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SEISMIC BEARING CAPACITY OF CIRCULAR FOOTINGS:
A YIELD DESIGN APPROACH

JEAN SALENÇON, CHARISIS THEODOROU CHATZIGOGOS AND ALAIN PECKER

As developed during the past decades, the yield design theory provides an approach to the stability
analysis of civil engineering structures under seismic conditions which has been often used, explicitly or
implicitly. New results related to circular footings resting on a purely cohesive soil, taking into account
the horizontal inertia forces, are presented in this paper for practical applications to the safety coefficient
to be applied to the vertical load when designing seismic foundations.

An outline of yield design theory

Just to clarify the terminology and to fix the notations, a brief outline of the yield design theory [Salençon
1983; 1990] is recalled here within the three dimensional continuum mechanics framework. It aims at
estimating the extreme loads that can be supported by a structure from the knowledge of its geometry,
of the loading process it undergoes and of the strength criteria of its constituent materials, whatever
the physical phenomena they are related to. Since they do not refer to any data about the constitutive
law of its materials before and at failure, the results obtained are but upper bound estimates for the
actual ultimate loads and no information can be obtained regarding the displacements. With the generic
notations � and ∂� for the volume and the boundary of the system, the quasistatic loading mode of the
system is described through a multiparameter loading vector Q with components Qi and the associated
dual kinematic parameters ˆ̇qi defining the virtual kinematic vector ˆ̇q. The principle of virtual rates of
work [Salençon 2001] thus takes the form: for all σ statically admissible with Q, and all Û kinematically
admissible with ˆ̇q, ∫

�

σ : d̂ d�+
∫
6Û

n · σ · [[Û]] d6Û = Q · ˆ̇q, (1)

with
σ 7→ Q and Û 7→ ˆ̇q linear, (2)

where the symbol “ :” denotes the double contracted product and “·” the dot product. σ stands for the
Cauchy stress tensor field, and d̂ for the virtual strain rate tensor field derived from the virtual velocity
field Û . Since such a field may exhibit velocity jumps [[Û]] across velocity jump surfaces 6Û which are
part of its definition, the second term in Equation (1) accounts for the corresponding contribution.

The same description is adopted in the case of a dynamic loading treated as a quasistatic phenomenon
by incorporating the corresponding given inertia forces within the applied external forces.

Homogeneity is not assumed and the term constituent material will be used generically from now on
to describe all the materials constituting the system, including the interfaces between different elements.

Keywords: seismic bearing capacity, circular footings, yield design, external approach, interaction diagrams, Tresca criterion.
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The resistance of the constituent material is defined at any point of the system through a convex strength
criterion to be satisfied by the stress state.

When trying to determine the loads Q that can be supported by the system under the specified strength
conditions, it is clear that mathematical compatibility at any point of the system between the equilibrium
equations and the material resistance conditions is necessary for a load to be supported. Such loads
generate the convex domain of the potentially safe loads in the Q vector space. The boundary of K
defines the extreme loads of the system. Any stress field in equilibrium with a load Q that complies
with the strength criterion is sufficient to prove that Q ∈ K . This is the basis of the internal approach or
lower bound approach to the extreme loads. Although the extreme loads are but upper bound estimates
of the actual ultimate loads of the system, it must be emphasized that since they are independent of the
material behaviour characteristics, other than the strength criteria, and of the loading paths and loading
history, they are valid regardless of these data. Thus, after being assessed and through the introduction
of convenient safety factors, they provide a reliable theoretical benchmark for practical applications.

The construction of stress fields that satisfy the conditions above often makes the implementation of
the internal approach difficult. Dualization through the principle of virtual rates of work (see Equations
(1) and (2)) leads to an external approach based upon the construction of kinematically admissible virtual
velocity fields. The details of the related reasoning can be found in [Salençon 1990]. The key idea is
that the material resistance may be equivalently defined through the strength criteria on the stress tensor,
as indicated above, or through the associated π -functions of the strain rate d̂: denoting generically by G
the domain of resistance on σ defined at a point of the system, the corresponding π-function is just the
support function

π(d̂)= sup{σ ′ : d̂ | σ ′ ∈ G}, (3)

from which we derive

π(n, [[Û]])= sup{n · σ ′ · [[Û]] | σ ′ ∈ G}. (4)

The π-functions are called the maximum resisting rate of work densities related to G. From the
definition of K and through Equations (1) and (2), the fundamental inequality of the external approach
is obtained in the form: For every Q ∈ K , and every kinematically admissible virtual velocity field Û ,

Q · ˆ̇q ≤
∫
�

π(d̂) d�+
∫
6Û

π(n, [[Û]]) d6Û . (5)

The right side of Equation (5) is called the maximum resisting rate of work in the virtual velocity field
Û :

Prm(Û)=
∫
�

π(d̂) d�+
∫
6Û

π(n, [[Û]]) d6Û , (6)

while the left side of (5) is just the rate of work of all the external forces Pe(Q, Û). It follows from
Equations (5) and (6) that the construction of any kinematically admissible virtual velocity field yields
an external approximation of the boundary of K :

K ⊂ {Pe(Q, Û)− Prm(Û)≤ 0}, for any kinematically admissible Û . (7)
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Figure 1. Internal and external approaches to the domain of potentially safe loads.

The two approaches are schematically presented in Figure 1. Important points regarding the external
approach are:

• Tables giving the expressions of the π-functions for usually encountered criteria are available
[Salençon 1983; 2002].

• For a given G the values of the π-functions are either finite or infinite depending on the values of
the arguments d̂ and (n, [[Û]]).

• For the approach to be efficient, kinematically admissible virtual velocity fields Û must be chosen
in order that the values of the π -functions remain finite everywhere in O .

• The third condition has no relationship whatsoever with a constitutive law.

One may wonder how the external approach can be of any use in practical applications for the design
of structures since it only provides upper bounds of the extreme loads, the practical significance of which
has been discussed above. As a matter of fact, this is one reason for the introduction of the model factor
in ultimate limit state design codes [Salençon 1994]. Independently of the partial safety factors which
define the design loads and design resistances to be introduced in the design procedure of the considered
structure, derived from the nominal ones, the model factor is imposed on the resisting rate of work as a
whole in order to take into account the method for the yield design analysis that is performed (say, by
assessing the quality of the considered potential collapse mechanisms).

Seismic bearing capacity of a circular footing on a purely cohesive soil

Problem motivation. The problem under consideration arises from a series of field observations after
several major earthquakes within the last twenty-five years, which revealed a particular type of foundation
failure without the presence of liquefaction in the supporting soil layers: large permanent rotations were
observed at the foundation level together with a zone of detachment at the soil-foundation interface and
the development of a failure mechanism within the soil volume [Mendoza and Auvinet 1988]. The same
failure mechanism was also identified experimentally [Knappett et al. 2006; Zeng and Steedman 1998].

From a theoretical point of view, one initial approach to the problem of the seismic bearing capacity
is to work within the classical framework of Terzaghi’s bearing capacity formula, modifying the bearing
capacity factors in order to account for the effect of the inertia forces within the soil volume during the
seismic excitation, while applying appropriate correction factors for the load eccentricity and inclination
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[Fishman et al. 2003; Richards et al. 1993; Sarma and Iossifelis 1990]. A second approach represents
the seismic bearing capacity of the foundation system as an ultimate surface in the space of the loading
parameters of the footing as a function of the intensity of the horizontal inertia forces in the soil volume
[Paolucci and Pecker 1997a; 1997b; Pecker and Salençon 1991; Salençon and Pecker 1995a; 1995b].
The results so obtained in the case of shallow strip footings were incorporated in the European norms
for earthquake-resistant design of civil engineering structures [Eurocode 1998].

This study aims at extending the analysis to the seismic bearing capacity of a shallow circular footing
resting on the surface of a purely cohesive soil layer.

Definition of the seismic bearing capacity problem. A rigid circular footing with radius r resting on a
purely cohesive soil half-space is considered (Figure 2). The resistance of the constituent soil is described
by the Tresca criterion with a cohesion c depending linearly on the depth (8), with c0 being the surface
cohesion and α the vertical cohesion gradient:

c = c0 = αz. (8)

In order to assess the importance of the corresponding assumption, two extreme cases are considered,
namely, the classical Tresca criterion (9) and the Tresca criterion with zero resistance to tension (10):

f (σ )= |σ1− σ3| − 2c ≤ 0, (9)

f (σ )= sup{|σ1− σ3| − 2c, σ1} ≤ 0, (10)

with σ1 and σ3 being the major and minor principal stresses respectively (tensile stresses positive).
The soil-footing interface is also considered to be purely cohesive and its resistance is modelled by

the Tresca criterion with no tensile resistance (zero tension cut-off). This is a deliberate choice in order
to allow for the potential creation of a zone of detachment between the footing and the soil, an essential
characteristic of observed seismic bearing capacity failure. The interface cohesion is considered equal
to c0.

f (σ, τ )= sup{|τ | − c0, σ } ≤ 0. (11)

The quasistatic loading mode of the system is defined by means of the wrench of external forces acting
on the footing due to the weight and to the inertial response of the superstructure (including the footing
itself), of the unit weight of the soil, and of the intensity of the inertia forces developing within the soil
mass.

Following common practice, this intensity is assumed to be uniform throughout the soil mass with
vertical and horizontal components Fv and Fh. The physical validity of this assumption has already been
discussed by various authors (for example, Pecker and Salençon [1991] suggested that, denoting by d

Figure 2. Circular shallow foundation under seismic loading on a purely cohesive soil.
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and D the failure mechanism thickness and the depth of the soil layer, the following condition should be
satisfied: d/D < 10) and will be revisited in a following section. From now on the vertical component
will be added to the unit weight of the soil and will give rise to the modified unit weight:

γ ∗ = γ + Fv = γ
∗ez, (12)

with ez the unit vector in the descending vertical direction.
Due to the origin of the external loads acting on the superstructure and on the foundation, it is also

assumed that the horizontal component V of the resultant force of the wrench is collinear with the
horizontal inertia force Fh in the soil along the x-axis, and that the horizontal overturning moment M
at the center of the footing is oriented around the y-axis, perpendicular to that direction. As a matter of
fact, this assumption is rigorously valid when dealing with the excitation of a single-degree-of-freedom
(SDOF) superstructure and under specific conditions in the case of multiple degrees of freedom.

Relevant variables for the seismic bearing capacity problem. The determination of the bearing capacity
of the foundation under the conditions specified above is based upon the theory of yield design. Concern-
ing the influence of the modified unit weight on the extreme loads, it has been shown [Salençon 1983]
that, for the classical Tresca criterion, the unit weight has no influence on the value of the extreme loads
supported by the footing. The result holds also if the modified unit weight is not constant but depends
only on the z-coordinate. For the case of the Tresca criterion with no resistance to tension, the result
remains true if γ ∗ ≤ 0, which is true in the usual cases of seismic excitations. Therefore, γ ∗ will no
longer appear in the problem loading parameters.

Dimensionless parameters. The vertical component of the resultant force acting on the footing is de-
noted by N . The horizontal component Fh is defined from a horizontal acceleration ah characteristic of
the examined earthquake, which can be for instance the peak ground horizontal acceleration (PGHA):

Fh = ρah, (13)

with ρ being the mass density of the soil.
The vector Q representing the loading parameters of the system is written as

Q = (N , V,M, Fh), (14)

and the strength parameters are c0 and α.
When presenting the results, dimensionless parameters will be introduced:

Ñ =
N

πc0r2 , Ṽ =
V

πc0r2 , M̃ =
M

2πc0r3 , F̃h =
ρrah

πc0
, k̃ =

rα
c0
. (15)

The parameter k̃ expresses the degree of heterogeneity in the system. For a homogeneous soil layer,
k̃ = 0. Common values of r , α and c0 give rise to k̃ less than or equal to approximately 2.

Solution procedure. The external approach is implemented in this problem through the construction
of kinematically admissible virtual velocity fields in the whole system that are relevant to the strength
criteria under consideration by referring to the π -functions corresponding to Equations (9)–(11):
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• Classical Tresca criterion (Equation (9)):

π(d̂)=+∞ if tr(d̂) 6= 0,

π(d̂)= c(|d̂1| + |d̂2| + |d̂3|) if tr(d̂)= 0,

π(n, [[Û]])=+∞ if [[Û]] · n 6= 0,

π(n, [[Û]])= c|[[Û]]| if [[Û]] · n= 0.

(16)

• Tresca criterion with zero tension cut-off (Equation (10)):

π(d̂)=+∞ if tr(d̂) < 0,

π(d̂)= c(|d̂1| + |d̂2| + |d̂3| − tr(d̂)) if tr(d̂)≥ 0,

π(n, [[Û]])=+∞ if [[Û]] · n< 0,

π(n, [[Û]])= c|[[Û]] − [[Û]] · n| if [[Û]] · n ≥ 0.

(17)

• Tresca criterion for the interface without resistance to tension (Equation (11)):

π(n, [[Û]])=+∞ if [[Û]] · n< 0,

π(n, [[Û]])= c|[[Û]] − ([[Û]] · n) · n| if [[Û]] · n ≥ 0.
(18)

It follows obviously that a relevant virtual velocity field for the classical Tresca criterion is also relevant
for the Tresca criterion without tensile strength, but not vice versa. Attention must be paid also to
Equation (18) as it shows that a nonzero maximum resisting rate of work is obtained even when a
detachment between the footing and the soil is induced by the virtual velocity field.

Since the circular footing is assumed to be perfectly rigid, any kinematically admissible virtual velocity
Û field must comply with a rigid body motion of the footing as a boundary condition. For the planar
velocity fields that will be considered hereafter, assuming Ûy = 0, such a rigid body motion is defined
by the virtual rate of rotation ω̂ and the two components ÛO,x , ÛO,z of the virtual velocity of the center
O of the footing. Consequently the rate of work of the external forces is written:

Q · ˆ̇q = NÛO,z + V ÛO,x +Mω̂+ Fh

∫
�

Û · exd O. (19)

Three classes of kinematically admissible virtual velocity fields Û have been examined, which are de-
rived from plane strain potential failure mechanisms used to determine the seismic bearing capacity of
strip footings. Completely described in [Chatzigogos 2007; Chatzigogos et al. 2007], these planar and
nonplane strain virtual velocity fields are parallel to Oxz and depend on the three coordinates. They are
relevant to the strength criteria (Equations (9)–(11)) since they are isochoric everywhere in �: tr(d̂)= 0,
[[Û]] · n= 0, but for the interface where virtual uplift of the footing with respect to the soil surface may
occur [[Û]] · n ≥ 0. In order to implement the external approach through Equation (7) Prm(Û) must be
computed, which implies deriving d̂ from Û , a tedious task until it was drastically simplified by Puzrin
and Randolph [2003a; 2003b] in a method based upon the use of wisely chosen curvilinear coordinates.
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• Translational virtual failure mechanisms were originally proposed in plane strain [Green 1954] for
the indentation by a rigid punch submitted to an inclined load; the extension to a rigid circular
footing was given by Puzrin and Randolph [2003b] by considering that the width of the mechanism
in a cross-section by a vertical plane is proportional to the width of the footing in the same cross-
section (Figure 3). The footing translates with a virtual velocity Û0 which propagates with a constant
magnitude along the streamlines of the mechanism. The shape of each virtual failure mechanism
is defined by two angles: 0< δ < π/2, 0< ε < π/2. The mechanisms exhibit three zones within
the soil mass, presented in Figure 3. Zones 1 and 3 translate rigidly while zone 2 is a region where
nonplane shear strain rate is developed. Contributions to the maximum resisting rate of work for
this class are developed within the volume of zone 2 and along the velocity jump surface in the
soil. These virtual mechanisms involve no rotation of the footing: the upper bound estimates they
provide through (7) do not involve the moment M .

• Purely rotational virtual failure mechanisms are adapted from the plane strain version studied in
[Salençon and Pecker 1995a; 1995b; Sekiguchi and Kobayashi 1997]. The rigid circular footing
is considered to rotate rigidly around an axis parallel to Oy and induces rigid rotational failure
of the soil below with a virtual angular velocity ω̂ (Figure 4). Each mechanism is defined by the
geometrical parameters κ and λ. For 1 < λ < 2, there is no uplift of the footing with respect to
the soil surface and the maximum resisting rate of work is only produced along the velocity jump
surface within the soil volume. For 0< λ < 1, uplift of the footing with respect to the soil surface
takes place in the zone of soil-footing detachment where consequently a fraction of the maximum
resisting rate of work is developed.

• Shear-rotational virtual failure mechanisms follow a pattern derived from the plane-strain virtual
velocity field originally proposed by Hansen [1953] for the study of active earth pressures (see
Figure 5).

Figure 3. Translational virtual failure mechanism.
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Figure 4. Purely rotational virtual failure mechanism.

Rigid body rotation of the footing around an axis of rotation parallel to Oy located within the soil mass
induces the development of nonplanar shear strain rate in the zones 2 and 3 within the soil volume. The
mechanisms depend on the three geometrical parameters κ , λ, µ and three distinct configurations are
obtained depending on the position of the axis of rotation with respect to the footing: without uplift of
the footing with respect to the soil surface or with a small or large zone of detachment; contributions to
the maximum resisting rate of work are developed within the soil volume in zones 2 and 3, along the
velocity jump surface in the soil mass and on the zone of soil-footing detachment, if any.

Results

Implementing the external approach through Equation (7), the rate of work of the external forces is
given by (19) and the maximum resisting rate of work Prm(Û) is computed through (6) with the relevant
expressions for π(d̂) and π(n, [[Û]]). Looking for optimal upper bounds for the ultimate loads supported
by the system requires the implementation of an optimization procedure over each separate geometrical
configuration of the three considered classes of virtual mechanisms: in each case, the mathematical
problem involved reduces to minimizing a nonlinear objective function with respect to the parameters of
the geometric configuration. The algorithm used for this purpose is described in [Coleman and Li 1996].
The following results were obtained.

Figure 5. Shear-rotational virtual failure mechanism.



SEISMIC BEARING CAPACITY OF CIRCULAR FOOTINGS: A YIELD DESIGN APPROACH 435

Figure 6. Plane strain circular rigid body virtual collapse mechanism.

Critical value of Fh. The assumption of uniformly distributed horizontal inertia forces Fh would lead
to a pathological conclusion if, in addition to the limitation on the ratio d/D which has already been
introduced for physical relevance, the virtual failure mechanisms to be taken in consideration were given
the possibility of infinite extension.

As an illustrative example, the plane strain circular rigid body virtual collapse mechanism presented in
Figure 6 can be considered. In the case of a homogeneous soil layer, denoting by L and d its horizontal
and vertical extension respectively, the minimization procedure on this class of mechanisms proves the
instability of the system just due to the action of the soil inertia forces if ρah > 8.3c0/L = 2.74c0/d,
with the other loading parameters being zero: Ñ = 0, Ṽ = 0, M̃ = 0. As a consequence, for any circular
footing with radius r ≤ L/2, the value F̃h = 2.64r/L = 0.87d/L would appear as the critical value
for the considered mechanism. This critical value tends to zero if the extension of the mechanism is
unlimited. The value F̃h = 0 would therefore appear as the critical value of F̃h, a conclusion that is
obviously unrealistic! This brings us to the condition that the virtual failure mechanisms implemented
in the yield design theory must be physically relevant, apart from the fact that horizontal uniformity of
F̃h could also be questioned. In other words, pathological circumstances are put aside through realistic
constraints on the minimization procedure on the virtual failure mechanisms.

Table 1 summarizes the calculated values of critical F̃h as a function of k̃ for the three classes of
examined three-dimensional virtual failure mechanisms. As could be anticipated, it shows that the critical
value increases with k̃. The minimum value is obtained for the homogeneous soil (k̃ = 0) through a
shear-rotational virtual failure mechanism. For usual values of the other parameters such as r = 4 m,
c0 = 20 kPa, ρ = 2× 103 kg/m3 it corresponds to a very strong earthquake: ah = 5 m/sec2 ∼= 0.5g.

Class of mechanisms Critical value of F̃h
k̃ = 0 k̃ = 0.5 k̃ = 1 k̃ = 3

Translational 1.32 1.80 2.29 4.05
Purely rotational 0.99 1.28 1.54 2.45
Shear rotational 0.66 0.90 1.15 2.03

MINIMUM 0.66 0.90 1.15 2.03

Table 1. Critical values of F̃h as a function of k̃.
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Figure 7. External approach of the ultimate load surface for a homogeneous soil (k̃ = 0)
when F̃h = 0 (left) and F̃h = 0.5 (right).

Presentation of the results. The upper bounds for the ultimate loads supported by the foundation are
represented as surfaces in the space of the loading parameters (Ñ , Ṽ , M̃) for different values of F̃h and
k̃ (Figure 7).

Since these surfaces are obtained through the minimization procedure described earlier over three
different classes of virtual collapse mechanisms, they are just piecewise regular, each smooth part being
the result of one class of mechanisms as it will appear in the interaction diagrams (Figures 8–9).

For practical applications the most convenient presentation of the results is by means of sections
of those surfaces that may be called classically interaction diagrams: these curves represent the upper
bounds for the ultimate combinations of the loading parameters and indicate the class of mechanisms
from which each bound is obtained. In the following, the results refer to the Tresca criterion with a
zero tension cut-off for the soil strength which seems the most realistic criterion to be considered. For
brevity’s sake, only some significant results will be reported here; a comprehensive and commented
report may be found in [Chatzigogos 2007; Chatzigogos et al. 2007].

Interaction diagram (Ñ, Ṽ , M̃ = 0, F̃h). The diagrams in Figure 8 present the relation between the
ultimate horizontal and vertical force for k̃ = 0 and k̃ = 1, for three different values of F̃h. The maximum
value for Ṽ is 1, corresponding to a translational mechanism of failure by pure sliding along the soil-
footing interface when F̃h = 0. It is also interesting to note that for F̃h > 0 the purely rotational virtual
mechanism gives an upper bound that is slightly better than the pure sliding one: although the depth of
this mechanism is relatively small, so that it is very close to a pure sliding, it incorporates a contribution
of F̃h to the rate of work of the external forces. This phenomenon is less pronounced for larger values
of k̃ as revealed by the diagram for k = 1. For practical applications it is worth noting that, both for
k̃ = 0 and for k̃ = 1, the effect of F̃h remains negligible as long as Ñ 0

max/Ñ > 2.5, where Ñ 0
max denotes

the known exact value of the maximal vertical force supported by the footing with F̃h = 0 [Salençon
and Matar 1982]. As Ñ increases so does the negative effect of a high value of F̃h, especially when
Ñ 0

max/Ñ > 2i but it is observed that it is less pronounced for k̃ = 0 than for k̃ = 1: a favourable effect of
the vertical cohesion gradient.

Interaction diagram (Ñ, Ṽ , M̃ = 0, F̃h). Figure 10 presents the optimal upper bounds for the ultimate
combinations of M̃ and Ñ obtained with Ṽ = 0, for k̃ = 0 and k̃ = 1. Experimental data in the case k̃ = 0,
F̃h = 0 in [Houlsby and Martin 1993] are plotted for comparison.
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Figure 8. Interaction diagram (Ñ , Ṽ , M̃ = 0, F̃h) for k̃ = 0 (top) and k̃ = 1 (bottom).
Tresca criterion with zero tension cut-off.

It comes out that the upper bounds are satisfactory, from a practical point of view, and that the dif-
ference is larger for the larger values of Ñ that correspond to quasiaxisymmetric loading configurations,
to which the considered unilateral virtual failure mechanisms are not well suited. For small values of
Ñ , the optimal upper bounds are obtained by mechanisms with a significant zone of detachment of the
footing, which is not the case as Ñ increases. The effect of F̃h follows the same behaviour as in Figure 8,
which, from a practical point of view, enforces the conclusion from this observation that a factor of safety
against permanent loads Ñ 0

max/Ñ > 2.5 can guarantee that the effect of soil inertia forces is negligible,
even for very strong earthquakes. Such conclusions are in agreement with observations of real foundation
bearing capacity failures, mainly after the Guerrero–Michoacán earthquake (Mexico, 1985) as presented
in [Mendoza and Auvinet 1988].

Interaction diagram (Ñ = const, Ṽ , M̃, F̃h ). The interaction diagrams between the ultimate values of Ṽ
and M̃ for fixed values of the vertical force Ñ are shown in Figure 9 for k̃= 0 in the two cases Ñ 0

max/Ñ = 3
corresponding to a proper foundation design and Ñ 0

max/Ñ = 1.5 corresponding to a nonconservative
design.

These diagrams can be used for practical applications when a relationship between the resultant mo-
ment and the horizontal force (base shear force) on the footing is known from the geometrical and
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max/Ñ > 3 (top) and Ñ 0
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for F̃h = 0.25 in a SDOF superstructure.

rigidity characteristics of the superstructure. Such a relationship defines a loading path in the (Ṽ , M̃)-
plane allowing for the determination of the ultimate combination of Ṽ and M̃ for given Ñ and F̃h as
presented in Figure 10, it being observed that only the right halves of the diagrams, Ṽ ≥ 0, correspond to
realistic loading paths. The two diagrams highlight the significant decrease of the bearing capacity with
increasing F̃h for Ñ 0

max/Ñ = 1.5. Even for Ṽ = 0, M̃ = 0, a value of F̃h = 0.5 causes the collapse of the
footing.

Practical implementation. As explained earlier, the Eurocode [1998] expression for the seismic bearing
capacity of shallow foundations is only valid for strip footings resting on homogeneous soils, either purely
cohesive or purely frictional. This study makes it possible to propose a modified version of those rules for
shallow circular footings on a purely cohesive soil with a vertical cohesion gradient. The corresponding
expression is presented and discussed in [Chatzigogos 2007; Chatzigogos et al. 2007]. As far as the
design principles are concerned, it should be remembered that the effect of the horizontal inertia forces
in the soil volume is, in general, negligible as long as the vertical force on the footing remains smaller
than one third of its static bearing capacity.
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Figure 10. Interaction diagram (Ñ , Ṽ =0, M̃ , F̃h) for k̃=0 (top) and k̃=1 (bottom), and
experimental results by Houlsby and Martin [1993]. Tresca criterion with zero tension
cut-off.

Conclusion

Seismic actions must now often be taken into account when designing private or industrial buildings or
structures such as bridges, dams, nuclear plants, etc. We have briefly outlined how such a problem can
be thoroughly studied from the theoretical point of view through the yield design approach up to the
writing of new international design codes. For this purpose it is necessary that the rationale of the yield
design theory be thoroughly understood since most (not to say all) equations that are used in such codes
are obtained through the external approach, either explicitly or implicitly. To this extent the yield design
theory is a corner stone of ultimate limit state design (ULSD).
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