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The objective of this paper is to show that a number of key features of the Dang Van high cycle fatigue
criterion can be observed using simple polycrystalline computational models.

This paper presents a series of numerical computations for an inclusion consisting of 156 grains
embedded in a homogeneous matrix. The grains are modeled using a polycrystalline single slip elasto-
plastic model, whilst the matrix is considered as elastic. As expected the numerical simulations confirm
the theoretical prediction on which the Dang Van fatigue criterion is based, that if a large enough number
of grains is considered under uniform loading, a grain with the least favourable lattice orientation will
always be present. This grain will constitute the weakest link in the assembly and thus its fatigue life
largely determines the fatigue life of the bulk material.

Next the question of stress-gradients in the high cycle fatigue regime is addressed. An example of
stress gradients appears around notches as they create stress concentrations in structures. It is a well
known problem that fatigue criteria have to be locally arranged using stress-factors or critical distances
in order to give satisfactory predictions. The work presented here shows that an analysis of the problem
at the grain scale explains the apparent discrepancy when using classical fatigue criteria. The discussion
is based on a numerical model of single slip crystal plasticity and the Dang Van fatigue criterion.

1. Introduction

Initially fatigue criteria were purely phenomenological, relying directly on the interpretation of experi-
mental results at the macroscopic scale. Starting with the pioneering paper of Orowan [1939] on grain
plasticity, the possibility of including grains scale effects within fatigue criteria was recognised. One
of the fatigue models including grain level phenomena in a macroscopic fatigue criterion is the Dang
Van–Papadopulos criterion [Dang Van 1993; Papadopoulos 1994; 1995; Dang Van and Papadopoulos
1999]. It states that fatigue does not occur if all grains reach an elastic shakedown state. In order to
estimate the stress-strain state at the meso scale a simple homogenisation scheme of a plastic inclusion
in an elastic matrix is considered. The keypoint of the homogenisation scheme is the assumption that
any macroscopic material point includes all possible grain lattice orientations. On this basis a simple set
of macroscopic formulae provide an estimate of the fatigue limit.

Since the initial Orowan grain models numerous refinements have been proposed and today com-
plex polycrystalline grain models are available [Asaro 1983; Kothari and Anand 1998], as well as the
computational power required for calculations comparable to experimental observations. Recent studies
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of face centered cubic (FCC) crystal plasticity and fatigue predictions are, for example, presented in
[Saanouni and Abdul-Latif 1996; Bennet and McDowell 2003; Manonkul and Dunne 2004]. Based on
these models low cycle fatigue crack nucleation has been studied in [Dunne et al. 2007]. One can remark
that the polycrystalline models discussed in the preceding references are rather complex. However this
complexity will fade by the application of a phenomenological fatigue criterion.

This work revisits the Dang Van criterion (DVC) using a simple numerical polycrystalline model,
with the specific focus of interpreting the fatigue limit as a shakedown limit for each grain. As such the
proposed modeling will refine the initial closed-form homogenisation scheme.

Initially the proposed model will be used to illustrate the correct functioning of the criterion when
considering a group of grains in a representative material. When the applied stress is homogeneous at
the level of the representative volume element, the results of the classical closed-form homogenisation
scheme are obtained. However, when a stress gradient is applied, the homogenisation assumptions are
no longer valid and the numerical results illustrate the stress distribution in the grains. If the fatigue
criterion is interpreted as a shakedown limit for each grain, one obtains a natural explanation of the
“gradient effect” observed classically in fatigue experiments [Taylor 1999; Adib and Pluvinage 2003;
Naik et al. 2005].

In our particular case, we will focus, for convenience and simplicity, on a two dimensional plane
strain model of an austenitic steel with FCC crystal structure. However since we will show that the
underlying homogenisation assumption breaks down in the case of a steep stress gradient, the specific
case considered here (a two dimensional model and FCC structure) does not limit the generality of the
observations. In fact the results and conclusions can be readily extended to three dimensions, as well as
other crystallographic structures.

First a short overview of the basic assumptions of the Dang Van fatigue theory based on the shakedown
concept will be given. The next section outlines the models and the computations of the simulated
experiments. Finally the results are presented, firstly in the case of uniform loading, illustrating the DVC
and secondly demonstrating the effect of applying a stress gradient.

2. Main assumptions of the Dang Van fatigue criterion

The fatigue analysis presented next is based on the DVC as presented in [Dang Van 1993; Papadopoulos
1995; Dang Van and Papadopoulos 1999].

Let us consider a structure under cyclic mechanical loading. Its fatigue lifetime will be determined by
a number of mechanical fields: elastic and plastic strains, stresses, etc. computed over each cycle. The
underlying hypothesis is that, after a short initial period of a few cycles, the mechanical response of the
structure is stabilized, meaning that the fields will evolve in closed loops.

Fatigue phenomena can then be characterized at three scales:

(i) the microscopic scale of dislocations, which are the underlying elements of plastic deformation,
persistent slip bands, and elastoplastic strains;

(ii) the mesoscopic scale of grains, where fatigue and damage phenomena are concentrated either at the
grain boundary or in the interior;

(iii) the macroscopic scale of the structure, at which loads are applied and industrial design is performed.
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An inspection of the three scales during a cyclic loading would lead to different observations deter-
mined by the fatigue regime (see Figure 1):

• In the low cycle fatigue regime, physical observations at both macroscopic and mesoscopic scale
show extensive plastic strains. Moreover homogenisation theory shows that strains and stresses at
the two scales tend to be closer to each other with increasing plastic strain. This can be translated
into saying that the higher the applied load, the more similar mesoscopic and macroscopic scales
will behave.

• In the high cycle fatigue regime, two fatigue domains corresponding to finite and infinite lifetime
can be considered. Physical observations at the macroscopic scale show that structures are macro-
scopically in an elastic shakedown state. At the mesoscopic scale of the grains, it is now commonly
accepted that elastic shakedown occurs only in the case of infinite lifetime. If lifetime is finite, some
grains will be oriented such that they can not reach an elastic shakedown state, but will experience
a plastic shakedown or ratcheting state leading to failure after a finite number of cycles. The stress
concentration due to this mesoscopic failure marks the initiation of a macroscopic crack associated
with failure on the macroscopic scale.

Focusing on the case of high cycle fatigue, one can imagine a case where only one misoriented grain
is subject to plastic slip. Then a simple homogenisation scheme of a plastic inclusion in an elastic matrix
can be used to derive closed-form relations between mesoscopic and macroscopic fields.

Examples of possible homogenisation assumptions are [Cano et al. 2004]:

• Lin–Taylor supposes strain equality: ε = E. This is the hypothesis of the initial Dang Van or
Papadopoulos fatigue criterion.

• Sachs supposes stress equality: σ =6

• Kröner assumes σ =6−C : (I−P : C) : ε p, where C and P are respectively the fourth rank elastic
moduli and Hill tensors and σ and 6 are respectively the mesoscopic and macroscopic stresses. In
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Figure 1. Illustration of high and low cycle fatigue regimes on a Whoeler diagram.
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the particular case of an idealized spherical inclusion, P reads

P=
A

3K
J+

B
2µ

K, with A =
3K

3K + 4µ
, and B =

6
5

K + 2µ
3K + 4µ

,

where J= 1
3 I ⊗ I and K = I− J with I the fourth rank identity tensor.

If, in all the cases, the same elastic behaviour at the mesoscopic and the macroscopic scale is assumed,
the relation between mesoscopic and macroscopic fields can be written in the general form

σ =6−C∗ : ε p
=6+ ρ∗,

where ρ∗ should be interpreted as a mesoscopic residual stress field.
The particular case of each model is obtained depending on the form of C∗:

• for Lin–Taylor’s model, C∗ = C;

• for Sachs model, C∗ = 0;

• for Kröner’s scheme, C∗ = C : (I−P : C).

Assuming only one active slip system generates the plastic strain

ε p
=

1
2

∑
s

γ s(ms
⊗ ns
+ ns
⊗ms)=

∑
s

γ sαs, with αs
=

1
2 (m

s
⊗ ns
+ ns
⊗ms).

The mesoscopic shear and normal stress for a slip system s with slip plane normal ns and slip direction
ms can then be expressed as σ s

n = (σ : ns
⊗ ns) and τ s

= σ : ms
⊗ ns .

Using the previous definitions we can define a series of fatigue criteria.
For an individual grain, when considering all slip systems, we have infinite lifetime if and only if

max
s

max
t

(
τ s(t)+ aσ s

n (t)
)
< b,

where a and b are material constants and s is an index of the slip plane.
Looking at the macroscopic assembly of a number of grains g, this infinite lifetime criterion can be

extended to
max

g
max

s
max

t

(
τ s(t)+ aσ s

n (t)
)
< b,

where maxg refers to the most critical grain.
Under the assumption that the grain orientations statistically cover all directions [Papadopoulos 1994;

1995], this can be simplified to
max

t

(
τ(t)+ aσ H (t)

)
< b,

which is the classical DVC formulation. Here τ is the Tresca norm of the mesoscopic shear and
σ H
= 1/3 tr σ is the hydrostatic stress.

We can now recall that it is currently accepted that the Papadopoulos formulation of the criterion
provides practically equivalent predictions to the initial Dang Van formulation and can thus be expressed
as k∗+ aσ H

max < b, where k∗ denotes the smallest radius of a hypersphere encompassing the stress path
and σ H

max is the maximal hydrostatic stress.
It is common to represent the stress path in a mesoscopic shear τ(t) versus mesoscopic hydrostatic

stress σ H (t) diagram as schematically drawn in Figure 2. The line defined by the criterion is the frontier
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Figure 2. Illustration of the Dang Van criterion (DVC) in the τ , P plane.

between infinite life and fatigue. Component life for a load path contained completely below the DVC
line will be infinite. If any point of the load path is located above the DVC line, fatigue will occur.

The parameters a and b are generally obtained from the torsion and bending fatigue limits, t∞ and
f∞ respectively, as

a =
t∞− 1

2 f∞
1
3 f∞

, b = t∞.

3. The experiments and their modeling

The discussion will be based on the simulation of three different setups (see Figure 3):

(i) a repeated tensile experiment (in plain strain) on a box specimen

σ = σmax
1+ sin(t)

2
(ey ⊗ ey + νez ⊗ ez), t ∈ R;

(ii) an alternated shear experiment (in plain strain) on a box specimen

σ = τmax sin(t)(ex ⊗ ey + ey ⊗ ex), t ∈ R;

(iii) a repeated tensile experiment (in plain strain) on a notched specimen

σ = σmax
1+ sin(t)

2
(ey ⊗ ey + νez ⊗ ez), t ∈ R.

Shear alternated loading was chosen instead of repeated loading, as repeated loading required an exces-
sively large number of cycles to reach an elastic shakedown. This can be easily explained considering
that onset of first mesoscopic plasticity is reached at a macroscopic shear of τ ≈ 0.75τY where τY is the
yield limit in shear [Dang Van and Papadopoulos 1999]. Therefore the maximal macroscopic shear in
repeated loading is τmax = 2τ ≈ 1.5τY � τY .

All experiments were modeled using both a homogeneous specimen with a macroscopic homogenised
constitutive law and a specimen with a polygrain inclusion embedded within a homogenised elastic
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Polycrystalline grain mesh
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Figure 3. Illustration of the three different loading systems and the corresponding
meshes which have been analysed.

material matrix (see Figure 3). The grain inclusion and the constitutive models for the grains will be
described in the next section.

For simplicity the models were limited to two dimensions with plane strain condition. Loading was
applied in displacement control at the mesh boundaries.

Care was taken to always remain macroscopically in the elastic shakedown state. However at the
mesoscopic scale, some grains experience yielding and reach either a plastic or an elastic shakedown
state after a few cycles.

Once the stabilized stress and strain fields had been obtained, the stress results of the FEM computa-
tions were post processed in the following ways:

(DV1) Computation of the DVC for each slip system in each grain (slip system projection): The DVC
for each slip system is computed using the precise knowledge of the grain orientation and the slip
systems of the grain. Thus one can precisely compute the mesoscopic shear and hydrostatic stress on
each slip system, and compute the inequality in [Dang Van 1993] in each case in order to determine
the most critical grain and slip direction.

(DV2) Computation of the Dang Van fatigue criterion in each grain: The computation of the criterion in
each grain is done using the classical algorithms of the DVC with the mean stress field computed
over each grain as an input value.

(DV3) Computation of the Dang Van fatigue criterion for the homogenous structure: The computation
of the criterion is performed using the classical algorithms of the criterion with the stress field
computed from a homogenous elastic structure submitted to the same load. In this case only the hot
spot of the structure, the most critical point, is plotted in the mesoscopic shear-hydrostatic stress
diagram.
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Figure 4. Macroscopic and mesoscopic material behaviour compared with experimental
data averaged over a number of grains in a cyclic axial loading simulation.

4. The material

The material considered in this study corresponds to an austenitic steel with FCC crystallographic struc-
ture. The material behaviour during a cyclic tensile test is displayed in Figure 4 and has been modeled
at the macroscopic scale using an elastoplastic constitutive law with linear kinematic hardening.

At the mesoscopic scale the material was modeled based on a map of grains and lattice orientations
obtained from experimental observation. The grain boundaries were mapped by image processing of
electronic microscopy images. Lattice orientations were found by orientation imaging microscopy using
electron back scattering diffraction and were assigned in the form of Euler angles for each grain.

In this study a map of 156 grains was used (see Figure 5). Each grain was individually meshed in two
dimensions using linear 3 noded elements.

The material behaviour at the mesoscopic or grain scale is captured by a simplified phenomenological
elastoplastic constitutive law with linear kinematic hardening. It assumes that plastic deformation is
primarily caused by crystallographic slip, which applies to most cubic crystals and some hexagonal-
close-packed crystals as discussed by Weng [1983] or by Kowalczyk and Gambin [2004].

We assumed that the applied stress resolved along the slip direction on the slip plane (to give a shear
stress) initiates and controls the extent of plastic deformation. Yield begins on a given slip system when
the shear stress on this system reaches a critical value, the critical resolved shear stress, independent
of the tensile stress or any other normal stress on the lattice plane [Bertolino et al. 2007]. For FCC
lattice structure this assumption is acceptable, however in less symmetric lattices, there may be some
dependence on the hydrostatic stress.
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Figure 5. Grain contours of the microstructure used in this study.

For each grain g, the local yield criterion fg(σg) is obtained by the Schmid law. The individual yield
stress σ c

g depends on the active slip (gliding) system s

σ c
g =min

s

τ0

F s
g
,

where τ0 denotes the critical resolved shear stress (a material parameter) and F s
g the Schmid factor

computed for each slip system using the lattice orientation provided for each grain. All twelve slip
systems s of the FCC crystal structure were considered for the computation of σ c

g and are given in
Table 1. For clarity Figure 6 shows one of the FCC slip planes with its associated slip directions.

The macroscopic yield stress σy , the Young’s modulus E , and the macroscopic kinematic hardening
modulus H were identified from a macroscopic tensile test. The identification of the mesoscopic material
parameters was carried out using a square grain inclusion (see Figure 5) in a square elastoplastic matrix
(see Figure 3). The parameters were then adjusted to match the numerical homogenisation, that is, the
averaged response over all the grains, with the macroscopic behaviour. The complete set of macroscopic
material parameters is presented in Table 2.

It is important to note that, although the identification of the material parameters was carried out in
the plastic regime, it was ensured that loading during the actual simulations presented next was such that
the matrix always remained in the elastic regime.

Slip plane Slip direction

( 1 1 1) [ 1 −1 0], [−1 0 1], [ 0 1 −1]
( 1 −1 1) [ 0 −1 −1], [ 1 0 −1], [ 1 1 0]
(−1 −1 1) [ 0 −1 −1], [ 1 0 1], [−1 −1 0]
(−1 1 1) [ 0 1 −1], [ 1 0 1], [−1 −1 0]

Table 1. FCC slip planes and the associated slip systems.
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Figure 6. FCC crystal structure with one slip plane and its associated slip directions.

All finite element stress computations were performed using the object oriented finite element toolbox
[Cast3M 2008] which includes a number of preprocessing, solving, and postprocessing routines. Parts
of the postprocessing procedures were performed using MATLAB.

5. Results and discussion

The presentation of the numerical results is carried out by plotting the critical instant found for each grain
on a Dang Van plot (see Figure 7). The critical grain instances are computed by post processing scheme
1 from the stabilised stress trajectory in each grain once a shakedown state has been reached (see Figure
2).

First, to validate the proposed approach, it was essential to verify that for tensile and shear loading,
performed on the box specimen, the projection of mesoscopic shear onto crystal slip systems (post
processing method DV1) leads to similar results as the DVC (post processing DV3).

To ensure that the number of grains in the grain mesh constitutes a representative sample, two further
grain inclusions with randomly generated lattice orientations based on the same grain structure were
generated. Figures 8 and 9 represent plots of mesoscopic shear versus hydrostatic stress of the grain
critical instances for these three different distributions of lattice orientations (O1, O2, O3), when subjected
to macroscopic shear and tensile loading respectively.

E (GPa) ν σY (MPa) H (MPa) a b (MPa)
210. 0.3 670. 9500. 0.45 260.

Table 2. The macroscopic material parameters: E is Young’s modulus, ν Poisson ratio,
σY the yield limit, H the kinematic hardening modulus, and a and b Dang Van fatigue
parameters.
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Figure 7. Plotting scheme of grain critical instances.

5.1. No stress gradient: box specimen. In each simulation, the structure was subjected to 5 cycles and
the results from the last cycle were plotted. In both cases the homogeneous elastic solution has also
been represented (corresponding to postprocessing DV3). One can easily remark that the clouds of grain

−10 0 10 20 30 40 50

120

140

160

180

200

220

240

260

280

P  [MPa]

τ
  [

M
P

a]

Gra in  O3

Gra in  O2

Dang Van inf inite l i fet ime

Gra in  O1

Homogenous computat ion

m
e

s
o

s
c

o
p

ic
 s

h
e

a
r

h yd ros ta t i c  s t ress

Figure 8. Three clouds of grain critical instances plotted in a Dang Van diagram of
mesoscopic shear versus mesoscopic hydrostatic stress for different lattice orientations
(O1, O2, O3) in the case of alternated shear loading.
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Figure 9. Three clouds of grain critical instances plotted in a Dang Van diagram for
different lattice orientations (O1, O2, O3) in the case of repeated tensile loading.

critical instances (see Figures 8 and 9) are just below the homogeneous critical instant and that the most
critical grain approximately coincides with the homogeneous solution.

If the applied load is below the fatigue limit it can be seen that the clouds of critical instances are
compact with a small range of mesoscopic hydrostatic stresses, corresponding to small pressures (see
Figure 10, σmax = S2 (shear loading) and Figure 11, τmax = T2 (tensile loading)). When loading is
increased the clouds of grain critical instances closely follow the homogenous elastic solution point. Also
the clouds spread out and the range of mesoscopic hydrostatic stress increases significantly (see Figure
10, σmax = S1 (shear loading) and Figure 11, σmax = T1 (tensile loading)). This is a direct consequence of
increased grain plasticity with increasing applied load, as the hydrostatic stress range is directly related
to the residual stress distribution in the individual grains. However when the residual stress average is
computed across all the grains it is close to zero as one would expect. This confirms that macroscopically
the homogeneous elastic solution can still be used as a reference.

The case of shear loading (see Figure 10) presents an interesting distribution of grain critical instances
in the case where practically no plastic deformation has been observed. The zero mesoscopic hydrostatic
stress observed in this case is coherent with and as expected for shear loading. As load increases however,
the range of mesoscopic hydrostatic stresses increases and the grain critical instances spread out, as a
result of the increase in grain plasticity.

5.2. Results and discussion: with stress gradient. Next we shall examine the behaviour of the grain
inclusion when exposed to a stress gradient. This gradient was introduced by means of a notch with a
stress concentration factor of approximately 5 (see Figure 3, configuration c)

One would expect the strain and stress distribution in the homogenous specimen to differ significantly
from that in the specimen containing the granular inclusion. However, they show considerable similarity
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Figure 10. Two clouds of grain critical instances plotted in a Dang Van diagram for two
different applied shear loads, τmax = S1, S2.

since we primarily remain in the elastic regime which is the same for both models and only a few grains
show small plastic deformations.

Figure 12 displays in a Dang Van diagram the grain critical instant clouds found in the case of repeated
tensile loading of the notched specimen. For the specimen containing the granular inclusion two different
clouds were computed:

• one by projecting the mesoscopic stresses onto the slip systems in each grain, and thus computing
greatest mesoscopic shear and hydrostatic stress (post processing DV1), and

• one by direct application of the DVC to each grain (post processing DV2).
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Figure 11. Two clouds of grain critical instances plotted in a Dang Van diagram for two
different applied tensile loads, σmax = T1, T2.
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Figure 12. Two clouds of grain critical instances plotted in a Dang Van diagram for the
case of repeated tensile loading for a notched specimen. The first cloud is computed
by projecting the mesoscopic stresses onto the most critical slip system (post processing
DV1), whilst the second cloud shows the application of the DVC to each grain (post
processing DV2).

The most critical point in the cloud obtained using the grain DVC (post processing DV2) is close to the
point obtained from the homogeneous solution (post processing DV3). This means that the most critical
grain will experience the same damage as the notch tip, as they both experience a similar stress path.

Let us recall however that the DVC searches the mesoscopic shear on the most critical plane. In reality
the likelihood that any slip system of the grain at the notch tip is aligned with the most critical plane
predicted by Dang Van is small. Therefore the grain actually experiences a smaller mesoscopic shear
amplitude on its active slip systems. Consequently we find that the second cloud obtained from the most
critical slip system in each grain (post processing DV1) is far below the homogeneous computation point.

It is important to understand the role of the stress gradient in this setting. Because of the high stress
gradient only a few grains located at the notch tip will experience the high stresses, reducing the chance
of alignment of a slip system with the most critical plane. The bulk of the grains will experience a much
lower stress approaching the far field stress applied to the boundaries of the notched specimen which is
much lower than the stress at the notch tip.

In contrast, if the stress gradients are small, as in the box specimen, all grains experience very similar
stresses and the likelihood that a slip system of a grain is aligned with the most critical plane predicted
by Dang Van is high.

Figure 13 shows the distribution of grain critical instances for a notched specimen loaded in tension
for a number of different randomly allocated sets of lattice orientations (O1, O2, O3). As the clouds
of grain critical instances occupy the same region of the Dang Van plot, the observed behaviour of the
notched specimen can be seen as representative of the general case for any set of randomly distributed
lattice orientations. A more quantitatively orientated investigation of the statistics of grain critical instant
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Figure 13. Three clouds of grain critical instances plotted in a Dang Van diagram for
different lattice orientations (O1, O2, O3) in the case of repeated tensile loading of a
notched specimen.

distribution and its distance to the point of the homogeneous solution would allow the definition of an
equivalent notch factor or a critical distance as usually employed in classical fatigue analysis.

When the applied load is increased (see Figure 14), the clouds of critical instances found from slip
system projection in each grain (post processing DV1) follow the homogeneous solution as expected.
However, we remark that the density of the cloud near the homogeneous solution is smaller than observed
in the case of the box specimen. This is a direct consequence of the high stress gradient which places
emphasis on a small number of grains independently of the bulk load.
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Figure 14. Two clouds of grain critical instances plotted in a Dang Van diagram for two
different applied tensile loads (T1, T2) in the case of a notched specimen.
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This observed behaviour is directly due to the breakdown of the underlying homogenisation assump-
tion of the Dang Van fatigue criterion. In the presence of a steep stress gradient with a characteristic length
scale of the same order as the local microstructural length scale, the assumption that at each material
point a uniform distribution of all lattice orientations is present fails. The local number of grains at each
material point is too small to constitute a macroscopic representative volume element. This breakdown
of the homogenisation assumption is phenomenologically captured in the notch factor or critical distance
concept in fatigue analysis.

Although the discussion here was based on a two dimensional model of an austenitic steel with
FCC crystal structure, this does not limit the generality of the presented results and conclusions. The
breakdown of homogenisation assumption when macroscopic loading and microstructural length scales
approach can be readily extended to three dimensions and other crystal lattice structures.

6. Conclusion

In this paper a number of numerical fatigue experiments using a simplified polycrystalline model at
the mesoscopic/grain scale have been presented. The impact of the applied stress gradient on fatigue
life prediction was shown considering the example of a notched specimen. It was shown that high
localization of stresses causes failure of the homogenisation assumptions as only few grains are exposed
to very high stresses. This failure implies a fundamental change in the application of fatigue criteria
in general and more particularly of critical plane criteria such as Dang Van criterion in cases of high
stress gradient. The results also provide a physical explanation for critical distances and notch factors
encountered in engineering practice and underline the fact that whenever the length scales of macroscopic
loading and local microstructure approach, difficulties with macroscopic homogenisation assumptions
will be encountered.

A finer quantitative analysis both at the meso and macroscopic levels should allow the development
of a better understanding and ability to predict fatigue for stress states involving high gradients such as
those found in notched or cracked specimens and bending experiments.
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