated thin-walled beams as well as of homogeneous beams comprising nonlinear cone-
wise elastic materials [Curnier et al. 1995] (with reference to bimodular ones).

2. Dual-constraint approach

In the framework of infinitesimal deformation theory, the equilibrium problem of a three-dimensional
body � comprising a linearly elastic material can be recast by adopting the Hu–Washizu variational
formulation:
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Find the displacement field u, the strain field ε and the stress field σ that make stationary the functional

W(u, ε, σ )=
∫
�

1
2 Cε · ε dv−

∫
�

σ · ε dv+
∫
�

σ · ∇̂u−
∫
�

b ·u dv dv

−

∫
∂ f�

p ·u da−
∫
∂u�

σn∂ · (u−u0) da, (2-1)

where ∇̂ denotes the symmetrical part of the gradient operator, · the inner product, b the volume forces,
p the surface forces on ∂ f�, u0 the displacement assigned on ∂u�= ∂�\∂ f�, n∂ the outward normal
unit vector to ∂�, and C the fourth-order elasticity tensor satisfying major and minor symmetries. The
stationary conditions of W with respect to u, σ and ε yield equilibrium, compatibility and constitutive
equations governing the three-dimensional elastostatic problem for �.

When the body is characterized by special geometrical aspect ratios, the three-dimensional problem
can be approximated using suitable assumptions on strain and/or stress fields. If these assumptions are re-
garded as internal frictionless constraints, reactive fields arise and the original difficult three-dimensional
elastic problem can be replaced by a constrained problem that can be often solved more easily.

In order to enforce constraints on both strain and stress dual fields, the constrained equilibrium problem
can be suitably formulated employing Lagrange multipliers. Physically, Lagrange multipliers represent
reactive actions belonging to the dual space of the one where the constrained variable lives: a Lagrange
multiplier of a strain constraint identifies a reactive stress, and conversely a multiplier of a stress constraint
has the meaning of reactive strain. The consistent representation of such reactive fields arises as a
consequence of the enforced constraints and it is not postulated a priori.

As in [Bisegna and Sacco 1997b], we will adopt the following definitions: the total strain field is the
symmetrical part of the gradient of the displacement field; the total stress field satisfies the equilibrium
equations; elastic stresses and strains are related to each other by the elastic constitutive law; the total
stress (or strain) is sum of its elastic and reactive parts.

In order to build up structural theories, one usually imposes a representation law for the displacement
field (which is equivalent to imposing constraints on the total strains), and some hypotheses on the stress
field at the constitutive law level (i.e., on the elastic stress field).

Let the total strain and the elastic stress fields be constrained to belong to the kernel of the linear
(possibly differential) operators G and H, respectively. Following [Bisegna and Sacco 1997b], these
constraints acting on dual spaces can be enforced by introducing the Lagrangian functional

L(u, ε, σ ,χ ,ω)=W(u, ε, σ )−
∫
�

χ ·Gε dv−
∫
�

ω ·Hσ dv−
∫
�

G∗χ ·H∗ω dv, (2-2)

where the vectors χ , ω are Lagrange multipliers, G∗ and H∗ denote the adjoint operators of G and H,
respectively. The stationary condition of L with respect to u yields the equilibrium equations

div σ +b= 0 in �,

σn∂ = p on ∂ f�;
(2-3)

the one with respect to ε yields the constitutive equations

σ +G∗χ = Cε in �; (2-4)
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the one with respect to σ yields the compatibility equations

ε+H∗ω = ∇̂u in �,

u= u0 on ∂u�;
(2-5)

and finally the stationary conditions with respect to the Lagrange multipliers χ and ω yield, respectively,
the constraint equations

G
(
ε+H∗ω

)
= 0 in �,

H
(
σ +G∗χ

)
= 0 in �.

(2-6)

Accordingly, by (2-3), (2-4) and (2-5), σ and ε+H∗ω turn out to be the total stress and strain fields,
respectively, and σ +G∗χ and ε the elastic stress and strain fields, respectively. As a consequence,
reactive stress and strain fields are −G∗χ and H∗ω, respectively. Note that the reactive stress field is
orthogonal to every admissible total strain field and likewise the reactive strain field is orthogonal to
every admissible elastic stress field, as it appears from (2-6).

In this dual-constraint framework, Maceri and Bisegna [2002] have shown that classical plates and
planar beams theories can be rationally deduced by assuming that the dual constraints on the elastic stress
field are the same as those imposed on the total strain field. In this case, operators G and H are such
that HA=GA for every symmetrical second order tensor A and Lagrange multipliers χ and ω belong
to dual vector subspaces characterized by the same dimensions. In this way, once kinematic constraints
are chosen, consistent stress assumptions directly arise.

For what follows, it is more useful transforming the functional L of (2-2) into a potential energy
functional, by enforcing a priori satisfied stationary conditions of L with respect to σ and ε, that is
(2-5) and (2-4). Accordingly, in the framework of the dual constraint approach proposed in [Maceri and
Bisegna 2002], the functional L becomes

E(u,χ ,ω)=
∫
�

1
2 C(∇̂u−G∗ω) · (∇̂u−G∗ω) dv−

∫
�

χ ·G∇̂u dv−
∫
�

b ·u dv−
∫
∂ f�

p ·u da, (2-7)

defined on the manifold u= u0 on ∂u�. It can be verified that total strain and elastic strain are 3= ∇̂u
and ε = ∇̂u−G∗ω, respectively, and total stress and elastic stress are σ = C(∇̂u−G∗ω)−G∗χ and
σ (el)
= C(∇̂u−G∗ω), respectively.

It should be noted that E depends on the reactive fields. In order to obtain a potential-energy functional
that does not depend on the Lagrange multipliers it is sufficient to make stationary conditions of E with
respect to χ and ω a priori satisfied.

3. Thin-walled beam models

3A. Notation. Consider a right cylinder beam-like body � = P× ]−L , L[, whose length is 2L and
whose cross-section is an open thin-walled profile P, assumed to be constant along the beam axis-line.
Let the global Cartesian frame (O, x, y, z) be assumed with {i, j,k} the corresponding orthonormal basis
and with z-axis parallel to the cylinder axis. Let p the centerline of P and 2δ� 2L the thickness of the
wall. Hence, the middle surface of the beam is M = p × ]−L , L[ and, with a little abuse of notation,
the cross-section can be described as P= p ×]−δ, δ[. The beam is assumed to be in equilibrium when
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Figure 1. Thin-walled beam cross-section: notation.

volume forces b act upon �, surface tractions p̂ act upon the mantle 6 = ∂P× ]−L , L[, and surface
forces p+ and p− are given at the ends of the beam P+ = P×{L} and P− = P×{−L}, respectively.

As it is customary in thin-walled beam analysis, centerline p can be represented through the parametric
equations x̃ = x̃(s) and ỹ = ỹ(s), where s is a local curvilinear coordinate with origin at an arbitrary
point S of p, such that s ∈ [s0, s`]. Accordingly, at the generic position x̃= x̃ i+ ỹ j of p a local tangent
frame may be introduced (Figure 1) by means of tangent and normal unit vectors to p:

t(s)=
dx̃
ds

i+
d ỹ
ds

j, n(s)=−
d ỹ
ds

i+
dx̃
ds

j. (3-1)

Hence, position x of every point in � can be represented as

x(s, η, z)= x̃(s)+ η n(s)+ zk, (3-2)

where η ∈ [−δ, δ] is the coordinate along the unit vector n. We assume that thickness variation along p
is small, that is |dδ/ds| � 1, and hence tangent directions at ∂P|η=±δ can be approximated by t(s) up to
terms of order |dδ/ds|. It should be marked that basis {t,n,k} can be superimposed to the basis {i, j,k}
and that derivatives with respect to s of t and n are given by the well-known Frenet formulas

dt
ds
= κ(s)n,

dn
ds
=−κ(s)t, (3-3)

where κ(s) is the (signed) curvature of p.
Due to the previous positions, integrals over P can be arranged as∫

P
( · ) da =

∫ s`

s0

∫ δ

−δ

( · ) j (s, η) dη ds, (3-4)

where j (s, η) = 1− ηκ is the Jacobian determinant of the coordinate transformation (3-2) from the
global Cartesian frame to the local tangent one. Accordingly, the average of a function f (s, η, z) over
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the thickness is

f̄ (s, z)=
1
2δ

∫ δ

−δ

f (s, η, z) j (s, η) dη. (3-5)

Moreover, it easy to verify that, taking into account (3-1), the following identity holds:

∇ f =
f/1
j

t+ f/2n+ f ′ k. (3-6)

Here and in what follows we indicate the partial derivatives of a function f with respect to local
coordinates s and η as f/1 and f/2, respectively, whereas the partial derivative with respect to z is
denoted by f ′. Where necessary, vector and tensor components are denoted by subscripts and Einstein’s
summation convention is used, in which case Greek indices imply values in {1, 2} and denote components
in the plane of P referred to the local tangent frame (1 standing for the tangent-to-p component, i.e.,
along s, and 2 for the normal-to-p component, i.e., along η), the index 3 indicates components along the
z-axis, and components along in-plane Cartesian axes are explicitly denoted by the subscripts x and y.

It is useful to introduce the following in-plane shear strain and stress vectors:

γ = 2ε13 t+ 2ε23 n= 2εx3 i+ 2εy3 j,

τ = σ13 t + σ23 n= σx3 i+ σy3 j
(3-7)

for both elastic and total fields.
Finally, in this section the beam is assumed to be homogeneous and comprising a linearly elastic

material having at least a monoclinic symmetry, with symmetry plane orthogonal to k. Accordingly,
Cαβγ 3 = Cα333 = 0. This material symmetry includes, for instance, the case of thin-walled profiles
pultruded along the z-direction.

3B. No-shear beam model. The total strain field is assumed to satisfy Vlasov’s assumptions [1961;
1962] on M and the Euler–Bernoulli constraints of classical beam theories:

(i) The in-plane (dilatation and shear) total strain components vanish everywhere on P.

(ii) The shear total strain between the z-axis and n(s) vanishes everywhere on P.

(iii) The flux through the thickness of the in-plane shear total strain vector (see (3-7)) is zero.

Accordingly, the operator G is such that

Gε = {ε11 ε22 ε12 ε̄13 ε23}
T . (3-8)

Following the constrained approach proposed in [Maceri and Bisegna 2002], the dual constraints on
the elastic stress field can be directly expressed as follows:

(iv) The elastic stress vector on every plane parallel to the z-axis is parallel to k.

(v) The shear elastic stress along n(s) vanishes everywhere on P.

(vi) The flux through the thickness of the in-plane shear elastic stress vector is zero.



378 FRANCO MACERI AND GIUSEPPE VAIRO

Accordingly, the functional (2-7) can be written as

E(u,χ ,ω)=
1
2

∫
�

[
Cαβγ δ(3αβ−ωαβ)(3γ δ−ωγ δ)+2Cαβ33(3αβ−ωαβ)u′3+C3333(u′3)

2

+4Cα3β3(3α3−ωα3)(3β3−ωβ3)
]

dv−
∫
�

(χαβ3αβ+2χα33α3) dv−5ext, (3-9)

where 3 = ∇̂u, whose components in the local tangent frame are evaluated through (3-6), and 5ext

accounts for external loads:

5ext =

∫
�

(bαuα + b3u3) dv+
∫
6

( p̂αuα + p̂3u3) d%dz+
∫

P
(p±α uα|±L + p±3 u3|±L) da, (3-10)

where d% is the arc element along ∂P and the notation f ±( · )|±L means f +( · )|z=L + f −( · )|z=−L .
Note that, since constraints (iii) and (vi) are imposed by average condition (3-5), relevant Lagrange

multipliers are defined on M , i.e., ω13 = ω13(s, z), χ13 = χ13(s, z).
The stationary conditions of the functional (3-9) with respect to χαβ and χα3 give, respectively, the

following constraints on the displacement field, i.e., on the total strain field:

311 = [u1/1− κu2]/j = 0,

322 = u2/2 = 0,

2312 = [u2/1+ κu1]/j + u1/2 = 0,

4δ313 =

∫ δ

−δ

(u3/1+ ju′1) dη = 0,

2323 = u′2+ u3/2 = 0,
(3-11)

where u1 = u · t, u2 = u ·n and u3 = u ·k.
Integration of (3-11) yields the Cartesian representation formulas for the displacement field:

ux(s, η, z)= u · i= uc(z)− θ(z)[y(s, η)− yc],

u y(s, η, z)= u · j= vc(z)+ θ(z)[x(s, η)− xc],

u3(s, η, z)= u ·k= wc(z)− u′c(z)x(s, η)− v
′

c(z)y(s, η)+ θ
′(z)ψc(s, η) (3-12)

where xc, yc are the coordinates of an arbitrary point C in the plane x − y, assumed as the pole of the
in-plane rigid rotation θ(z) of P; uc(z), vc(z) and wc(z) are the components of the displacement of C
along Cartesian axes; ψc(s, η) is the warping function referred to C and defined as

ψc(s, η)= ψ0+

∫ s

0
r ·n ds− η r · t−

1
3

∫ s

0
δ2κ ds, (3-13)

where r = [x̃(s)− xc]i+ [ỹ(s)− yc]j is the position vector of a point x̃ on p with respect to C . If∫
P ψcx da =

∫
P ψc y da = 0 then C coincides with the twist-center of P. Moreover, the constant ψ0 can

be evaluated by equating to zero the average value of ψc on P, i.e., considering the point S coincident
to the sectorial centroid of p. The second and third term in (3-13) represent the middle-contour warping
(i.e., the primary warping) and the thickness warping (i.e., the secondary warping), respectively. Fur-
thermore, the last contribution takes into account high-order effects relating to thickness and curvature
of p, generalizing the warping expression discussed by Lin and Hsiao [2003] and widely used in the
specialized literature; see for example [Lee and Lee 2004; Lee 2005; Cortı́nez and Piovan 2002; Saadé
et al. 2004; Piovan and Cortı́nez 2005; 2007].

The stationary conditions of the functional E with respect to ωαβ and ωα3 give, respectively,
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Cαβγ δ[3γ δ −ωγ δ] +Cαβ33u′3 = 0,∫ δ

−δ

Cα313[3α3−ωα3] j (s, η) dη = 0,

Cα323[3α3−ωα3] = 0.

(3-14)

Taking into account (3-11), the Lagrange multipliers ωαβ and ωα3 are uniquely determined by (3-14):

ωαβ = (Cαβγ δ)
−1Cγ δ33u′3, ω13 = 0, ω23 = C1323313/C2323, (3-15)

where (Cαβγ δ)−1 denotes the inverse tensor of Cαβγ δ.
Substituting (3-12) and (3-15) into the functional (3-9) and performing integration over P, the potential

energy functional for the thin-walled beam in terms of pure displacement unknowns can be written as

Ê(uc, vc, wc, θ)=
1
2

∫ L

−L
De · e dz−

∫ L

−L
q · ŝ dz−Q± · ŝ|±L , (3-16)

where the vector

ŝ= {uc vc wc −v
′

c u′c θ θ
′
}

T (3-17)

collects the generalized displacements,

e= {w′c − v
′′

c u′′c θ
′′ θ ′}T (3-18)

denotes the generalized total strain,

q= {qx qy qz mx m y mz mψ }
T , Q± = {Q±x Q±y Q±z M±x M±y M±z M±ψ }

T (3-19)

indicate, respectively, the generalized distributed and end-located forces acting on the beam, with

{qx , qy, qz} =

∫
P
{bx , by, bz} da+

∫
∂P
{ p̂x , p̂y, p̂z} d%, (3-20)

{mx ,m y,mψ } =

∫
P
{y,−x, ψc}bz da+

∫
∂P
{y,−x, ψc} p̂z d%, (3-21)

mz =

∫
P
[by(x − xc)− bx(y− yc)] da+

∫
∂P
[ p̂y(x − xc)− p̂x(y− yc)] d%, (3-22)

{Q±x , Q±y , Q±z } =
∫

P
{p±x , p±y , p±z } da, (3-23)

{M±x ,M±y ,M±ψ } =
∫

P
{y,−x, ψc}p±z da, M±z =

∫
P
[p±y (x − xc)− p±x (y− yc)] da, (3-24)

and finally

D=


Ĉ3333 A Ĉ3333Sx Ĉ3333Sy Ĉ3333Sψ 0

Ĉ3333 Ix Ĉ3333 Ixy Ĉ3333 Ixψ 0
Ĉ3333 Iy Ĉ3333 Iyψ 0

sym Ĉ3333 Iψ 0
Ĉ1313 Jθ

 (3-25)
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is the generalized elasticity matrix, with

{A, Sx , Sy, Sψ } =
∫

P
{1, y,−x, ψc} da, (3-26)

{Ix , Ixy, Iy, Ixψ , Iyψ , Iψ } =
∫

P
{y2,−xy, x2, yψc,−xψc, ψ

2
c } da, (3-27)

Jθ =
∫

P
[κ(η2

− δ2/3)− 2η]2/j2 da, (3-28)

where Jθ is the torsion constant, which generalizes the one commonly used in classical thin-walled open
cross-section beam models, through nonconventional high-order terms depending on curvature of p and
thickness.

Note that the coefficients of D depend on the so-called reduced elastic moduli:

Ĉ1313 = C1313−
C2

1323

C2323
, Ĉ3333 = C3333−Cαβ33(Cαβγ δ)

−1Cγ δ33. (3-29)

As is customary with beam theories, the stress resultants on P (generalized stresses) are introduced:

S= {N Cx Cy Cψ Cz}
T
= De, (3-30)

where S is the generalized stress vector, defined in terms of normal force N , bending moments Cx and
Cy , (primary) twisting moment Cz and bimoment (warping torque) Cψ :

{N ,Cx ,Cy,Cψ } =
∫

P
{1, y,−x, ψc}σ33 da, Cz =

∫
P
(σy3x − σx3 y) da. (3-31)

Assuming that the global Cartesian frame is centered at the centroid of the beam � and that its x and
y axes are principal for P, referring ψc to the twisting center for P and taking S coincident with the
sectorial centroid of p, the matrix D reduces to a diagonal matrix and the functional Ê of (3-16) can be
written as

Ê(uc, vc, wc, θ)=A(wc)+Fx(vc)+Fy(uc)+T(θ), (3-32)
where

A(wc)=
1
2 Ĉ3333 A

∫ L

−L
(w′c)

2 dz−
∫ L

−L
qzwc dz− Q±z wc|±L ,

Fx(vc)=
1
2 Ĉ3333 Ix

∫ L

−L
(v′′c )

2 dz−
∫ L

−L
(qyvc−mxv

′

c) dz− (Q±y vc|±L −M±x v
′

c|±L),

Fy(uc)=
1
2 Ĉ3333 Iy

∫ L

−L
(u′′c )

2 dz−
∫ L

−L
(qx uc+m yu′c) dz− (Q±x uc|±L +M±y u′c|±L),

T(θ)= 1
2 Ĉ3333 Iψ

∫ L

−L
(θ ′′)2 dz+ 1

2 Ĉ1313 Jθ

∫ L

−L
(θ ′)2 dz−

∫ L

−L
(mzθ +mψθ

′) dz

−(M±z θ |±L +M±ψ θ
′
|±L). (3-33)

The functional A models the extensional problem of the beam, Fx and Fy govern the Euler–Bernoulli
flexural model of the beam, T is relevant to the torsional problem. Observe that these functionals are
uncoupled and therefore the corresponding governing equations for extensional, flexural and torsional
problems are themselves uncoupled.
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The governing equations and natural boundary conditions for the extensional problem of the beam
arise from the stationary conditions of A with respect to wc:

Ĉ3333 Aw′′c + qz = 0, Ĉ3333 Aw′c|
L
−L = Q±z , (3-34)

where f |L
−L indicates f (−L) for z =−L or f (L) for z = L .

Analogously, the stationary conditions of Fx and Fy give governing equations and boundary condi-
tions for flexural problems in the yz and xz planes, respectively:

Ĉ3333 Ixv
′′′′

c − qy −m′x = 0,
{

Ĉ3333 Ixv
′′′
c |

L
−L −mx |

L
−L =−Q±y ,

Ĉ3333 Ixv
′′
c |

L
−L =−M±x ,

(3-35)

Ĉ3333 Iyu′′′′c − qx +m′y = 0,
{

Ĉ3333 Iyu′′′c |
L
−L +m y|

L
−L =−Q±x ,

Ĉ3333 Iyu′′c |
L
−L = M±y .

(3-36)

Finally, the stationary conditions of the functional T yield the governing equations and boundary
conditions for the torsional problem:

Ĉ3333 Iψ θ ′′′′− Ĉ1313 Jθ θ ′′−mz +m′ψ = 0,
{
[Ĉ3333 Iψ θ ′′′− Ĉ1313 Jθ θ ′+mψ ]

∣∣L
−L =−M±z ,

Ĉ3333 Iψ θ ′′
∣∣L
−L = M±ψ .

(3-37)

Solution of (3-34) to (3-37) gives the unknown functions uc, vc, wc, θ from which total, reactive and
elastic strain fields can be computed. Therefore, the elastic stress field σ (el)

= C(∇̂u−G∗ω) referred to
the local tangent frame turns out to be

σ
(el)
αβ = σ

(el)
23 = 0,

σ
(el)
13 = Ĉ1313θ

′
[κ(η2

− δ2/3)− 2η]/j,

σ
(el)
33 = Ĉ3333(w

′

c− u′′c x − v′′c y+ θ ′′ψc).

(3-38)

The total stress field coincides with the elastic one only for the component σ33, whereas total stress
components σαβ and σα3 can be not uniquely recovered in a general case from the equilibrium equations
(2-3). Nevertheless, (3-30) furnish stress resultants on P which satisfy global equilibrium. Moreover, as
will be showed in the following, a more accurate evaluation of total shear stress components on P may
be recovered from the field equilibrium equation along z.

We emphasize that the so-called reduced constitutive law enters the expression of Ê and the generalized
constitutive law (3-30) by means of the reduced elastic moduli (3-29). The present derivation clearly
shows how the appearance of these quantities is a straightforward and rational consequence of constraints
on dual fields, without contradiction because they act on fields (total strain and elastic stress) which are
not related by constitutive law. In other words, the reduced constitutive law comes out from the procedure
adopted and is not a priori enforced by means of a constrained constitutive law.

Note also that when constraints on the total strain field only (i.e., without constraints (iv), (v) and (vi))
are enforced, the functional Ê contains nonreduced elastic moduli, whereas when condition (iv) is added
to total strain assumptions, Ĉ3333 appears instead of C3333.

Finally, it is easy to verify that the discussed model, rationally deduced by means of the dual-constraint
approach, corresponds to that proposed by Bauld and Tzeng [1984] when nonconventional high-order
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effects relating to curvature κ and thickness are neglected, and it reduces to Vlasov’s classical one [1961;
1962] when an isotropic material is considered.

3C. First-order shear-deformable beam model. Since the wall thickness is small compared with other
cross-section dimensions, for the sake of brevity we assume in what follows that

δ�

∫
p

ds, δκ � 1, (3-39)

and then j ∼= 1.
In order to include first-order shear deformation effects, constraints (ii) and (iii) of Section 3B can be

replaced by the following assumptions:

(ii′) The shear total strain between z-axis and n(s) is constant over P.

(iii′) The flux through the thickness of the in-plane shear total strain vector is constant over P.

The corresponding dual constraints on the elastic stress field are:

(v′) The shear elastic stress along n(s) is constant over P.

(vi′) The flux through the thickness of the in-plane shear elastic stress vector is constant over P.

Accordingly, the operator G turns out to be such that

Gε = {ε11 ε22 ε12 (2δε̄13)/1 ε23/1 ε23/2}
T . (3-40)

Under assumptions (3-39) and recalling (3-3), the following equality can be stated:

(2δ3x3)/1i+ (2δ3y3)/1 j∼= (2δ313)/1t+ (2δ323)/1n= 0. (3-41)

Therefore, constraints (ii′) and (iii′) are equivalent to requiring that the integral over the thickness
of total shear strain between the z-axis and every in-plane direction depends only on z, that is, to the
Timoshenko-type kinematic shear assumptions

23x3 = γx(z), 23y3 = γy(z). (3-42)

Analogously, the dual constraints (v′) and (vi′) can be thought as referring to σ (el)
x3 and σ (el)

y3 .
Hence, the functional (2-7) can be written as

E(u,χ ,ω)=
1
2

∫
�

{
Cαβγ δ(3αβ −ωαβ)(3γ δ −ωγ δ)

+ 2Cαβ33(3αβ −ωαβ)u′3+C3333(u′3)
2
+ 4C1313[313+ (2δ ω13)/1]

2

+ 8C1323[313+ (2δ ω13)/1][323+ ω̃α3/α] + 4C2323[323+ ω̃α3/α]
2} dv

−

∫
�

[χαβ3αβ + 2χ13(2δ313)/1+ 2χ̃α3323/α] dv−5ext, (3-43)

where ω̃α3, χ̃α3, ω13(s, z), and χ13(s, z) are the Lagrange multipliers relating to constraints (ii′), (v′),
(iii′) and (vi′), respectively. The functional E is defined on the manifold: χ̃α3 = ω̃α3 = 0 on 6 and
ω13 = χ13 = 0 on ∂p×]−L , L[.
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The stationary conditions of (3-43) with respect to χ return constraints on the displacement field:

u1/1− κu2 = 0, u2/2 = 0, u2/1+ κu1+ u1/2 = 0, (3-44)∫ δ

−δ

(u3/11+ u′1/1) dη = 0, u′2/α + u3/2α = 0, (3-45)

whose integration yields the Cartesian representation formulas

ux(s, η, z)= uc(z)− θ(z)[y(s, η)− yc],

u y(s, η, z)= vc(z)+ θ(z)[x(s, η)− xc],

u3(s, η, z)= wc(z)−φy(z)x(s, η)+φx(z)y(s, η)+ θ ′(z)ψc(s, η), (3-46)

where the positions introduced in (3-12) are assumed to be valid and where

φx(z)= γy(z)− v′c(z), φy(z)= u′c(z)− γx(z). (3-47)

The stationary conditions of E in (3-43) with respect to ω give the equations

Cαβγ δ[3γ δ −ωγ δ] +Cαβ33u′3 = 0,{∫ δ

−δ

C1313[313+ (2δ ω13)/1] +C1323[323+ ω̃α3/α] dη
}
/1
= 0,

{C1323[313+ (2δ ω13)/1] +C2323[323+ ω̃α3/α]}/β = 0, (3-48)

from which the Lagrange multipliers ωαβ , ω13 and ω̃α3 can be found:

ωαβ = (Cαβγ δ)
−1Cγ δ33u′3, ω13 = ω̃13 = 0, ω̃23 =

C1323

C2323
θ ′(η2

− δ2). (3-49)

Substituting equations (3-46) and (3-49) into the functional (3-43), the potential energy functional Ê

is obtained in terms of pure displacement unknowns uc, vc, wc, φx , φy, θ , and it can be expressed as in
(3-16). In this case, the generalized displacements ŝ and generalized strains e are

ŝ= {uc vc wc φx φy θ θ
′
}

T , e= {w′c φ
′

x φ
′

y θ
′′ θ ′ γx γy}

T ,

and the generalized elastic matrix of the beam, of size 7× 7, takes on the form

D=
[

D(0) 0
0 D(1)

]
(3-50)

where the 5× 5 submatrix D(0) coincides with the matrix D of (3-25), derived for the no-shear case, and
the symmetrical 2× 2 submatrix D(1) is defined by

D(1)
11 = C1313

∫
P
(x̃/1)2 da+C2323

∫
P
(ỹ/1)2 da− 2C1323

∫
P

x̃/1 ỹ/1 da,

D(1)
12 = (C1313−C2323)

∫
P

x̃/1 ỹ/1 da+C1323

∫
P
[(x̃/1)2− (ỹ/1)2] da,

D(1)
22 = C2323

∫
P
(x̃/1)2 da+C1313

∫
P
(ỹ/1)2 da+ 2C1323

∫
P

x̃/1 ỹ/1 da.

(3-51)
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Moreover, in this model the generalized stress vector S= De contains shear resultant forces Tx and
Ty , representing static quantities associated to the generalized strains γx and γy , respectively:

{Tx , Ty} =

∫
P
τ · {i, j} da =

∫
P
σ13{x̃/1, ỹ/1} da+

∫
P
σ23{−ỹ/1, x̃/1}) da. (3-52)

Under geometrical assumptions making D(0) diagonal, the functional Ê can be written in the form

Ê(uc, vc, wc, φx , φy, θ)=A(wc)+F(uc, vc, φx , φy)+T(θ), (3-53)

where A and T are defined as in (3-33), and the functional F is

F(uc, vc, φx , φy)=
1
2 Ĉ3333

[
Ix

∫ L

−L
(φ′x)

2 dz+ Iy

∫ L

−L
(φ′y)

2 dz
]
+

1
2 D(1)

11

∫ L

−L
(u′c−φy)

2 dz

+ D(1)
12

∫ L

−L
(u′c−φy)(v

′

c+φx) dz+ 1
2 D(1)

22

∫ L

−L
(v′c+φx)

2 dz. (3-54)

The stationary conditions of the functional Ê of (3-53) supply governing equations and natural bound-
ary conditions for the beam, allowing us to compute the unknown functions uc, vc, wc, φx , φy , and θ .
In detail, the extensional and torsional problems are governed by (3-34) and (3-37), and the stationary
conditions of the functional F yield governing equations of the Timoshenko flexural beam model, which,
for the sake of brevity, are not reported here.

The elastic stress field turns out to be

σ
(el)
13 = (C1313 x̃/1−C1323 ỹ/1)γx + (C1313 ỹ/1+C1323 x̃/1)γy − 2Ĉ1313θ

′η,

σ
(el)
αβ = 0, σ

(el)
23 = (C1323 x̃/1−C2323 ỹ/1)γx + (C1323 ỹ/1+C2323 x̃/1)γy,

σ
(el)
33 = Ĉ3333(w

′

c−φ
′

y x +φ′x y+ θ ′′ψc). (3-55)

The total stress field coincides with the elastic one only for the component σ33, whereas, as for the case
of the no-shear model, total stress components σαβ and σα3 can not be uniquely recovered in a general
case from the equilibrium equations (2-3).

We note that the present model corresponds to the one proposed in [Ascione et al. 2000] when Galerkin-
type enhancements are neglected and, when applied to homogeneous beams, to the model analyzed in
[Maddur and Chaturvedi 1999]. Moreover, it reduces to the no-shear model discussed in Section 3B
when γx and γy are enforced to vanish.

3D. A shear refinement. The procedure until now employed can be successfully applied for deducing
in a consistent way different thin-walled beam models, in which shear deformation effects can be taken
into account through different refinement levels. For instance, the kinematics employed in [Lee 2005;
Cortı́nez and Piovan 2002; Piovan and Cortı́nez 2007] and including shear effects due to nonuniform
warping by a first-order warping shear term, can be deduced, under assumptions (3-39), by enforcing on
the total strain field, together with (i) and (iii′), the following constraint:

(ii′′) The shear total strain between z-axis and n(s) at every position (s, η) ∈ P does not depend upon
the thickness coordinate η and varies linearly along p.
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Constraints (ii′′) and (iii′) are equivalent to prescribing the equalities

23xz = γx(z)− γψ(z)(ỹ− yc), 23yz = γy(z)+ γψ(z)(x̃ − xc), (3-56)

where γψ is the first-order warping shear unknown function. In this case, the operator G is given by

Gε = {ε11 ε22 ε12 (2δ ε̄13)/1 ε23/11 ε23/2}
T . (3-57)

Thus the admissible displacement field belonging to the kernel of G can be represented through (3-46)
for the components ux and u y , and the displacement along beam axis z becomes

u3(s, η, z)= wc(z)−φy(z)x(s, η)+φx(z)y(s, η)+φz(z)ψc(s, η), (3-58)

where
φz(z)= θ ′(z)− γψ(z). (3-59)

Following the present dual-constraint approach, the constraints on the elastic stress field are directly
stated and the potential energy functional is

E(u,χ ,ω)=
1
2

∫
�

{
Cαβγ δ(3αβ −ωαβ)(3γ δ −ωγ δ)+ 2Cαβ33(3αβ −ωαβ)u′3
+C3333(u′3)

2
+ 8C1323[313+ (2δ ω13)/1][323− ω̃13/11+ ω̃23/2]

+ 4C1313[313+ (2δ ω13)/1]
2
+ 4C2323[323− ω̃13/11+ ω̃23/2]

2} dv

−

∫
�

[χαβ3αβ + 2χ13(2δ313)/1+ 2(χ̃13323/11+ χ̃23323/2)] dv−5ext, (3-60)

defined on the manifold: χ̃α3 = χ̃23/1 = ω̃α3 = ω̃13/1 = 0 on 6, and ω13 = χ13 = 0 on ∂p×]−L , L[.
Consistent generalized stress-strain relationship and governing equations can be rationally obtained as

in the previous sections, and now the vectors of generalized displacements, strains and stresses become

ŝ= {uc vc wc φx φy θ φz}
T ,

e= {w′c φ
′

x φ
′

y φ
′

z θ
′ γx γy γψ }

T ,

S= {N Cx Cy Cψ Cz Tx Ty Cψ
z }

T , (3-61)

where the static quantity Cψ
z associated to γψ represents the secondary twisting moment, defined as

Cψ
z =

∫
P
(σ13 r · t− σ23 r ·n) da. (3-62)

Accordingly, generalized elastic matrix D is expressed as in (3-50), with a symmetrical submatrix D(1)

of size 3× 3; the new elements of D are

D(1)
13 =−C1313

∫
P

r ·n x̃/1 da+C1323

∫
P
(r · t x̃/1+ r ·n ỹ/1) da−C2323

∫
P

r · t ỹ/1 da,

D(1)
23 =−C1313

∫
P

r ·n ỹ/1 da+C1323

∫
P
(r · t ỹ/1− r ·n x̃/1) da+C2323

∫
P

r · t x̃/1 da,

D(1)
33 = C1313

∫
P
(r ·n)2 da− 2C1323

∫
P
(r · t)(r ·n) da+C2323

∫
P
(r · t)2 da. (3-63)
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The elastic stress field comes out as

σ
(el)
13 = σ̂

(el)
13 − (C1313 r ·n−C1323 r · t)γψ ,

σ
(el)
αβ = 0, σ

(el)
23 = σ̂

(el)
23 − (C1323 r ·n−C2323 r · t)γψ ,

σ
(el)
33 = Ĉ3333(w

′

c−φ
′

y x +φ′x y+φ′zψc), (3-64)

where σ̂ (el)
α3 is the elastic in-plane shear stress components expressed in (3-55).

The present model reduces, for homogeneous thin-walled beams, to the one employed, for instance,
in [Lee 2005; Cortı́nez and Piovan 2002] and it coincides with the model deduced in Section 3C when
γψ is enforced to vanish.

3E. A branchwise model. If the thin-walled beam cross-section is subdivided in Nb branches (as it
naturally occurs for I, C, L, Z -type profiles) a new and more refined consistent model could be developed
by enforcing dual constraints associated to (i), (ii′′) and (iii′) for every branch b. As for layerwise
laminated plate models [Bisegna and Sacco 1997a], a branchwise compatible displacement field comes
out with usual components ux and u y and with u3 represented as

u(b)3 (s, η, z)= w(b)(z)−φ(b)y (z)x(s, η)+φ(b)x (z)y(s, η)+φ(b)z (z)ψc(s, η). (3-65)

The quantities w(b)(z) can be easily expressed in terms of unknown functions wc(z), φ
(b)
x (z), φ(b)y (z)

and φ(b)z (z) by imposing continuity conditions on u3 at every centerline joint between contiguous branches.
Accordingly, the number of displacement unknown functions is 4+ 3Nb (namely uc, vc, wc, θ , φ(b)x , φ(b)y ,
φ
(b)
z , where b varies from 1 to Nb) and the corresponding governing equations can be deduced following

the previous variational constrained approach. Further developments will be given in a future paper.

4. Recovering total shear stresses

In many technical problems the primary interest is on the total stress field (elastic plus reactive stress
field), that is the stress field which is in equilibrium with the external loads. Indeed, just total stress
values should be compared against material’s strength in order to prevent failure. Therefore, once the
elastic stress field is obtained by means of the dual-constraint approach, the reactive stress field should
be determined. Unfortunately, the constraint (i) employed in the previously discussed thin-walled beam
models and prescribing the rigid rotation of the beam cross-section in its representation plane, does not
enable to recover equilibrated stress components σαβ . Nevertheless, a technical analysis of beam-type
structural elements usually involves the stress vector on the plane of P, i.e., only the stress components
σ33, σα3.

For all cases under investigation the component σ (el)
33 of the elastic stress field coincides with the total

σ33, and an useful estimate of the total shear stress components σα3, much more accurate in a local sense
than the elastic ones, can be obtained as follows.

The field and boundary (on 6) equilibrium equations along z can be written, respectively, as

Div τ + σ33/3+ b3 = 0 in �,

τ ·n∂ = p̂3 on 6,
(4-1)
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where Div denotes the divergence operator acting on P and the in-plane total shear stress vector τ is
defined as in (3-7). Due to the stated assumptions (see Section 3A) the outward normal unit vector n∂
to the mantle 6 (i.e., to ∂P) can be approximated by means of normal and tangent unit vectors to the
center-line p, that is

n∂ =


±n on ∂P|η=±δ,

−t on ∂P|s=s0,

t on ∂P|s=s` .

(4-2)

Consider an internal beam cross-section Pi
= P×{zi

}, where zi
∈ ]−L , L[, and let si

∈]s0, s`[ to be
an internal coordinate on p. Then Pi can be subdivided into two complementary parts Pi

1 and Pi
2, such

that Pi
= Pi

1 ∪Pi
2 and Pi

1 ∩Pi
2 = ξ , where ξ denotes the thickness chord at si , i.e., ξ = {si

}× ]−δ, δ[,
whose unit normal vector is t(si ), outward directed from Pi

1.
Integrating (4-1)1 over Pi

1, applying the divergence theorem and taking (4-1)2 into account, the exact
average value over the thickness of the total shear stress σ13 is obtained as

σ̄13(si , z)=−
1
2δ

(∫
Pi

1

(σ33/3+ b3) da+
∫
∂Pi

1\ξ

p̂3 d%
)
, (4-3)

where, expressing σ33 via (3-64), we have∫
Pi

1

σ33/3 da = Ĉ3333(w
′′

c A1+φ
′′

x Sx1+φ
′′

y Sy1+φ
′′

z Sψ1); (4-4)

here the quantities A1 and S·1 are defined as in (3-26) and refer to Pi
1, i.e., as functions of si .

Since the wall thickness is small, the reactive part relating to σ13 can be identified with its average
value over the thickness. Accordingly, the total shear stress σ13 can be approximated as

σ13(si , η, z)∼= σ (el)
13 + (σ̄13− σ̄

(el)
13 )=−2Ĉ1313θ

′
+ σ̄13. (4-5)

Observe that (4-5) satisfies boundary conditions at ∂Pi
|s=s0 and ∂Pi

|s=s` in an integral sense, i.e.,
considering the resultant over the thickness of distribution p̂3 at s = s0 and s = s`. Nevertheless, in
the framework of assumptions (3-39) and considering si sufficiently far from ∂p, estimate (4-5) can be
applied without significant error.

In order to give significant indications about the total stress component σ23, due to (4-3), (4-4) and
(4-5), and observing that σ13/1 = σ̄13/1, the field equilibrium along z in (4-1) can be written as

σ23/2+ (σ33/3− σ̄33/3)+ (b3− b̄3)−
p̂+3 + p̂−3

2δ
= 0 in � (4-6)

where p̂+3 and p̂−3 stand for the components of surface forces p̂ along z at ∂Pi
1|η=δ and ∂Pi

1|η=−δ, re-
spectively.

Let the volume force component b3 be almost linear in η-coordinate or let such an approximation be
possible. Using (3-64) and taking into account boundary conditions σ23|η=±δ =± p̂±3 , we integrate (4-6)
with respect to η to obtain

σ23(si , η, z)=
4

2
(δ2
− η2)+

p̂+3 + p̂−3
2δ

η+
p̂+3 − p̂−3

2
(4-7)
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with

4= Ĉ3333[φ
′′

x x̃/1+φ′′y ỹ/1−φ′′z r · t] +
∂b3

∂η

∣∣∣∣
η=0

. (4-8)

Therefore, in the limit of positions (3-39) and assuming that the components of the surface forces p
acting upon the beam ends P± coincide with the total stress components at P± (minus at P−), equations
(4-5) and (4-7) recover the in-plane total shear stress field. However, even when the boundary equilibrium
on P± is not locally satisfied, (4-5) and (4-7) can be considered as an useful approximation in the spirit
of Saint-Venant’s principle [Toupin 1965].

5. Some generalizations

We now turn to some generalized models in the case of laminated thin-walled beam and of nonlinear
conewise elastic materials, with particular reference to bimodular ones.

5A. Laminated thin-walled beams. Assume the thin-walled beam � is formed by perfectly bonded
layers and the beam cross-section P is obtained as the union of Nb perfectly bonded branches P(b), such
that the centerline curve p can be defined as the union of the branch centerlines p(b). Each branch is
formed by N (b)

l layers and in what follows any quantity referring to the l-th layer of the b-th branch is
marked by superscript (b, l). Shape and dimensions of each branch P(b) are assumed to be independent
on z. Accordingly, the l-th layer of the b-th branch occupies the region

�(b,l) = P(b)
×]−L , L[ = p(b)×]η(b,l−1), η(b,l)[× ]−L , L[,

with η(b,0) = −δ(b) and η(b,N
(b)
l )
= δ(b), where 2δ(b) is the overall thickness of the b-th branch. Each

layer of the laminated beam is assumed to be homogeneous and comprising a linearly elastic material,
having at least a monoclinic symmetry with symmetry plane orthogonal to k. This material symmetry
enables to model multilayer composite profiles commonly used in civil engineering, as for example fiber-
reinforced beams produced with pultrusion technology, characterized by orthotropic symmetry with one
of the orthotropy axes coincident with the beam axis-line.

If the first-order shear-deformable beam model including shear effects due to nonuniform warping is
considered, constraints (i), (ii′′) and (iii′) (see Sections 3B, 3C and 3D) on the total strain field have to be
enforced on �. Correspondingly, the dual constraints on the elastic stress field are (iv), (v′′) and (vi′) and
they refer to each region �(b,l). Accordingly, the potential energy functional E is expressed by (3-60),
where the integrals over P have to be regarded as the summation of integrals over P(b,l), and it is defined
on the manifold: χ̃α3 = χ̃23/1 = 0 on 6, ω̃α3 = ω̃13/1 = 0 on ∂P(b,l)

×]−L , L[, χ13 = 0 on ∂p×]−L , L[,
and ω13 = 0 on ∂p(b)×]−L , L[.

Following the procedure discussed previously and eliminating the dependency on ω and χ in E, the
kinematics of the beam is described by equations (3-46)1, (3-46)2, and (3-58); the generalized vectors
are defined as in (3-19) and (3-61); the elastic stress field for each region �(b,l) is expressed by (3-64)
and the nonzero elements of the 8× 8 symmetric generalized elastic matrix D are
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D11 =
∑

b

∫
p(b)

Â(b)
3333 ds, D12 =

∑
b

∫
p(b)
(Â(b)

3333 ỹ+ B̂(b)
3333 x̃/1) ds,

D13 =−
∑

b

∫
p(b)
(Â(b)

3333 x̃ − B̂(b)
3333 ỹ/1) ds, D14 =

∑
b

∫
p(b)
(Â(b)

3333 ψ̃c− B̂(b)
3333 r · t) ds,

D22 =
∑

b

∫
p(b)
[Â(b)

3333 ỹ2
+ 2B̂(b)

3333 x̃/1 ỹ+ D̂(b)
3333(x̃/1)

2
] ds,

D23 =−
∑

b

∫
p(b)
[Â(b)

3333 x̃ ỹ+ B̂(b)
3333(x̃ x̃/1− ỹ ỹ/1)− D̂(b)

3333 x̃/1 ỹ/1] ds,

D24 =
∑

b

∫
p(b)
[Â(b)

3333 ỹψ̃c+ B̂(b)
3333(x̃/1ψ̃c− ỹr · t)− D̂(b)

3333 x̃/1r · t] ds,

D33 =
∑

b

∫
p(b)
[Â(b)

3333 x̃2
− 2B̂(b)

3333 x̃ ỹ/1+ D̂(b)
3333(ỹ/1)

2
] ds,

D34 =−
∑

b

∫
p(b)
[Â(b)

3333 x̃ ψ̃c− B̂(b)
3333(ỹ/1 ψ̃c+ x̃r · t)+ D̂(b)

3333 ỹ/1r · t] ds,

D44 =
∑

b

∫
p(b)
[Â(b)

3333 ψ̃
2
c − 2B̂(b)

3333ψ̃c r · t+ D̂(b)
3333(r · t)

2
] ds,

D55 = 4
∑

b

∫
p(b)

D̂(b)
1313 ds, D56 =−2

∑
b

∫
p(b)

B̂(b)
1313 x̃/1 ds,

D57 =−2
∑

b

∫
p(b)

B̂(b)
1313 ỹ/1 ds, D58 = 2

∑
b

∫
p(b)

B̂(b)
1313r ·n ds,

D66 =
∑

b

∫
p(b)
[A(b)

1313(x̃/1)
2
− 2A(b)

1323 x̃/1 ỹ/1+A(b)
2323(ỹ/1)

2
] ds,

D67 =
∑

b

∫
p(b)
{(A(b)

1313−A(b)
2323)x̃/1 ỹ/1+A(b)

1323[(x̃/1)
2
− (ỹ/1)2]} ds,

D68 =−
∑

b

∫
p(b)
[A(b)

1313 x̃/1r ·n+A(b)
2323 ỹ/1r · t−A(b)

1323(x̃/1r · t+ ỹ/1r ·n)] ds,

D77 =
∑

b

∫
p(b)
[A(b)

1313(ỹ/1)
2
+ 2A(b)

1323 x̃/1 ỹ/1+A(b)
2323(x̃/1)

2
] ds,

D78 =−
∑

b

∫
p(b)
[A(b)

1313 ỹ/1r ·n+A(b)
1323(x̃/1r ·n− ỹ/1r · t)−A(b)

2323 x̃/1r · t] ds,

D88 =
∑

b

∫
p(b)
[A(b)

1313(r ·n)
2
− 2A(b)

1323(r ·n)(r · t)+A(b)
2323(r · t)

2
] ds,

where ψ̃c = ψc|η=0 and where the laminate extensional, coupling and bending stiffness coefficients
A·,B·,D· are defined by

{Â(b)
·
, B̂(b)
·
, D̂(b)
·
} =

∑
l

∫ η(b,l)

η(b,l−1)
Ĉ·{1, η, η2

} dη, A(b)
α3β3 =

∑
l

∫ η(b,l)

η(b,l−1)
Ĉα3β3 dη. (5-1)
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This model, in the case of the addressed material symmetry, justifies [Lee 2005] and it is easy to verify
that it reduces to the one discussed in the Section 3D, when Nb = N (b)

l = 1.
Finally, following the approach discussed in Section 4 and referring, for the sake of brevity, to the

case Nb = 1, the total shear stresses on Pi(l) can be recovered by means of the equations

σ
(l)
13 (s

i , η, z)∼= σ (el,l)
13 + (σ̄

(l)
13 − σ̄

(el,l)
13 ),

σ
(l)
23 (s

i , η, z)= σ−(l)23 +
σ
+(l)
23 − σ

−(l)
23

η(l)− η(l−1) (η− η
(l−1))−4(l)

(
η2

2
− η η̄(l)+

η(l−1)η(l)

2

)
, (5-2)

where 4(l) is as in (4-8), σ+(l)23 and σ−(l)23 stand for σ23 at ∂Pi(l)
|η=η(l) and ∂Pi(l)

|η=η(l−1) respectively,
η̄(l) = (η(l)+ η(l−1))/2, and

σ̄
(l)
13 =−

1
η(l)− η(l−1)

(∫
Pi(l)

(σ
(l)
33/3+ b3) da+

∫ η(l)

η(l−1)
p̂3|s=s0 dη+

∫ si

s0

(σ
+(l)
23 − σ

−(l)
23 ) da

)
. (5-3)

Observing that

σ
(l)
13/1(s

i , η, z)=−σ̄ (l)33/3− b̄3−
σ
+(l)
23 − σ

−(l)
23

η(l)− η(l−1) , (5-4)

where here f̄ denotes the average value over the l-th layer thickness of f , the closure of (5-2) and (5-3)
has to be performed determining σ±(l)23 by means of the continuity conditions

σ
+(l)
23 = σ

−(l+1)
23 , σ

(l)
13/1|η(l) = σ

(l+1)
13/1 |η(l) (5-5)

for l from 1 to Nl and with σ+(Nl )
23 = p̂+3 and σ+(0)23 = p̂−3 .

5B. Nonlinear conewise elastic materials: the fiber-governed bimodular case. The variational dual-
constraint approach can be successfully employed also when a thin-walled beam comprises nonlinear
elastic materials characterized by a continuous and convex elastic potential (not necessarily differen-
tiable), such as the conewise materials addressed in [Curnier et al. 1995]. Bimodular behavior, which
generally may characterize the constitutive response of a number of composite materials, belong to this
category. In this case a nonlinear elastic response appears, identified by a linear relationship between
stress and strain both in tension and in compression, but with different elastic moduli. We will refer to the
special case of fiber-reinforced composite materials, where the bimodularity depends on the sign of the
unit elongation in the fiber-direction [Curnier et al. 1995; Bert 1977; Maceri and Sacco 1990; Bisegna
et al. 1995].

Let ε be the symmetric strain tensor and f the unit vector along the fiber direction. Denoting as
ε f = εf · f the extension in the fiber direction, the following definitions are introduced:

E+ = {ε : ε f > 0}, Eo
= {ε : ε f = 0}, E− = {ε : ε f < 0}. (5-6)

As showed in [Bisegna et al. 1995], a bimodular constitutive law can be deduced in a consistent way
by assuming that an elastic potential 8 exists. Accordingly, restrictions of 8 to E+ and E− are the
potentials for the mappings:

ε ∈ E+ 7→ C+ε, ε ∈ E− 7→ C−ε, (5-7)
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and the fourth order constitutive tensors C+ and C− (relevant to tension and compression behavior,
respectively) are symmetric. Moreover, due to the definition of a conservative (or hyperelastic) material,
the potential 8(ε) is continuous [Bisegna et al. 1995]. As a consequence, restrictions of 8 to E+ and
E− can be extended by continuity to Eo, providing the following equality to be satisfied:

C+ε · ε = C−ε · ε, ∀ε ∈ Eo. (5-8)

Equations (5-7) and (5-8) imply that the material strain energy density 8 can be written (omitting
constant contributions) in the form:

8(ε)=
1
2
[hC++ (1− h)C−]ε · ε, (5-9)

where h(ε f ) is the Heaviside function, such that h = 1 if ε f is positive, h = 0 otherwise.
Thus, the first term of the Hu–Washizu functional W (2-1) has to be replaced by the integral over �

of 8(ε) and then, introducing a Lagrangian functional L as in (2-2), the potential energy functional E

turns out to be
E(u,χ ,ω)=

∫
�

8(∇̂u−G∗ω) dv−
∫
�

χ ·G∇̂u dv−5ext. (5-10)

The stationary conditions of L with respect to u, ε, σ , χ and ω formally give the same equations (2-3)
to (2-6), where now C has to be regarded as

C= [hC++ (1− h)C−]. (5-11)

Accordingly, the dual-constraint approach can be employed in the case of bimodular fiber-governed
materials.

In this case, the stationary condition of the Lagrangian functional L (2-2) with respect of ε yields
(2-4) without jumping terms (depending on the difference between C+ and C−) as a consequence of the
continuity condition (5-8). Moreover, strain along the fiber-direction ε f , whose sign discriminates the
unilateral constitutive behavior, has to be considered as deduced from the elastic strain field.

Referring to the first-order shear-deformable beam model accounting for warping shear, when a ho-
mogeneous beam comprises a bimodular material at least monoclinic, the generalized elastic matrix D
can be evaluated as in Section 5A taking P as P= P|C+∪P|C− . Clearly, this partition of P needs the
preliminary knowledge for every z-coordinate value of the neutral region satisfying ε f = 0. Therefore, a
free-boundary problem underlies this formulation and an iterative procedure has to be employed in order
to evaluate elements of D.

6. Influence of the curvature

In order to assess the influence of high-order contributions associated with the curvature κ of p (see
(3-13) and (3-28)), some results relating to very simple numerical applications are herein presented. In
detail, we refer to the no-shear model discussed in Section 3B when it is applied to a pure torsion problem
for a thin-walled open section beam, with a circular centerline (κ = const).

Assuming that Ĉ3333/Ĉ1313 = 2.5, the following two cases are analyzed:

- a simply supported beam (θ(±L)= θ ′′(±L)= 0, i.e., warping free) loaded by an uniform twisting
moment distribution mz;
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- a cantilever beam (θ(−L)= θ ′(−L)= 0, i.e., warping constrained) loaded by a twisting moment
Mz applied at its free end.
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Figure 2. Influence of high-order nonconventional effects relating to curvature κ of p
in torsional analysis of a simply supported (on the left) and a cantilever (on the right)
thin-walled beam with a circular open cross-section.

Figure 2 sketches the cases under investigation and depicts the ratios between the maximum rotation
angle around the z-axis evaluated taking into account curvature effects (θ (κ)) versus that computed dis-
regarding curvature effects (θ). It can be noted that, varying the dimensionless thickness 2δκ and the
dimensionless beam length 2Lκ , the influence of curvature increases when the beam slenderness ratio
decreases (i.e., when L→∼1/κ), amounting to approximately 4–5% and increasing when the simply
supported scheme is experienced. Therefore, high-order effects associated to κ and δ might significantly
affect, form an engineering point of view, thin-walled beam static response.

7. Concluding remarks

This paper presents a consistent deduction of anisotropic thin-walled beam models from three-dimensional
elasticity. Employing a constrained approach and following the strategy first outlined in [Maceri and
Bisegna 2002], a modified Hu–Washizu variational formulation has been proposed. This provides a
rational and unified foundation for thin-walled beam theories widely used in the recent literature, and
allows us to account for different shear refinement levels.

This variational approach enables to take into account high-order nonconventional effects related to
curvature of cross-section profile and wall thickness, leading to a generalized warping function and
torsional constant. Influence of these effects has been proved through simple numerical applications,
highlighting that in some cases it could be not completely negligible form an engineering point of view.
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It was shown in the case of a branchwise model for the analysis of multibranch cross-sections that
this approach allows the consistent deduction of new refined models. Moreover, due to its variational
character, this formulation opens the possibility of building new consistent and refined thin-walled beam
finite elements. Finally, a more accurate evaluation of stresses acting on the beam cross-section with
respect to those obtained by constitutive relationship has been also proposed. In agreement with the dual-
constraint approach and starting from the one-dimensional generalized unknown functions, approximated
locally equilibrated stresses are recovered in closed form.

The dual-constraint variational framework has also proved effective for the treatment of laminated pul-
truded thin-walled beams and nonlinear conewise elastic materials (with special reference to bimodular
materials).
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CYCLIC BEHAVIOR AND ENERGY APPROACH TO THE FATIGUE
OF SHAPE MEMORY ALLOYS

ZIAD MOUMNI, WAEL ZAKI AND HABIBOU MAITOURNAM

We present an energy-based low-cycle fatigue criterion that can be used in analyzing and designing
structures made from shape memory alloys subjected to cyclic loading. Experimentally, a response
similar to plastic shakedown is observed. During the first cycles the stress-strain curve shows a hys-
teresis loop which evolves during the first few cycles before stabilizing. By adopting an analogy with
plastic fatigue, it is shown that the dissipated energy of the stabilized cycle is a relevant parameter for
estimating the number of cycles to failure of such materials. Following these observations, we provide an
application of the cyclic model, previously developed by the authors within the framework of generalized
standard materials with internal constraints in order to evaluate such parameter. Numerical simulations
are presented along with a validation against experimental data in case of cyclic superelasticity.

1. Introduction

The interesting behavior of SMAs (shape memory alloys) is essentially due to their capability of un-
dergoing a reversible diffusionless solid–solid phase transition known as the martensitic transformation
[Wayman and Otsuka 1999; Shaw and Kyriakides 1995; Moumni et al. 2008]. This transition is charac-
terized at the microscopic level by a modification of the crystallographic lattice structure which can be
induced by altering either the material temperature or the stress to which it is subjected or both, hence a
strong thermomechanical coupling. At high temperatures, a shape memory alloy consists of a relatively
ordered parent phase called austenite which transforms when cooled into a less ordered product phase
called martensite. In the absence of stress, this leads to self-accommodation of martensite plates, that is,
to the formation of lattice twins without any macroscopic deformation.

Mechanical loading may lead to detwinning of self-accommodating martensite. In this case, martensite
plates become oriented according to privileged directions that depend on the applied stress. The resulting
inelastic macroscopic strain usually reaches several percent; it can be recovered by heating, in which case
the SMA regains its initial undeformed austenitic shape. Simple way shape memory refers to the ability
of a shape memory alloy to remember its high temperature state.

Besides the characteristic shape memory behavior, SMAs exhibit other interesting effects, namely:
superelasticity or pseudoelasticity, which is the ability of a shape memory alloy to accommodate large
strains due to stress-induced phase change at a constant and sufficiently high temperature and to recover
its undeformed shape upon unloading; and the superthermal effect, which is the ability to deform an
initially austenitic SMA by cooling under constant stress and then to recover the austenitic shape by
heating. The magnitude of the temperature-induced strains depends on the applied stress.

Keywords: cyclic pseudoelasticity, shape memory alloys, SMA fatigue, cyclic loading, residual strain, internal stress,
dissipation.
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Furthermore, cyclic loading may allow SMAs to have a two-way shape memory effect. In this case,
the material can change its shape reversibly due to cyclic heating-cooling.

Since components made of SMAs usually operate under cyclic thermomechanical loading; their design
requires reliable prediction of the material’s cyclic three-dimensional response and fatigue resistance. In
this regard, several models exist that are capable of handling cyclic, mainly superelastic, SMA behavior;
see, for instance, [Liu et al. 1999; Abeyaratne and Kim 1997; Lim and McDowell 2002; Tanaka et al.
1995; Lexcellent and Bourbon 1996; Bo and Lagoudas 1999; Zaki and Moumni 2007a].

The interesting properties of SMAs promoted their use in several fields, especially in outer space
(antennas, braces) and in medical applications (orthodontia, cardiology, implant miniaturization, etc.).
SMAs are also becoming increasingly attractive for automotive, nuclear, and civil engineering applica-
tions, mainly due to their high damping capacity.

One of the main difficulties facing their use in technologically advanced applications with high safety
specifications is the poorly known fatigue behavior of these alloys; another is the amnesia phenomenon.
Better knowledge and control of these two aspects should promote their use. Two types of fatigue have
to be considered.

First, classical mechanical fatigue due to mechanical cycling in the pseudoelastic domain [Miyazaki
et al. 1986; Van Humbeeck 1991]. The objective is to determine the number of cycles before failure. For
instance, SMAs are used in the biomedical field to manufacture stents, endovascular prostheses inserted
in blood vessels to avoid thrombosis and occlusion of the vessels. In stents, cyclic loads would arise from
the difference in systolic and diastolic blood pressures and from the stress associated with the contraction
of the heart muscle [McKelvey and Ritchie 1999]. It is of primary importance to know the number of
cycles before any damage occurs to the stent.

Second, thermal fatigue or amnesia of the material due to a degradation of the material characteris-
tics responsible for the shape memory effect like the transformation temperatures. The question is to
determine if the material remains able to remember its initial shape.

Fatigue of shape memory alloys has also attracted considerable attention [Melton and Mercier 1979a;
1979b; 1979c; Wagner et al. 2004; Vaidynanathan et al. 2000; Porter et al. 2001]; it is still, however,
not very well understood. In particular, fatigue mechanisms at the microscopic level are still being
investigated [Siredey et al. 2005; Predki et al. 2006]. Nevertheless, Manson–Coffing-type criteria have
been successfully used for predicting fatigue induced failure of simple SMA structures subjected to
uniaxial loading [Melton and Mercier 1979a; Siredey et al. 2005; Wagner et al. 2004]. Like in classical
elastoplastic materials, such as steel, the number of cycles to failure of a SMA varies depending on its
composition and on the applied loading, among other factors. This number may range from 104 cycles
for thermal valves using one-way shape memory effect [Eggeler et al. 2004] to a nominal 4× 108 cycles
for stents [Morgan 2004].

Using the analogy with plastic fatigue (low-cycle fatigue) [Halford 1966; Charkaluk et al. 2002], a
relation was established in [Moumni et al. 2005] between the amount of dissipated energy associated with
the stabilized hysteresis cycle and the number of cycles to failure. In this paper, we provide an application
of the cyclic model, developed previously by the authors within the framework of generalized standards
materials with internal constraints [Moumni et al. 2008], in order to simulate the dissipated energy at
the stabilized cycle. Our aim here is to shown that the cyclic model can be combined with the fatigue
criterion in order to predict low-cycle failure of superelastic shape memory structures.
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Figure 1. Cyclic superelastic tensile response of a NiTi wire. The characteristic hystere-
sis loop tends to stabilize when the number of cycles increases.

Section 2 is devoted to the presentation of the cyclic Zaki–Moumni model, where the behavior is
described using three state variables representing residual strain induced by cyclic loading, internal stress
induced by repeated phase change, and the cumulated martensite volume fraction. See [Zaki and Moumni
2007a; 2007b] for a detailed discussion of the model. Section 3 discusses the low cycle fatigue law and
numerical simulations of the dissipated energy at the stabilized cycle, along with a validation against
experimental data in the case of cyclic superelasticity.

2. The cyclic model of SMA behavior

2.1. Experimental observations. The response of a nickel-titanium wire to repeated tension, illustrated
in Figure 1, displays the following features:

• Recovery of inelastic strain is not complete at the end of each cycle; after complete unloading, some
residual strain remains. This strain increases exponentially with the number of cycles, as shown in
Figure 2, left.

• Forward phase change yield stress decreases with increasing number of cycles (Figure 2, right).
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Figure 2. Left: residual strain versus number of tensile loading cycles. Right: forward
phase change yield stress versus number of cycles.
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• The hysteresis loop evolves progressively with the number of cycles before stabilizing. In Figure 1,
the stabilized loop is shown by a continuous dark line.

Residual strain is generally considered to be due to some oriented martensite not transforming back
into austenite during reverse phase change [Lexcellent and Bourbon 1996; Auricchio et al. 2003]. Re-
peated forward and reverse phase changes create some defects within the material [Abeyaratne and Kim
1997], which result in localized internal stresses [Tanaka et al. 1995], allowing SMAs to exhibit two-
way shape memory. In this case the material is said to be trained (training phenomena). The internal
stress eliminates the need for external loading in order to orient martensite variants. As a result, the shape
memory structure can assume two different shapes when the temperature varies: an austenitic undeformed
shape at high temperatures and a deformed low-temperature shape resulting from martensite orientation
due to internal stress.

2.2. Phenomenological model. For full details regarding the model presented in this section, the reader
is referred to [Zaki 2006; Zaki and Moumni 2007a; 2007b; Moumni et al. 2008].

As seen in the previous section, the macroscopic cyclic response of superelastic SMAs induces resid-
ual inelastic strains and localized internal stresses within the material. Hence, two state variables are
introduced: a residual strain tensor εr and an internal stress tensor B. A third variable ze representing
cumulated martensite volume fraction is also used:

ze =

∫ t

0
|ż|dτ,

where t is a kinematic time. The effect of cyclic loading on the material parameters can be modeled by
considering these parameters to depend on ze.

2.2.1. State variables and free energy. The following state variables are considered

• Macroscopic strain ε and temperature T .

• Volume fraction z and cumulated volume fraction ze of martensite.

• Local strain tensors: εA for austenite and εM for martensite.

• Local martensite transformation strain tensor εtr.

• Internal stress B and residual strain εr.

Phase change latent heat is assumed to depend on the cumulated fraction ze. The respective free energy
densities of austenite and martensite are taken to be

WA
def
= WA(εA, εr)=

1
2(εA− εr) :KA : (εA− εr) ,

and

WM =WM(εM, εtr, εr, T,B, ze)=
1
2(εM− εtr− εr) :KM : (εM− εtr− εr)+C(T, ze)−

2
3 B : εtr.

B : εtr in the expression of WM allows modeling the two-way shape memory effect. It represents a modi-
fication of the free energy of martensite due to the creation of internal stresses, which allows austenite to
transform more easily into oriented martensite. Subsequent sections will help clarify this idea, especially
when phase change criteria are established.
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The contribution of austenite–martensite interaction to the SMA free energy density is assumed to be

I= I (z, ze, εtr)= G
z2

2
+

z
2
[αz+β(1− z)]

(2
3εtr : εtr

)
.

G, α and β are material parameters functions of the cumulated martensite volume fraction ze (G = Ĝ(ze),
α = α̂(ze), and β = β̂(ze))

• β z(1−z)
2

( 2
3εtr : εtr

)
represents interaction between austenite and martensite. Following many pub-

lished works [Leclerq and Lexcellent 1996; Raniecki et al. 1992; Patoor and Berveiller 1993, etc.],
this interaction is taken to be proportional to the volume fractions of interacting phases. β determines
how a mechanical loading applied to an initially austenitic shape memory material affects martensite
orientation during phase change.

• G z2

2 quantifies orientation-independent interaction between martensite variants.

• α z2

2

( 2
3εtr : εtr

)
accounts for the interaction increase due to orientation of martensite plates; its expres-

sion is similar to that of the energy contribution due to linear kinematic hardening of an elastoplastic
material with hardening coefficient α. α controls the slope of the stress-strain curve corresponding
to martensite orientation.

Finally, the free energy density of the material is given by

W
def
= W (ε, T, εA, εM, z, εtr, εr,B, ze)

= (1− z)
[1

2(εA− εr) :KA : εA− εr
]
+ z

[ 1
2(εM− εtr− εr) :KM : (εM− εtr− εr)+C(T, ze)

]
+

1
2 Gz2

+
1
2 z
[
αz+β(1− z)

](2
3εtr : εtr

)
−

2
3 zB : εtr. (1)

2.2.2. Internal constraints and Lagrangian. State variables obey the following constraints

• Martensite volume fraction is necessarily within the [0, 1] interval.

z > 0, (1− z)> 0. (2)

• The equivalent transformation strain
√

2
3εtr : εtr has a maximum value γ that varies with respect to

the cumulated volume fraction ze

γ −

√
2
3εtr : εtr > 0, γ

def
= γ̂ (ze). (3)

Constraints given by (2) and (3) are assumed to be perfect. They derive from a constraints potential

Wl =−λ : [(1− z)εA+ zεM− ε] −µ
(
γ −

√
2
3εtr : εtr

)
− ν1z− ν2(1− z),

where λ ν1, ν2, and µ are Lagrange multipliers. ν1, ν2 and µ, associated with unilateral constraints, must
obey the following conditions

ν1 > 0, ν1z = 0, ν2 > 0, ν2(1− z)= 0 and µ> 0, µ
(
γ −

√
2
3εtr : εtr

)
= 0. (4)
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The sum of the free energy W and of the constraints potential Wl gives the Lagrangian

L=W+Wl
def
= L(ε, T, εA, εM, z, εtr, εr,B, ze)

= (1−z)
[1

2(εA−εr) :KA : (εA−εr)
]
+z
[ 1

2(εM−εtr−εr) :KM : (εM−εtr−εr)+C(T, ze)−
2
3 B : εtr

]
+G 1

2 z2
+

1
2 z[αz+β(1−z)]

( 2
3εtr : εtr

)
−λ : [(1−z)ε1+zε2−ε]−µ

(
γ−

√
2
3εtr : εtr

)
−ν1z−ν2(1−z), (5)

where conditions (4) must be met.

2.2.3. State equations. Phase change, martensite orientation, training, as well as the creation of residual
strain and internal stress are dissipative processes. Thus, if Az , Atr, Ae, Ar, and AB represent thermody-
namic forces associated with state variables z, εtr, ze, εr, and B respectively; only these forces may take
nonzero values during a given transformation. Hence the state equations

∂L

∂ε
= σ ⇒ λ− σ = 0, (6)

−
∂L

∂εA
= 0 ⇒ (1− z)[KA : (εA− εr)−λ] = 0, (7)

−
∂L

∂εM
= 0 ⇒ z[KM : (εM− εtr− εr)−λ] = 0, (8)

−
∂L

∂z
=Az ⇒ Az =

1
2

[
(εA− εr) :KA : (εA− εr)− (εM− εtr− εr) :KM : (εM− εtr− εr)

]
−C(T, ze)−Gz− [(α−β)z+ 1

2β]
( 2

3εtr : εtr
)
−λ : (εA− εM)+

2
3 B : εtr,

−
∂L

∂εtr
=Atr ⇒ Atr = z{KM : (εM− εtr− εr)−

2
3 [αz+β(1− z)] εtr}+

2
3 zB− 2

3µεtr

/√
2
3εtr : εtr,

−
∂L

∂λ
= 0 ⇒ (1− z)εA+ zεM− ε = 0, (9)

−
∂L

∂εr
=Ar ⇒ Ar = (1− z)KA : (εA− εr)+ zKM : (εM− εtr− εr),

−
∂L

∂B
=AB ⇒ AB =

2
3 zεtr,

−
∂L

∂ze
=Ae ⇒ Ae =−z

∂C(T, ze)

∂ze
−
∂G
∂ze

z2

2
−

z
2

[ ∂α
∂ze

z+
∂β

∂ze
(1− z)

]( 2
3εtr : εtr

)
−µ

∂γ

∂ze
.

Equations (6), (7), (8), and (9) allow us to establish the stress-strain relation

σ =K: (ε− zεtr− εr).

K, the equivalent SMA elastic moduli tensor, is given by

K=
[
(1− z)K−1

A + zK−1
M

]−1
.



CYCLIC BEHAVIOR AND ENERGY APPROACH TO THE FATIGUE OF SHAPE MEMORY ALLOYS 401

2.2.4. Yield functions and evolution laws. Residual strain and internal stress depend on the number of
loading cycles. Indeed, as shown in Figure 2, left, residual strain is found to increase exponentially with
respect to the number of cycles up to an asymptotic value εsat

r . From a theoretical point of view, this can
be simulated using the evolution law

ε̇r =
εsat

r

τ

(3
2

s
σVM

)
exp

(
−

ze

τ

)
że.

Residual strain is considered to be deviatoric and so it does not induce any volume change. τ is a time
constant, εsat

r is the maximum residual strain in tension when the hysteresis loop stabilizes, s is the
deviatoric part of the stress tensor, and σVM is the equivalent Von Mises measure on the stress tensor.
Dissipation due to the evolution of εr is necessarily positive. Indeed, it can easily be shown that Ar is
unconditionally equal to the stress tensor σ . Ar : ε̇r is therefore positive. Similarly, the evolution of
internal stress B is assumed to be governed by the equation

Ḃ=
Bsat

τ

(
2
3εtr

/√
2
3εtr : εtr

)
exp

(
−

ze

τ

)
że, (10)

where Bsat is a positive scalar.
Equation (10) expresses an increase in equivalent internal stress with respect to the number of cycles.

Given the expression of the thermodynamic force AB associated with state variable B, dissipation AB : Ḃ
is positive. Because the evolution of state variables εr, B, and ze is related to that of the martensite volume
fraction, one does not need to define specific yield functions for each of these variables. Nevertheless,
three yield functions: F1

z , F2
z , and Fori are needed in order to describe forward phase change, reverse

phase change, and orientation of martensite variants. Thermodynamic forces Az and Atr are chosen to
be such that

Az ∈ ∂żD, Atr ∈ ∂ε̇trD, (11)

where D is a convex positive continuous function that is equal to zero at the origin:

D
def
= D(ż, ε̇tr)= P(z, ze, ż) ż+ R(z)

√
2
3 ε̇tr : ε̇tr, (12)

with

P(z, ze, ż) def
= [a(1− z)+ bz] sign ż,

for certain ze-dependent parameters a = â(ze) and b = b̂(ze). Moreover, R(z) = z2Y , where Y is a
constant material parameter. It is easy to show that Y , a, and b are always positive; D is therefore
positive. Hence, evolution equations (11) necessarily satisfy the Clausius–Duheim inequality.

From this point on, austenite and martensite are considered to be homogeneous and isotropic media,
having the same Poisson coefficient ν. Specifically,

νA = νM
def
= ν.

Table 1 summarizes the notations used throughout this paper. Using equations (11), one can establish
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Meaning or Expression

EA Young modulus of austenite

EM Young modulus of martensite

ν Poisson coefficient

ElA (1+ν)/EA

ElM (1+ν)/EM

PA −ν/EA

PM −ν/EM

ElMA ElM−ElA

PMA PM−PA

Meaning Expression

Eeq Equivalent Young modulus
(1−z

EA
+

z
EM

)−1

tr M Trace of symmetrical tensor M
∑

i Mi i

dev M Deviator of M M−1
3 (tr M) I

MVM Von Mises equivalent of M
√

3
2 dev M: dev M

s Stress deviator tensor dev σ

σVM Von Mises equivalent stress
√

3
2 s : s

µA Austenite shear modulus 1
2 EA/(1+ν)

µM Martensite shear modulus 1
2 EM/(1+ν)

µeq Equivalent shear modulus 1
2 Eeq/(1+ν)

Table 1. Notations used in this paper.

expressions for F1
z , F2

z , and Fori:

F1
z =

{1
3 ElMAσ

2
VM+

1
2

(1
3 ElMA+ PMA

)
( tr σ )2−C(T, ze)

}
+
(
σ + 2

3 B
)
: εtr− (G+ b)z− a(1− z)−

[
(α−β)z+ 1

2β
](2

3εtr : εtr
)
,

F2
z =−

{1
3 ElMAσ

2
VM+

1
2

(1
3 ElMA+ PMA

)
( tr σ )2−C(T, ze)

}
−
(
σ + 2

3 B
)
: εtr+ (G− b)z− a(1− z)+

[
(α−β)z+ 1

2β
](2

3εtr : εtr
)
,

Fori =

∥∥∥∥(σ + 2
3 B
)
−

2
3

[
αz+β(1− z)

]
εtr−

2µ
3z
εtr

/√
2
3εtr : εtr

∥∥∥∥
VM

− zY.

It is worth noting that in each of these expressions, a quantity 2
3 B, proportional to internal stress due to

training, is added to the stress tensor σ . Thus both B and σ have similar effects on phase change and
martensite orientation.

Phase change evolution laws obey certain conditions

• If F1
z < 0 and F2

z < 0, no phase change can occur. Hence, ż = 0.

• If forward phase change is triggered, F1
z is equal to zero. In this case, ż is equal to zero if Ḟ1

z < 0;
otherwise, ż is given by the consistency condition Ḟ1

z = 0.

• If reverse phase change is triggered, F2
z is equal to zero. In this case, ż is equal to zero if Ḟ2

z < 0;
otherwise, ż is given by the consistency condition Ḟ2

z = 0.

Let

X def
=
(
s+ 2

3 B
)
−

2
3

[
αz+β(1− z)

]
εtr−

2µ
3z
εtr

/√
2
3εtr : εtr.
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The yield function Fori, associated with martensite orientation, can be written as Fori = XVM − zY .
Evolution of the local inelastic strain tensor εtr satisfies the normality law:

ε̇tr = η
∂Fori

∂X
=

3
2η

X
XVM

. (13)

Here η is a positive scalar satisfying the Kuhn–Tucker conditions

η > 0, Fori 6 0 and ηFori = 0.

Let σrs and σrf be orientation start and finish stresses of self-accommodating martensite

• When orientation starts, the yield function Fori is necessarily equal to zero for µ= 0, εtr = 0, and
‖σ +B‖VM = σrs . It follows that

Y = σrs; (14)

• When orientation is complete, Fori = 0 for
√

2
3εtr : εtr = γ . If

√
2
3εtr : εtr tends towards γ with lower

values, µ is equal to zero for ||σ +B||VM = σrf. In case of uniaxial tension, it follows that

| σrf−αγ | = Y ;

the above equation, together with Equation (14), gives α as a function of γ

α =
σrf− σrs

γ
.

• When austenite transforms into oriented martensite, orientation is complete when the stress becomes
greater or equal to σrf. Particularly, if the stress tends towards σrf with lower values, µ remains equal
to zero. In this case,

z = 0, ‖σ +B‖VM = σrf,

√
2
3εtr : εtr = γ, and µ= 0.

In case of uniaxial tension
β =

σrf

γ
.

α and β are both functions of ze due to their dependence on γ . Finally, explicit expressions of the
evolution laws can be derived using the consistency conditions.

2.3. Numerical simulation. Figure 3, left shows the experimental response of a NiTi test sample to
repeated uniaxial tension. Residual strain evolution with respect to the number of cycles is shown in
Figure 3, right. The nickel-titanium used in the experiments has an orientation start stress of 80 MPa
and an orientation finish stress equal to 160 MPa. The reverse transformation finish temperature of the
untrained material at zero stress is equal to 42◦C; this temperature does not evolve considerably with the
number of cycles. Figure 4 shows good agreement between experimental and numerical results in the
case of repeated tension. For clarity, only loops 2, 4, and 12 are shown. Figure 5 (left) illustrates the
evolution of internal strain B with respect to the cumulated martensite volume fraction ze. Stress-strain
response for all 20 loading cycles is shown in Figure 5 (right).

The next section is devoted to the presentation of an energy approach to the fatigue of shape memory
alloys. It is shown how the cyclic model presented in the previous section can be combined with the
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Figure 3. Left: experimental stress-strain response of a NiTi wire to repeated tension.
The stabilized cycle is shown by a continuous line. Right: residual strain evolution with
respect to the number of tension cycles.
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fatigue criterion in order to perform numerical calculations of the fatigue parameters necessary for the
evaluation of the life time of structures made on SMAs.

3. An energy approach to the fatigue of shape memory alloys

Fatigue of shape memory alloys is generally explained by the creation and propagation of defects within
the material at the microscopic level [Melton and Mercier 1979a]. A more rigorous understanding is
complicated, however, due to phenomena like formation of residual martensite [Siredey et al. 2005]
and local phase changes at the tip of microscopic cracks [Wagner et al. 2004] resulting in slower crack
propagation in martensite [Eggeler et al. 2004]. Because of similar damage creation and propagation
mechanisms, it is interesting to investigate the fatigue of SMAs within a framework similar to that of
usual elastoplastic materials (like steel). It is, hence, useful to distinguish between low-cycle fatigue,
finite fatigue life in high-cycle fatigue, and high-cycle fatigue (infinite life). We will focus on low-cycle
fatigue associated with cyclic superelasticity.

3.1. Experimental analysis.

3.1.1. Material and thermomechanical treatment. The material is a 51.3% Ti–48.7% Ni in mass nickel-
titanium with a grain size between 60µm and 70µm (see Figure 6). The phase change temperatures at
zero stress are as follows M0

f = 25◦C, M0
s = 39◦C, A0

s = 29◦C and A0
f = 42◦C. All the test specimens

Figure 6. Metallographic structure of the NiTi alloy.
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were worked up to 20% in tension while cold, then heat treated at 400◦C for one hour. This kind of
treatment increases the plastic yield limit of the material while improving its superelasticity [Wayman
and Otsuka 1999].

3.1.2. Experimental setup. The testing machine used is a force controlled MTS810/100KN. The strains
are measured using an MTS extensometer model 632-13C-21. Load and extensometer signals are cap-
tured by an MTS TestStarII data acquisition board and processed by a computer. Experiments are Stress-
controlled push-pull tests with a constant amplitude σa. They are carried out at a frequency of 0.3 Hz. In
order to ensure that the tests are performed in the pseudoelastic domain the temperature is kept constant
at T = 50◦C which is higher than the austenite finish temperature A0

f . The experiments were conducted
in a SERVATHIN hermetic enclosure where the temperature can be regulated and kept constant through a
range values from −50◦C to 200◦C. Maximum stress was kept below the critical stress for slip (750 MPa)
to ensure that no macroscopic plastic deformations occurs. The tests were taken through to rupture of
the specimen.

In order to examine the effect of mean stress on the fatigue of nickel-titanium, three load ratios (R =
σmin/σmax) were considered, equal to 0, 0.2, and −1 respectively. The geometry of the specimens we
used is illustrated in Figure 7.

3.2. Results and discussions.

3.2.1. S-N curves. The S–N curves (Wöhler curves) relating the number of cycles to failure under uni-
axial loading to the amplitude of the applied stress obtained for these experiments are shown on Figure
8. The effect of mean stress on fatigue life can be observed. Indeed, a higher mean stress corresponds to
a lower number of cycles to failure. These Wöhler curves can be used for fatigue life prediction when
the applied loading is uniaxial and for a given mean stress. They are inadequate, however, for fatigue
analysis of shape memory structures under multiaxial loading.

3.2.2. Low-cycle fatigue life prediction for superelastic SMAs. Existing SMA low-cycle fatigue life pre-
diction models are mostly of the Manson–Coffin type where the number of cycles to failure is related to
the amplitude of plastic strain. As early as 1979, [Melton and Mercier 1979a] showed that, for different
types of shape memory alloys, fatigue life of wires follows the Manson–Coffin law. This result has been
confirmed in several subsequent papers [Tolomeo et al. 2000; Wagner et al. 2004]. Even though multiaxial
loading can be accounted for theoretically by means of a generalized Manson–Coffin relationship using
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ˆ = 15 mm

ˆ = 10 mm
ˆ = 6,18 mm

l = 12 mm

L = 120 mm

40 mm

10 mm

ˆ = 8 mm

ˆ = 15 mm
ˆ = 19 mm

Figure 7. Geometries of specimens used for cyclic experiments for R = 0 (left) and
R = 0.2,−1 (right), respectively.
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Figure 8. Wöhler curves of nickel-titanium for different mean stress values.

equivalent plastic strain, the ability to predict three-dimensional structure failure using this approach has
not been proved.

In the scope of this paper, an energy-based approach is used for estimating low-cycle fatigue life of
superelastic SMAs. This is inspired from Charkaluk et al. [2002], where a similar approach was success-
fully applied on cast iron. Indeed, superelastic hysteresis stabilization for a shape memory material is
similar to plastic shakedown of cast iron. In both cases, inelastic (plastic deformation for iron cast and
transformation strain for SMAs) deformation is confined but the material continues to dissipate energy.
Energy dissipation is usually explained, in the case of superelastic SMAs, by strain incompatibilities
across the boundaries of the grains [Melton and Mercier 1979b] which in time lead to the creation and
accumulation of defects at the boundaries [Melton and Mercier 1979a].

In this paper, the martensitic transformation, responsible for the creation of martensite grains, is
accounted for using state variables z and εtr. Given the above interpretation of energy dissipation in
SMAs, the inelastic deformation zεtr, being proportional to the number of martensite grain boundaries
(through state variable z) and to the level of orientation of martensite variants within these grains, seems
an adequate parameter for predicting fatigue failure of superelastic SMAs.

The amount of dissipated energy per loading cycle, Wd, is given by

Wd =

∮
σ : dε.

Once the material response stabilizes, this energy becomes constant, as shown by the experimental result
given in Figure 9, left (stress ratio = 0).

In the case of the studied nickel-titanium, an example of the evolution of the dissipated energy with
respect to the number of cycles is illustrated in Figure 9, right. Even though the use of dissipated energy
per cycle for fatigue life prediction has been criticized [Halford 1966; Pineau and Pétrequin 1997], its
usefulness in practice is well proven. The work of [Charkaluk et al. 2002] has been successfully applied
to predicting failure of automotive components subjected to complex thermomechanical loading.

The data points in Figure 10, left, represent the amount of dissipated energy per cycle Wd with respect
to the number of cycles to failure Nf, plotted on a log-log scale. The figure shows a quasilinear depen-
dence of log Wd on log Nf for several values of the mean stress. Hence it is interesting to approximate
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Figure 9. Left: experimental stabilization of the amount of dissipated energy per cycle,
Wd, with the number of cycles. Right: dissipated energy per cycle versus number of
loading cycles: experimental result for 1σ = 400Mpa.

the experimental results using the following curve from [Moumni et al. 2005]:

Wd = αNβ
f , (15)

where α and β are material parameters. This is shown as the gray line in the same figure. Expression
(15) can readily be used for three-dimensional structure analysis because dissipated energy per cycle is
well defined and its calculation is straightforward.

The stabilized cycle and the corresponding amount dissipated energy to the stabilized cycle can be
numerically determined using the model presented in this paper as shown in Figure 10, right. The
number of cycles to failure of a SMA structure can be estimated using the suggested fatigue criterion.
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Figure 10. Left: experimental results for dissipated energy per cycle as a function of
the number of cycles to failure, for α = 11 and β =−0.377, and fit using Equation (15).
Right: numerical results for dissipated energy per cycle with respect to the number of
cycles, with 1σ = 400Mpa.
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It is important to note, however, that the validity of this criterion has only been proven in the case of
uniaxial loading; its ability to predict failure of structures subjected to complicated loading conditions
remains to be established.

4. Conclusion

In the first part of this paper, a model capable of simulating several phenomena associated with shape
memory materials subjected to cyclic loading is presented. The modeling process is based on a simple ob-
servation. On the macroscopic level, SMA training can be interpreted as a thermomechanically-induced
transition from an unstable virgin material configuration into a stable one. From a theoretical point of
view, it is easy to account for this transition by making some of the model parameters depend on a
cumulated martensite volume fraction which evolves with the applied loading. Inelastic residual strain,
which appear during repeated phase change, is accounted for by introducing a state variable similar to
plastic deformation strain of classical elastoplastic materials. Numerical results show good agreement
with available experimental data.

The second part of the paper investigates the fatigue of SMAs by analogy with plastic fatigue. It
has been shown that the dissipated energy at the stabilized cycle during a cyclic loading is a relevant
parameter for fatigue life prediction. A relationship between this parameter and the number of cycles to
failure has been derived from experimental results. It has also been shown that the cyclic model can be
combined with the fatigue criterion in order to predict low-cycle failure of superelastic shape memory
structures. Nevertheless, it is clear that the model must be improved on some points. First, it is important
to investigate the fatigue of SMAs criterion for another type of loading, namely torsion. Second, it is
interesting to check the validity of the model against experimental results for complex structures under
complex loading. This work is undertaken and will be presented in future papers.
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THERMOMECHANICAL MODELLING OF FRICTION EFFECTS IN GRANULAR
FLOWS USING THE DISCRETE ELEMENT METHOD

VIET DUNG NGUYEN, JÉRÔME FORTIN, MOHAMED GUESSASMA,
EMMANUEL BELLENGER AND CLAUDIA COGNÉ

This study deals with the modelling of the thermomechanical phenomena due to friction effects during
granular flow. A two-dimensional model using the discrete element method (DEM) and taking into
account the contact detection and heat transfers between grains has been developed. Through this study,
we have modelled the heat transfer by conductance and the energy dissipation by friction into a granular
medium. This modelling enables better understanding of the phenomena at the contact point between
grains as well as the energy dissipation by friction of a great number of grains in motion. The validity
of the proposed model has been studied by considering some numerical simulations in quasistatic and
dynamic regimes.

1. Introduction

The published literature analysis has shown the importance of thermal energy in granular media for
industrial processes in applications as diversified as powder metallurgy, chemical reactors (catalysts
beds), food technology [Laguerre et al. 2006], thermal insulation [Melka and Bézian 1997], or even
simply storing particles in a silo after drying [Ketterhagen et al. 2007]. Only few studies are interested
in the understanding of heat transfers resulting from thermomechanical effects. However, these complex
phenomena with multiphysical characteristics are an essential stake in the world of industry and trans-
ports. For instance, strong frictions (braking, jamming) are responsible for half of ignitions of explosive
atmospheres, and are also a dreadful cause of fires in vehicles and accidents. One of the difficulties lies
in predicting the friction forces and the temperatures in the friction zone based on the intrinsic properties
of bodies in contact.

From a thermal energy point of view, sliding contact is the source of a heat generation by friction,
whose distribution between the different bodies is difficult to estimate. Besides, the determination of
the contact area, which plays an important role in the value of the transferred heat flow, is also difficult
to estimate and depends on various parameters like porosity, rugosity, the distribution of contact forces,
and the structure of the media. Mechanical engineers are at the origin of the greatest number of works
[Slavin et al. 2002; Vargas-Escobar and McCarthy 2002a; Bahrami et al. 2006]. Slavin et al. [2002]
and Bahrami et al. [2006] have developed models to estimate the effective thermal conductivity of a
particle packing from the intrinsic properties of solids and fluids. These models enable us to determine
the apparent thermal conductivity evolution of a granular medium according to the mechanical loading
applied to the particle bed. Vargas-Escobar and McCarthy [2002a] have studied more particularly the
influence of contact forces on the apparent conductivity of a bed with a small, but finite, area of contact.

Keywords: heat transfer, contact, conductance, friction, DEM.
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The first part of this work consists of using the discrete element method (DEM) for contact detection,
determination of contact forces, and kinematic parameters. A computational program, MULTICOR, that
can treat an important number of particles (106), has been developed to solve the mechanical equations.
In the second part, heat transfers by contact as well as energy generation by friction have been studied
and implemented in MULTICOR. Finally, through some examples, we underscore the phenomena of
thermomechanical interaction.

2. Mechanical resolution by DEM

The conventional DEM allows us to model really deformable particles as well as complex shapes, from
the ellipsoid to the polygon. Here, we have studied the simple case of nondeformable and nonpenetrable
particles in two dimensions with the computational programme MULTICOR [Fortin et al. 2005]. The
coordinates and the Euler rotation angles are the configuration parameters q. The gyroscopic forces are
three-dimensional but the centrifugal forces exist even in two-dimensional problems (see Figure 1). The
matrix of generalized mass M of the system doesn’t depend on q, and hence is a diagonal block. The
mechanical equation can be written in the form

Mq̈ = Fext(q, q̇, t)+ Rα,

where Fext represents the known external forces and Rα the unknown interior forces related to contact
reactions, with α being the contact number.
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Figure 1. Granular media and its kinematic parameters.
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Figure 2. Detection of contact.

In a system composed of p heterogeneous particles (see Figure 1), the critical parameter for the
modelling time is the maximum number of interactions between particles. The more the interaction
range is important the more we have to test the possible interactions between particles. MULTICOR
uses the partitioning method coupled to a connectivity table [Fortin and Coorevits 2004]. This technique
allows us to reduce the computational time considerably. In this case, the computational time no longer
increases as O(p2) but only as O(p), which is almost optimal. To each pair of particles �i and � j

which may enter in contact, we associated a local reference whose axes are oriented according to the
two unit vectors n and t , respectively the normal and tangential vectors in the contact plan (see Figure 2).
The normal n is directed from � j to �i . The variables put in duality are u̇i j , the relative local velocity
of �i with respect to � j , and the contact reaction r i j of � j on �i . In the local base, they are written as

u̇i j
= u̇i j

t .t + u̇i j
n .n, r i j

= r i j
t .t + r i j

n .n,

where u̇i j
n is the normal separation velocity, u̇i j

t the sliding velocity, r i j
n the contact pressure, and r i j

t the
friction force.

The introduction of Coulomb’s friction µ leads to a nonlinear problem which cannot be solved by
a linear programming method. Unlike the usual approach, the bipotential method leads to a single
variational principle and an inequality [Fortin and de Saxcé 1999]. Using Usawa’s algorithm, we obtain
a resolution algorithm of the constitutive law based on the predictive-corrective scheme expressed by

predictor : τ i j
= r i j

− γ [u̇i j
t + (u̇

i j
n +µ|| − u̇i j

t ||).n], corrector : r i j
= proj(τ i j , Kµ),

where γ is a numerical parameter, and τ i j the projection of Coulomb’s cone Kµ leads, according to
the value of τ i j , to one of the following states: noncontact, contact with friction, or sliding contact.
Conventionally, at each time step, the contact forces in the system are determined repeatedly by the
method of successive balances based on a Gauss–Seidel algorithm for the two-dimensional version. Each
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contact force is calculated by adopting temporary values over the other contacts. The convergence is
obtained when the force satisfies the unilateral contact law with dry friction.

The calculation cycle is a time-stepped algorithm which requires the repetition of the following reso-
lution scheme. 

t = t +4t
Evaluation of the particle positions qn

Detection of the contact number α in the system
Evaluation of the particle velocity (without contact)

i = i + 1 (iteration of solver bipotential)[
α = α+ 1 (contact loop : α is the current index of contact)
Evaluation of the contact reactions rα,i+1

Indicator of error
Evaluation of the velocity

3. Heat transfer in granular media and thermomechanical formulation

In general, heat transfer in granular media with a stagnant interstitial fluid is assumed to occur by the
following physical phenomena:
• Heat conduction through the particles and heat conduction through the fluid between the neighboring

particles. Furthermore, in a multicontact system, as considered in this work, we must consider heat
conduction through the contact area between two particles �i and � j . Contact conductance refers
to the ability to transmit heat across their mutual interface.

• Radiant heat transfer between the fluid within neighboring voids and radiant heat transfer between
the surfaces of neighboring particles. For heat transfer by radiation, contact between surfaces is not
required. Radiation is linked to the production of electromagnetic waves by a heat surface.

• For fluids, flow heat transfer by interparticle convection can be considered if there is a difference of
temperature between the particles and the fluid.

In frictional granular flow regimes, heat transfer occurs from the phenomena presented above. In
addition, it is necessary to consider the heat generated by friction between two particles �i and � j .
Indeed, sliding contact is an important source of heat generation for the dynamic granular problems
considered in this work (see Figure 3, left).

In this paper, we assume that conduction through the solid phase dominates the heat conduction. This
assumption is verified when

λss
λ f a
� 1,

where λs and λ f are respectively the conductivities of the particles and the fluid, a and s are the radius
of the particle and the contact area, respectively.

This expression is satisfied for high thermal conductivity solid materials or for solid particles in a
vacuum (λ f → 0) [Vargas-Escobar and McCarthy 2002b]. Also, under these conditions, the heat transfer
between two adjacent particles �i and � j is only controlled by the contact conductance. In this work,
radiant and convective heat transfers are neglected. Therefore, we only consider heat transfer in granular
flow by contact conductance and frictional effects (see Figure 3, right).
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Figure 3. Left: heat transfer mechanisms in granular media. Right: heat transfer in MULTICOR.

3.1. Heat transfer by conductance. Contact conductance is directly linked to the constriction of the
heat flow lines in the contact point [Laguerre et al. 2006]. The thermal contact conductance is defined by
the ratio of the heat flow across a contact interface and the magnitude of the temperature discontinuity
at the interface,

ϕi j = H i j
c (T j − Ti ),

where ϕi j is the heat flow transfered between the particles �i and � j , T j − Ti the temperature difference
between the mid-planes of the spheres and H i j

c the contact conductance between the particles �i and
� j , with j varying from 1 to the contact number α.

The coefficient H i j
c , which is a function of the compression force, refers to the ability of two materials

in contact to transfer heat across their mutual interface (see Figure 4). In our work, contact conductance
between particles �i and � j is modeled using Hertz theory as
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Figure 4. Schematic representation of heat transfer by conductance.
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where r i j
n is the normal force, a∗ is the equivalent radius, given by 1

a∗
=

1
ai
+

1
a j

, and E∗ is the effective
Young’s modulus, so that

1
E∗
=

1− ν2
i

Ei
+

1− ν2
j

E j
,

ν being Poisson’s ratio.
The contact between two adjacent particles is assumed to be smooth and sliding. The contact conduc-

tance is calculated dynamically at each time step and for all contacts of a particle �i .
We recall that the considered particles are nondeformable and nonpenetrable. The use of Hertz’s

theory only enables us to compute the contact conductance coefficient H i j
c . We assume that the particles

remain rigid all the time.

3.2. Heat generated by friction. In this case, heat flow is generated by dissipation of energy during
friction between particles. The deformation is neglected because the particles are assumed rigid. Friction
is understood as a continuous mechanical solicitation between two bodies. The heat energy generated
by friction, E f i j , at the frictional interface during a time step 4t is

E f i j = µu̇i j
t r i j

n 4t,

where µ is the friction coefficient, u̇i j
t the sliding velocity, and r i j

n the normal force.
The modelling of the heat generated by friction requires us to share it between particles in sliding

contact. Therefore, we define the partition coefficient of generated heat flow βi j . This coefficient depends
on different microscopic parameters like the thermal properties, the sliding velocity, heat generation
parameters, and the surface roughness if the contact is not perfect [Linck et al. 2006]. Research in this
area has proposed different equations to estimate this coefficient. In our study, this coefficient is obtained
from the analytical solution of Mokrani and Bourouga [2005],

βi j =
1
2

(
ρi

ρi + ρ j
+

λi
s

λi
s + λ

j
s

)
,

where ρ is the electric resistivity (�m).
We assume that the packed bed is made of only one material. The partition coefficient of generated

heat flow βi j is then equal to 1
2 .

3.3. Thermomechanical resolution. Taking into account the various phenomena of heat generation men-
tioned above, the energy balance and the variation of temperature for a particle during a small time step
4t can be written as

mi CPi
4Ti

4t
=

α∑
j=1

(
H i j

c (T j − Ti )+
1
2

E f i j

4t

)
, (1)

where mi and CPi are the mass and the heat capacity for �i respectively, and α the contact number.
The temperature evolution between two bodies in contact is governed by Equation (1), representing

the balance of the heat energy. For static problems this equation is solved with a time step 4t = 10−3 s.
For dynamical problems (1) is solved with a time step 4t = 10−6 s, to assume that the temperature of
each particle changes slowly so that thermal perturbations do not propagate further than its immediate
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neighbors during one time step. The second requirement is that the heat transfer resistance �i (conduc-
tion) through a particle is significantly lower than the contact resistance between two particles, �i and
� j , provided that

Bi =
H i j

c

λsa
� 1,

where Bi is the Biot number.
Equation (1) is discretized in order to compute the temperature Ti at the time step t +4t as

T t+4t
i = T t

i +
4t

mi CPi

α∑
j=1

(
H i j

c (T
t
j − T t

i )+
1
2

E f i j

4t

)
.

The general algorithm implemented in MULTICOR is the following:

t = t +4t
Evaluation of the particle positions qn

Detection of the contact number α in the system
Evaluation of the particle velocity (without contact)

i = i + 1 (iterations of solver bipotential)[
α = α+ 1 (contact loop)
Evaluation the contact reaction rα,i+1

Indicator of error
Evaluation of T t

i , H i j
c , E f i j

Evaluation of the temperature T t+4t
i

Evaluation of the velocity

The resolution of the heat problem requires us to compute at each time step the contact detection, the
determination of forces, and the velocities of particles.

4. Numerical simulations

4.1. Comparison between DEM and FEM. The first application was carried out on a particulate system
obtained by a triangular arrangement of 14 particles, with an identical size and a circular shape (1 mm
radius). We initially suppose that particle 1 is heated at 100◦ C and the remaining particles are at a
temperature of 20◦ C (see Figure 5).

From the thermal point of view, this simple modelling allows us to study the diffusion of the heat
flow by conductance in granular media. In order to check that this assumption is not too restrictive,
we compared MULTICOR’s prediction with the results obtained by CAST3M software based on the
finite element method (FEM) (see Figure 5). Through this comparison, we could check that the thermal
resistance within particles was negligible compared to the thermal contact resistance between particles.
This hypothesis could be checked by studying the temperature evolution in particles 1, 5 and 14. The
good agreement between MULTICOR and CAST3M seems to validate the assumption about the heat
transfer occurring only by conductance.
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Figure 5. Temperature evolution in particles 1, 5, and 14 obtained by MULTICOR and CAST3M.

4.2. Comparison between experiment and MULTICOR prediction. In order to validate our thermome-
chanical model implemented in MULTICOR, we have compared the results with experimental data from
[Vargas-Escobar and McCarthy 2002b]. In this study, the authors developed an experimental setup to
investigate the heat transfer in a quasistatic configuration. The system is composed of dispersed stainless
steel spheres forming a two-dimensional packed bed (30.4× 45.7 cm2). The bottom wall is kept at
Twall = 50◦ C. The top, left, and right walls are insulated (see Figure 6, left). The initial temperature is
T0 = 25◦ C.

The DEM model shown in the figure was computed by using the thermomechanical properties of
stainless steel based on experiments (see Table 1).

In Figure 6, right, we present a part of thermal map after 30 minutes heating. The temperature in
the heated granular bed does not propagate uniformly. The front oscillates as force chains appear and
disappear along the bed’s height.
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Figure 6. Left: the MULTICOR model. Right: part of the thermal map after 30 minutes heating.
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Density Poisson’s ratio Young’s modulus Particle radius λs

7,500 kg/m3 0.29 193 GPa 0.003 m 15 W/mK

Number of particles Length Height Friction coefficient
15,548 0.45 m 0.31 m 0.29

Table 1. Parameters used in the simulation.

Figure 7 presents a comparison of the temperature as a function of bed’s height given by our predictions
and the experimental results obtained by Vargas et al. [2002b] after 30 minutes heating. In this figure, θ
represents the dimensionless temperature and η the dimensionless height, given by the equations

θ =
T − T0

Twall− T0
, η =

y
H
.

As shown in Figure 7, the predicted temperature is less accurate for the particles at the bottom of
the bed. However, it can be seen that the simulation results matches the experimental curves for dimen-
sionless heights higher than 0.03, which allows us to validate the model prediction in the quasistatic
case.

4.3. Simulation of heat generation by friction in granular media. In this part, we begin to investigate
the problem of heat generation in the granular material subjected to shearing solicitation at an imposed
velocity. Two cases of shearing will be studied: the quasistatic and dynamic regimes.

The granular material consists of p particles having diameters d (1, 2, and 3 mm). The intergranular
contact is characterized by the friction coefficient µ= 0.5.

In the geometry of the shearing plane (see Figure 8), the material is compacted by gravity between
two rough parallel walls at a distance H . The top wall is set in motion with velocity V in the positive x
direction, and the system is compressed by imposing a uniaxial load F . Periodic conditions are imposed
at the lateral boundaries. This means that a particle leaving through one of the boundaries reenters the
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422 V. D. NGUYEN, J. FORTIN, M. GUESSASMA, E. BELLENGER AND C. COGNÉ

H

L

O

H

x

VF

grey grains constitute the rough walls

Fy

 transversal  direction

 are applied along the

periodic boundary conditions  

Figure 8. Model of shearing plan with periodic boundaries.

cell at the same vertical location and with the same kinematic and dynamic conditions. L is the length
of the simulated flow (equal to 40 particles). This size appears sufficient to neglect the length effects of
the simulation box. It is considered here that the roughness of wall surface is modeled by jointed grains
having the same characteristics as grains in the flow.

Conventionally, we observe two regimes in granular flows. First we have the quasistatic regime, which
usually obeys the constitutive laws in which the effective friction coefficient is constant. Secondly, there
is the rapid-flow or dynamic regime, where the particles interact collisionally. In this case, the solid
fraction is close to the maximum.

In Figure 9 we present the velocity field of two regimes. On the top two images we note the appearance
of small vortices which characterize the quasistatic regime. These disappear in the dynamic regime,
observed in the bottom images. In this case, the granular flow becomes stationary. This phenomenon
gives us a better understanding of the behavior of granular flow [da Cruz 2004].

Figure 10 shows the contact force distribution across the granular material at the beginning of the
simulation and when the stationary regime is established.

(a) (b)

(c) (d)

Figure 9. The velocity field in the quasistatic regime with a small vortex (top row), and
in the dynamic regime (bottom).
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Figure 10. Contact forces field at the beginning of the simulation (top) and when sta-
tionary flow is established (bottom).

Another result is concerned with the variation of velocity as a function of the height. We see in
Figure 11 that the average velocity agrees well with the curves proposed by da Cruz [2004], ?], and
Vargas-Escobar [2002]. There is no turbulence close to the mobile wall.

The major result of this work is the heat generated by friction between particles and the shearing wall
(see Figure 12). Figure 13, left, shows how heat is varies with the granular layer depth. The hottest zone
is located in the middle of the flow. These observations are confirmed by Vargas-Escobar [2002], who
has shown that the granular temperature profiles illustrate the high-shear zones in the center of the cell.
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Figure 11. Typical velocity normalized profile.
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Figure 12. Thermal maps of heat evolution in the quasistatic regime.
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Here we note that thermal symmetry of the heat profile means that the bottom wall plays an important
role in the heat generation. We also note that these profiles correspond with the angular velocity curves,
seen on the right in Figure 13.

5. Conclusions

The present work focuses on the modelling of heat transfer and heat generation by friction in a granular
material by using DEM. The proposed model has been implemented in MULTICOR software and per-
formed for some examples to check its validity. The numerical predictions obtained with MULTICOR
agree with the experimental results and numerical predictions from the literature. Therefore, the proposed
assumptions about the predominance of heat transfer by conductance in comparison with other thermal
effects has negligible influence on the numerical predictions.

The next step will consist in the incorporation of the other heat transfer phenomena like convection,
radiation, and impact effect. Moreover, further studies will focus on the dynamic friction coefficient and
its changes with the temperature and the wear in the contact area. An experimental campaign is also
planned with our industrial partner Proust et al. [2007].
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SEISMIC BEARING CAPACITY OF CIRCULAR FOOTINGS:
A YIELD DESIGN APPROACH

JEAN SALENÇON, CHARISIS THEODOROU CHATZIGOGOS AND ALAIN PECKER

As developed during the past decades, the yield design theory provides an approach to the stability
analysis of civil engineering structures under seismic conditions which has been often used, explicitly or
implicitly. New results related to circular footings resting on a purely cohesive soil, taking into account
the horizontal inertia forces, are presented in this paper for practical applications to the safety coefficient
to be applied to the vertical load when designing seismic foundations.

An outline of yield design theory

Just to clarify the terminology and to fix the notations, a brief outline of the yield design theory [Salençon
1983; 1990] is recalled here within the three dimensional continuum mechanics framework. It aims at
estimating the extreme loads that can be supported by a structure from the knowledge of its geometry,
of the loading process it undergoes and of the strength criteria of its constituent materials, whatever
the physical phenomena they are related to. Since they do not refer to any data about the constitutive
law of its materials before and at failure, the results obtained are but upper bound estimates for the
actual ultimate loads and no information can be obtained regarding the displacements. With the generic
notations � and ∂� for the volume and the boundary of the system, the quasistatic loading mode of the
system is described through a multiparameter loading vector Q with components Qi and the associated
dual kinematic parameters ˆ̇qi defining the virtual kinematic vector ˆ̇q. The principle of virtual rates of
work [Salençon 2001] thus takes the form: for all σ statically admissible with Q, and all Û kinematically
admissible with ˆ̇q, ∫

�

σ : d̂ d�+
∫
6Û

n · σ · [[Û]] d6Û = Q · ˆ̇q, (1)

with
σ 7→ Q and Û 7→ ˆ̇q linear, (2)

where the symbol “ :” denotes the double contracted product and “·” the dot product. σ stands for the
Cauchy stress tensor field, and d̂ for the virtual strain rate tensor field derived from the virtual velocity
field Û . Since such a field may exhibit velocity jumps [[Û]] across velocity jump surfaces 6Û which are
part of its definition, the second term in Equation (1) accounts for the corresponding contribution.

The same description is adopted in the case of a dynamic loading treated as a quasistatic phenomenon
by incorporating the corresponding given inertia forces within the applied external forces.

Homogeneity is not assumed and the term constituent material will be used generically from now on
to describe all the materials constituting the system, including the interfaces between different elements.

Keywords: seismic bearing capacity, circular footings, yield design, external approach, interaction diagrams, Tresca criterion.
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The resistance of the constituent material is defined at any point of the system through a convex strength
criterion to be satisfied by the stress state.

When trying to determine the loads Q that can be supported by the system under the specified strength
conditions, it is clear that mathematical compatibility at any point of the system between the equilibrium
equations and the material resistance conditions is necessary for a load to be supported. Such loads
generate the convex domain of the potentially safe loads in the Q vector space. The boundary of K
defines the extreme loads of the system. Any stress field in equilibrium with a load Q that complies
with the strength criterion is sufficient to prove that Q ∈ K . This is the basis of the internal approach or
lower bound approach to the extreme loads. Although the extreme loads are but upper bound estimates
of the actual ultimate loads of the system, it must be emphasized that since they are independent of the
material behaviour characteristics, other than the strength criteria, and of the loading paths and loading
history, they are valid regardless of these data. Thus, after being assessed and through the introduction
of convenient safety factors, they provide a reliable theoretical benchmark for practical applications.

The construction of stress fields that satisfy the conditions above often makes the implementation of
the internal approach difficult. Dualization through the principle of virtual rates of work (see Equations
(1) and (2)) leads to an external approach based upon the construction of kinematically admissible virtual
velocity fields. The details of the related reasoning can be found in [Salençon 1990]. The key idea is
that the material resistance may be equivalently defined through the strength criteria on the stress tensor,
as indicated above, or through the associated π -functions of the strain rate d̂: denoting generically by G
the domain of resistance on σ defined at a point of the system, the corresponding π-function is just the
support function

π(d̂)= sup{σ ′ : d̂ | σ ′ ∈ G}, (3)

from which we derive

π(n, [[Û]])= sup{n · σ ′ · [[Û]] | σ ′ ∈ G}. (4)

The π-functions are called the maximum resisting rate of work densities related to G. From the
definition of K and through Equations (1) and (2), the fundamental inequality of the external approach
is obtained in the form: For every Q ∈ K , and every kinematically admissible virtual velocity field Û ,

Q · ˆ̇q ≤
∫
�

π(d̂) d�+
∫
6Û

π(n, [[Û]]) d6Û . (5)

The right side of Equation (5) is called the maximum resisting rate of work in the virtual velocity field
Û :

Prm(Û)=
∫
�

π(d̂) d�+
∫
6Û

π(n, [[Û]]) d6Û , (6)

while the left side of (5) is just the rate of work of all the external forces Pe(Q, Û). It follows from
Equations (5) and (6) that the construction of any kinematically admissible virtual velocity field yields
an external approximation of the boundary of K :

K ⊂ {Pe(Q, Û)− Prm(Û)≤ 0}, for any kinematically admissible Û . (7)
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Figure 1. Internal and external approaches to the domain of potentially safe loads.

The two approaches are schematically presented in Figure 1. Important points regarding the external
approach are:

• Tables giving the expressions of the π-functions for usually encountered criteria are available
[Salençon 1983; 2002].

• For a given G the values of the π-functions are either finite or infinite depending on the values of
the arguments d̂ and (n, [[Û]]).

• For the approach to be efficient, kinematically admissible virtual velocity fields Û must be chosen
in order that the values of the π -functions remain finite everywhere in O .

• The third condition has no relationship whatsoever with a constitutive law.

One may wonder how the external approach can be of any use in practical applications for the design
of structures since it only provides upper bounds of the extreme loads, the practical significance of which
has been discussed above. As a matter of fact, this is one reason for the introduction of the model factor
in ultimate limit state design codes [Salençon 1994]. Independently of the partial safety factors which
define the design loads and design resistances to be introduced in the design procedure of the considered
structure, derived from the nominal ones, the model factor is imposed on the resisting rate of work as a
whole in order to take into account the method for the yield design analysis that is performed (say, by
assessing the quality of the considered potential collapse mechanisms).

Seismic bearing capacity of a circular footing on a purely cohesive soil

Problem motivation. The problem under consideration arises from a series of field observations after
several major earthquakes within the last twenty-five years, which revealed a particular type of foundation
failure without the presence of liquefaction in the supporting soil layers: large permanent rotations were
observed at the foundation level together with a zone of detachment at the soil-foundation interface and
the development of a failure mechanism within the soil volume [Mendoza and Auvinet 1988]. The same
failure mechanism was also identified experimentally [Knappett et al. 2006; Zeng and Steedman 1998].

From a theoretical point of view, one initial approach to the problem of the seismic bearing capacity
is to work within the classical framework of Terzaghi’s bearing capacity formula, modifying the bearing
capacity factors in order to account for the effect of the inertia forces within the soil volume during the
seismic excitation, while applying appropriate correction factors for the load eccentricity and inclination
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[Fishman et al. 2003; Richards et al. 1993; Sarma and Iossifelis 1990]. A second approach represents
the seismic bearing capacity of the foundation system as an ultimate surface in the space of the loading
parameters of the footing as a function of the intensity of the horizontal inertia forces in the soil volume
[Paolucci and Pecker 1997a; 1997b; Pecker and Salençon 1991; Salençon and Pecker 1995a; 1995b].
The results so obtained in the case of shallow strip footings were incorporated in the European norms
for earthquake-resistant design of civil engineering structures [Eurocode 1998].

This study aims at extending the analysis to the seismic bearing capacity of a shallow circular footing
resting on the surface of a purely cohesive soil layer.

Definition of the seismic bearing capacity problem. A rigid circular footing with radius r resting on a
purely cohesive soil half-space is considered (Figure 2). The resistance of the constituent soil is described
by the Tresca criterion with a cohesion c depending linearly on the depth (8), with c0 being the surface
cohesion and α the vertical cohesion gradient:

c = c0 = αz. (8)

In order to assess the importance of the corresponding assumption, two extreme cases are considered,
namely, the classical Tresca criterion (9) and the Tresca criterion with zero resistance to tension (10):

f (σ )= |σ1− σ3| − 2c ≤ 0, (9)

f (σ )= sup{|σ1− σ3| − 2c, σ1} ≤ 0, (10)

with σ1 and σ3 being the major and minor principal stresses respectively (tensile stresses positive).
The soil-footing interface is also considered to be purely cohesive and its resistance is modelled by

the Tresca criterion with no tensile resistance (zero tension cut-off). This is a deliberate choice in order
to allow for the potential creation of a zone of detachment between the footing and the soil, an essential
characteristic of observed seismic bearing capacity failure. The interface cohesion is considered equal
to c0.

f (σ, τ )= sup{|τ | − c0, σ } ≤ 0. (11)

The quasistatic loading mode of the system is defined by means of the wrench of external forces acting
on the footing due to the weight and to the inertial response of the superstructure (including the footing
itself), of the unit weight of the soil, and of the intensity of the inertia forces developing within the soil
mass.

Following common practice, this intensity is assumed to be uniform throughout the soil mass with
vertical and horizontal components Fv and Fh. The physical validity of this assumption has already been
discussed by various authors (for example, Pecker and Salençon [1991] suggested that, denoting by d

Figure 2. Circular shallow foundation under seismic loading on a purely cohesive soil.



SEISMIC BEARING CAPACITY OF CIRCULAR FOOTINGS: A YIELD DESIGN APPROACH 431

and D the failure mechanism thickness and the depth of the soil layer, the following condition should be
satisfied: d/D < 10) and will be revisited in a following section. From now on the vertical component
will be added to the unit weight of the soil and will give rise to the modified unit weight:

γ ∗ = γ + Fv = γ
∗ez, (12)

with ez the unit vector in the descending vertical direction.
Due to the origin of the external loads acting on the superstructure and on the foundation, it is also

assumed that the horizontal component V of the resultant force of the wrench is collinear with the
horizontal inertia force Fh in the soil along the x-axis, and that the horizontal overturning moment M
at the center of the footing is oriented around the y-axis, perpendicular to that direction. As a matter of
fact, this assumption is rigorously valid when dealing with the excitation of a single-degree-of-freedom
(SDOF) superstructure and under specific conditions in the case of multiple degrees of freedom.

Relevant variables for the seismic bearing capacity problem. The determination of the bearing capacity
of the foundation under the conditions specified above is based upon the theory of yield design. Concern-
ing the influence of the modified unit weight on the extreme loads, it has been shown [Salençon 1983]
that, for the classical Tresca criterion, the unit weight has no influence on the value of the extreme loads
supported by the footing. The result holds also if the modified unit weight is not constant but depends
only on the z-coordinate. For the case of the Tresca criterion with no resistance to tension, the result
remains true if γ ∗ ≤ 0, which is true in the usual cases of seismic excitations. Therefore, γ ∗ will no
longer appear in the problem loading parameters.

Dimensionless parameters. The vertical component of the resultant force acting on the footing is de-
noted by N . The horizontal component Fh is defined from a horizontal acceleration ah characteristic of
the examined earthquake, which can be for instance the peak ground horizontal acceleration (PGHA):

Fh = ρah, (13)

with ρ being the mass density of the soil.
The vector Q representing the loading parameters of the system is written as

Q = (N , V,M, Fh), (14)

and the strength parameters are c0 and α.
When presenting the results, dimensionless parameters will be introduced:

Ñ =
N

πc0r2 , Ṽ =
V

πc0r2 , M̃ =
M

2πc0r3 , F̃h =
ρrah

πc0
, k̃ =

rα
c0
. (15)

The parameter k̃ expresses the degree of heterogeneity in the system. For a homogeneous soil layer,
k̃ = 0. Common values of r , α and c0 give rise to k̃ less than or equal to approximately 2.

Solution procedure. The external approach is implemented in this problem through the construction
of kinematically admissible virtual velocity fields in the whole system that are relevant to the strength
criteria under consideration by referring to the π -functions corresponding to Equations (9)–(11):
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• Classical Tresca criterion (Equation (9)):

π(d̂)=+∞ if tr(d̂) 6= 0,

π(d̂)= c(|d̂1| + |d̂2| + |d̂3|) if tr(d̂)= 0,

π(n, [[Û]])=+∞ if [[Û]] · n 6= 0,

π(n, [[Û]])= c|[[Û]]| if [[Û]] · n= 0.

(16)

• Tresca criterion with zero tension cut-off (Equation (10)):

π(d̂)=+∞ if tr(d̂) < 0,

π(d̂)= c(|d̂1| + |d̂2| + |d̂3| − tr(d̂)) if tr(d̂)≥ 0,

π(n, [[Û]])=+∞ if [[Û]] · n< 0,

π(n, [[Û]])= c|[[Û]] − [[Û]] · n| if [[Û]] · n ≥ 0.

(17)

• Tresca criterion for the interface without resistance to tension (Equation (11)):

π(n, [[Û]])=+∞ if [[Û]] · n< 0,

π(n, [[Û]])= c|[[Û]] − ([[Û]] · n) · n| if [[Û]] · n ≥ 0.
(18)

It follows obviously that a relevant virtual velocity field for the classical Tresca criterion is also relevant
for the Tresca criterion without tensile strength, but not vice versa. Attention must be paid also to
Equation (18) as it shows that a nonzero maximum resisting rate of work is obtained even when a
detachment between the footing and the soil is induced by the virtual velocity field.

Since the circular footing is assumed to be perfectly rigid, any kinematically admissible virtual velocity
Û field must comply with a rigid body motion of the footing as a boundary condition. For the planar
velocity fields that will be considered hereafter, assuming Ûy = 0, such a rigid body motion is defined
by the virtual rate of rotation ω̂ and the two components ÛO,x , ÛO,z of the virtual velocity of the center
O of the footing. Consequently the rate of work of the external forces is written:

Q · ˆ̇q = NÛO,z + V ÛO,x +Mω̂+ Fh

∫
�

Û · exd O. (19)

Three classes of kinematically admissible virtual velocity fields Û have been examined, which are de-
rived from plane strain potential failure mechanisms used to determine the seismic bearing capacity of
strip footings. Completely described in [Chatzigogos 2007; Chatzigogos et al. 2007], these planar and
nonplane strain virtual velocity fields are parallel to Oxz and depend on the three coordinates. They are
relevant to the strength criteria (Equations (9)–(11)) since they are isochoric everywhere in �: tr(d̂)= 0,
[[Û]] · n= 0, but for the interface where virtual uplift of the footing with respect to the soil surface may
occur [[Û]] · n ≥ 0. In order to implement the external approach through Equation (7) Prm(Û) must be
computed, which implies deriving d̂ from Û , a tedious task until it was drastically simplified by Puzrin
and Randolph [2003a; 2003b] in a method based upon the use of wisely chosen curvilinear coordinates.
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• Translational virtual failure mechanisms were originally proposed in plane strain [Green 1954] for
the indentation by a rigid punch submitted to an inclined load; the extension to a rigid circular
footing was given by Puzrin and Randolph [2003b] by considering that the width of the mechanism
in a cross-section by a vertical plane is proportional to the width of the footing in the same cross-
section (Figure 3). The footing translates with a virtual velocity Û0 which propagates with a constant
magnitude along the streamlines of the mechanism. The shape of each virtual failure mechanism
is defined by two angles: 0< δ < π/2, 0< ε < π/2. The mechanisms exhibit three zones within
the soil mass, presented in Figure 3. Zones 1 and 3 translate rigidly while zone 2 is a region where
nonplane shear strain rate is developed. Contributions to the maximum resisting rate of work for
this class are developed within the volume of zone 2 and along the velocity jump surface in the
soil. These virtual mechanisms involve no rotation of the footing: the upper bound estimates they
provide through (7) do not involve the moment M .

• Purely rotational virtual failure mechanisms are adapted from the plane strain version studied in
[Salençon and Pecker 1995a; 1995b; Sekiguchi and Kobayashi 1997]. The rigid circular footing
is considered to rotate rigidly around an axis parallel to Oy and induces rigid rotational failure
of the soil below with a virtual angular velocity ω̂ (Figure 4). Each mechanism is defined by the
geometrical parameters κ and λ. For 1 < λ < 2, there is no uplift of the footing with respect to
the soil surface and the maximum resisting rate of work is only produced along the velocity jump
surface within the soil volume. For 0< λ < 1, uplift of the footing with respect to the soil surface
takes place in the zone of soil-footing detachment where consequently a fraction of the maximum
resisting rate of work is developed.

• Shear-rotational virtual failure mechanisms follow a pattern derived from the plane-strain virtual
velocity field originally proposed by Hansen [1953] for the study of active earth pressures (see
Figure 5).

Figure 3. Translational virtual failure mechanism.
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Figure 4. Purely rotational virtual failure mechanism.

Rigid body rotation of the footing around an axis of rotation parallel to Oy located within the soil mass
induces the development of nonplanar shear strain rate in the zones 2 and 3 within the soil volume. The
mechanisms depend on the three geometrical parameters κ , λ, µ and three distinct configurations are
obtained depending on the position of the axis of rotation with respect to the footing: without uplift of
the footing with respect to the soil surface or with a small or large zone of detachment; contributions to
the maximum resisting rate of work are developed within the soil volume in zones 2 and 3, along the
velocity jump surface in the soil mass and on the zone of soil-footing detachment, if any.

Results

Implementing the external approach through Equation (7), the rate of work of the external forces is
given by (19) and the maximum resisting rate of work Prm(Û) is computed through (6) with the relevant
expressions for π(d̂) and π(n, [[Û]]). Looking for optimal upper bounds for the ultimate loads supported
by the system requires the implementation of an optimization procedure over each separate geometrical
configuration of the three considered classes of virtual mechanisms: in each case, the mathematical
problem involved reduces to minimizing a nonlinear objective function with respect to the parameters of
the geometric configuration. The algorithm used for this purpose is described in [Coleman and Li 1996].
The following results were obtained.

Figure 5. Shear-rotational virtual failure mechanism.
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Figure 6. Plane strain circular rigid body virtual collapse mechanism.

Critical value of Fh. The assumption of uniformly distributed horizontal inertia forces Fh would lead
to a pathological conclusion if, in addition to the limitation on the ratio d/D which has already been
introduced for physical relevance, the virtual failure mechanisms to be taken in consideration were given
the possibility of infinite extension.

As an illustrative example, the plane strain circular rigid body virtual collapse mechanism presented in
Figure 6 can be considered. In the case of a homogeneous soil layer, denoting by L and d its horizontal
and vertical extension respectively, the minimization procedure on this class of mechanisms proves the
instability of the system just due to the action of the soil inertia forces if ρah > 8.3c0/L = 2.74c0/d,
with the other loading parameters being zero: Ñ = 0, Ṽ = 0, M̃ = 0. As a consequence, for any circular
footing with radius r ≤ L/2, the value F̃h = 2.64r/L = 0.87d/L would appear as the critical value
for the considered mechanism. This critical value tends to zero if the extension of the mechanism is
unlimited. The value F̃h = 0 would therefore appear as the critical value of F̃h, a conclusion that is
obviously unrealistic! This brings us to the condition that the virtual failure mechanisms implemented
in the yield design theory must be physically relevant, apart from the fact that horizontal uniformity of
F̃h could also be questioned. In other words, pathological circumstances are put aside through realistic
constraints on the minimization procedure on the virtual failure mechanisms.

Table 1 summarizes the calculated values of critical F̃h as a function of k̃ for the three classes of
examined three-dimensional virtual failure mechanisms. As could be anticipated, it shows that the critical
value increases with k̃. The minimum value is obtained for the homogeneous soil (k̃ = 0) through a
shear-rotational virtual failure mechanism. For usual values of the other parameters such as r = 4 m,
c0 = 20 kPa, ρ = 2× 103 kg/m3 it corresponds to a very strong earthquake: ah = 5 m/sec2 ∼= 0.5g.

Class of mechanisms Critical value of F̃h
k̃ = 0 k̃ = 0.5 k̃ = 1 k̃ = 3

Translational 1.32 1.80 2.29 4.05
Purely rotational 0.99 1.28 1.54 2.45
Shear rotational 0.66 0.90 1.15 2.03

MINIMUM 0.66 0.90 1.15 2.03

Table 1. Critical values of F̃h as a function of k̃.
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Figure 7. External approach of the ultimate load surface for a homogeneous soil (k̃ = 0)
when F̃h = 0 (left) and F̃h = 0.5 (right).

Presentation of the results. The upper bounds for the ultimate loads supported by the foundation are
represented as surfaces in the space of the loading parameters (Ñ , Ṽ , M̃) for different values of F̃h and
k̃ (Figure 7).

Since these surfaces are obtained through the minimization procedure described earlier over three
different classes of virtual collapse mechanisms, they are just piecewise regular, each smooth part being
the result of one class of mechanisms as it will appear in the interaction diagrams (Figures 8–9).

For practical applications the most convenient presentation of the results is by means of sections
of those surfaces that may be called classically interaction diagrams: these curves represent the upper
bounds for the ultimate combinations of the loading parameters and indicate the class of mechanisms
from which each bound is obtained. In the following, the results refer to the Tresca criterion with a
zero tension cut-off for the soil strength which seems the most realistic criterion to be considered. For
brevity’s sake, only some significant results will be reported here; a comprehensive and commented
report may be found in [Chatzigogos 2007; Chatzigogos et al. 2007].

Interaction diagram (Ñ, Ṽ , M̃ = 0, F̃h). The diagrams in Figure 8 present the relation between the
ultimate horizontal and vertical force for k̃ = 0 and k̃ = 1, for three different values of F̃h. The maximum
value for Ṽ is 1, corresponding to a translational mechanism of failure by pure sliding along the soil-
footing interface when F̃h = 0. It is also interesting to note that for F̃h > 0 the purely rotational virtual
mechanism gives an upper bound that is slightly better than the pure sliding one: although the depth of
this mechanism is relatively small, so that it is very close to a pure sliding, it incorporates a contribution
of F̃h to the rate of work of the external forces. This phenomenon is less pronounced for larger values
of k̃ as revealed by the diagram for k = 1. For practical applications it is worth noting that, both for
k̃ = 0 and for k̃ = 1, the effect of F̃h remains negligible as long as Ñ 0

max/Ñ > 2.5, where Ñ 0
max denotes

the known exact value of the maximal vertical force supported by the footing with F̃h = 0 [Salençon
and Matar 1982]. As Ñ increases so does the negative effect of a high value of F̃h, especially when
Ñ 0

max/Ñ > 2i but it is observed that it is less pronounced for k̃ = 0 than for k̃ = 1: a favourable effect of
the vertical cohesion gradient.

Interaction diagram (Ñ, Ṽ , M̃ = 0, F̃h). Figure 10 presents the optimal upper bounds for the ultimate
combinations of M̃ and Ñ obtained with Ṽ = 0, for k̃ = 0 and k̃ = 1. Experimental data in the case k̃ = 0,
F̃h = 0 in [Houlsby and Martin 1993] are plotted for comparison.
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Figure 8. Interaction diagram (Ñ , Ṽ , M̃ = 0, F̃h) for k̃ = 0 (top) and k̃ = 1 (bottom).
Tresca criterion with zero tension cut-off.

It comes out that the upper bounds are satisfactory, from a practical point of view, and that the dif-
ference is larger for the larger values of Ñ that correspond to quasiaxisymmetric loading configurations,
to which the considered unilateral virtual failure mechanisms are not well suited. For small values of
Ñ , the optimal upper bounds are obtained by mechanisms with a significant zone of detachment of the
footing, which is not the case as Ñ increases. The effect of F̃h follows the same behaviour as in Figure 8,
which, from a practical point of view, enforces the conclusion from this observation that a factor of safety
against permanent loads Ñ 0

max/Ñ > 2.5 can guarantee that the effect of soil inertia forces is negligible,
even for very strong earthquakes. Such conclusions are in agreement with observations of real foundation
bearing capacity failures, mainly after the Guerrero–Michoacán earthquake (Mexico, 1985) as presented
in [Mendoza and Auvinet 1988].

Interaction diagram (Ñ = const, Ṽ , M̃, F̃h ). The interaction diagrams between the ultimate values of Ṽ
and M̃ for fixed values of the vertical force Ñ are shown in Figure 9 for k̃= 0 in the two cases Ñ 0

max/Ñ = 3
corresponding to a proper foundation design and Ñ 0

max/Ñ = 1.5 corresponding to a nonconservative
design.

These diagrams can be used for practical applications when a relationship between the resultant mo-
ment and the horizontal force (base shear force) on the footing is known from the geometrical and
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Figure 9. Tresca criterion with zero tension cut-off: interaction diagram (Ñ = const, Ṽ ,
M̃ , F̃h) for k̃ = 0, Ñ 0

max/Ñ > 3 (top) and Ñ 0
max/Ñ > 1.5 (bottom); ultimate loading paths

for F̃h = 0.25 in a SDOF superstructure.

rigidity characteristics of the superstructure. Such a relationship defines a loading path in the (Ṽ , M̃)-
plane allowing for the determination of the ultimate combination of Ṽ and M̃ for given Ñ and F̃h as
presented in Figure 10, it being observed that only the right halves of the diagrams, Ṽ ≥ 0, correspond to
realistic loading paths. The two diagrams highlight the significant decrease of the bearing capacity with
increasing F̃h for Ñ 0

max/Ñ = 1.5. Even for Ṽ = 0, M̃ = 0, a value of F̃h = 0.5 causes the collapse of the
footing.

Practical implementation. As explained earlier, the Eurocode [1998] expression for the seismic bearing
capacity of shallow foundations is only valid for strip footings resting on homogeneous soils, either purely
cohesive or purely frictional. This study makes it possible to propose a modified version of those rules for
shallow circular footings on a purely cohesive soil with a vertical cohesion gradient. The corresponding
expression is presented and discussed in [Chatzigogos 2007; Chatzigogos et al. 2007]. As far as the
design principles are concerned, it should be remembered that the effect of the horizontal inertia forces
in the soil volume is, in general, negligible as long as the vertical force on the footing remains smaller
than one third of its static bearing capacity.
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Figure 10. Interaction diagram (Ñ , Ṽ =0, M̃ , F̃h) for k̃=0 (top) and k̃=1 (bottom), and
experimental results by Houlsby and Martin [1993]. Tresca criterion with zero tension
cut-off.

Conclusion

Seismic actions must now often be taken into account when designing private or industrial buildings or
structures such as bridges, dams, nuclear plants, etc. We have briefly outlined how such a problem can
be thoroughly studied from the theoretical point of view through the yield design approach up to the
writing of new international design codes. For this purpose it is necessary that the rationale of the yield
design theory be thoroughly understood since most (not to say all) equations that are used in such codes
are obtained through the external approach, either explicitly or implicitly. To this extent the yield design
theory is a corner stone of ultimate limit state design (ULSD).
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